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Abstract The existing NHE3 knockout mouse has signifi-
cant intestinal electrolyte absorption defects, making this
model unsuitable for the examination of the role of proximal
tubule NHE3 in pathophysiologic states in vivo. To overcome
this problem, we generated proximal convoluted tubule-
specific KO mice (NHE3-PT KO) by generating and crossing
NHE3 floxed mice with the sodium-glucose transporter 2 Cre
transgenic mice. The NHE3-PTKOmice have >80% ablation
of NHE3 as determined by immunofluorescence microscopy,
western blot, and northern analyses, and show mild metabolic
acidosis (serum bicarbonate of 21.2 mEq/l in KO vs.
23.7 mEq/l in WT, p<0.05). In vitro microperfusion studies
in the isolated proximal convoluted tubules demonstrated a
∼36 % reduction in bicarbonate reabsorption (JHCO3=53.52±
4.61 pmol/min/mm in KO vs. 83.09±9.73 in WT) and a
∼27 % reduction in volume reabsorption (Jv=0.67±

0.07 nl/min/mm in KO vs. 0.92±0.06 nl/min/mm in WT) in
mutant mice. The NHE3-PT KO mice tolerated NH4Cl acid
load well (added to the drinking water) and showed NH4

excretion rates comparable to WT mice at 2 and 5 days after
NH4Cl loading without disproportionate metabolic acidosis
after 5 days of acid load. Our results suggest that the Na+/H+

exchanger NHE3 plays an important role in fluid and bicar-
bonate reabsorption in the proximal convoluted tubule but
does not play an important role in NH4 excretion.
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Introduction

The sodium hydrogen exchanger NHE3, encoded by solute-
linked carrier family 9, member 3 gene, is abundantly
expressed in the intestine and kidney tubules [1–3]. NHE3
is expressed on the villi in the apical membrane of epithelial
cells in both small and large intestines [3–5]. NHE3 expres-
sion in the kidney is limited to the proximal tubule and thick
ascending limb of Henle [1, 6–9], two segments that play
important role in salt and bicarbonate reabsorption [9–13].

In the kidney proximal tubule, NHE3 is located on the
apical membrane of cells along the length of tubule,
extending from S1 and S2 segments (convoluted tubule) to
the S3 segment (straight tubule). NHE3 is also expressed on
the apical membrane of cells in the thick ascending limb of
Henle [7, 14]. Its main role in the S1 and S2 segments of the
proximal tubules is the reabsorption of fluid and bicarbon-
ate. As a result, NHE3 is thought to be important in vascular
volume homeostasis and acid base balance [15, 16]. In the

H. C. Li : S. Barone :K. Zahedi :M. Soleimani (*)
Center on Genetics of Transport and the Department of Medicine,
University of Cincinnati, Cincinnati, OH, USA
e-mail: manoocher.soleimani@uc.edu

Z. Du : T. Wang
Department of Cellular and Molecular Physiology,
Yale University, New Haven, CT, USA

I. Rubera :M. Tauc
Université de Nice Sophia Antipolis, Nice, France

A. A. McDonough
Department of Cell and Neurobiology,
University of Southern California, Los Angeles, CA, USA

H. C. Li : S. Barone :A. A. McDonough :M. Soleimani
Research Services, Veterans Affairs Medical Center,
Cincinnati, OH, USA

J Mol Med (2013) 91:951–963
DOI 10.1007/s00109-013-1015-3



S3 segment, NHE3 is predominantly involved with volume
absorption with no significant impact on bicarbonate ab-
sorption [17–21]. In the thick ascending limb, NHE3 is
thought to play an important role in salt absorption and
overall fluid and electrolyte maintenance [6, 22]. NHE3 is
also the main sodium-absorbing transporter along the length
of the small intestine and colon [23].

The conventional (global) NHE3 KO mice display signif-
icant fluid absorption defect in the gastrointestinal tract,
resulting in vascular volume depletion, and as a consequence
reduced kidney perfusion and function [24, 25]. In addition,
the impaired bicarbonate absorption in the small intestine may
contribute to the metabolic acidosis that is observed in the
mutant mice [22, 24, 26, 27]. These abnormalities, predomi-
nantly due to fluid and electrolyte loss in the intestine, can
modulate many systemic signaling and transport pathways in
other tissues, including the kidney tubules. As such, the tubu-
lar transport abnormalities in the NHE3KOmicemight in part
reflect the secondary phenotype subsequent to the aforemen-
tioned derangements. Further, the profound fluid loss in the
intestine in conjunction with reduced kidney perfusion (re-
duced glomerular filtration rate (GFR) [24]) makes it impos-
sible to study the role of kidney proximal tubule NHE3 in
many pathophysiologic states in vivo, specifically those con-
ditions requiring challenge test with acid, bicarbonate or salt,
as the intestinal absorption and kidney filtration and secretion
of these chemicals are impaired in NHE3 KO mice.

To circumvent the defect in fluid absorption in the intestine
in NHE3 KO mice and investigate the role of NHE3 in the
renal proximal tubules in pathophysiologic states in vivo, we
generated proximal convoluted tubule specific NHE3 KO
mice. This animal model provides us with a unique tool to
study the role of proximal tubule NHE3 in fluid and bicar-
bonate reabsorption in pathophysiologic states.

Experimental procedures

Generation of conditional NHE3 knockout mice

An NHE3 conditional targeting vector containing the NHE3
genomic region was constructed, in which the negative
selective marker thymidine kinase gene, and the positive
selective marker neomycin resistance (neo cassette) gene
flanked by two Frt sites and two floxed sites were intro-
duced in relevant positions. The vector was designed to flox
exons 4 and 5, flanked by 2.3 and 3.2 kb short and long
homology arms, respectively. The linearized targeting vec-
tor was electroporated into 129/SvOla ES cells [28]. After
dual selections by G418 and ganciclovir and screening by
genomic PCR, ES cells containing NHE3 conditional
targeted allele were identified. The identity of ES cells was
further confirmed by Southern blot analysis.

Two correctly targeted ES cell clones were used for
blastocyst injection to generate chimeric mice, which were
then crossed with WT C57BL/6 mice to obtain mice capable
of germ line transmission of NHE3 conditional knockout
gene (ES cell electroporation and blastocyst injection were
performed by the Gene Targeting Mouse Service Core at the
University of Cincinnati). The animals were bred with Flp
recombinase transgenic mice to obtain conditional NHE3
KO mice with floxed allele lacking the neo cassette. These
mice were crossed with wild-type C57BL/6 mice to remove
Flp recombinase transgene in order to generate mice
heterozygote for NHE3 conditional knockout gene
(NHE3+/flneo−flp−), which are designated as NHE3fl/fl or
NHE3+/fl mice. These animals were mated with sodium-
glucose transporter 2 (Sglt2) promoter-driven Cre recombinase
transgenic mice in order to disrupt NHE3 gene expression in
the S1 and S2 regions of the proximal tubule [29].

PCR analysis Genomic DNA isolated from ES cells
containing NHE3 conditional targeted allele was screened
by PCR analysis, yielding a 2.9 kb DNA fragment. LoxP+,
Neo+, Flp+, and Cre+ alleles were identified by PCR analy-
sis of the genomic DNA. All PCR reactions were performed
using the AccuPrime Taq DNA Polymerase System PCR kit
with buffer II (Invitrogen, Carlsbad, CA, USA). Primers
PS.1659 and PS.1660 were used to identify NHE3 LoxP+

allele (LoxP+, 250 bp; LoxP− or wild type, 200 bp). Neo-Pr1
sense and E4E5 antisense primers were used to determine
the presence of Neo cassette (Neo+, 2.7 kb; Neo−, 1.3 kb
DNA fragments). Flp sense and antisense primers were used
to identify Flp sequence, resulting in 0.7 kb (Flp+) and
0.3 kb (wild type) DNA fragments. The primers used in
these studies are included in Table 1. Cre 391 sense and
antisense were used to determine the presence of Cre
recombinase transgene (Cre+, 391 bp; Cre−, 245 bp) [29].
The Neo cassette-disrupted NHE3 gene allele from
NHE3−/fl and NHE3+/− conventional knockout mice were
genotyped by PCR amplification of genomic DNA with
primers F, R, and N [24]. Two distinct products, a 200 bp
band indicating the presence of wild type and a 160-bp
fragment indicating the presence of Neo cassette-disrupted
NHE3 gene, were used to identify the genetic make-up of
the animals [24]. A PCR fragment (257 bp) generated from
mouse kidney cDNA with NHE3 257 sense and antisense
primers was used as the probe for northern blot analyses.
Cycling parameters for all PCR screening experiments were
as follows: segment 1–95 °C, 30 s (one cycle) and segment
2–95 °C, 30 s, 60 °C, 1 min, 68 °C, 3 min (40 cycles).

Microperfusion of proximal tubules in vitro The experi-
ments were conducted under animal protocol 2007–10473
(TW) approved by the Institutional Animal Care and Use
Committee. Proximal convoluted tubules (S2 segments)
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were perfused in vitro using conventional methods [30].
Briefly, age-matched animals from either WT or proximal
tubule (NHE3 PT) KO mice were anesthetized by an intra-
peritoneal injection of 50 mg/kg body wt of pentobarbital
sodium. Then kidneys were removed and cut into coronal
slices and individual tubules were dissected in cooled (4 °C)
Hanks’ solution containing (in millimolar) 137 NaCl, 5 KCl,
0.8 MgSO4, 0.33 Na2HPO4, 1 MgCl2, 10 Tris, 0.25 CaCl2, 2
glutamine, and 2 L-lactic acid. Proximal tubules (S2) were
perfused with an ultrafiltrate-like solution. The perfusion
rates were adjusted by changing the height of the reservoir
connected to the perfusion pipette and measured by a
calibrated collection pipette. The solution for luminal
perfusion contained (in millimolar) 125 NaCl, 22 NaHCO3,
1 CaCl2, 1.2 MgSO4, 2 glutamine, 2 lactic acid, 5 KCl, and
1.2 phosphoric acid. The bath medium consisted of
(millimolar) 101 NaCl, 22 NaHCO3, 1 CaCl2, 1.2 MgSO4,
2 glutamine, 2 lactic acid, 10.5 glucose, 5 KCl, 1.2 phos-
phoric acid, and 32.5 HEPES as well as 5 g/dl albumin. All
solutions were bubbled with 95 % O2–5 % CO2 and had a
pH of 7.4. The osmolalities of the bath and luminal solution
were adjusted to 300 mOsmol/kg H2O by the addition of
either H2O or NaCl. Extensively dialyzed [methoxy-3H]-
inulin was added to the perfusate at a concentration of
30 μCi/ml as a volume marker [30]. Tubular fluid collection
began after an equilibration time of 30–60 min and a total of
four timed collections were made for measuring fluid and
bicarbonate absorption. The volume of the perfusate and
collected samples was measured and [3H]-inulin concentra-
tions in those samples were determined using a liquid
scintillation counter. The rate of net fluid reabsorption (Jv)
was calculated according to the [3H]-inulin concentration

changes between the original and collected fluid. The
HCO3

− concentration in the perfusate and collected tubular
fluid was measured by microfluorometry (Nanoflow; World
Precision Instruments, Sarasota, FL, USA). The rate of
HCO3

− absorption (JHCO3) was calculated according to the
HCO3

− concentration changes between the original and
collected fluid. The Jv and JHCO3 are expressed as per
minute per millimeter of proximal tubule [30].

Immunofluorescent labeling Mice were euthanized with an
overdose of pentobarbital sodium and perfused through the
left ventricle with 0.9 % saline followed by cold 4 % para-
formaldehyde in 0.1 M sodium phosphate buffer (pH7.4).
Kidneys were removed, cut in tissue blocks, fixed in 4 %
paraformaldehyde solution overnight at 4 °C, and then
transferred to 30 % sucrose in 0.1 M sodium phosphate
buffer (pH7.4) and stored at 4 °C. Kidneys were then
embedded in O.C.T. compound (Saakura Finetek USA Inc.,
Torrance, CA, USA), frozen in liquid nitrogen, and 6-μm
sections were cut using a cryostat. Frozen sections were stored
at −80 °C until used. Single-immunofluorescence labeling
was performed as described [31, 32] using either Alexa Fluor
488 (green) or Alexa Fluor 594 (red) (Invitrogen, Carlsbad,
CA, USA) as secondary antibodies. NHE3 antibody was a
purified high-specificity rabbit polyclonal antibody generated
against a synthetic NHE3 peptide [33, 34].

Western blot The mouse kidney cortex tissues were cut and
inserted in 2 ml round-bottom centrifuge tubes containing
2 % Triton X-100 lysis buffer. The samples were homoge-
nized and centrifuged at 14,000×g. The resultant superna-
tant was saved and mixed with 2× Laemmli-loading buffer.
The proteins were size fractionated by SDS PAGE and
transferred to nitrocellulose membrane. Western blot analy-
ses were performed according to established methods [35]
using rabbit NHE3-specific polyclonal antibody at 1:500
dilution [34]. Donkey anti-rabbit IgG-horseradish peroxi-
dase (HRP) was used as the secondary antibody at 1:1,000
dilution (Pierce, Rockford, IL, USA). For normalization of
protein loading in western blot analysis, goat β-actin poly-
clonal antibody was used as primary antibody at 1:1,000
dilution (Santa Cruz Biotechnology, Santa Cruz, CA, USA)
and mouse anti-goat IgG-HRP was used as the secondary
antibody at 1:1,000 dilution (Pierce). The antigen–antibody
complex was detected by chemiluminescence approach
using Super Signal West Pico Chemiluminescent Substrate
Kit (Pierce). The experiments were done in duplicate.

RNA isolation and northern blot hybridization Total cellular
RNAwas extracted from mouse kidney cortex and intestinal
segments according to established methods, quantitated
spectrophotometrically, and stored at −80 °C. Total RNA
from each sample (20 μg/lane) was size fractionated on a

Table 1 Primer sequences for generating NHE3 proximal tubule
specific conditional knock-out mice

NHE3 2.9 kb sense 5′AGGGTGGGTACTATTGGTCACATTGG3′

NHE3 2.9 kb antisense 5′GCTACCCGTGATATTGCTGAAGAGC3′

PS. 1659 5′AGCCAAGGATAATTCTGAAGAC3′

PS. 1660 5′TGCCTACTGTTCCTTGGTGAAG3′

Neo-Pr1 sense 5′GACTACATGGTAGAGGGCATTGGCTTG3′

E4E5 reverse 5′TCTAGAACTAGTGGATCCCC3′

Flp sense 5′CACTGATATTGTAAGTAGTTTGC3′

Flp antisense 5′CTAGTGCGAAGT AGTGATCAGG3′

Cre 391 sense 5′CCTGGAAAATGCTTCTGTCCG3′

Cre 391 antisense 5′CAGGGTGTTATAAGCAATCCC3′

Myogenic sense 5′TTACGTCCATCGTGGACAGC3′

Myogenic antisense 5′TGGGCTGGGTGTTAGTCTTA3′

NHE3 primer F 5′CTTTTGCGGCATCTGCTGTCA3′

NHE3 primer R 5′CAGAAATGAAGACCAGTGTCA3′

NHE3 primer N 5′ GCATGCTCCAGACTGCCTTG 3′

NHE3 257 sense 5′GTCTTGTACAATGTTTTTGAGT3′

NHE3 257 antisense 5′GCCAGGATGGATGACAAAGACAGCAT3′
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1.2 % agarose-formaldehyde gel, transferred to Magna NT
nylon membranes, cross-linked by UV light, and baked.
PCR-generated cDNA fragments specific for NHE3,
glutamine dehydrogenase (GDH) or glutaminase were la-
beled with 32P and used for northern blot analyses. Hybrid-
ization was performed according to established methods
[21, 32]. The membranes were washed, blotted dry, and
exposed to a PhosphorImager screen (Molecular Dynamics,
Sunnyvale, CA, USA). The signal strength of hybridization
bands was quantitated by densitometry using ImageQuaNT
software (Molecular Dynamics, Sunnyvale, CA, USA).

Acid loading Animals were placed in metabolic cages and
after acclimatization subjected to acid load by the addition
of 280 mM NH4Cl to their drinking water for 5 days. Urine
was collected daily.

Systemic acid base analysis The blood pH and concentra-
tion of HCO3

− and pCO2 were measured using arterial blood
and i-STATR-1 analyzer and i-STAT EG7+ cartridge (Abbott
Laboratories, Abbot Park, IL, USA).

Blood and urine electrolyte analysis Mice were housed in
metabolic cages and had free access to rodent chow and
water. Food intake, water intake, and urine volume were
measured daily. Urine was collected under mineral oil in
order to avoid evaporation. Ammonium (NH4

+) excretion
was measured utilizing the phenol/sodium hypochlorite
method described by Berthelot and previously used in our
laboratory [21]. Serum and urine chloride concentration
were measured with a digital chloridometer (HBI Haake
Buchler Instruments). Concentrations of Na+, K+, Ca2+,
and HCO3

− were measured in blood with an i-STATR-1
analyzer and i-STAT EG7+ cartridges (Abbott Laboratories).

Blood pressure monitoring Systolic blood pressure in con-
scious mice was determined using a computerized tail-cuff
sphygmomanometer (Visitech BP2000; Visitech Systems,
Apex, NC, USA). Measurements for each mouse represent
mean value of three consecutive recordings performed on
three consecutive days. All experimental animals were ac-
climated to the procedure and the recording chamber for
3 days.

Statistics Data are presented as means±SE. ANOVA or
Student’s t test was used to compare experimental groups.

Results

Targeted inactivation of the mouse NHE3: generation of
mice with germ line transmission of NHE3 conditional
construct Figure 1a (left and right panels) depicts the

targeting construct which is comprised of a phosphoglycerine
kinase promoter driven Neo cassette flanked by FRT sites
inserted between exon 3 and exon 4. Exons 4 and 5 are
flanked by the two LoxP sites. The linearized targeting vector
was electroporated into 129/SvOla ES cells [28]. Six ES cells
that were correctly targeted by the vector were identified by
PCR and Southern blot analysis. Figure 1b (left panel)
demonstrates a PCR reaction on genomic DNA from
electroporated ES cells and demonstrate the presence of three
recombinant clones (clones 38, 48 and 123). Southern blot
analysis of NsiI-digested ES cell genomic DNA confirmed the
recombinant DNA in 6 ES clones (including clones 38, 48 and
123; Fig. 1b, right panel). The D38 ES clone was expanded
and injected into C57BL/6 blastocysts. Two chimeric males
were obtained and crossed with C57BL/6 females, generating
several heterozygous NHE3floxneo mice (Fig. 1c). The
neo-cassette in NHE3flox/neo mice was removed by cross-
mating with Flp positive mice (Fig. 1d).

Fig. 1 Targeted inactivation of the mouse NHE3 gene. a Schematic
diagram of the mouse NHE3 genomic DNA and targeting vector (left
and right panels). The mouse NHE3 exons 3–10 (designated E3, E4…
E10) are shown in rectangular boxes in genomic DNA and important
restriction enzyme sites used in DNA manipulation procedures are also
indicated. The thymidine kinase (tk) cassette (designated as tk) was
introduced upstream of exon 3 for negative selection of integrated
clones. The neo cassette (designated as neo) flanked by two Frt sites
(left-pointing triangles) was introduced between E3 and E4 in the
targeting vector DNA. The two floxed sites were inserted upstream
of E4 and downstream of E5, respectively, in the targeting vector
(right-pointing triangles). As shown, the targeted allele is converted
into floxed allele with a deletion of neo cassette and one Frt site upon
Flp recombinase activation and the floxed allele is converted into
conditional knockout allele by the removal of NHE3 exons 4 and 5
after Cre-mediated recombination, resulting in a nonfunctional NHE3
gene product with out of frame. b Identification of recombinant ES
cells expressing conditional NHE3 KO construct. Left panel PCR
reaction on genomic DNA from electroporated ES cells. Three recom-
binant clones (clones 38, 48, and 123) were identified by PCR reaction
using specific primers (see “Experimental procedures”). Right panel
Southern blot analysis of NHE3-targeted ES cells. The restriction
enzymes Ssp I and Kpn I digested genomic DNAwere hybridized with
probe A upstream of exon 3 (Fig. 1a, left panel), which generated
7.3 kb wild-type and 8.9 kb mutant DNA bands, respectively. The
restriction enzyme Nsi-digested genomic DNA was hybridized using
probe B, downstream of exon 10 (Fig. 1a, left panel), which generated
6.5 kb wild-type and 4.5 kb mutant DNA bands, respectively. Southern
blot analysis of NsiI-digested ES cell genomic DNA by probe B
confirmed the recombinant DNA in 6 ES clones (including clones
38, 48, and 123). a Germline transmission of mice carrying the NHE3
conditional construct. After blastocyst injection and identification of
chimeric mice with LoxP and Neo positive sites, NHE3 conditional
knockout germ line mice were identified. Four mice (designated with
asterisk) showed germ line transmission. b Generation of NHE3+/fl-/neo−

mice (removal of neocassette). Mice capable of germ line transmission of
NHE3 conditional construct were mated with C57BL/6 Flp-positive mice
to remove the Neo cassette (as depicted in the schematic diagram in
Fig. 1a). Genotyping was performed by PCR analysis of mouse tail
genomic DNA using Neo-Pr1 forward and E4E5 reversal primers as
described in Experimental Procedures

�
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Generation of proximal tubule specific NHE3 KO mice
(NHE3-PT KO) To generate proximal convoluted tubule-
specific NHE3 KO mice, floxed NHE3 animals lacking
the Neo Cassette were crossed with Sglt2 promoter-driven
Cre recombinase transgenic mice [29]. A representative
northern blot analysis demonstrates that NHE3 expression
in the cortex is significantly reduced in NHE3−/fl/Cre+

(NHE3-PT KO) mice relative to NHE3−/fl mice (referred
to as control; Fig. 2a, p<0.05, n=3). Immunofluorescence

labeling revealed significant reduction in NHE3 expression
in the kidney proximal tubule of NHE3-PT KO mice rela-
tive to control mice (Fig. 2b). Kidney histology of control
and NHE3-PT KO mice did not show any remarkable
differences.

Systemic acid base balance and systolic blood pressure in
proximal tubule specific NHE3 KO mice To assess the role
of proximal convoluted tubule NHE3 on systemic acid base
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status, serum bicarbonate and pH were determined in
NHE3-PT KO mice and control littermates. As shown in
Fig. 3a, NHE3-PT KO mice have mild metabolic acidosis as
determined by reduced serum bicarbonate (21.2 mEq/l in
KO vs. 23.7 in WT, p<0.05, n=5 in each group) and arterial
blood pH (7.23±0.02 in KO vs. 7.33±0.03 in WT, p<0.05,
n=5). In comparison, the acid–base parameters measured in
global NHE3 KO indicate that these animals have a more
severe metabolic acidosis [24, 26] than the NHE3-PT KO
mice. These results suggest that NHE3 located in the intes-
tine and other nephron segments also plays a role in
maintaining systemic acid–base balance. Blood pressure
recording with the use of computerized tail cuff technique
did not demonstrate any significant difference in the mean
systolic blood pressure of control and NHE3-PT KO mice
(Fig. 3b). Blood urea nitrogen levels were comparable in
both genotypes (data not shown).

Reduced fluid and bicarbonate reabsorption in microperfused
proximal tubules in NHE3-PT KO mice We examined NHE3
activity by measuring the rate of Jv and JHCO3 absorption in
kidney proximal tubules of control (NHE3−/fl) and NHE3-
PT KO mice. Fluid absorption in proximal tubules was
measured according to established protocols [36] and the

bicarbonate absorption was examined by analyzing the
change in total CO2 concentrations between the original
perfusate and the collected fluid [26]. Proximal tubules were
isolated from WT and KO mice and perfused by using
glucose-free Ringer solution to limit Na/glucose co-
transporter activity and thereby allow the examination of
Na/H-exchange activity in isolation. The tubular perfusion
rate was 12±1 nl/min, which is similar to the normal single
nephron GFR measured in mouse kidney [22]. The experi-
mental results are summarized in Table 1 and shown in
Fig. 4a and b. The perfusion rate, tubular length, Jv, and
JHCO3 absorption in proximal tubules of control and NHE3-
PT KO mice are included in Table 2. Results indicate that Jv
was 0.92±0.06 and 0.67±0.07 nl/min/mm and JHCO3 was
83.09±9.73 and 53.52±4.62 pmol/min/mm in WT and in
NHE3-PT KO proximal tubules, respectively. The JHCO3
was reduced 36 % and Jv was reduced 27 % in NHE3-PT
KO compared to the control proximal tubules. The amount
of reduction in JHCO3 is similar to our previous report in
which the proximal tubule was isolated from total NHE3
KO mice, but the amount of reduction in Jv was less than our
previous data [30]. These results indicate that both Na+ and
HCO3

− absorption are reduced significantly in the NHE3-PT
KO mice compared to control animals.

G
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18S rRNA

NHE3
75 kDa

Beta actin
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Fig. 2 Generation of proximal
tubule specific NHE3 KO mice.
a Northern hybridization.
Representative northern blots
demonstrate significant
reduction in the expression of
NHE3 mRNA in kidney
cortices of two KO mice. b
Immunofluorescence labeling.
Immunofluorescence labeling
revealed significant reduction in
NHE3 expression in the kidney
proximal tubule of NHE3-PT
KO mice (right panel) relative
to control mice (left panel). The
complete absence of NHE3 in
kidneys of conventional NHE3
KO mice (gifts from Dr. Shull)
is shown for comparison
(middle panel). c Western blot.
Representative western blot
shows significant reduction in
the expression of NHE3 protein
in kidney cortices of two
KO mice (75 kDa). Equal
loading was confirmed by
determining the beta-actin
levels (43 kDa, lower panel)
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Urinary excretion of NH4
+ in WT and NHE3-PT KO under

control and acid load conditions In the next series of ex-
periments we examined the role of kidney proximal tubule
NHE3 in NH4

+ (ammonium) excretion. These studies were
designed based on published literature indicating that the
apical Na+/H+ exchanger in the kidney proximal tubule can
function in Na+/NH4

+ exchange mode (reviewed in 32). It
was suggested that NHE3 could mediate the secretion of
NH4

+ into the lumen during conditions associated with
enhanced ammoniagenesis, such as metabolic acidosis
[37]. To test the role of proximal tubule NHE3 in NH4

+

excretion, WT type and NHE3-PT KO mice were placed in

metabolic cages and after acclimation were subjected to an
acid load in the form of 280 mM NH4Cl added to their
drinking water. Urine output, water intake, and food intake
were comparable in both genotypes before and after acid
loading. Figure 5a depicts 24 h NH4

+ excretion rate in WT
and NHE3-PT KO at baseline, 2 and 5 days after acid
loading. The baseline NH4

+ excretion rates were comparable
in WT and NHE3-PT KO mice (0.09±0.015 mmol/day in
WT and 0.08±0.011 mmol/day in NHE3-PT KO mice,
p>0.05, n=5). NH4 excretion rate increased to 0.47±
0.10 mmol/day in WT and 0.46±0.1 mmol/day in NHE3-
PT KO mice at 2 days after acid loading (p>0.05, n=5). At
5 days after acid loading, NH4

+ excretion rates remained
elevated at 0.50±0.06 mmol/day in WT and 0.36±
0.10 mmol/day in NHE3-PT KO mice.

Figure 5b depicts representative northern blot hybridization
results comparing the renal expression of glutamine dehydro-
genase, an essential enzyme in the synthesis of NH4

+ in
proximal tubule, after 5 days of acid loading. These results
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Fig. 3 Kidney function studies (systemic acid base balance and blood
pressure). a Acid base balance studies. NHE3-PT KO mice have mild
metabolic acidosis as determined by reduced serum bicarbonate and
arterial blood pH compared to control animals. b Systolic blood
pressure measurement. NHE3 PT KO mice do not display any
notable reduction in systolic blood pressure compared to control mice
(p>0.05 vs. control)

a

b
control NHE3-PT KO

control NHE3-PT KO

Fig. 4 Net fluid (Jv) and HCO3
− (JHCO3) absorption in microperfused

proximal tubules of NHE3-PT KO and control mice. a Fluid absorption
(Jv). In vitro microperfusion studies were performed as described in
Experimental Procedures. The results demonstrated a ∼27 % reduction
in volume absorption in proximal tubules of NHE3-PT KO mice
compared to their control littermates (p<0.05). b Bicarbonate absorp-
tion (JHCO3). HCO3

− absorption (JHCO3) in microperfused proximal
tubules was decreased by ∼36 % reduction in NHE3-PT KO mice
compared to their control littermates mice (p<0.05)
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Fig. 5 Acid load challenge test
in NHE3-PT KO and control
mice. a Ammonium (NH4

+)
excretion. Twenty four-hour
urine ammonium excretion
rates were measured in
NHE-PT KO and WT mice at
baseline and in response to acid
load. There was no significant
difference in NH4+ excretion
rates in NHE3-PT KO and WT
mice, either at baseline or in
response to acid load at 2 or
5 days. b Expression of kidney
glutamine dehydrogenase.
Northern hybridizations
indicated that the expression of
GDH increases comparably in
kidneys of NHE3-PT KO mice
and their WT littermates
after 5 days of acid loading.
c Acid–base balance. Acid–base
balance was determined in
NHE-PT KO and WT mice in
response to acid load after
5 days. There was no
disproportionate acidosis in
NHE3-PT KO mice beyond
what was observed at baseline
(Fig. 3)

Table 2 Summary of experiments examining bicarbonate and fluid absorption in proximal tubules of NHE3-PT KO and control mice

N Vo (nl/min) L (mm) [HCO3]o (mM) [HCO3]L (mM) Jv (nl/min/mm) JHCO3 (pmol/min/mm)

NHE3+/+ 8 13.38±1.2 0.93±0.06 23.2±0.0 18.5±0.71 0.92±0.06 83.09±9.73

NHE3-PTKO 7 12.46±0.6 1.01±0.05 23.2±0.0 19.9±0.44 0.67±0.07* 53.52±4.61*

Values are means±SE

N number of perfused tubules, Vo perfusion rate, L tubular length, [HCO3]o bicarbonate concentration in the original perfusate, [HCO3]L bicarbonate
concentration in collected fluid, Jv fluid reabsorption JHCO3 bicarbonate reabsorption

**p<0.05, significant difference from PNHE3+/+ mice proximal tubules
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indicate that the increase in expression of glutamine dehydro-
genase is comparable in NHE3-PT KO and WT mice.

Figure 5c depicts the acid base status in NHE3-PT KO
and WT animals in response to acid loading. As indicated,
serum bicarbonate concentrations were 21.90±0.30 and
19.8±0.40 mEq/l in the WT and NHE3-PT KO mice, re-
spectively (p<0.03), indicating that NHE3-PT KO mice did
not develop disproportionate acidosis, which would have
been the case if the ammoniagenesis pathway in these ani-
mals was dysfunctional.

In the next series of experiments, we examined the ex-
pression of NHE3 in the kidney medulla and small and large
intestines of wild-type and proximal tubule-specific NHE3
KO mice. For comparison, NHE3 expression in global
NHE3 KO mice was determined. Figure 6a shows the ex-
pression of NHE3 in the cortex and medulla of the wild
type, proximal tubule specific KO (NHE3-PT KO) and
global NHE3 KO mice. The results show significant
upregulation of NHE3 in the medulla of NHE3-PT KO mice
vs. wild-type animals (Fig. 6a). This adaptation predomi-
nantly reflects NHE3 upregulation in the thick ascending

limb (and possibly the descending limb) in NHE3-PT KO
mice. Contrary to the medulla, NHE3 expression shows
significant reduction in NHE3-PT KO mice. The ablation
of NHE3 in global NHE3 KO mice is shown for compari-
son. Figure 6b is a representative northern blot depicting
NHE3 mRNA expression levels in jejunum (small intestine)
and distal colon (large intestine) in wild type, proximal
tubule-specific NHE3 KO and NHE3 global KO mice. The
results show comparable NHE3 expression levels in intes-
tines of wild-type and proximal tubule-specific NHE3 KO
mice whereas no NHE3 was detected in intestines of global
NHE3 KO mice.

Discussion

NHE3 is expressed in numerous tissues, including intestine,
stomach, brain, and kidney. It is regulated at both transcrip-
tional and post-transcriptional levels and plays an important
role in maintaining the systemic acid/base homeostasis. The
ablation of NHE3 gene through conventional approach
poses significant challenges with regard to assessment of
its specific role in the kidney, mostly due to the fact that the
mutant mice have significant vascular volume depletion
resulting from the impairment of electrolyte absorption in
the intestine [24]. This causes a number of changes, includ-
ing a reduction in the kidney function or GFR and the
activation of several pathways, including the rennin–
angiotensin aldosterone system (RAS) [24]. The volume-
associated reduction in GFR is also likely to increase the
fractional reabsorption of various ions or molecules in the
proximal tubule. Furthermore, the activation of RAS may
alter the expression and/or activity of several ion and acid–
base transporters such as H+–ATPase and Na+, K+–ATPase
in the kidney proximal tubules, NKCC2 in the thick
ascending limb [38, 39]; NCC in the distal convoluted
tubules; and AE1, AQP2, and epithelial sodium channel
(ENaC) in the collecting duct [40–44]. Although transgenic
NHE3−/−(tgNHE3−/−) mice with the intestinal rescue-
generated by overexpressing the rat NHE3 in NHE3 KO
mice intestine showed increased absorption of Na+ in the
small intestine [45, 46], they still had global deletion of
NHE3 in their kidney, complicating any conclusion with
regard to the role of proximal convoluted tubule NHE3 in
sodium and bicarbonate absorption (Table 2).

Mice with the proximal tubule specific NHE3 deletion
(NHE3-PT KO) showed 36 and 27 % reduction in JHCO3
and Jv, respectively, in proximal tubules that were
microperfused in vitro (Fig. 4, “Results” section). Previous-
ly, we reported that the Na+ and HCO3

− absorption was
reduced by 63 and 54 %, respectively, in proximal tubules
of global NHE3 KO mice perfused in vivo [26] and 46 and
34 %, respectively, when perfused in vitro [30]. The

NHE3

18S rRNA

Kidney cortex Kidney medulla

NHE3

18S rRNA

Jejunum Distal colon  

a

b

Fig. 6 Expression of NHE3 in the kidney and intestines of wild-type
and proximal tubule specific NHE3 KO mice. a NHE3 expression in
the kidney medulla. Representative northern blots demonstrate signif-
icant upregulation in the expression of NHE3 mRNA levels in kidney
medulla of proximal tubule specific KO mice. Expression of NHE3 in
the cortex is shown for comparison and shows significant reduction in
proximal tubule specific KO mice. NHE3 expression in global NHE3
KO mice was completely absent. b NHE3 expression in the intestines.
Representative northern blots demonstrating comparable NHE3 expres-
sion levels in jejunum and distal colon of wild-type and proximal tubule
specific NHE3 KO mice. The absence of NHE3 expression in global
NHE3 KO mice is shown for comparison. Similar patterns of expression
were observed in the duodenum, ileum, and proximal colon
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baseline and NHE3-mediated fluid and HCO3
− absorption

in proximal tubules in vitro were lower than that in tubules
perfused in vivo, indicating the proximal tubule likely func-
tions better in vivo.

With regard to the in vitro microperfusion experiments in
the two animal models (global NHE3 KO vs. proximal
tubule specific NHE3 KO mice), we would like to indicate
that NHE3 activity in the global NHE3 KO mice was
examined in the presence of glucose in the tubular perfusate,
whereas in NHE3-PT KO mice, glucose was eliminated in
order to keep the Na-glucose cotransporter (Sglt1) idle.
Therefore, while the reduction of JHCO3 was similar, 36 %
(in the absence of glucose, Table 1) vs. 34 % (in the
presence of glucose) [30] between global NHE3 KO and
NHE3-PT KO, less profound reduction of Jv in the NHE3-
PT KO compared to the WT in the absence of glucose
(27 %, Table 1) compared to that in the presence of
10 mM of glucose (47 %) [47] suggests that either the Na-
glucose cotransporter is upregulated in global NHE3 KO
mice, or NHE3 is required for the Na/glucose cotransporter
activation in proximal tubules. It has been reported that the
expression of NaPi2 and AQP1 were increased in kidneys of
global NHE3 KO mice [48], but whether these changes were
secondary to the absence of NHE3 in the proximal tubule or
were due to the impact of volume depletion or the activation
of signaling pathways remain speculative. Examination of
expression of the Na/glucose co-transporter, NaPi2 or
AQP1 in kidneys of NHE3-PT KO mice will answer
these questions.

The role of NHE3 in NH4
+ (ammonium) secretion has

been the subject of many studies. In carefully designed
studies, Kinsella and Aronson demonstrated that the
Na+/H+ exchanger in renal microvillus membrane vesicles
has affinity for NH4

+ and can mediate the exchange of Na+

for H+ or Na+ for NH4
+ [49]. It was concluded that the

physiological significance of exchange modes other than
Na+/H+ exchange was not certain at present, but Na+/NH4

+

exchange could play a role in the proximal tubular acidifi-
cation process [49, 50]. Several studies in rodents have
demonstrated that metabolic acidosis enhances the expres-
sion and activity of NHE3 in the proximal tubule [51–53].
Based on the above studies, it has been suggested that
enhanced NHE3 expression can directly increase NH4

+

secretion [37, 47, 50, 54].
In studies by Good and Burg, majority of NH4 secretion

was observed in S1 and S2 segment of the proximal tubules
[17]. In studies by Nagami, it was suggested that S3
(straight) segment of the proximal tubule can also play a
role in NH4 secretion if AII is present [37, 55]. In proximal
convoluted tubules microperfused in vitro, ammonia secre-
tion into the lumen was found to be significantly inhibited
by 0.1 mM amiloride in the presence of 10 mM Na in the
perfusate when luminal pH was 7.4 [56]. However, the

inhibitory effect of 0.1 mM amiloride on ammonia secretion
was significantly diminished when the luminal pH was
reduced to 6.2 in order to mimic in vivo conditions
(above). Further, in separate studies, the effect of varying
concentrations of potassium in bath or lumen on NH4

+

secretion was found to be independent of the activity of
Na+/H+ exchanger [57]. A recent report indicated that in
neonate rats, metabolic acidosis increases NH4

+ secretion,
and upregulates the Na+/H+ exchanger NHE8 [58].

To determine if NHE3 is responsible for NH4
+ secretion

in the proximal tubule, we compared NH4
+ excretion in

NHE3-PT KO and WT mice under basal conditions and
after 2 and 5 days of acid loading. Our data show no
significant difference in NH4

+ excretion between WT and
NHE3-PT KO under either normal or acid loaded condi-
tions. Acid loading with NH4Cl increased the NH4

+ secre-
tion in both WT and NHE3-PT KO groups; however, the
magnitude of increase was similar in both genotypes. Acid
loading reduced serum HCO3

− concentration by a similar
magnitude (6.6 vs. 7.6 %, p>0.05) from baseline values in
both WT and NHE3 PT KO mice. The absolute value of
serum HCO3

- concentration was lower in NHE3-PT KO
than the WT mice (19.8 vs. 21.9 mEq/L, p<0.03), consistent
with the acidosis phenotype in the KO mice.

The current studies directly assess the role of proximal
convoluted tubule NHE3 in NH4

+ secretion. Given the
absence of any impairment in NH4

+ excretion in NHE3-PT
KO mice at baseline or during acidosis, we suggest that
proximal convoluted tubule NHE3 (S1 and S2) alone does
not have a significant impact on final NH4

+ excretion in the
urine. Whether other apical NHE isoforms (such as NHE8)
are activated and play a role in NH4

+ secretion in NHE3-PT
KO mice remains to be determined. Lastly, whether the
straight (S3) segment NHE3 can compensate for the lack
of exchanger in the proximal convoluted tubule (S1 and S2)
and play any role in NH4

+ secretion in NHE3-PT KO mice
remains speculative. Given the comparable expression level
of enzymes involved in NH4

+ generation in the proximal
tubule in NHE3-PT KO and wild-type animals (Fig. 5), we
suggest that the secretion of NH3/NH4

+ into the lumen is
independent of proximal convoluted tubule NHE3.

Published studies have shown that global NHE3 KO
mice have severe phenotypes caused by the disruption of
Na+ and acid–base transport that are more profound than
those observed in NHE3-PT KO animals. The significant
reduction in blood pressure with elevated plasma aldoste-
rone levels indicated that the impaired Na+ absorption in the
kidney proximal tubule cannot be fully compensated in
global NHE3 KO mice, pointing to the importance of
NHE3 in the intestine and other nephron segments [24]. In
contrast, there was no significant reduction in blood pres-
sure in NHE3-PT KO mice (Fig. 3), suggesting that the
impaired NHE3-mediated Na+ absorption in the proximal
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tubule cannot be linked to reduced systemic blood pressure,
a phenotype exhibited in global NHE3 KO mice as well as
transgenic NHE3−/−(tgNHE3−/−) mice with intestinal rescue
[24, 45, 46]. When fed a regular NaCl diet, the transgenic
NHE3−/−(tgNHE3−/−) mice showed a lower ambulatory
blood pressure compared to the wild-type controls
(tgNHE3+/+) [46]. This may be suggestive of a lack of
NHE3 protein and impaired salt absorption in several neph-
ron segments such as the proximal tubule (S3 segment) or
the thick ascending limb in transgenic NHE3−/−(tgNHE3−/−)
mice [46].

The global NHE3 KO also showed more severe acidotic
phenotype than that of NHE3-PT KO mice. The measured
fresh arterial blood HCO3

− was 20 % lower [26] and the
serum HCO3

− was 13 % lower [24] in global NHE3 KO
than WT mice. In contrast, there is only a 10 % reduction of
serum HCO3

− in NHE3-PT KO compared to the WT mice.
This latter observation is consistent with the specific loss of
NHE3 function in the proximal tubule in NHE3-PT KO
animal model. When compared to wild-type animals,
NHE3 expression in the medulla (predominantly reflecting
the thick ascending limb and possibly the descending limb)
was found to be upregulated in the proximal tubule specific
NHE3 KO mice (Fig. 6a), suggesting that enhanced salt
absorption in the distal nephron might offset the reduction
in salt absorption in the proximal tubule, thus minimizing
the magnitude of salt wasting in the conditional KO mice.
There was no impact of NHE3 deletion in the proximal
tubule on NHE3 expression in intestines of proximal tubule
specific NHE3 KO mice, as verified by normal NHE3
expression levels in the small and large intestines of
proximal tubule specific KO mice (Fig. 6b).

In global NHE3 KO mice with NHE3 rescue in the small
intestine, NHE3 is present in the small intestine at reduced
levels but is completely absent in the large intestine [45, 46].
The global NHE3 KO mice show a significant upregulation
of ENaC and colonic H-K-ATPase in their colon to com-
pensate for the loss of NHE3 [24]. The expression levels of
colonic H-K ATPase and ENaC in colons of the transgenic
rescue model was not examined but we expect those to be
elevated, due to the fact that in the transgenic rescue model
the IFABP promoter which was used for the transgene
expression is not expressed in the colon [45, 46]. We do
not expect any altered expression in colonic H-K ATPase or
ENaC in colons of proximal tubule NHE3 KO mice.

In conclusion, NHE3 plays an important role in bicar-
bonate reabsorption in the proximal convoluted tubule but
does not play a significant role in NH4 secretion, at least
during the first 5 days of acid loading. The mild metabolic
acidosis despite a significant reduction in net bicarbonate
reabsorption in the proximal tubule of NHE3 KO mice is
indicative of the presence of additional compensatory mech-
anisms in other nephron segments.
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