Skip to main content
Log in

Antisense oligonucleotides and short interfering RNAs silencing the cyclin-dependent kinase inhibitor p21 improve proliferation of Duchenne muscular dystrophy patients’ primary skeletal myoblasts

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Increased levels of the cyclin-dependent kinase inhibitor p21 associated with decreased myoblast proliferation may be involved in the dystrophic process in Duchenne muscular dystrophy (DMD). Therefore we are interested to improve the proliferation of primary myoblasts of DMD patients by a reduction in p21 using either antisense oligonucleotides (ASO) or short interfering RNAs (siRNA). After transient transfection of myoblasts in cell culture proliferation was analyzed using a 5-bromo-2′-deoxyuridine assay comparing specific transfected cells with untransfected cells and cells transfected with scrambled ASO and luciferase siRNA, respectively. Four of five Dystrophin-deficient (Dys) cell culture samples revealed an increase in proliferation between 7% and 18% compared to untransfected cells and between 8% and 36% compared to cells transfected with scrambled ASO. Transfection with siRNA was performed for selected samples to determine whether siRNA is more effective in gene silencing than ASO. The increase in proliferation using luciferase siRNA as reference was comparable to or less than ASO data using scrambled ASO as reference. Using untransfected cells as reference, the increase in proliferation was higher for siRNA than ASO (20–47% vs. 7–18%), but the data must be carefully interpreted with respect to nonspecific effects on gene expression by siRNA. Our findings of transient p21 gene silencing represent a basis for viral vector-mediated drug-inducible p21 shRNA expression in Dys myoblasts which might enhance, prolong and regulate the proliferation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASO :

Antisense oligonucleotide

BMD :

Becker muscular dystrophy

BrdU :

5-Bromo-2′-deoxyuridine

DMD :

Duchenne muscular dystrophy

MTT :

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

siRNA :

Short interfering RNA

References

  1. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816

    Article  CAS  PubMed  Google Scholar 

  2. Walsh K, Perlmann H (1997) Cell cycle exit upon myogenic differentiation. Curr Opin Genet Dev 7:597–602

    CAS  PubMed  Google Scholar 

  3. Hawke TJ, Meeson AP, Jiang N, Graham S, Hutcheson K, DiMaio JM, Garry DJ (2003) p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle. Am J Cell Physiol 285:C1019–C1027

    CAS  Google Scholar 

  4. Ostrovsky O, Bengal E (2003) The mitogen-activated protein kinase cascade promotes myoblast cell survival by stabilizing the cyclin-dependent kinase inhibitor, p21WAF1 protein. J Biol Chem 278:21221–21231

    Article  CAS  PubMed  Google Scholar 

  5. Endesfelder S, Krahn A, Kreuzer KA, Lass U, Schmidt CA, Jahrmarkt C, von Moers A, Speer A (2000) Elevated p21 mRNA level in skeletal muscle of DMD patients and mdx mice indicates either an exhausted satellite cell pool or a higher p21 expression in dystrophin-deficient cells per se. J Mol Med 78:569–574

    Article  CAS  PubMed  Google Scholar 

  6. Endesfelder S, Bucher S, Kliche A, Reszka R, Speer A (2003) Transfection of normal primary human skeletal myoblasts with p21 and p57 antisense oligonucleotides to improve their proliferation: a first step towards an alternative molecular therapy approach of Duchenne muscular dystrophy. J Mol Med 81:355–362

    CAS  PubMed  Google Scholar 

  7. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  8. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001) Specific inhibition of gene expression by small double stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98:9742–9747

    Article  CAS  PubMed  Google Scholar 

  9. Bertrand J-R, Pottier M, Vekris A, Opolon P, Maksimenko A, Malvy C (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 296:1000–1004

    Article  CAS  PubMed  Google Scholar 

  10. Ham RG, St. Clair JA, Webster C, Blau, HM (1988) Improved media for normal human muscle satellite cells: serum-free clonal growth and enhanced growth with low serum. In Vitro Cell Dev Biol 24:833–844

    CAS  PubMed  Google Scholar 

  11. Walsh FS (1990) N-CAM is a target cell surface antigen for the purification of muscle cells for myoblast transfer therapy. Adv Exp Med Biol 280:41–45

    CAS  PubMed  Google Scholar 

  12. Webster C, Pavlath GK, Parks DR, Walsh FS, Blau H (1988) Isolation of human myoblasts with the fluorescence-activated cell sorter. Exp Cell Res 174:252–265

    CAS  PubMed  Google Scholar 

  13. Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, Caskey CT (1988) Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 2:11141–11156

    Google Scholar 

  14. Beggs AH, Koenig M, Boyce FM, Kunkel LM (1990) Detection of 98-percent DMD/BMD gene deletions by polymerase chain reaction. Hum Genet 86:45–48

    Article  CAS  PubMed  Google Scholar 

  15. Ohtsubo M, Gamou S, Shimizu N (1998) Antisense oligonucleotide of WAF1 gene prevent EGF-induced cell-cycle arrest in A431 cells. Oncogene 16:797–802

    Article  CAS  PubMed  Google Scholar 

  16. Sifringer M, Uhlenberg B, Lammel S, Hanke R, Neumann B, von Moers A, Koch I, Speer A (2004) Identification of transcripts from a subtraction library which might be responsible for the mild phenotype in an intrafamilially variable course of Duchenne muscular dystrophy. Hum Genet 114:149–156

    Article  CAS  PubMed  Google Scholar 

  17. Deutekom JC van, van Ommen GJ (2003) Advances in Duchenne muscular dystrophy gene therapy. Nature 4:774–783

    Google Scholar 

  18. Khurana TS, Davies, KE (2003) Pharmacological strategies for muscular dystrophy. Nature 2:379–390

    Article  CAS  Google Scholar 

  19. Spencer MJ, Mellgren RL (2002) Overexpression of a calpastatin transgene in mdx muscle reduce dystrophic pathology. Hum Mol Genet 11:2645–2655

    Article  CAS  PubMed  Google Scholar 

  20. Bonucelli G, Sotgia F, Schubert W, Park DS, Frank PG, Woodman SE, Isabato L, Cammer M, Minetti C, Lisanti MP (2003) Proteasom inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol 163:1663–1675

    PubMed  Google Scholar 

  21. Duguez S, Le Bihan M-C, Gouttefangeas D, Féasson L, Freyssenet D (2003) Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration. Am J Physiol Endocrinol Metab 285:E206–E215

    CAS  PubMed  Google Scholar 

  22. Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836

    Article  CAS  PubMed  Google Scholar 

  23. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277:49831–49840

    Article  CAS  PubMed  Google Scholar 

  24. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162:1135–1147

    Article  CAS  PubMed  Google Scholar 

  25. Joulia D, Bernadi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286:263–275

    Article  CAS  PubMed  Google Scholar 

  26. Armand AS, Launay T, Pariset C, Della Gaspera B, Charbonnier F, Chanoine C (2003) Injection of FGF6 accelerates regeneration of the soleus muscle in adult mice. Biochim Biophys Acta 1642:97–106

    Article  CAS  PubMed  Google Scholar 

  27. Neuhaus P, Oustanina S, Loch T, Krüger M, Bober E, Dono R, Zeller R, Braun T (2003) Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol Cell Biol 23:6037–6048

    Article  CAS  PubMed  Google Scholar 

  28. Yang SY, Goldspink G (2002) Different roles of the IGF-I Ec peptide (MGF) and mature IGF-I in myoblast proliferation and differentiation. FEBS Lett 522:156–160

    Article  CAS  PubMed  Google Scholar 

  29. Machida S, Spangenburg EE, Booth FW (2003) Forkhand transcription factor FoxO1 transduces insulin-like growth factor’s signal p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol 196:523–531

    CAS  PubMed  Google Scholar 

  30. Bogdanovich S, Krag TOB, Barton ER, Morris LD, Whittemore L-A, Ahimas RS, Khurana TS (2002) Functional improvement of dystrophic muscle by myostatin blockade. Nature 420:418–421

    Article  CAS  PubMed  Google Scholar 

  31. Shen X, Collier MJ, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS (2003) Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn 226:128–138

    Article  CAS  PubMed  Google Scholar 

  32. Persengiev SP, Zhu X, Green MR (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expresssion by small interfering RNAs (siRNAs). RNA 10:12–18

    Article  CAS  PubMed  Google Scholar 

  33. Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee LC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M, Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101:1892–1897

    Article  CAS  PubMed  Google Scholar 

  34. Schwarz DS, Hutvágner G, Haley B, Zamore PD (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathway. Mol Cell 10:537–548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support of Marco Sifringer, Sabine Bucher, Boris Thurisch, and Stefanie Grunwald are gratefully acknowledged. We thank E. Schmidtmeyer for expert technical assistance. Human myoblast cultures were obtained from the Muscle Tissue Culture Collection at the Friedrich-Baur-Institute (Department of Neurology, Ludwig Maximilian University, Munich, Germany). The Muscle Tissue Culture Collection is part of the German network on muscular dystrophies (MD-NET, 01GM0302) funded by the German Ministry of Education and Research (BMBF, Bonn, Germany). The Muscle Tissue Culture Collection is a partner of Eurobiobank (Eurordis; scientific coordinator: Dr. C. Jaeger, Paris, France) funded by the EC within the 5th framework (QLRT-2001-02769). This research was supported in part by BMBF/AiF grant (1703402). S.E. is a fellow of the Hypatia Programm, University of Applied Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Speer.

Additional information

S. Endesfelder and A. Kliche contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endesfelder, S., Kliche, A., Lochmüller, H. et al. Antisense oligonucleotides and short interfering RNAs silencing the cyclin-dependent kinase inhibitor p21 improve proliferation of Duchenne muscular dystrophy patients’ primary skeletal myoblasts. J Mol Med 83, 64–71 (2005). https://doi.org/10.1007/s00109-004-0607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0607-3

Keywords

Navigation