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Abstract The development of immunotherapies for renal
cell carcinoma (RCC) has been the subject of research for
several decades. In addition to cytokine therapy, the benefit
of various adoptive cell therapies has again come into focus
in the past several years. Nevertheless, success in fighting
this immunogenic tumor is still disappointing. RCC can
attract a multitude of different effector cells of both the
innate and adaptive immune system, including natural killer
(NK) cells, γδ T cells, NK-like T cells, peptide-specific T
cells, dendritic cells (DC), and regulatory T cells (Tregs).
Based on intensive research on the biology and function of
different immune cells, we now understand that individual
cell types do not act in isolation but function within a

complex network of intercellular interactions. These inter-
actions play a pivotal role in the efficient activation and
function of effector cells, which is a prerequisite for
successful tumor elimination. This review provides a
current overview of the diversity of effector cells having
the capacity to recognize RCC. Aspects of the functions
and anti-tumor properties that make them attractive candi-
dates for adoptive cell therapies, as well as experience in
clinical application are discussed. Improved knowledge of
the biology of this immune network may help us to
effectively harness various effector cells, placing us in a
better position to develop new therapeutic strategies to
successfully fight RCC.
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General features of immunity to RCC

Several features of renal cell carcinoma (RCC) indicate that
immune-mediated mechanisms can impinge on tumor
growth and progression. Immune responses have been
implicated in some cases of spontaneous tumor regression;
however, experimental evidence elucidating the basis of
these responses is still lacking [1]. Long-lasting regressions
were rare and only some lesions disappeared in patients
with multiple metastases. Several RCC patients receiving
high-dose radiation of selected tumor sites showed regres-
sion of non-irradiated lesions. It was speculated that this
“abscopal effect” was initiated through radiation-induced
inflammation and tumor cell death, which elicited systemic
immune responses that acted on distant untreated metasta-
ses [2]. Similar observations were also recorded following
ultrasound treatment of RCC [3]. It remains unclear why
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only some tumor sites are susceptible to immune attack.
Tumor cell heterogeneity may influence susceptibility to
immune-mediated elimination. Alternatively, different tu-
mor microenvironments may support or inhibit effective
immune responses [4].

Clinical benefits achieved with systemic cytokine ther-
apy provide direct evidence for development of immune
responses against RCC. Remission of substantial tumor
burdens was achieved in some RCC patients treated with
recombinant interleukin 2 (IL-2) or interferon alpha (IFN-
α) [1]. Although most responses were transient and did not
affect all tumor sites, a small percentage of patients
achieved long-lasting disease-free status. In fact, systemic
IL-2 therapy is the only approved therapy today that
provides potential cure, which is achieved in about 9% of
RCC patients [5].

IL-2 mediates multiple functions that can support anti-
tumor responses, including proliferation and differentiation
of lymphocytes and enhancement of effector functions [6].
Recently, it was shown that the presence of IL-2 during
priming of naïve T lymphocytes led to potent immunolog-
ical memory [7]. Paradoxically, IL-2 can also support
regulatory T cells (Tregs) that negatively impact on immune
responses [8].

IFN-α can directly inhibit tumor cell proliferation, for
example, through cytostatic effects or induction of apopto-
sis. Microarray studies of RCC cell lines displaying in vitro
susceptibility or resistance to IFN-α showed no inherent
differences in gene expression prior to IFN-α exposure but
distinct patterns of differential gene regulation were found
after stimulation. Susceptible RCC lines showed upregula-
tion of pro-apoptotic genes whereas resistant cells had
increased expression of genes with anti-apoptotic or pro-
proliferation capacities [9]. IFN-α can also support both
innate and adaptive immune responses directed against
RCC [10]. It can directly activate natural killer (NK) cells
and T cells and can induce maturational changes in
dendritic cells (DC), improving their capacity to stimulate
adaptive T cell responses (see Dendritic cells section).
Furthermore, it can increase levels of major histocompat-
ibility complex (MHC) class I molecules, allowing better
expression of peptide-MHC (pMHC) complexes that are
needed for antigen-specific T cell stimulation. Additionally,
IFN-α has anti-angiogenic properties [11]. Due to their
multifaceted activities, it is difficult to pinpoint the
mechanisms of IL-2 and IFN-α that account for tumor
regression in patients responding to systemic cytokine
therapy. Therefore, prognostic factors are sought that
identify potential responders in order to improve the clinical
outcome of cytokine-based therapies.

In one small patient cohort, long-term survivors with
stage IV disease who responded to IL-2-based immuno-
therapies shared a substantial number of MHC class II

alleles [12]. These particular HLA molecules may allow
improved presentation of RCC-associated peptides to
MHC-restricted CD4+ T cells. Alternatively, as these
MHC alleles are associated with increased risk for
autoimmunity, tolerance to self-antigens may be less
stringent in individuals with this genetic background [13].

RCC patients whose tumors expressed high levels of the
carbonic anhydrase protein CA9/G250 on more than 85%
of cells achieved greater clinical benefit from IL-2 therapy
[14]. T cell responses to peptides derived from CA9/G250
protein have been difficult to demonstrate [15, 16], thus a
role of antigen-specific immunity to G250 remains unclear.
The CA9/G250 protein is involved in important intracellu-
lar signaling pathways in RCC [17]. It may thereby
influence other characteristics that impact on immune-
mediated recognition and elimination.

Inflammatory cells have also been proposed as a
prognostic factor for clinical outcome of cytokine-based
therapies. Elevated levels of circulating or tumor-infiltrating
neutrophils and increased numbers of peripheral blood
monocytes were correlated with decreased survival follow-
ing cytokine treatment [18, 19]. How these cells impact on
patient survival is not known. Neutrophils, for example, can
promote angiogenesis and thereby may facilitate tumor
progression [20].

The immune system: various players to fight RCC

Further insight into mechanisms of anti-tumor responses
can be deduced from immunohistochemical studies of RCC
tissues. Abundant cellular infiltrates, containing cells of
both the innate and adaptive immune system, are often
found in RCC, particularly in clear cell carcinomas
(ccRCC) [1, 21]. Tumor-infiltrating lymphocytes (TIL) are
rich in CD4+ and CD8+ cells and NK cells are also found in
TIL of most ccRCC [22, 23]. The clinical relevance of
CD8+ infiltrates was assessed in more than 200 patients
who received no previous therapy [24]. It was found that an
abundance of CD8+ and CD4+ T cells was associated with
shorter survival and correlated with high tumor grade,
suggesting that biological changes in RCC may allow the
accumulation of lymphocytes. In contrast, increased prolif-
eration of intratumoral CD8+ T cells was associated with
longer patient survival. Therefore, the functional status of T
cells in situ rather than the numbers of infiltrating cells may
denote a better efficacy of naturally developing anti-tumor
immunity.

B lymphocytes were rarely detected among RCC infil-
trates. However, the SEREX method, which uses patient
serum antibodies to identify tumor-associated antigens
(TAA), was used successfully to identify RCC-associated
proteins [25]. The presence of high-titer IgG antibodies
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specific for RCC-associated proteins indicates that effective
cellular interactions occurred between CD4+ helper T cells
and B lymphocytes in antibody-positive patients.

The complex mixtures of immune cells present in RCC
mask the contribution of individual cell types to effective
anti-tumor responses. Assessment of function and molecu-
lar specificity of various lymphocyte subsets therefore
requires isolation and characterization of distinct cells.

Natural killer cells

NK cells express various activating and inhibitory receptors
that regulate their cytokine secretion and cytotoxicity.
Therefore, the capacity of NK cells to attack tumor cells
depends on the balance of signals they receive from
activating versus inhibitory ligands expressed by RCC [10].

Analysis of TIL revealed that NK cells were present in
most RCC. Two groups of ccRCC were distinguished
according to their NK infiltrate: tumors with a high
percentage (>20% of TIL) or a low percentage (<20% of
TIL) of NK cells. Most NK cells from tumors with high NK
cell content expressed CD16 (FcγRIII receptor) and
showed a higher level of intracellular cytotoxic effector
molecules compared to tumors with a low NK infiltrate
[26]. All NK cells from tumor tissue failed to mediate
cytotoxic function directly after isolation, however NK cells
from tumors with high NK percentage gained function after
stimulation with IL-2 for 24 h [22, 26]. Phenotypic analysis
of tumor-infiltrating NK cells revealed differences to
circulating peripheral NK cells with respect to expression
of killer inhibitory receptors (KIR) and C-type lectin
inhibitory receptors [22].

The recruitment of NK cells might be tumor-guided,
since the percentage of NK cells within the tumor did not
necessarily correlate to the proportions of NK cells in the
patients` PBL [22, 23]. The factors that determine the
recruitment of NK cell subsets into tumors are unknown,
but a role of chemokine receptors has been suggested [27].
Additionally, tumor cells and other cells, including DC,
may also form specific microenvironments that impact on
NK cell recruitment and function. A better understanding of
the regulatory circuits and also the communication of NK
cells with other immune cell populations, such as DC, is
necessary to reveal how NK cells contribute to immunity to
RCC. An importance of these cells can be deduced from
animal models, where the cross-talk between DC and NK
cells has been linked to the development of long-lasting
anti-tumor immunity mediated by tumor-specific CD8+ T
cells [28]. Additionally, prominent NK infiltrates have been
associated with favorable prognosis in other solid tumors
[29, 30], and in our patient collective no stage IV disease
was observed among tumors with a high percentage of
CD16+ NK infiltrates [26].

Non-MHC-restricted effector cells

Most TIL populations showed broad killing of autologous
and allogeneic tumor cells after culture with low-dose IL-2
for several weeks. Tumor recognition was not MHC-
dependent since class-I-negative target cells like K562 and
Daudi were also killed [1]. Cytotoxic cells with similar
recognition pattern were also obtained from PBMC of RCC
patients and healthy individuals through in vitro culture
with high-dose IL-2. Such cytotoxic cells were designated
as lymphokine-activated killer (LAK) cells [31, 32]. These
broadly reactive TIL and LAK cells contain CD3- NK cells
and CD3+ T cells, including CD3+CD8+, CD3+CD4+, and
CD3+CD4−CD8− subpopulations. All subsets showed
MHC-independent cytotoxicity, but the NK fraction had
the strongest killing capacity [1, 32]. Since both CD4+ and
CD8+ T cells present in LAK also showed MHC-
independent target cell recognition, we refer to them as
NK-like T cells. NK-like T cells are placed in the category
of innate immunity based on their T cell receptor (TCR)
independent function.

High expression of HLA-C or HLA-E molecules
protected RCC cell lines from killing by NK-like T cells.
Masking of MHC class I with specific antibodies led to
tumor cell lysis, indicating that NK-like T cells expressed
inhibitory receptors that were triggered by direct interac-
tion with MHC class I molecules, as is known for NK
cells [32]. However, NK-like T cells appear to be regulated
by distinct inhibitory receptors since they did not express
any KIR or C-type lectin inhibitory receptor present on NK
cells. They also apparently express distinct activating
receptors since agonistic antibodies specific for activating
receptors of NK cells did not trigger NK-like T cells
[32, 33].

Further studies are needed to elucidate the molecular
structure of these receptors and to determine whether this
receptor diversity is beneficial in RCC defense. NK cells
and NK-like T cells may respond to different chemokines
and have different homing capacities and thereby recognize
a different spectrum of tumor cells. They may also secrete
different cytokines upon contact with tumor cells, poten-
tially extending the capacity of the innate immune system
to counteract RCC development and progression.

Natural killer T cells

Natural killer T (NKT) cells represent a specific subset of T
lymphocytes which express surface molecules characteristic
of both NK cells and T cells [34]. They express a limited
TCR repertoire which they use to recognize tumor cells. In
this respect, NKT cells are distinguished from NK-like T
cells which express a broad repertoire of TCR but do not
use their TCR for RCC recognition.
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There is increased interest in the role of NKT cells in
tumor immunosurveillance [35] since these cells have the
ability to link innate and adaptive immunity; however little
is known regarding their function in RCC.

Following TCR stimulation, NKT cells mediate a variety
of effector functions, including direct killing of target cells
and immediate cytokine secretion, which can provoke the
subsequent activation of other effector cells such as NK
cells. Activated NKT cells upregulate CD40L and can
promote DC maturation via triggering of CD40. In turn,
those DC can support CD4+ and CD8+ T cell responses [35,
36]. NKT cells are activated by glycolipids presented by
CD1d molecules [34] and the non-physiological glycolipid
α-galactosylceramide (α-GalCer) is often used as a model
antigen to activate NKT cells. Physiological antigens,
especially those presented by tumor cells, are largely
unknown. To date, the ganglioside GD3 is the only known
tumor-associated ligand for NKT cells [37], which has been
detected on small-cell lung carcinomas, melanomas, and
also RCC, albeit in low frequency [38–40].

Mouse models have shown that NKT cells have strong
potential to inhibit tumor growth [41] and NKT cell-
mediated rejection of the murine renal cell tumor Renca
was demonstrated in vivo [42].

A potential prognostic relevance of NKT cells is
indicated by reduced numbers and function of circulating
NKT cells observed in cancer patients [43, 44]. However,
data on NKT cell function is still lacking in RCC patients.

Elucidating the role of NKT cells is complicated by the
existence of different NKT cell subtypes. Type I NKT cells
which express Vα24Jα18 TCRα chain have been primarily
analyzed to date. CD4+, CD8+, and CD4−CD8− double-
negative subtypes have been identified and differences in
cytokine secretion patterns as well as differences in
chemokine receptor or NK receptor expression have been
reported, suggesting different immune functions [45, 46].
Type II NKT cells are less restricted in their TCRαβ
repertoire and, unlike type I NKT cells, they exhibit
immunosuppressive functions that may hamper effective
anti-tumor responses [47].

Gamma–delta T cells

Gamma–delta (γδ) T cells are also present in TIL of RCC,
but at very low frequency ([48, 49], E. Nößner unpublished
observation). In peripheral blood, γδ T cells account for
only a small population of T cells which primarily express
Vγ9Vδ2 TCR. In epithelial tissues however they can
represent a dominant population and the Vδ1 subset is
prevalent [50]. RCC-infiltrating γδ T cells are diverse,
comprised of either prominent Vδ1 [51], Vδ2 [52] or mixed
Vδ subfamilies [53]. Due to different TCR repertoires, a
selective recruitment of γδ T cells into different RCC

microenvironments is suggested, which may be guided by
RCC-related, patient-specific antigens [54].

Recently a protein complex consisting of a structure
related to the mitochondrial ATP synthase/F1-ATPase, in
combination with apolipoprotein A-I (apo A-I), was found
to be recognized by Vγ9Vδ2 T cells in vitro. Since F1-
ATPase is expressed by several types of tumors, it was
speculated that Vγ9Vδ2 T cells may sense transformed
cells via F1 protein ligated to apo A-I or other tumor
proteins. Whether this mechanism also functions in vivo is
unknown, but RCC lines lysed by Vγ9Vδ2 T cell clones
expressed an F1-related structure [55].

Phosphorylated non-peptidic bacterial metabolites are
potent activators of Vγ9Vδ2 T cells. Isopentenylpyrophos-
phate (IPP), a eukaryotic analog of such metabolites, can be
produced in high levels by some tumor cells through
dysregulation of the mevalonate pathway and thereby also
serve as an agonist for Vγ9Vδ2 T cells [56].

γδ T cells can kill various epithelial tumor cells, e.g.
colorectal and lung cancer, as well as cells of lymphoid
malignancies in vitro [57, 58], and γδ T cells isolated from
TIL of RCC or derived from PBMC also showed killing of
autologous and allogeneic RCC lines [51, 52, 54]. These
findings, together with results from mouse experiments
[58], suggest that γδ T cells may have potential in adoptive
cell therapy of RCC.

MHC-restricted peptide-specific T cells

Classical MHC-restricted T cells bearing αβ TCR (i.e.,
cytotoxic T lymphocytes, CTL) have also been detected in
some RCC patients. They were identified occasionally in
TIL or were cloned from PBMC following stimulation with
autologous tumor cells in vitro. CD3+CD8+ CTL killed
autologous tumor but not untransformed cells. In some
cases, they also recognized allogeneic tumor cells, indicat-
ing that the corresponding pMHC ligands were shared by
different RCC [1, 59]. However, most CTL appeared to
recognize unique pMHC ligands that were only expressed
by autologous tumor cells.

It is difficult to judge how frequently MHC-restricted
CTL arise in RCC patients since their presence in TIL
isolates will be masked by the presence of NK-like T cells.
Since there are currently no phenotypic markers that
distinguish CTL and NK-like T cells, CTL must be
identified at the clonal level by their MHC-restricted
specificity and CD3-dependent activation.

The presence of antigen-selected MHC-restricted T cells
was evaluated using TCR repertoire and CDR3 sequence
analyses of TIL [1]. Dominant TCR transcripts were
seldom found in RCC, perhaps due to the frequent presence
of NK-like T cells displaying broad αβ TCR repertoires
(D.J. Schendel unpublished observation). Better identifica-
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tion of selected TCR transcripts in TIL was achieved using
CDR3 length analysis which can identify clonally expanded
T cells [60]. Using this method, predominant αβ TCR
transcripts were observed in TIL of one out of five
evaluated RCC patients [61]. Importantly, this one domi-
nant TCR sequence was expressed by a CTL clone that
killed autologous tumor cells. A second study of TIL of
nine RCC patients revealed highly diverse αβ TCR
repertoires [62]. Although selected TCR transcripts were
identified in every TIL isolate, functional anti-tumor
reactivity of the expanded T cells was not demonstrated.

We analyzed TCR transcripts of TIL isolated from two
RCC patients that appeared to recognize a shared pMHC
ligand. The presence of highly complex families of homol-
ogous TCR sequences with shared CDR3 lengths was
detected in the primary tumors of both patients, revealing
that a remarkable antigen-driven selection of T cells had
occurred in vivo. This analysis provided direct evidence for
the natural occurrence of highly selected adaptive immune
responses to RCC in some untreated patients [63].

Ligands recognized by pMHC-specific T cells

The identification of peptides recognized by MHC-
restricted T cells is of great interest, particularly for the
development of antigen-specific immunotherapies. Differ-
ent approaches such as screening of cDNA expression
libraries, elution of peptides from MHC molecules or
analysis of predicted TAA epitopes have been used to
identify tumor-associated T cell epitopes [64, 65].

The ligands seen by CD4+ T cells are difficult to
analyze; yet, recently, a surprisingly wide variety of
peptides was isolated from MHC class II molecules and
found to be recognized by circulating CD4+ T cells of RCC
patients. These peptides were derived, among others, from
known TAA [66]. Furthermore, CD4+ T cells recognizing
an epitope of the 5T4 oncofetal antigen [67], or peptides of
MAGE-6 and the tyrosine kinase receptor EphA2 [68, 69]
have been identified in RCC patients.

Defining ligands for CD8+ CTL has been more
successful. Peptides seen by these T cells have been shown
to arise through non-classical genetic mechanisms such as
reverse-strand transcription [70], post-translational protein
splicing [71], or translation of alternative open reading
frames of normal cellular proteins [72, 73]. Furthermore,
several peptides encoded by mutated proteins were identi-
fied [74, 75] and one peptide originated from the cancer-
germline antigen RAGE 1 [76]. By screening predicted
epitopes of CA9/G250, an HLA-A2-restricted peptide was
found that was recognized by RCC-derived CTL [77].
However, with the exception of the G250 peptide, these
various pMHC ligands represent epitopes that are only
expressed by individual tumors.

Alternative strategies are needed to identify pMHC
ligands that are shared among RCC in order to develop
broadly applicable immunotherapies. This has spurred the
use of “reverse immunology”, profiling tumors to identify
candidate molecules that are then evaluated for their ability
to elicit T cell responses. High-throughput genomics and
proteomics have been applied to analysis of RCC and a
number of interesting candidate molecules are emerging
[10, 78, 79].

Additionally, generation of RCC-reactive CTL following
stimulation of PBMC from patients or healthy donors can
be helpful for pMHC-ligand identification. In this context,
stimulation of PBMC with HLA class-I-matched RCC cell
lines [80], peptide-pulsed antigen-presenting cells [81] or
DC loaded with RCC-derived cell lysates, tumor-derived
RNA, or apoptotic tumor cells [82–84] has been performed.
Also, donor-derived T cells obtained from patients treated
with allogeneic hematopoietic stem cell transplantation
(HSCT) proved to be useful for identification of TAA of
RCC [85].

Dendritic cells

DC are essential to the establishment of effective and
sustained immune responses to infection and also to
tumors. Some studies have addressed the presence and
phenotype of DC in RCC tissue. Consistently, DC were
found to be one component of the natural immune cell
infiltrate [86, 87]. Yet the reports differ regarding DC
frequency, describing increased [88] or similar DC numbers
in tumors compared to normal kidney tissue [87]. These
differing results may be explained by differing experimental
methods, such as analysis of isolated cell infiltrates or
enumeration in stained tumor sections. Some studies
focused on a specific subtype, such as the mature and
activated DC expressing CD83+ or CD83+/CMRF-44+ and
found that these DC were enriched in RCC compared to
non-malignant kidney tissue [87, 88]. A subset of these DC
had T cell stimulatory capacity in vitro yet the majority was
functionally impaired and had reduced expression of
costimulatory molecules [86–88]. This was possibly attrib-
uted to immunosuppressive factors, including IL-10, TGF-
β or VEGF, which are present in the RCCmicroenvironment
and can negatively impact on DC function and development
[4].

Cumulative evidence of recent years suggests that DC
are a very heterogenous population with different pheno-
types and functional profiles which can be shaped by
organ- and compartment-specific microenvironments [89].
Considering this complexity, one must accept that our
understanding of DC in RCC is far from complete. In
particular, immature DC or other DC subsets have not been
addressed in any detail, although they are expected to be far
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more prevalent than mature DC which, due to their
migratory function, should exit the tumor site to enter
draining lymph nodes for T cell stimulation. Resident non-
mature DC may be immunogenic or, under the influence of
the tumor milieu, they may be part of a regulatory network
responsible for silencing anti-tumor effector lymphocyte
activity. These resident DC need to be evaluated in detail,
particularly with respect to functional profiles, in order to
define strategies to efficiently utilize them to stimulate
efficient anti-tumor responses.

Despite our incomplete understanding of DC biology in
RCC, clinical benefit may be achieved through increased
recruitment of DC to tumor sites, in particular if measures
are taken to support activation and ameliorate inhibitory
effects of the tumor milieu. An interesting candidate for this
purpose is IFN-α which was recently described to induce
DC maturation and activation in vitro [90]. Moreover, an
increase of CD209+/CD83+ DC was found in tumor tissues
of RCC patients who were treated with a cytokine cocktail
composed of IFN-α, IL-2, and GM-CSF [91]. Functionally,
DC conditioned with IFN-α and loaded with RCC-
associated peptides had superior capacity to stimulate
CD8+ type I T cell responses and a reduced potential for
Treg induction in vitro compared to DC matured with a
standard cytokine cocktail [92]. In addition to stimulatory
cytokines, application of Toll-like receptor (TLR) agonists
might also be advantageous for DC activation [93, 94].

Effector cell antagonists: regulatory T cells
and myeloid-derived suppressor cells

Although a plethora of effector cells were found in TIL
populations, these cells obviously failed to control RCC
progression. Current research strives to understand events
occurring in the tumor microenvironment that can impede
successful immune control of tumor growth. In RCC, a
complex network of immunosuppressive mechanisms has
developed [4], also including suppressor cells that actively
inhibit effector cell function.

In recent years, Tregs have received prominent attention
because of their capacity to inhibit both innate and adaptive
immune responses. Elevated numbers of Tregs were
detected in cancer patients and their increased frequency
was associated with poor survival [95, 96]. Tregs were also
found to be over-represented in PBMC of RCC patients
compared to healthy controls and they were also detected in
TIL [97–99]. It remains controversial whether increased
frequencies of Tregs are associated with poor prognosis in
RCC patients. One study suggested a higher death risk for
patients with elevated numbers of circulating Tregs [99],
however an analysis of TIL from 170 RCC patients showed
no association between numbers of Tregs and survival [100].
Rather, the presence of an intratumoral CD4+CD25+Foxp3−

T cell population was significantly associated with cancer-
specific death. The authors speculated that these FoxP3− T
cells represented induced regulatory T cells since they
expressed intracellular IL-10. Another study also found no
correlation between the frequency of Tregs and clinical
response of RCC patients treated with high-dose IL-2 [101].

In this context, understanding the effect of IL-2 in cancer
patients is of great interest. While IL-2 is the only therapy
that can produce potential cure of RCC [5], it is also
essential for function and survival of Tregs [8]. Systemic
IL-2 therapy increased the frequency of circulating Tregs in
RCC patients [97, 101]. Treg numbers remained high in
patients with progressive disease but they dropped to
normal levels in patients showing clinical responses within
four weeks post-therapy [97]. The mechanisms required to
overcome immune suppression or to break immunological
tolerance in patients responding to IL-2 remain to be
determined. It is conceivable that the inhibitory capacity of
Tregs is hampered in individual RCC patients. In this case,
IL-2 might be able to support Treg expansion but not Treg
function [102]. A concomitant expansion of anti-tumor
effector cells may be able to abrogate the inhibitory effect
of Tregs in patients responding to IL-2 therapy.

Myeloid-derived suppressor cells (MDSC) have also
come into focus as suppressors of anti-tumor immune
responses. Although known for several years, these cells
have been reported in RCC only recently [103]. MDSC
represent a very heterogeneous cell population, comprised
of immature cells of myeloid origin in various states of
differentiation. It is supposed that the tumor microenviron-
ment conditions MDSC to acquire their suppressive
phenotype. This enables them to inhibit T cell activation
and function, mainly by interference with L-arginine
metabolism [104]. Compared to healthy controls, increased
numbers of MDSC have been reported in the PBMC of
RCC patients and upregulation of either arginase-1 (ARG1)
or reactive oxygen species (ROS) and NO, typical
mediators of MDSC suppressive activity, was detected in
vitro based on the subtype analyzed. Additionally, isolated
MDSC inhibited T cell proliferation and function [103, 105].

Analysis of MDSC in RCC is only at the beginning and
knowledge about the biology and function of these cells is
mainly derived from mouse models. Therefore, more
studies are required to determine the immunosuppressive
potential of MDSC in RCC and the usage of multiple
surface markers is necessary for specific and comparative
characterization, due to their heterogeneity. Additionally,
data on RCC-infiltrating MDSC are rare. So far, only one
report described vascular endothelial growth factor receptor 1
(VEGFR1) positive MDSC in tumor tissue [106]. The impact
of intratumoral MDSC on T cells would be of interest. For
example, MDSC activity can result in downregulation of
CD3ζ chain expression, however data are conflicting on this
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issue in RCC [4]. Furthermore, impact of MDSC on other
effector cells such as DC, NKT or NK cells still needs to be
investigated.

Data from mouse models and in vitro studies suggest
that MDSC can negatively impact on cancer immunothera-
pies. Likewise, these studies also show that MDSC are not
necessarily stuck in their immature suppressive phenotype.
Different therapeutic approaches for elimination of these
suppressor cells are discussed [104]. In this context,
maturation of MDSC to antigen-presenting cells (APC) in
vivo, by agents such as all-trans-retinoic acid (ATRA), for
example, appears to be reasonable and promising [105, 107].

Applications in the clinic

Clinical benefit of non-MHC-restricted effector cells

The history of adoptive cell therapy of metastatic RCC
(mRCC) spans more than three decades. LAK cells in
combination with IL-2 formed the first cell therapy applied
in mRCC patients [108]. The therapeutic LAK preparations
were composed primarily of CD56+CD3- activated NK
cells [109]. Pooled data from several trials including more
than 500 RCC patients revealed an objective clinical
response rate of 22%, however neither clinical response
nor survival was significantly greater in patients treated
with LAK cells plus IL-2 versus IL-2 alone [109, 110].

The second wave of adoptive cell therapy employed TIL,
based on the assumption that these populations would
represent MHC-restricted T cells with a better capacity to
specifically eliminate tumor cells. Unseparated TIL,
enriched CD3+CD8+ cells or combinations of CD4+ and
CD8+ T cells were used in various trials. Rates of clinical
response varied widely among different studies, ranging
from 0–35% [109, 110]. A phase III trial comparing TIL
plus IL-2 versus IL-2 alone provided no evidence for
greater benefit in the presence of TIL. However, in this
multi-center trial, there was a high rate of failure (41%) to
obtain adequate TIL for patient application, which led to its
discontinuation and left open the question of whether TIL
therapy might have clinical benefit, as indicated by earlier
phase I/II trials [111].

Our improved understanding of the cellular and molec-
ular principles of immune responses against RCC now
allows better insight into potential factors that may impact
on patient responses to LAK versus TIL therapy. If NK
cells and NK-like T cells have an important role in RCC
immune defense, their activation by LAK/IL-2 therapy will
have the highest benefit in patients whose RCC have
disturbed MHC expression, whereas no clinical benefit
would be expected in patients with tumors having normal
or high MHC expression.

In an allogeneic leukocyte transfusion approach, a
disparate inhibitory receptor repertoire of NK cells and
NK-like T cells between recipient and donor might be
beneficial, since it is unlikely that the various inhibitory
receptors of the non-MHC-restricted effector cells will be
matched fully by the set of MHC class I molecules on the
allogeneic tumor cells, allowing the NK and NK-like T
cells to escape from inhibition [32, 112]. This principle has
been shown to underlie the elimination of leukemic cells in
the setting of allogeneic stem cell transplantation (SCT)
[113] and may also contribute to the clinical benefit of
allogeneic SCT in RCC [114]. The possibility for unwanted
reactions exists however if the normal tissue fails to express
the necessary inhibitory ligands and additionally expresses
ligands that activate non-MHC-restricted effector cells.

The adoptive transfer of more complex TIL infiltrates,
including both MHC-restricted and non-MHC-restricted
effector cells, might be advantageous. In this setting, NK
cells might support adaptive Tcell responses through an NK-
DC axis and, in addition, they may limit the emergence of
MHC class-I-negative tumor cells that cannot be eliminated
by MHC-restricted CTL. That this is an important consider-
ation can be deduced from results of immunotherapies of
melanoma where induction of antigen-specific CTL often
led to outgrowth of immune-escape tumor cell variants that
lost pMHC ligands [115]. The capacity of NK cells to attack
MHC-loss variants could therefore fulfill a special role in
anti-tumor defense (Fig. 1). Nevertheless, new ways for
adequate TIL expansion need to be established before these
cells can be utilized for patient treatment.

Type I and type II interferons can modulate MHC class I
expression [11]. Both classes of interferons were used in
RCC immunotherapy, but only IFN-α treatment showed
clinical benefit. An explanation for the clinical results
might be deduced from our in vitro studies addressing the
impact of IFN-α and IFN-γ on RCC recognition by various
effector cells. IFN-α only modestly upregulated MHC class
I and only slightly improved recognition by MHC-restricted
CTL, whereas IFN-γ strongly induced MHC class I
expression and strongly enhanced CTL recognition [116,
117]. RCC cells treated with IFN-α remained susceptible to
killing by NK, LAK and NK-like T cells, but IFN-γ-treated
RCC became fully resistant to killing by these non-MHC-
restricted effector cells [32, 116, 117]. Therefore, IL-2 and
IFN-α would seem better suited than IL-2 and IFN-γ to
support combined innate and adaptive immune responses
against RCC. This seems to reflect clinical experience with
cytokine/interferon therapies.

Gamma–delta T cells for adoptive cell therapy

Thus far the cytolytic potential of γδ T cells against RCC
has been primarily demonstrated in vitro. In contrast, no
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indication was found for clinical benefit of γδ T cells
among tumor infiltrates in an analysis of more than 200
ccRCC patients. In this study, neither increased recruitment
nor expansion of γδ T cells was detected in situ and
percentages of γδ T cells did not correlate with prognosis
or RCC-related deaths [118]. Thus, naturally occurring
tumor-infiltrating γδ T cells may be inefficient in tumor
defense; however, activation and expansion of γδ T cells
ex vivo may generate cells capable of recognizing RCC
in vivo.

Synthetic phosphoantigens or aminobisphosphonates,
which cause an intracellular accumulation of IPP, are
considered for activation of Vγ9Vδ2 T cell ex vivo and
in vivo, in combination with low-dose IL-2 [52, 119].
Synthetic phosphoantigen in combination with low-dose
IL-2 led to specific in vitro expansion of peripheral
Vγ9Vδ2 T cells of RCC patients. These cells showed
strong killing of autologous and allogeneic tumor cells but
only low activity against normal renal cells [52, 120].

Two clinical studies utilizing γδ T cells in mRCC
patients have been reported. In both cases, γδ T cells were
activated and expanded ex vivo and adoptively transferred
in combination with low-dose IL-2. A slowing in tumor

progression was observed in three of five patients in one
study [121], while six of ten patients in the second trial
maintained stable disease for substantial time periods [122],
indicating that γδ T cells can contribute to effective RCC
immune responses.

More clinical trials enrolling higher numbers of patients
are necessary to evaluate the true potential of γδ T cells, as
well as possible side effects in RCC immunotherapy. In one
of the two reported clinical studies, patients suffered from
side effects similar to those caused by the cytokine-release
syndrome following adoptive transfer of γδ T cells [122]. It
remains to be elucidated whether the unnaturally high
numbers of ex vivo activated T cells or concomitant
activation of endogenous effector cells were responsible
for an infection-like cytokine secretion. Therefore, future
trials will need to better monitor the action of γδ T cells in
vivo not only to assess their anti-tumor potential, but also to
minimize side effects caused by unanticipated immune
reactions. Additionally, the impact of different γδ T cell
subsets and IL-2 needs to be considered. Furthermore, some
tumor microenvironments may alter γδ T cell function.
Membrane-bound MICA/B, which can be expressed by
RCC [52], can activate Vδ1 and Vδ2 T cells through their
TCR and NKG2D, respectively [123]. Tumor-derived
soluble MICA however can down-regulate NKG2D recep-
tors and consequently decrease or inhibit γδ T cell function
[124]. Application of anti-MICA antibodies may help to
retain γδ T cell activity [125]. γδ T cells can also express
inhibitory NK cell receptors that control self-reactivity, thus
RCC that express high levels of MHC may be protected
from lysis by γδ T cells.

Developing adoptive therapies with pMHC-specific T cells

To analyze the clinical benefit of MHC-restricted peptide-
specific αβ T cells, it is necessary to identify, isolate, and
expand tumor-reactive CTL. This has proven to be difficult
in the case of RCC since CTL may be relatively rare in
RCC patients. Therefore, the development of designer T
cells that are equipped with TCR specific for a defined
TAA represents an attractive substitute. Several studies
have analyzed the potential of lymphocytes expressing
transgenic TCR (tg-TCR), for example for the treatment of
hematologic malignancies [126] and melanoma [127].
Clinical studies using tg-TCR for RCC have not yet been
reported.

The isolation of RCC-specific high-avidity TCR, the
efficient transfer into recipient lymphocytes and subsequent
TCR expression at adequate levels are crucial for the
development of adoptive immunotherapy using tg-TCR T
cells. We have used a model system to study the transfer of
an RCC-specific TCR [63] using an optimized retrovirus to
infect PBMC of healthy individuals [128]. The tg-TCR

a

NK cell

RCCRCC

b

T llT cellNK cell

RCC

Fig. 1 The cooperation of effector cells of the innate and adaptive
immune system in RCC recognition. a RCC with normal pMHC
expression can inhibit NK cells through interaction of MHC with
inhibitory receptors (IR) expressed by the innate immune cells. Since
inhibition is dominant, activation of NK cells through ligation of
activating receptors (AR) and activating ligands (AL) expressed by
RCC is inhibited. However, MHC-restricted cytotoxic T cells can
recognize RCC using their TCR, which leads to T cell activation and
subsequent lysis of tumor cells. b RCC can escape T cell recognition
in cases of disturbed MHC expression. In this case however NK cell
activation and tumor cell lysis can be initiated by AR, since inhibition
of NK cells is abrogated
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lymphocytes displayed the same specificity and killing
potential as the parental TIL clone and T cell functions were
long-lasting in transduced lymphocytes [129]. This demon-
strated proof of concept for adoptive therapy of RCC, but
identification of appropriate tg-TCR remains a major
hurdle. Most MHC-restricted peptide-specific T cells
recognize pMHC ligands unique to individual RCC,
making their TCR sequences unsuitable for the treatment
of a larger patient collective. Identification of specific TCR
sequences for pMHC ligands commonly expressed by RCC
is only in early stages of discovery and development.

Recently, a nonclassical CD4+ T cell clone was identified
which specifically recognized a panel of RCC cell lines in a
TCR-dependent but MHC-independent manner [130]. The
adoptive transfer of a tg-TCR derived from such a T cell
clone provides an attractive alternative to the use of clas-
sical pMHC-specific αβ TCR.

Mispairing of tg-TCR α and β chains with endogenous
TCR chains remains a particular problem. Mispairing can
limit expression of the tg-TCR and can lead to autoimmune
reactions, if self-antigens are recognized by mispaired TCR.
To minimize this risk, selection of tg-TCR sequences that
preferably pair only with each other is important. In this
context, the model of “strong” and “weak” TCR has been
developed [131], whereby the α and β chains of a “strong”
TCR preferentially pair and allow stable cell surface
expression. Such “strong” tg-TCR inhibit the surface
expression of “weak” endogenous TCR but they can be
co-expressed on the surface with “strong” endogenous
TCR. This model has been successfully demonstrated with
two different tg-TCR specific for RCC [131]. Preferential
expression of some tg-TCR was also observed by others
[132, 133]. The characteristics responsible for stable tg-
TCR pairing are not yet understood but intrinsic affinities
of the α and β chains are important for chain pairing as
well as for TCR assembly with CD3. This may be
controlled in part by sequences of the variable regions
[131, 133].

Since the number of RCC-specific TCR is currently
limited, selection of tg-TCR on the basis of “weak” and
“strong” is not possible yet, but alternative methods can be
applied to stabilize αβ pairing [134]. Furthermore, means
to specifically eliminate tg-TCR lymphocytes in vivo are
also in development [135]. Therefore, adoptive transfer of
tg-TCR lymphocytes may soon become available for RCC
patients.

However, once tg-pMHC-specific T cells or autologous
CTL have been generated for adoptive transfer, different
events can limit efficiency of T cell activity in vivo.
Development of antigen-loss variants of tumor cells may be
one such event. Function of adoptively transferred tumor-
specific T cells can also be inhibited by various tumor-
derived factors, such as gangliosides or TGF-β [4].

Additionally, Tregs and MDSC may also inhibit potent
anti-tumor responses. Accordingly, it was observed in an
RCC mouse model that adoptively transferred high avidity
CTL lost their function after tumor infiltration [136]. So
called cytokine sinks may also limit pMHC-specific T cell
function. In this case, cytokines needed for the prolifera-
tion, persistence and function of high numbers of trans-
ferred T cells are not available, since they are used by other
endogenous cells [137]. These different hindrances may
have impacted on earlier adoptive cell therapy studies with
TIL or CD8+-enriched TIL that showed only limited
success. Non-myeloablative lymphodepletion prior to adop-
tive T cell transfer appears to be a promising approach for
elimination of inhibitory cells and cytokine-competing
cells. Although, no clinical data are yet available for
RCC, encouraging results have been achieved in the
treatment of melanoma [138] and results from clinical trials
using HSCT following non-myeloablative conditioning for
advanced RCC patients also underscore the advantage of
such an approach [139]. Nevertheless, ensuring tumor
specificity of adoptively transferred T cells remains a major
hurdle, especially in cases of high avidity tg-TCR CTL
transferred under conditions preventing tolerizing mecha-
nisms and in cases where the target antigen is not
exclusively expressed on the tumor tissue. However, mild
forms of autoimmunity may be tolerable, if tumor regres-
sion can be induced.

Allogeneic hematopoietic stem cell transplantation

Immune system control of RCC has been clearly docu-
mented in the setting of allogeneic HSCT. The first clinical
trial of 19 patients with mRCC achieved an objective
response rate of about 50% [140]. Other clinical trials with
RCC patients have achieved response rates ranging from 0–
57%, with an average of approximately 20% [114]. Since
most patients had refractory tumors and very poor
prognosis, these results are promising. Furthermore, HSCT
has shown the most promising results in RCC compared to
various other solid tumors [141].

The mechanisms leading to tumor regression have yet to
be elucidated. Donor-derived NK cells can mediate anti-
tumor responses in patients with hematologic malignancies
following HSCT [113, 142]; however, their role in rejection
of allogeneic epithelial tumors in vivo is largely unknown.

Donor-derived T cells recognizing host alloantigens have
been identified as mediators of graft-versus-tumor (GVT)
effects. The number of IFN-γ-producing CD8+ T cells was
increased in RCC patients responding to HSCT compared
to non-responding patients [143] and identification of their
ligands is an important area of research.

Minor histocompatibility antigens (mHag) presented by
tumor cells were shown to be crucial for development of
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CD8+ anti-tumor responses [144, 145]. However, expres-
sion of such mHag in normal tissues can cause graft-versus-
host disease (GVHD). The identification of RCC-specific
mHag and the generation of mHag-specific CTL for
adoptive cell transfer would be helpful to improve GVT
effects and reduce the risk of GVHD. Some RCC patients
showed tumor remission without GVHD, supporting the
assumption that mHag exist that are either RCC-specific or
over-represented in tumor tissue [140, 146].

A CTL clone obtained from one HSCT patient, who
showed a partial tumor regression without GVHD, was
found to be specific for the mHag HA-1H, which was
expressed by several allogeneic RCC cell lines [146].
Further studies, particularly using primary RCC tumor
cells, are necessary to evaluate the potential of HA-1H in
anti-tumor responses.

Several attempts have been made to identify RCC-
associated TAA that can induce CTL following allogeneic
HSCT. WT1 has been reported as one potential tumor
antigen that may contribute to GVT response in RCC
patients [147]. Recently, a CTL clone specific for a human
endogenous retrovirus type E (HERV-E)-derived epitope
was isolated from an RCC patient who showed tumor
regression following allogeneic HSCT. This CTL clone
killed HLA-A11-matched ccRCC cell lines but did not
recognize non-malignant cells in vitro. Additionally,
HERV-E was found to be expressed in RCC but not in
normal renal tissues [85].

Clinical use of dendritic cells

One can envisage utilizing DC in two different therapeutic
strategies: recruitment and activation of endogenous DC or
the application of ex vivo generated DC with improved
qualities.

There is limited information about how one might
activate the endogenous DC population and subsequently
achieve clinical benefit, but increased numbers of DC in
RCC tissue following IFN-α treatment were positively
correlated with patient survival [148, 149]. The factors
responsible for recruitment and activation of endogenous
DC are unknown but particularly in the case of IFN-α, DC
might require cross-talk with NK cells to achieve full
maturation [150]. An improved understanding of the tumor
microenvironment and the DC subsets in RCC may shed
light on this problem and may be helpful to improve
cytokine therapies.

In recent years, significant effort has been directed
towards the development of DC-based vaccine strategies
to bypass the impaired induction of effective anti-RCC
responses and generally these vaccines have been well
tolerated. Yet, the clinical benefit of DC vaccines utilizing
either immature or mature autologous DC, loaded with

tumor lysates, tumor-associated peptides or tumor-derived
RNA has been disappointing [151]. Currently, the charac-
teristics associated with fully functional DC in vivo are
unclear. Most trials employed DC generated in vitro using
IL-4 and GM-CSF, without or following incubation with a
cocktail containing IL-6, PGE2, TNF-α, and IL-1β [152].
Meanwhile, it is known that these DC do not secrete IL-
12p70, which is essential to polarize towards Th1-type
immune responses [153]. Those DC could be tolerogenic or
induce Th2-polarized immune responses [154, 155].

In order to improve the DC subtype used for vaccination,
we have evaluated new cytokine combinations, including
TLR ligands. Monocyte-derived DC treated with these
cocktails displayed phenotypic maturation and secreted
high amounts of bioactive IL-12p70 [94].

In addition to cytokine secretion, appropriate antigen
presentation by DC determines their capacity to prime and
propagate tumor-reactive T cells. Transfection of mature
DC with tumor-derived RNA provides them with a large
repertoire of TAA for presentation. We found that supply-
ing them with single-species or small pools of mRNA
resulted in better antigen presentation than the use of total
tumor-derived RNA. This led to the conclusion that pre-
selecting a pool of defined mRNA species that encode
RCC-associated antigens expressed in a majority of tumors
will be advantageous for DC vaccine development [156,
157].

In addition to the priming of naïve T cells, adjuvant
utilization of DC vaccines in settings of adoptive transfer of
NK, NKT, and γδ T cells, may prolong effector cell
function and longevity [158, 159].

Depletion of regulatory T cells

Although the precise correlation between the frequency of
Tregs and clinical outcome in RCC patients is unclear, it is
well accepted that Tregs can suppress the function of both
innate and adaptive effector cells [160]. Therefore, deple-
tion of Tregs prior to immunotherapy should help to
improve anti-tumor responses.

Tumor-specific T cell responses were enhanced in vitro
if Tregs were depleted prior to stimulation by DC
presenting TAA. In these studies, either antibody-coated
magnetic beads or the IL-2 diphtheria-toxin fusion protein
ONTAK were used for elimination of CD25+ cells [67, 98].
Anti-CD25 magnetic beads do not discriminate between
CD25high and CD25low-int expressing cells and thereby
carry the risk of eliminating CD25-expressing effector T
cells, while ONTAK was shown to selectively kill CD25high

Tregs in vitro [98]. However, ONTAK seems not to be
effective in Treg depletion in all patients [161].

The effect of Treg depletion has been analyzed in RCC
patients. In one study, ten mRCC patients were given a DC-
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based vaccine alone or in combination with a single
ONTAK treatment prior to DC application. Although the
peripheral Tregs were only transiently eliminated, the Treg-
depleted patients showed significantly enhanced and pro-
longed tumor-specific CD8+ T cell responses and also had
somewhat increased numbers of specific CD4+ T cells
compared to patients receiving only DC vaccine cells.
Unfortunately, the clinical responses and impact on survival
rate were not reported in this study [98].

In a different study, six patients with mRCC underwent
leukapheresis with subsequent depletion of CD25+ T cells.
Patients were lympho-depleted using non-myeloablative
chemotherapy and CD25-depleted autologous cells were
reinfused. Treg numbers recovered after several weeks and
only one patient showed an increased T cell response to a
tumor-specific antigen. Interestingly, this patient had the
highest pre-treatment frequency of Treg cells [162]. In
future clinical studies, analysis of larger numbers of patients
is necessary to elucidate the influence of Tregs on patient
survival in RCC.

The transient nature of Treg depletion remains a major
problem since this might limit effective anti-tumor activity.
However, how reappearance of Tregs after depletion
influences clinical outcome is not yet known. Long-term
elimination of Tregs may harbor various risks, such as
development of severe autoimmunity. Two different meth-
ods of Treg elimination are under investigation: ex vivo
depletion and in vivo targeting. The latter approach is
currently more problematic since specific targeting of Tregs
is not yet possible. Target molecules such as CD25,

cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or
glucocorticoid-induced tumor necrosis factor receptor
(GITR) are also expressed on other cell types; therefore,
ONTAK, for example, can only be applied in a pre-
vaccination setting since treatment during immunization
can also eliminate activated effector cells. Additionally,
targeting various cell subsets simultaneously may disrupt
the well-balanced system of activation and inactivation of
immune cells and lead to unexpected immune functions.

Therefore, new strategies are needed to obtain specific
elimination of Tregs. Selective inhibition of FoxP3 expres-
sion, for example, may be a reasonable approach. FoxP3,
which is considered to be the only specific marker for
Tregs, is expressed intracellularly, thus new surface markers
are needed to ease and standardize identification of this cell
population. CD127 and CD27 are currently discussed as
additional markers [163, 164], however their benefit for
improving Treg identification has yet to be verified.

Concluding remarks

The statement is often made that RCC belongs to the small
group of tumors that are immunogenic. Therefore, it would
be expected that immunotherapies are a good option for
controlling this malignancy. Nevertheless, after more than
30 years of research, the clinical outcome of RCC
immunotherapy is still unsatisfactory.

Recruitment of endogenous effector cells, using cytokine
therapy, adoptive transfer of LAK and TIL or application of
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Fig. 2 Various effector cells of
both the innate and adaptive
immune system have the capac-
ity to recognize RCC. Effector
cells, such as αβ T cells,
NK cells, NK-like T cells, γδ T
cells, NKT cells and DC are
integrated in a complex network
of interactions and need cross-
talk with each other for optimal
function. However, the success
of an anti-tumor response is
critically determined by RCC
and its microenvironment,
which have the potential to
either activate or inhibit these
effector cells, as do specific
suppressor cells such as Treg
and MDSC
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other individual effector cell populations may not provide
the immune complexity needed for successful RCC control.
We now understand that a variety of cell types of the innate
and adaptive immune system can contribute to RCC
immunity. These different cell populations do not act in
isolation but engage in cross-talk with each other, thus,
stimulating or inhibiting various effector cell functions
(Fig. 2). Additionally, the activity of different effector cells
may vary in individual patients. Therefore, combining the
actions of various cell types may be more effective in
fighting RCC. This would imply concomitant adoptive
transfer of different effector cell types or adoptive cell
transfer combined with specific in vivo activation of
effector cells. In either case, transfer/activation of immune
cells of both the innate and adaptive immune system might
be beneficial. However, in the end, the anti-tumor potential
of different effector cells in vivo will be critically
determined by the tumor microenvironment, which can
inhibit or hamper effective anti-tumor responses through
numerous immunosuppressive mechanisms [4]. Thus, for
future immunotherapies, it will be advantageous to find
means that can either select for potential responders to
adoptive cell therapy or that can alter the suppressive tumor
milieu in order to improve clinical outcome. Recruitment
and activation of various effector cells at the tumor site may
hereby already support evasion of an inhibitory milieu.

In this context, for adoptive cell transfer it will be
essential to generate effector cells equipped with an
optimized phenotype, allowing their migration, long-term
persistence and re-activation at the tumor site. Additionally,
a persistent activation state, upregulation of co-stimulatory
molecules or activating ligands for enhanced effector
function and/or activation of other effector cell types may
help to penetrate the inhibitory network, since the tumor
microenvironment per se might inhibit the initial activation
of effector cells. For example, activation of γδ T cells in
vitro in the presence of specific cytokines could induce
enhanced cytolytic function and signaling. Appropriate
activation of DC in vitro, e.g., using TLR ligands, is a
prerequisite for the generation of potent APC expressing
Th1-related cytokines. DC used in earlier DC-based
vaccine trials, showing only marginal efficiency, did not
always provide such a phenotype. Likewise, antigen-
specific T cells displaying an early effector state are
supposed to provide a more potent anti-tumor response
than strongly differentiated effector memory T cells, which
might be exhausted in their cytolytic potential. While many
molecular and cellular aspects of immune responses to
RCC remain undefined, knowledge of RCC and effector
cell biology as well as intercellular interactions of effector
cells is continually improving. This places us in a better
position to develop therapeutic strategies that optimally
harness innate and adaptive effector cells to fight metastatic

disease, providing hope for future success of immunother-
apy of RCC.
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