Skip to main content
Log in

Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Background

Therapy of vertebral fractures in the elderly is a growing challenge for surgeons. Within the last two decades, the use of polymethylmethacrylate (PMMA) in the treatment of osteoporotic vertebral fractures has been widely established. Besides vertebroplasty and kyphoplasty, the augmentation of pedicle screws with PMMA found widespread use to strengthen the implant–bone interface. Several studies showed an enhanced pullout strength of augmented screws compared to standard pedicle screws in osteoporotic bone models. To validate the clinical relevance, we analyzed postoperative radiologic follow-up data in regard to secondary loss of correction and loosening of pedicle screws in elderly patients.

Materials and methods

In this retrospective comparative study, 24 patients admitted to our level I trauma center were analyzed concerning screw loosening and secondary loss of correction following vertebral fracture and posterior instrumentation. Loss of correction was determined by the bisegmental Cobb angle and kyphosis angle of the fractured vertebra. Follow-up computed tomography (CT) scans were used to analyze the prevalence of clear zones around the pedicle screws as a sign of loosening.

Results

In 15 patients (mean age 76 ± 9.3 years) with 117 PMMA-augmented pedicle screws, 4.3 % of screws showed signs of loosening, whereas in nine patients (mean age 75 ± 8.2 years) with 86 uncemented screws, the loosening rate was 62.8 %. Thus, PMMA-augmented pedicle screws showed a significantly lower loosening rate compared to regular pedicle screws. Loss of correction was minimal, despite poor bone quality. There was significantly less loss of correction in patients with augmented pedicle screws (1.1° ± 0.8°) as compared to patients without augmentation (5° ± 3.8°).

Conclusion

The reinforcement of pedicle screws using PMMA augmentation may be a viable option in the surgical treatment of spinal fractures in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eysel P, Meinig G. Comparative study of different dorsal stabilization techniques in recent thoraco-lumbar spine fractures. Acta Neurochir (Wien). 1991;109(1–2):12–9.

    Article  CAS  Google Scholar 

  2. Knop C, Blauth M, Bastian L, Lange U, Kesting J, Tscherne H. Fractures of the thoracolumbar spine. Late results of dorsal instrumentation and its consequences. Unfallchirurg. 1997;100(8):630–9.

    Article  PubMed  CAS  Google Scholar 

  3. Knop C, Blauth M, Bühren V, Arand M, Egbers HJ, Hax PM, et al. Surgical treatment of injuries of the thoracolumbar transition—3: follow-up examination. Results of a prospective multi-center study by the “Spinal” Study Group of the German Society of Trauma Surgery. Unfallchirurg. 2001;104(7):583–600.

    Article  PubMed  CAS  Google Scholar 

  4. Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, et al. Surgical treatment of injuries of the thoracolumbar transition. 1: epidemiology. Unfallchirurg. 1999;102(12):924–35.

    Article  PubMed  CAS  Google Scholar 

  5. Knop C, Blauth M, Bühren V, Hax PM, Kinzl L, Mutschler W, et al. Surgical treatment of injuries of the thoracolumbar transition. 2: operation and roentgenologic findings. Unfallchirurg. 2000;103(12):1032–47.

    Article  PubMed  CAS  Google Scholar 

  6. Knop C, Fabian HF, Bastian L, Blauth M. Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine (Phila Pa 1976). 2001;26(1):88–99.

    Article  CAS  Google Scholar 

  7. Lindsey RW, Dick W. The fixateur interne in the reduction and stabilization of thoracolumbar spine fractures in patients with neurologic deficit. Spine (Phila Pa 1976). 1991;16(3 Suppl):S140–5.

    Article  CAS  Google Scholar 

  8. Reinhold M, Knop C, Beisse R, Audigé L, Kandziora F, Pizanis A, et al. Operative treatment of traumatic fractures of the thoracic and lumbar spinal column: part III: follow up data. Unfallchirurg. 2009;112(3):294–316. doi:10.1007/s00113-008-1539-0.

    Article  PubMed  CAS  Google Scholar 

  9. Reinhold M, Knop C, Beisse R, Audigé L, Kandziora F, Pizanis A, et al. Operative treatment of traumatic fractures of the thorax and lumbar spine. Part II: surgical treatment and radiological findings. Unfallchirurg. 2009;112(2):149–67. doi:10.1007/s00113-008-1538-1.

    Article  PubMed  CAS  Google Scholar 

  10. Reinhold M, Knop C, Beisse R, Audigé L, Kandziora F, Pizanis A, et al. Operative treatment of traumatic fractures of the thoracic and lumbar spinal column. Part I: epidemiology. Unfallchirurg. 2009; 112(1):33–42, 44–5. doi:10.1007/s00113-008-1524-7.

    Article  PubMed  CAS  Google Scholar 

  11. Reinhold M, Knop C, Beisse R, Audigé L, Kandziora F, Pizanis A, et al. Operative treatment of 733 patients with acute thoracolumbar spinal injuries: comprehensive results from the second, prospective, Internet-based multicenter study of the Spine Study Group of the German Association of Trauma Surgery. Eur Spine J. 2010;19(10):1657–76. doi:10.1007/s00586-010-1451-5.

    Article  PubMed  CAS  Google Scholar 

  12. Laurer H, Sander A, Wutzler S, Nau C, Marzi I. Traumatic vertebral body fractures and osteoporosis: value of cement augmentation. Orthopade. 2010;39(7):704–10. doi:10.1007/s00132-010-1601-9.

    Article  PubMed  CAS  Google Scholar 

  13. Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994;3(4):184–201.

    Article  PubMed  CAS  Google Scholar 

  14. Isenberg J, Jubel A, Hahn U, Seifert H, Prokop A. Multistep surgery for spondylosyndesis. Treatment concept of destructive spondylodiscitis in patients with reduced general condition. Orthopade. 2005;34(2):159–66. doi:10.1007/s00132-004-0722-4.

    Article  PubMed  CAS  Google Scholar 

  15. Amendola L, Gasbarrini A, Fosco M, Simoes CE, Terzi S, De Iure F, et al. Fenestrated pedicle screws for cement-augmented purchase in patients with bone softening: a review of 21 cases. J Orthop Traumatol. 2011;12(4):193–9. doi:10.1007/s10195-011-0164-9.

    Article  PubMed  Google Scholar 

  16. Blattert TR, Glasmacher S, Riesner HJ, Josten C. Revision characteristics of cement-augmented, cannulated–fenestrated pedicle screws in the osteoporotic vertebral body: a biomechanical in vitro investigation. Technical note. J Neurosurg Spine. 2009;11(1):23–7. doi:10.3171/2009.3.SPINE08625.

    Article  PubMed  Google Scholar 

  17. Bullmann V, Liljenqvist UR, Rödl R, Schulte TL. Pedicle screw augmentation from a biomechanical perspective. Orthopade. 2010;39(7):673–8. doi:10.1007/s00132-010-1602-8.

    Article  PubMed  CAS  Google Scholar 

  18. Bullmann V, Schmoelz W, Richter M, Grathwohl C, Schulte TL. Revision of cannulated and perforated cement-augmented pedicle screws: a biomechanical study in human cadavers. Spine (Phila Pa 1976). 2010;35(19):E932–9. doi:10.1097/BRS.0b013e3181c6ec60.

    Article  Google Scholar 

  19. Kafchitsas K, Geiger F, Rauschmann M, Schmidt S. Cement distribution in vertebroplasty pedicle screws with different designs. Orthopade. 2010;39(7):679–86. doi:10.1007/s00132-010-1603-7.

    Article  PubMed  CAS  Google Scholar 

  20. Lubansu A, Rynkowski M, Abeloos L, Appelboom G, Dewitte O. Minimally invasive spinal arthrodesis in osteoporotic population using a cannulated and fenestrated augmented screw: technical description and clinical experience. Minim Invasive Surg. 2012;2012:507826. doi:10.1155/2012/507826.

    PubMed  Google Scholar 

  21. Paré PE, Chappuis JL, Rampersaud R, Agarwala AO, Perra JH, Erkan S, et al. Biomechanical evaluation of a novel fenestrated pedicle screw augmented with bone cement in osteoporotic spines. Spine (Phila Pa 1976). 2011;36(18):E1210–4. doi:10.1097/BRS.0b013e318205e3af.

    Article  Google Scholar 

  22. Sawakami K, Yamazaki A, Ishikawa S, Ito T, Watanabe K, Endo N. Polymethylmethacrylate augmentation of pedicle screws increases the initial fixation in osteoporotic spine patients. J Spinal Disord Tech. 2012;25(2):E28–35. doi:10.1097/BSD.0b013e318228bbed.

    Article  PubMed  Google Scholar 

  23. Chang MC, Liu CL, Chen TH. Polymethylmethacrylate augmentation of pedicle screw for osteoporotic spinal surgery: a novel technique. Spine (Phila Pa 1976). 2008;33(10):E317–24. doi:10.1097/BRS.0b013e31816f6c73.

    Article  Google Scholar 

  24. Krappinger D, Kastenberger TJ, Schmid R. Augmented posterior instrumentation for the treatment of osteoporotic vertebral body fractures. Oper Orthop Traumatol. 2012;24(1):4–12. doi:10.1007/s00064-011-0098-7.

    Article  PubMed  CAS  Google Scholar 

  25. Lai PL, Tai CL, Chen LH, Nien NY. Cement leakage causes potential thermal injury in vertebroplasty. BMC Musculoskelet Disord. 2011;12:116. doi:10.1186/1471-2474-12-116.

    Article  PubMed  CAS  Google Scholar 

  26. Rauschmann MA, von Stechow D, Thomann KD, Scale D. Complications of vertebroplasty. Orthopade. 2004;33(1):40–7. doi:10.1007/s00132-003-0573-4.

    Article  PubMed  CAS  Google Scholar 

  27. Röllinghoff M, Siewe J, Eysel P, Delank KS. Pulmonary cement embolism after augmentation of pedicle screws with bone cement. Acta Orthop Belg. 2010;76(2):269–73.

    PubMed  Google Scholar 

  28. Schoenes B, Bremerich DH, Risteski PS, Thalhammer A, Meininger D. Cardiac perforation after vertebroplasty. Anaesthesist. 2008;57(2):147–50. doi:10.1007/s00101-007-1276-8.

    Article  PubMed  CAS  Google Scholar 

  29. Soultanis K, Kakisis JD, Pyrovolou N, Lazaris AM, Vasdekis S, Soukakos P. Peripheral arterial embolization of cement during revision spine surgery. Ann Vasc Surg. 2009;23(3):413 e9–12. doi:10.1016/j.avsg.2008.08.027.

    Article  Google Scholar 

  30. Temple JD, Ludwig SC, Ross WK, Marshall WK, Larsen L, Gelb DE. Catastrophic fat embolism following augmentation of pedicle screws with bone cement: a case report. J Bone Joint Surg Am. 2002;84-A(4):639–42.

    PubMed  Google Scholar 

  31. Yeom JS, Kim WJ, Choy WS, Lee CK, Chang BS, Kang JW. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg Br. 2003;85(1):83–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Saman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Saman, A., Meier, S., Sander, A. et al. Reduced loosening rate and loss of correction following posterior stabilization with or without PMMA augmentation of pedicle screws in vertebral fractures in the elderly. Eur J Trauma Emerg Surg 39, 455–460 (2013). https://doi.org/10.1007/s00068-013-0310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-013-0310-6

Keywords

Navigation