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Abstract Wiskott–Aldrich syndrome (WAS) predisposes
patients to leukemia and lymphoma. WAS is caused by
mutations in the protein WASP which impair its interaction
with the WIPF1 protein. Here, we aim to identify a module
of WIPF1-coexpressed genes and to assess its use as a
prognostic signature for colorectal cancer, glioma, and
breast cancer patients. Two public colorectal cancer micro-
array data sets were used for discovery and validation of the
WIPF1 co-expression module. Based on expression of the
WIPF1 signature, we classified more than 400 additional
tumors with microarray data from our own experiments or
from publicly available data sets according to their WIPF1
signature expression. This allowed us to separate patient
populations for colorectal cancers, breast cancers, and

gliomas for which clinical characteristics like survival times
and times to relapse were analyzed. Groups of colorectal
cancer, breast cancer, and glioma patients with low
expression of the WIPF1 co-expression module generally
had a favorable prognosis. In addition, the majority of
WIPF1 signature genes are individually correlated with
disease outcome in different studies. Literature gene
network analysis revealed that among WIPF1 co-
expressed genes known direct transcriptional targets of
c-myc, ESR1 and p53 are enriched. The mean expression
profile of WIPF1 signature genes is correlated with the
profile of a proliferation signature. The WIPF1 signature is
the first microarray-based prognostic expression signature
primarily developed for colorectal cancer that is instrumen-
tal in other tumor types: low expression of the WIPF1
module is associated with better prognosis.
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Introduction

The WIPF1 gene encodes the WASP/WASL interacting
protein family member 1 that plays an important role in the
organization of the actin cytoskeleton [1, 2]. The WIPF1-
encoded protein WIP binds to a region of Wiskott–Aldrich
syndrome protein (WASP) that is frequently mutated in
patients with Wiskott–Aldrich syndrome (WAS) [3, 4], and
WIP mutations themselves lead to an immunological
disorder resembling Wiskott–Aldrich syndrome [5]. WAS
is an X-linked recessive disease that predisposes to
leukemia and lymphoma. The WIP protein is essential for
WASP synthesis and probably acts as its chaperone [6].
Disruption of the WASP-WIP interaction by hereditary
mutations leads to a rounded cell surface on immune cells,
a conversion that is thought to coincide with a diminished
capability to form immune synapses and reduction of NK
cell cytotoxicity [7]. WIP is important for podosome
formation in macrophages and cellular fusions in flies [8,
9], stressing its universal role in the design of cell
membrane remodeling. Apart from its expression in diverse
immune cells, several human tissues exhibit WIP expres-
sion. Little is known about the expression of WIPF1 in
solid tumors. However, WIPF1 expression levels influence
morphology and migration of fibroblasts [10]. This promp-
ted us to investigate the expression characteristics of
WIPF1 in colorectal tumors with the aim to study its
potential for prognosis.

A multitude of microarray studies have been carried out
during the past decade to gain a better understanding of
basic colorectal cancer (CRC) biology [11–18]. Other CRC
microarray studies led to the discovery of informative gene
sets for the prediction of the response to therapy or tumor
recurrence [19–23], diagnosis of tumor stage [24–27],
lymph node metastasis [28–30], or liver metastasis [31,

32]. Until now, cross-validation of diagnostic or prognostic
signatures with independent data sets has hardly been
performed for colorectal cancer. This is probably due to the
fact that published signatures are only overlapping to a
small degree and that they are difficult to reproduce when
originating from different laboratories and platforms (for a
discussion see Groene et al. [24]). In addition, until
recently, data sets with sufficient patient information were
lacking in public databases which hindered cross-validation
of signatures from different studies.

Here, we describe the identification of a set of genes that
is co-expressed with WIPF1. It was discovered through re-
analysis of two public microarray data sets on clinical
colorectal cancer specimen that were deposited in the Gene
Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo). Whereas the first data set was used for
discovery of WIPF1-coexpressed genes, the second data set
served us for validation of the expression correlations.
Using a simple classification algorithm trained on micro-
array data of WIPF1 co-expressed genes from the two
studies, we identified patients with characteristic expression
of the WIPF1 coexpression module in three further micro-
array data sets with information about survival or relapse of
patients: a colorectal cancer data set of our own, a breast
cancer data set, and a glioblastoma data set. Strikingly,
patients with low expression of the WIPF1 signature have
the best prognosis in all three data sets, in total comprising
more than 400 patients. Based on an analysis of the WIPF1
coexpression module in the context of literature-based gene
networks, we identified plausible regulatory mechanisms
responsible for lower WIPF1 module expression in patients
with better prognosis.

Materials and methods

Sample acquisition

For the generation of our own microarray data set, 62 CRC
patients undergoing elective standard oncological resection
at the Department of General, Vascular, and Thoracic
Surgery, Campus Benjamin Franklin, Charité, were pro-
spectively recruited. Several clinical characteristics of the
patients were recorded (see Supplementary Table 1). The
study was approved by the local ethical committee, and
informed consent was obtained from all patients.

Laser-capture microdissection

Pre-processing of frozen tissue blocks by laser-capture
microdissection was essentially performed as described in
our previous publications [13, 14, 24, 33]. Briefly, all
cancer specimens were snap frozen within 20 min follow-
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ing excision. After laser-capture microdissection frozen
tissue specimens were serially cut into 6- to 8-µm-thick
sections which were mounted on a sterile 2.5 mm mem-
brane. Slides were fixed in 70% ethanol. The sections were
briefly stained with hematoxylin and eosin, dehydrated in
ethanol, and dried for 10–15 min using an exsiccator. The
membrane was turned around and fixed with adhesive tape
on the other sterile slide. First slides served as a template on
which the areas of tumor or normal epithelium were
marked. On the consecutive section, these areas were
microdissected using a laser microdissection system (SL,
Jena, Germany and P.A.L.M. Microlaser Technologies AG
Bernried, Germany) and capture transfer films (Arcturus
GmbH, Moerfelden-Walldorf, Germany). For molecular
analysis, up to 100,000 cells or approximately 30–60 mm2

of tissue section areas were pooled and collected in ice-
cooled tubes containing 100 ml of 98% guanidine thiocy-
anate (GTC) buffer and 2% beta-mercaptoethanol.

Messenger RNA preparation and DNA chip hybridization

PolyA mRNA from the microdissected specimens was
prepared using the PolyA-tract 1000 kit (Promega, Heidel-
berg, Germany) according to the manufacturer’s recom-
mendations. For each sample, the cDNA synthesis and
repetitive in vitro transcription were performed three times.
The total amount of prepared mRNA from each sample was
used. First strand cDNA synthesis was initiated using the
Affymetrix T7-oligo-dT promoter–primer combination at
0.1 mM. The second strand cDNA synthesis was generated
by internal priming. In vitro transcription was performed
using the Megascript kit (Ambion, Huntington, UK) as
recommended by Ambion. From the generated cRNA, a
new first strand synthesis was initiated using 0.025 mM of
a random hexamer as primer. After completion, the second
strand synthesis was performed using the Affymetrix T7-
oligo-dT promoter–primer combination. A second in vitro
transcription was performed, and then the procedure was
repeated one additional time. During the last in vitro
transcription, biotin-labeled ribonucleotides were incorpo-
rated into the cRNA, as recommended by the Affymetrix
protocol. Hybridization and detection of the labeled cRNA
on the Affymetrix U133A Chip were performed according
to Affymetrix standard protocol.

Microarray data pre-processing

Public expression data was downloaded from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/projects/geo/). In addition to our own data that
was deposited in GEO with accession number GSE12945,
we used four different data sets from this repository. The
colorectal cancer data sets GSE5206 of the Aronow group

(see Kaiser et al. [17]), GSE7208 of Ayers and co-workers
[20] and of our own served us for discovery and validation
of the WIPF1 signature in CRC. The GSE2034 data set of
Wang et al. served us for assessment of predictive power of

Fig. 1 Discovery and validation of the WIPF1 coexpression module. a
The histogram shows the distribution of p values resulting from tests for
correlation of the WIPF1 expression profile with expression profiles of
each other gene in the Aronow data set. b The histogram shows the
distribution of 430 p values resulting from correlation of expression
profiles in the Ayers data set of the WIPF1 gene with each discovered
gene in the Aronow data set. Note the strong deviation from the uniform
distribution, indicating a high rate of successful validation. c A scatter plot
of the correlation coefficients in Aronow and Ayers data of each of the
112 successfully validated genes reveals that most validated genes are
positively correlated with the WIPF1 profile and only six genes are anti-
correlated with WIPF1. All correlation coefficients are consistent in both
data sets, i.e., they have the same sign
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the WIPF1 signature for breast cancer patients [34]. The
data set of Phillips et al. (GSE4271) served us for
assessment of predictive power of the WIPF1 signature in
high-grade glioma patients [35]. We refer to the original
publications and the GEO database for patient and sample
characteristics.

For our own microarray experiment, we used algorithms
implemented in the freely available statistical software
package R (http://www.r-project.org/) and its public pack-
age repositories CRAN (http://cran.r-project.org/) and the
bioinformatics R package repository Bioconductor (http://
www.bioconductor.org/). Preprocessing: Raw expression
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Fig. 2 Two-way hierarchical
clustering of colorectal cancer
expression data from WIPF1-
coexpressed genes. The data set
results from fusing the Aronow
and Ayers data sets and com-
prises 112 genes and 159
patients. Top: The dendrogram
results from hierarchical cluster-
ing of tumors. Light gray indi-
cates low expression, dark gray
indicates high expression (log-
transformed mean-centered).
Five clusters of tumors are evi-
dent: cluster A is colored in red,
all other clusters are colored in
black. Left: The dendrogram
results from hierarchical cluster-
ing of genes. Two main clusters
of genes are evident: the larger
cluster X is colored in red, the
smaller cluster Y in black. Note
the characteristic down-
regulation of genes from cluster
X in tumors from cluster A.
Other tumors have anti-
correlated or indifferent expres-
sion profiles
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data were condensed to probe set-wise intensity values
using the RMA algorithm. For experiment normalization,
all colorectal cancer data sets were pre-processed using the
same data transformations. If not already done, the raw data
were log transformed. Independently of the original
authors’ pre-processing, we quantile-normalized each data
set on the probe set level. Then we filtered out the 10%
probesets with lowest median expression and 10% probe-
sets with lowest variance to enrich informative probesets in
an unbiased way. We restricted the further analysis to
probesets passing this filter in each of the three data sets.
Probeset annotations for Affymetrix expression microarrays
(most importantly gene symbols) were retrieved from the
Affymetrix web site (version 22). We condensed probeset
signals on the gene symbol level by averaging across all
remaining probesets of a gene. On the gene level, each data
set was finally mean centered. Breast cancer and glioma
data were processed in the same way: but here no additional
probesets were filtered out due to low variance or mean
expression signals in these data sets. Instead, for mapping
of probeset expression intensities onto the gene level, we
considered all probesets that were used for probeset-to-gene
mapping during processing of the three CRC data sets.
Using the applied normalization scheme, we intend to
ensure that Affymetrix microarray data from the five
different studies are comparable (we note that our study
does not include a cross-platform comparison as all data
sets were generated using Affymetrix gene chips).

Expression data mining

Expression data mining was carried out using the statistics
software R supplemented with diverse packages from the
CRAN or Bioconductor projects. Analysis of the correlation
of two expression profiles was evaluated with Pearson
correlation coefficients determined with the function cor.
test in package stats. Using the same function we
determined p values for the significance of the deviation
of the correlation coefficient from 0. The average expres-
sion profile of a multigene expression signature (prolifer-
ation signature by Rosenwald et al. [36]), here denoted as
signature centroid, was determined using averaging across
signature genes for each patient. For tumor class discovery,
we applied hierarchical clustering using the heatmap.2
function of the gplots package in R. The distance matrices
for row and column clustering were determined using
pairwise correlation distances (d=0.5 (1−cor(x,y))) of the
gene-wise mean-centered expression intensities of genes
and samples, respectively. For clustering, we used the
complete linkage hierarchical clustering algorithm.

In the preceding paragraph, we described how we
identify tumor classes in a training data set using
unsupervised analysis (clustering). Using classification

(supervised analysis), we then attempted to detect the
tumor classes that we identified on a primary (training)
data set in tumors of secondary (test) data sets from
independent studies. As a classification algorithm, we used
k-nearest neighbor classification as implemented in the R
package class (function knn with k=9). The classifiers were
trained on tumor expression profiles of the training data and
then directly applied on test data sets. A prerequisite for our
classifier to work properly on the test data (here solely
external data sets from independent studies) is that training
and test data are sufficiently normalized which in our study
should be ensured by log-transforming the expression
values followed by gene-wise mean centering. Across-
study normalization based on intra-study mean centering of
log-transformed expression intensities from Affymetrix
chips was already shown by Lusa et al. to be a pre-
processing strategy that can be the basis of good classifier
performance when the aim is to construct gene expression-
based predictors for tumor classes across studies [37].
However, the authors also stated that best classifier
performance can only be expected if the fraction of tumor
classes in the different data sets is comparable. In our own
validation of our methodology, we found that k-nearest
neighbor-based predictors of estrogen receptor status in
breast cancers based on an estrogen-responsive set of genes
achieves prediction accuracies on external data sets of
~90% on average on gene-wise mean-centered expression
data (based on four Affymetrix U133A microarray data
sets, data available upon request, manuscript in prepara-
tion). Classifier performance was still at 76% when the

Fig. 3 Differences in survival between colorectal cancer patients of
the “cluster B” type in an independent microarray data set. Tumors
that resembled the cluster “A” type were predicted by machine
learning in an independent data set of 62 tumors with microarray
expression profiles. Nine cluster “A”-like patients all survived until
the study end. The difference in survival compared with 53 remaining
patients is significant with p=0.011 in the logrank test
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tumor classes were not balanced (e.g., 1:8 in test data). We
note that we did not attempt to assess classifier accuracy
using cross-validation on the primary data because we have
derived the tumor classes by data mining in the complete

primary data set: it is obvious that a numerical difference
between classes exists. Therefore, the assessment of
classifier performance using cross-validation could lead to
a serious overestimation of classifier accuracy. The reason

Table 1 Summary of WIPF1 correlation and survival/relapse association for 38 core genes of the WIPF1 module and WIPF1 itself

Gene WIPF1 correlation WIPF1 correlation WIPF1 correlation Cox regression Wald test Cox regression Wald test
p Value p Value p Value p Value p Value
Aronow data Ayers data Staub data Wang data Phillips data

AGGF1 1.01E−09 6.40E−06 6.66E−03 4.74E−01 7.74E−01
AVEN 1.87E−10 1.04E−08 9.21E−08 1.23E−04 6.37E−04
AXL 3.15E-07 4.18E-06 1.27E-04 9.10E-02 2.23E-05

BIN1 9.45E-08 4.09E-08 1.57E-04 8.26E-02 1.01E-02

C12orf29 9.28E-07 4.99E-07 9.31E-04 4.75E-02 7.31E-06

C12orf43 9.05E-12 1.61E-09 3.27E-03 2.46E-02 1.35E-04

C1QB 4.44E-16 6.73E-07 9.96E−04 1.76E−02 1.56E−02
CCL16 8.44E−15 9.04E−10 3.02E-04 4.16E−03 9.65E−04
CHRDL1 1.22E−09 1.17E−07 2.10E−03 1.34E−03 5.83E−03
CYLC1 9.27E−12 1.91E−06 5.33E−04 1.16E−03 2.38E−01
DDX50 3.69E−07 3.60E−09 1.35E−08 5.63E−04 7.08E−03
DECR2 4.89E−12 4.55E−07 8.30E−07 8.97E−04 1.46E−04
DEDD 7.73E−12 4.91E−08 6.10E−11 1.48E−03 2.74E−02
DTX4 4.00E−09 3.28E−07 7.26E−04 7.73E−01 5.25E−05
EFHD2 3.97E−08 2.55E−06 3.42E−03 2.05E−01 2.42E−02
GTPBP2 4.64E−12 3.01E−10 1.26E−05 1.55E−05 1.63E−02
HSPA14 1.18E−12 2.92E-06 1.84E-03 6.09E-01 6.07E-03

IPW 9.49E-10 2.44E-07 1.64E-05 2.38E-03 3.69E-02

MADCAM1 1.39E-08 2.19E-06 1.16E-03 3.89E-01 1.22E-02

MINA 0.00E+00 6.98E-06 8.23E-05 9.65E-02 5.60E-03

MOBKL2B 8.13E-12 4.70E-06 5.86E-03 1.61E−01 9.03E−01
MRPL16 1.48E−09 9.52E−10 8.58E−04 1.36E−01 4.49E−02
MS4A12 1.36E−13 2.77E−10 2.02E−04 4.64E−01 1.02E−03
NF1 1.31E−14 2.16E−07 6.94E−03 3.51E−01 6.15E−02
NIP7 1.92E−09 2.03E−08 7.09E−03 4.60E−01 8.45E−01
NLK 0.00E+00 3.29E−09 6.99E−05 7.86E−03 3.52E−02
NT5E 3.61E−12 4.34E−09 1.05E−04 5.92E−06 4.19E−03
PGM1 3.93E−07 3.17E−07 4.95E−03 4.04E−01 8.73E−01
PLA2G2E 1.99E−11 9.69E−06 6.35E−04 2.24E−01 1.04E−03
SCUBE2 4.93E−08 4.20E−06 1.94E−03 7.52E−04 2.49E−03
SH2B1 1.29E−11 2.68E−08 1.28E−06 5.99E−03 6.13E−03
SLC24A1 1.06E−09 5.12E−08 4.70E−03 2.26E−05 1.92E−04
SLC39A7 1.17E−07 4.49E−06 1.72E−04 3.57E−03 9.01E−05
SPBC25 1.28E−11 5.89E−06 2.90E−05 1.48E−03 2.39E−03
THBD 1.02E−14 1.78E−06 3.81E−03 1.79E−03 8.01E−04
TXNIP 8.99E−08 1.85E−07 9.15E−04 2.85E−01 1.25E−01
UBE2E3 1.55E−15 1.31E−07 5.94E−04 4.08E−04 3.28E−02
ZNF230 1.60E−09 3.87E−09 1.90E−09 6.37E−04 1.03E−03
WIPF1 – – – 6.92E−06 7.80E−02

A core set of 38 genes of the WIPF1 module (discovered in the Aronow data set) for which WIPF1 coexpression could be double validated in the
Ayers and Staub data sets at stringent thresholds are listed here together with the p values of their WIPF1 correlation tests and of their survival/
relapse association tests. A list of results for the full set of 112 genes of the WIPF1 module is given in Supplementary Table 2.
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is that even if test cases in cross-validation are not used for
classifier training, they were already included in the initial
clustering analysis that led to the assignment of class labels:
a violation of a main principle of cross validation—the
independence of training and test data.

Patient survival and relapse were visualized with Kaplan–
Meier curves determined with the survfit function in the
survival package. The logrank test as implemented in the
coxph function of the survival package was used to assess
the significance of differences in survival/relapse times
between patient groups. The significance of association of
continuous variables, here gene expression intensities, with
survival/relapse were tested using Cox regression and Wald
tests on the model coefficients and their variances as
implemented in the coxph function. For survival analyses,
we used robust estimates of Cox model coefficient variances

(parameter robust=T). If not otherwise indicated, default
parameter settings were used in the functions mentioned
above.

Literature-based gene networks were investigated using
the metaCore software from GeneGo (Saxony Road, #104,
Encinitas, CA 92024, USA). Subnetworks of genes with
functional links based on literature evidence were screened
for enrichment of genes co-expressed with WIPF1. Those
networks with significant enrichment of WIPF1 genes were
further investigated for enrichment of Gene Ontology
categories. The significance of enrichment of either user
supplied gene lists (like the gene list of the WIPF1
signature) or genes lists associated with Gene Ontology
(GO) terms in gene lists of literature subnetworks is given
by hypergeometric p values (with the complete set of
human genes with literature information as a reference set).

Fig. 4 The WIPF1 module identifies breast cancer and glioma
patients with better prognosis. Histogram (a) visualizes the distribu-
tion of p values resulting from logrank tests for the association of
profiles of single genes of the WIPF1 module with relapse in the
Wang data on breast cancers. b The Kaplan–Meier curves for breast
cancer patients assigned to the groups cluster “A” (upper curve) or
cluster “B”. Histogram (c) visualizes the distribution of p values
resulting from logrank tests for the association of single expression
profiles of the WIPF1 coexpressed genes with relapse in the Phillips

data on gliomas. d The Kaplan–Meier curves for glioma patients
assigned to the groups “A” (upper curve) or “B”. Note the strong
deviation from the uniform distribution (that would result from chance
association) in plots (a) or (c) and the consistently higher fractions of
survivors among “A” patients in (b) and (d). These plots visualize the
high fraction of genes of the WIPF1 module that are individually
associated with survival in breast and brain cancers and the survival
significance of the complete module

J Mol Med (2009) 87:633–644 639



Results

Discovery and validation of a WIPF1 coexpression module

We usedmicroarray data from a study of 100 colorectal cancer
specimens of mixed stage and subtype by Kaiser et al. for the
identification of WIPF1 correlated genes (Gene Expression
Omnibus (GEO) database identifier GSE5206) [17]. We
correlated the expression profiles of the WIPF1 gene across
all experiments to the expression profiles of each other gene
that passed initial quality criteria. A histogram of these p
values is shown in Fig. 1a. The strong deviation from a
uniform distribution suggests that a large number of genes
are correlated with WIPF1 expression in this data set. A
threshold for significantly correlated expression was set at p
<1e−6 resulting in 430 candidate genes. For validation of the
WIPF1 coexpression of these genes, we employed a data set
of Ayers et al. (GSE7208) on 59 colorectal tumors [20]. We
correlated the expression patterns of the 430 discovered
genes to the WIPF1 profile. This led to the p value
distribution shown in Fig. 1b that exhibits an even stronger
deviation from the uniform distribution than for the
discovery gene set, thus documenting the enrichment of true
WIPF1 coexpressed genes. Genes, 112 out of 430, were
correlated with p<1e−5. A scatter plot of correlation
coefficients in Ayers and Aronow data (Fig. 1c) confirmed
that for all 112 genes, the correlation coefficients have the
same sign, meaning that expression changes in the data sets
have the same direction. In the following, these 112 genes
were considered as the WIPF1 coexpression module, and
their associated expression profiles constitute the WIPF1
signature.

Prediction of low-risk colorectal cancers using the WIPF1
signature

We fused the discovery and validation data of the WIPF1
module resulting in a data set with 112 genes and 159
patients. Then, we performed hierarchical clustering on
both, genes and patients (see Fig. 2). It revealed two major
clusters of genes and five major clusters of patients. Patient
cluster “A” (Fig. 2, marked in red) comprises 25 tumors

Fig. 5 Similarity of the WIPF1 and proliferation signatures. We
determined average profiles (signature centroids) of the WIPF1 and
the proliferation signatures in three data sets. Only 107 of 112 WIPF1
module genes with concordant lower expression in cluster X of the
WIPF1 signature were considered for this analysis. Signature
centroids were determined using averaging over all genes for each
patient. The scatter plots visualize the strength of the correlation
between proliferation signature and WIPF1 signature. Coordinates of
each data point correspond to a single patient’s averaged mean-
centered expression values for both signatures, a for the Staub
colorectal cancer data set, b for the Wang breast cancer data set, and
c for the Phillips glioma expression data set

R
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that exhibit a characteristic down-regulation of the larger
gene cluster. In contrast, other tumor clusters (collectively
labeled as “B”) show an up-regulation of the larger gene
cluster or indifferent expression. Using patient cluster labels
as the prediction target, we trained a k-nearest neighbor
classifier (k=9) for prediction of WIPF1 cluster labels in
further independent data sets.

We were interested in the question whether the cluster
labels can predict certain clinical parameters in an independent
colorectal cancer data set. We determined expression profiles

for 62 colorectal cancer patients for which information about
survival has been tracked. Direct application of the k-nearest
neighbor classifier (trained on gene-wise mean-centered
combined Aronow/Ayers data) on the 62 tumor expression
profiles led to the assignment of cluster label “A” for nine
patients and cluster label “B” for the remaining 53 patients
(for a more detailed explanation/justification of the applica-
tion of the k-nearest neighbor classifier across data sets we
refer to the “Materials and methods” section). We compared
the survival expectancy of the three groups using Kaplan–

Table 2 Summaries of top literature subnetworks enriched with genes from the WIPF1 coexpression module

No General Molecular Network GO Processes Total nodes Root nodes p-Value

1 ADAM19, SLC25A10,
CDC14a, UBE2E3,
TXNIP (VDUP1), ...

Sulfate transport (8.1%; 7.943e−06), cell
division (18.9%; 1.334e−05), mitosis
(16.2%; 1.414e−05), M phase of mitotic
cell cycle (16.2%; 1.598e−05), M phase
(18.9%; 1.854e−05)

50 13 4.38E−26

2 REA, NLK, Chordin-like 1,
Copine-1, ...

BMP signaling pathway (11.6%; 8.328e−08),
positive regulation of osteoblast
differentiation (9.3%; 1.255e−06),
regulation of osteoblast differentiation
(9.3%; 7.241e−06), transmembrane
receptor protein serine/threonine kinase
signaling pathway (11.6%; 1.533e−05),
developmental process (67.4%; 2.095e−05)

50 12 1.49E−23

3 Neurofibromin, TXNIP
(VDUP1), REA, DEDD,
DEDD2, ...

Regulation of apoptosis (45.5%; 2.153e
−13), regulation of programmed cell
death (45.5%; 2.710e−13), regulation of
developmental process (52.3%; 2.099e
−12), Ras protein signal transduction
(22.7%; 1.044e−11), negative regulation
of cellular process (54.5%; 1.944e−11)

50 10 9.99E−19

No Transcriptional Regulation
Network

GO Processes Total nodes Root nodes p-Value

4 c-Myc Positive regulation of mitotic cell cycle
(25.0%; 1.015e−05), cell cycle (62.5%;
3.803e−05), regulation of mitotic cell cycle
(37.5%; 5.661e−05), regulation of cell cycle
(50.0%; 5.920e−05), positive regulation of
cell cycle (25.0%; 3.432e−04)

9 8 4.02E−22

5 ESR1 Response to hormone stimulus (57.1%;
2.915e−05), response to endogenous
stimulus (57.1%; 3.184e−05), response to
organic nitrogen (28.6%; 1.001e−04),
response to steroid hormone stimulus
(42.9%; 2.113e−04), negative regulation
of hydrolase activity (28.6%; 2.580e−04)

8 7 2.31E−19

6 p53 Response to organic nitrogen (28.6%;
1.001e−04), positive regulation of cell
cycle (28.6%; 2.580e−04), regulation of
apoptosis (57.1%; 4.295e−04), nucleic
acid–protein covalent cross-linking
(14.3%; 4.446e−04), RNA–protein cova-
lent cross-linking (14.3%; 4.446e−04)

8 7 2.31E−19

Here we show information about the top literature subnetworks with significant enrichment for genes of the WIPF1 module using two modes of
analysis in the metacore software. Networks 1, 2, and 3 were derived using a large literature network considering all types of molecular
interactions. Networks 4, 5, and 6 resulted from an enrichment analysis of subnetworks centered around transcription factors. Column “GO
processes” shows Gene Ontology (GO) categories that are enriched in a subnetwork. Significance of enrichment of gene groups (be it WIPF1
coexpressed genes or genes associated with GO categories) in subnetworks was assessed using hypergeometric tests
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Meier plots (see Fig. 3). We found that all nine cluster “A”
colorectal cancer patients have survived until the end of the
study. The differences in the survival curves between clusters
“A” and “B” were already significant (p=0.011), although
the numbers of patients are rather small. These results
suggest that the WIPF1 expression module in combination
with the applied scheme of normalization/classification also
has potential for the prediction of low-risk cancers in further
independent studies.

The WIPF1 signature has prognostic predictivity for brain
and breast tumors

We fitted Cox regression models for genes of the WIPF1
signature and tested their individual association with
survival using Wald tests on microarray expression studies
of 286 breast cancers (Wang et al., GSE2034) and 77 high
grade-gliomas (Phillips et al., GSE4271). We found that a
high fraction (50 of 112) of genes of the WIPF1 signature
were significantly associated with survival (p<0.05) in both
studies. A list of 38 genes for which significant correlation
of WIPF1 expression across patients was validated in
Aronow, Ayers, and Staub data sets is given in Table 1
together with results of statistical tests on WIPF1 correla-
tion and survival/relapse association.

We next applied the k-nearest neighbor classifier trained
on Aronow/Ayers data directly on the data sets of breast
cancers and high-grade gliomas to stratify these patient
collectives. Among the microarray profiles of 286 breast
tumor patients of a data set of Wang et al. (GSE2034), we
identified 59 of the cluster “A” type. These patients had a
remarkably better prognosis regarding time to relapse, the
difference between cluster “A” patients, and others being
significant at p=0.0045 (see Fig. 4a and b). In the glioma

patient set of Phillips et al. (GSE4271), 24 out of 77
patients were assigned the cluster “A” type by classifica-
tion. The cluster “A” glioma patients had a better prognosis
(p=0.012, see Fig. 4c and d). In conclusion, the application
of the WIPF1 k-nearest neighbor classifier on two different
tumor sets further validates the predictive value of the
WIPF1 coexpression module for the identification of
patients with favorable prognosis.

The WIPF1 signature has links to c-myc, p53, proliferation,
and apoptosis

Because of the multitude of genes that are correlated with
WIPF1 (see Fig. 1), we hypothesized that a dominating
cancer-driving mechanism is linked to WIPF1 expression.
It was frequently reported that patient prognosis is
associated with the expression of a so-called proliferation
signature. This term circumscribes a large set of signatures
that can be pulled from a large set of genes deregulated
during the cell cycle. To our knowledge, a link between the
proliferation signature and colorectal cancer has not been
established so far. We found that the WIPF1 signature does
not have a substantial overlap to proliferation signatures. To
investigate an indirect link to the transcriptional program of
proliferation, we tested the proliferation signature described
by Rosenwald et al. for correlation with our WIPF1 sig-
nature [36]. Correlation tests of signature centroids revealed
that both signatures are significantly correlated in three data
sets, the colorectal cancer data generated during this study,
the Wang data on breast cancer, and the Phillips data on
gliomas (see Fig. 5). This suggests a regulatory link of the
WIPF1 signature with typical proliferation genes.

We next addressed the question which functional themes
are dominating the list of 112 WIPF1-coexpressed genes.

Fig. 6 Fused transcriptional regulation network of genes of the
WIPF1 module that are regulated by c-myc, ESR1 or p53. Here we
show the fused network of WIPF1 co-expressed genes that are linked
to c-myc, ESR1 or p53 according to literature evidence. The legend on

the left depicts the graphical symbols that describe the type of protein
in the network. The arrows indicate the direction of the regulation.
The colors of circles around gene names represent the coupling to
transcription factors: green for c-myc, red for p53, blue for ESR1
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We investigated the genes of the WIPF1 module by mining
of literature networks using the metacore software. We
identified several gene networks that were highly enriched
with genes of the WIPF1 module (see Table 2) and are
therefore suited to highlight the function of the WIPF1
module. First, we took all different types of functional links
into account (protein–protein interactions, enzymatic reac-
tions, transcriptional regulation, etc.) for building of
literature subnetworks. We identified three subnetworks
that are enriched with gene functions in cancer-relevant
processes like mitosis and apoptosis as important themes
among WIPF1 signature-induced networks (see Table 2).
By focusing the analysis on literature networks centered at
transcription factors, three subnetworks stood out with 21
genes linked via the oncogenic transcription factors c-myc,
ESR1, and p53 (see Table 2 and Fig. 6). For these three
factors, there are 17 genes with literature evidence that c-
myc, ESR1, and/or p53 regulate their transcription. Thus,
literature network analysis could link the WIPF1 signature
to several functional themes related to cancer biology with
high significance: mitosis and proliferation, apoptosis, the
estrogen receptor, c-myc, and p53.

Discussion

The hypothesis that the WIPF1 gene is important for cancer
development was based on two facts. First, its encoded
WIP protein interacts with the Wiskott–Aldrich syndrome
protein WASP through a surface that is affected by a WASP
mutation, and Wiskott–Aldrich syndrome predisposes to
leukemia and lymphoma. Second, expression levels of the
WIP protein influence the migratory and differentiation
properties of fibroblasts. It has not been studied so far how
the expression of the WIPF1 gene is regulated and if its
coexpression neighborhood provides an additional link to
cancer. Here, we show that there exists a module of genes
that is coexpressed with WIPF1 in colorectal cancers. The
majority of genes in this module show a characteristic
down-regulation in several cancer patients with longer
survival time or time to relapse, also in other cancer types
than colorectal cancer. We found that the module genes do
not overlap with the frequently rediscovered “proliferation”
signature that is regulated during cancer cell mitosis.
Instead, a large number of genes of the WIPF1 coexpres-
sion module have poorly characterized functions. Only
single genes link directly to cancer-relevant processes like
proliferation and apoptosis. However, we could show that
the expression profile of the WIPF1 signature correlates
significantly with expression profile of the Rosenwald
proliferation signature. Literature networks revealed that
the link of the WIPF1 module to proliferation can partly be
explained by the fact that a large fraction of WIPF1 module

genes are known transcriptional targets of oncogenic
transcription factors like c-myc, ESR1, or p53. In this
context, it is interesting to note that estrogen receptor
signaling is not only of importance for breast cancers, but
also apparently able to modulate the aggressiveness of
prostate cancers [38]. It is tempting to hypothesize that
keeping the expression of the WIPF1 module in a low
expression state is causative for a less aggressive cancer
phenotype, e.g., by inhibition of WIPF1/WASP-related
cytoskeletal remodeling that coincides with a reduced
ability of cells to migrate and metastasize.

In conclusion, we presented a module of WIPF1-
coexpressed genes. The expression signature of this module
could be used to identify patients with better prognosis with
respect to relapse or survival in expression data sets of three
different tumor types, colorectal cancer, breast cancer, and
high-grade glioma. The WIPF1 coexpressed genes seem to
be linked to proliferation and apoptosis possibly by
regulation through c-myc, ESR1, and p53. We propose
the WIPF1 signature as an alternative predictor of breast,
brain, and colorectal cancer prognosis.
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