Skip to main content

Advertisement

Log in

Acute severe radiation pneumonitis among non-small cell lung cancer (NSCLC) patients with moderate pulmonary dysfunction receiving definitive concurrent chemoradiotherapy: Impact of pre-treatment pulmonary function parameters

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Severe acute radiation pneumonitis (SARP) is a life-threatening complication of thoracic radiotherapy. Pre-treatment pulmonary function (PF) may influence its incidence. We have previously reported on the incidence of SARP among patients with moderate pulmonary dysfunction who received definitive concurrent chemoradiotherapy (dCCRT) for non-small cell lung cancer (NSCLC).

Methods

The clinical outcomes, dose–volume histograms (DVH), and PF parameters of 122 patients (forced expiratory volume in 1 s [FEV1%]: 60–69%) receiving dCCRT between 2013 and 2019 were recorded. SARP was defined as grade ≥3 RP occurring during or within 3 months after CCRT. Logistic regression, receiver operating characteristics curves (ROC), and hazard ratio (HR) analyses were performed to evaluate the predictive value of each factor for SARP.

Results

Univariate and multivariate analysis indicated that the ratio of carbon monoxide diffusing capacity (DLCO%; odds ratio [OR]: 0.934, 95% confidence interval [CI] 0.896–0.974, p = 0.001) and mean lung dose (MLD; OR: 1.002, 95% CI 1.001–1.003, p = 0.002) were independent predictors of SARP. The ROC AUC of combined DLCO%/MLD was 0.775 (95% confidence interval [CI]: 0.688–0.861, p = 0.001), with a sensitivity and specificity of 0.871 and 0.637, respectively; this was superior to DLCO% (0.656) or MLD (0.667) alone. Compared to the MLD-low/DLCO%-high group, the MLD-high/DLCO%-low group had the highest risk for SARP, with an HR of 9.346 (95% CI: 2.133–40.941, p = 0.003).

Conclusion

The DLCO% and MLD may predict the risk for SARP among patients with pre-treatment moderate pulmonary dysfunction who receive dCCRT for NSCLC. Prospective studies are needed to validate our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sause W, Kolesar P, Taylor S et al (2000) Final results of phase III trial in regionally advanced unresectable non-small cell lung cancer: Radiation Therapy Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. Chest 117:358–364. https://doi.org/10.1378/chest.117.2.358

    Article  CAS  PubMed  Google Scholar 

  2. Aupérin A, Le Péchoux C, Rolland E et al (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28:2181–2190. https://doi.org/10.1200/JCO.2009.26.2543

    Article  CAS  PubMed  Google Scholar 

  3. Semrau S, Bier A, Thierbach U et al (2003) Concurrent radiochemotherapy with vinorelbine plus cisplatin or carboplatin in patients with locally advanced non-small-cell lung cancer (NSCLC) and anincreased risk of treatment complications. Strahlenther Onkol 179:823–831. https://doi.org/10.1007/s00066-003-1127-8

    Article  PubMed  Google Scholar 

  4. Kong F‑M, Hayman JA, Griffith KA et al (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): Predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 65:1075–1086. https://doi.org/10.1016/j.ijrobp.2006.01.051

    Article  PubMed  Google Scholar 

  5. Kong F‑M, Wang S (2015) Nondosimetric risk factors for radiation-induced lung toxicity. Semin Radiat Oncol 25:100–109. https://doi.org/10.1016/j.semradonc.2014.12.003

    Article  PubMed  Google Scholar 

  6. Tsujino K, Hashimoto T, Shimada T et al (2014) Combined analysis of V20, VS5, pulmonary fibrosis score on baseline computed tomography, and patient age improves prediction of severe radiation pneumonitis after concurrent chemoradiotherapy for locally advanced non-small-cell lung cancer. J Thorac Oncol 9:983–990. https://doi.org/10.1097/JTO.0000000000000187

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Cao J, Yuan S et al (2013) Poor baseline pulmonary function may not increase the risk of radiation-induced lung toxicity. Int J Radiat Oncol Biol Phys 85:798–804. https://doi.org/10.1016/j.ijrobp.2012.06.040

    Article  PubMed  Google Scholar 

  8. Palma DA, Senan S, Tsujino K et al (2013) Predicting radiation pneumonitis after chemoradiation therapy for lung cancer: an international individual patient data meta-analysis. Int J Radiat Oncol Biol Phys 85:444–450. https://doi.org/10.1016/j.ijrobp.2012.04.043

    Article  PubMed  Google Scholar 

  9. Zhang X‑J, Sun J‑G, Sun J et al (2012) Prediction of radiation pneumonitis in lung cancer patients: a systematic review. J Cancer Res Clin Oncol 138:2103–2116. https://doi.org/10.1007/s00432-012-1284-1

    Article  PubMed  Google Scholar 

  10. Shi A, Zhu G, Wu H et al (2010) Analysis of clinical and dosimetric factors associated with severe acute radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemotherapy and intensity-modulated radiotherapy. Radiat Oncol 5:35. https://doi.org/10.1186/1748-717X-5-35

    Article  PubMed  PubMed Central  Google Scholar 

  11. Torre-Bouscoulet L, Muñoz-Montaño WR, Martínez-Briseño D et al (2018) Abnormal pulmonary function tests predict the development of radiation-induced pneumonitis in advanced non-small cell lung cancer. Respir Res 19:72. https://doi.org/10.1186/s12931-018-0775-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin H, Tucker SL, Liu HH et al (2009) Dose-volume thresholds and smoking status for the risk of treatment-related pneumonitis in inoperable non-small cell lung cancer treated with definitive radiotherapy. Radiother Oncol 91:427–432. https://doi.org/10.1016/j.radonc.2008.09.009

    Article  PubMed  Google Scholar 

  13. Papi A, Casoni G, Caramori G et al (2004) COPD increases the risk of squamous histological subtype in smokers who develop non-small cell lung carcinoma. Thorax 59:679. https://doi.org/10.1136/thx.2003.018291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Skillrud DM, Offord KP, Miller RD (1986) Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med 105:503–507. https://doi.org/10.7326/0003-4819-105-4-503

    Article  CAS  PubMed  Google Scholar 

  15. Vogelmeier CF, Criner GJ, Martinez FJ et al (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Crit Care Med 195:557–582. https://doi.org/10.1164/rccm.201701-0218PP

    Article  CAS  PubMed  Google Scholar 

  16. National Clinical Guideline C (2010) National Institute for Health and Clinical Excellence: Guidance. In: Chronic obstructive pulmonary disease: management of chronic obstructive pulmonary disease in adults in primary and secondary care. Royal College of Physicians (UK) National Clinical Guideline Centre—Acute and Chronic Conditions, London

    Google Scholar 

  17. Dehing-Oberije C, De Ruysscher D, van Baardwijk A et al (2009) The importance of patient characteristics for the prediction of radiation-induced lung toxicity. Radiother Oncol 91:421–426. https://doi.org/10.1016/j.radonc.2008.12.002

    Article  PubMed  Google Scholar 

  18. Chen S, Zhou S, Zhang J et al (2007) A neural network model to predict lung radiation-induced pneumonitis. Med Phys 34:3420–3427. https://doi.org/10.1118/1.2759601

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferrero C, Badellino S, Filippi AR et al (2015) Pulmonary function and quality of life after VMAT-based stereotactic ablative radiotherapy for early stage inoperable NSCLC: a prospective study. Cancer Treat Res 89:350–356. https://doi.org/10.1016/j.lungcan.2015.06.019

    Article  Google Scholar 

  20. Laszlo G (2006) Standardisation of lung function testing: helpful guidance from the ATS/ERS Task Force. Thorax 61:744–746. https://doi.org/10.1136/thx.2006.061648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seppenwoolde Y, De Jaeger K, Boersma LJ et al (2004) Regional differences in lung radiosensitivity after radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60:748–758. https://doi.org/10.1016/j.ijrobp.2004.04.037

    Article  PubMed  Google Scholar 

  22. Hope AJ, Lindsay PE, El Naqa I et al (2006) Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 65:112–124. https://doi.org/10.1016/j.ijrobp.2005.11.046

    Article  PubMed  Google Scholar 

  23. Morgan-Fletcher SL (2001) Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50), ICRU Report 62. ICRU, pp. ix+52, 1999 (ICRU Bethesda, MD) $65.00 ISBN 0‑913394-61‑0. Brit J Radiol 74:294–294. https://doi.org/10.1259/bjr.74.879.740294

    Article  Google Scholar 

  24. Hodapp N (2012) The ICRU Report 83: prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther Onkol 188:97–99. https://doi.org/10.1007/s00066-011-0015-x

    Article  CAS  PubMed  Google Scholar 

  25. Jiang X, Li T, Liu Y et al (2011) Planning analysis for locally advanced lung cancer: dosimetric and efficiency comparisons between intensity-modulated radiotherapy (IMRT), single-arc/partial-arc volumetric modulated arc therapy (SA/PA-VMAT). Radiat Oncol 6:140. https://doi.org/10.1186/1748-717x-6-140

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xiao J, Zhang H, Gong Y et al (2010) Feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in lung cancer treatment planning. Radiother Oncol 96:73–77. https://doi.org/10.1016/j.radonc.2010.02.029

    Article  PubMed  Google Scholar 

  27. Ettinger DS, Wood DE, Aisner DL et al (2017) Non-small cell lung cancer, version 5.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 15:504–535. https://doi.org/10.6004/jnccn.2017.0050

    Article  PubMed  Google Scholar 

  28. National Cancer Institute (2010) Common terminology criteria for adverse events (CTCAE) version 4.03. https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf. Accessed 14 June 2010

  29. Martel MK, Ten Haken RK, Hazuka MB et al (1994) Dose-volume histogram and 3‑D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 28:575–581. https://doi.org/10.1016/0360-3016(94)90181-3

    Article  CAS  PubMed  Google Scholar 

  30. Graham MV, Purdy JA, Emami B et al (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329. https://doi.org/10.1016/s0360-3016(99)00183-2

    Article  CAS  PubMed  Google Scholar 

  31. Hernando ML, Marks LB, Bentel GC et al (2001) Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer. Int J Radiat Oncol Biol Phys 51:650–659. https://doi.org/10.1016/s0360-3016(01)01685-6

    Article  CAS  PubMed  Google Scholar 

  32. Claude L, Perol D, Ginestet C et al (2004) A prospective study on radiation pneumonitis following conformal radiation therapy in non-small-cell lung cancer: clinical and dosimetric factors analysis. Radiother Oncol 71:175–181. https://doi.org/10.1016/j.radonc.2004.02.005

    Article  PubMed  Google Scholar 

  33. Rancati T, Ceresoli GL, Gagliardi G et al (2003) Factors predicting radiation pneumonitis in lung cancer patients: a retrospective study. Radiother Oncol 67:275–283. https://doi.org/10.1016/s0167-8140(03)00119-1

    Article  PubMed  Google Scholar 

  34. Fay M, Tan A, Fisher R et al (2005) Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 61:1355–1363. https://doi.org/10.1016/j.ijrobp.2004.08.025

    Article  PubMed  Google Scholar 

  35. Lee HJ Jr., Zeng J, Vesselle HJ et al (2018) Correlation of functional lung heterogeneity and dosimetry to radiation pneumonitis using perfusion SPECT/CT and FDG PET/CT imaging. Int J Radiat Oncol Biol Phys 102:1255–1264. https://doi.org/10.1016/j.ijrobp.2018.05.051

    Article  PubMed  PubMed Central  Google Scholar 

  36. Videtic GM, Stitt LW, Ash RB et al (2004) Impaired diffusion capacity predicts for decreased treatment tolerance and survival in limited stage small cell lung cancer patients treated with concurrent chemoradiation. Cancer Treat Res 43:159–166. https://doi.org/10.1016/j.lungcan.2003.08.026

    Article  Google Scholar 

  37. Lopez Guerra JL, Gomez D, Zhuang Y et al (2012) Change in diffusing capacity after radiation as an objective measure for grading radiation pneumonitis in patients treated for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 83:1573–1579. https://doi.org/10.1016/j.ijrobp.2011.10.065

    Article  PubMed  Google Scholar 

  38. Guckenberger M, Kestin LL, Hope AJ et al (2012) Is there a lower limit of pretreatment pulmonary function for safe and effective stereotactic body radiotherapy for early-stage non-small cell lung cancer? J Thorac Oncol 7:542–551. https://doi.org/10.1097/JTO.0b013e31824165d7

    Article  PubMed  Google Scholar 

  39. Chen H, Senan S, Nossent EJ et al (2017) Treatment-related toxicity in patients with early-stage non-small cell lung cancer and coexisting interstitial lung disease: a systematic review. Int J Radiat Oncol Biol Phys 98:622–631. https://doi.org/10.1016/j.ijrobp.2017.03.010

    Article  PubMed  Google Scholar 

  40. Plummer AL (2008) The carbon monoxide diffusing capacity: clinical implications, coding, and documentation. Chest 134:663–667. https://doi.org/10.1378/chest.07-1771

    Article  PubMed  Google Scholar 

  41. Fleckenstein K, Zgonjanin L, Chen L et al (2007) Temporal onset of hypoxia and oxidative stress after pulmonary irradiation. Int J Radiat Oncol Biol Phys 68:196–204. https://doi.org/10.1016/j.ijrobp.2006.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vujaskovic Z, Anscher MS, Feng QF et al (2001) Radiation-induced hypoxia may perpetuate late normal tissue injury. Int J Radiat Oncol Biol Phys 50:851–855. https://doi.org/10.1016/s0360-3016(01)01593-0

    Article  CAS  PubMed  Google Scholar 

  43. Lopez Guerra JL, Gomez DR, Zhuang Y et al (2012) Changes in pulmonary function after three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, or proton beam therapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 83:e537–543. https://doi.org/10.1016/j.ijrobp.2012.01.019

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stanic S, Paulus R, Timmerman RD et al (2014) No clinically significant changes in pulmonary function following stereotactic body radiation therapy for early- stage peripheral non-small cell lung cancer: an analysis of RTOG 0236. Int J Radiat Oncol Biol Phys 88:1092–1099. https://doi.org/10.1016/j.ijrobp.2013.12.050

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guckenberger M, Klement RJ, Kestin LL et al (2013) Lack of a dose-effect relationship for pulmonary function changes after stereotactic body radiation therapy for early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 85:1074–1081. https://doi.org/10.1016/j.ijrobp.2012.09.016

    Article  PubMed  Google Scholar 

  46. Schroder C, Engenhart-Cabillic R, Vorwerk H et al (2017) Changes in pulmonary function and influencing factors after high-dose intrathoracic radio(chemo)therapy. Strahlenther Onkol 193:125–131. https://doi.org/10.1007/s00066-016-1067-8

    Article  PubMed  Google Scholar 

  47. Cella L, D’Avino V, Palma G et al (2015) Modeling the risk of radiation-induced lung fibrosis: Irradiated heart tissue is as important as irradiated lung. Radiother Oncol 117:36–43. https://doi.org/10.1016/j.radonc.2015.07.051

    Article  PubMed  Google Scholar 

  48. Yorke ED, Jackson A, Kuo LC et al (2017) Heart dosimetry is correlated with risk of radiation pneumonitis after lung-sparing hemithoracic pleural intensity modulated radiation therapy for malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys 99:61–69. https://doi.org/10.1016/j.ijrobp.2017.04.025

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tucker SL, Liao Z, Dinh J et al (2014) Is there an impact of heart exposure on the incidence of radiation pneumonitis? Analysis of data from a large clinical cohort. Acta Oncol 53:590–596. https://doi.org/10.3109/0284186x.2013.831185

    Article  PubMed  Google Scholar 

  50. Bradley JD, Paulus R, Komaki R et al (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16:187–199. https://doi.org/10.1016/s1470-2045(14)71207-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kong FM, Frey KA, Quint LE et al (2007) A pilot study of [18F] fluorodeoxyglucose positron emission tomography scans during and after radiation-based therapy in patients with non small-cell lung cancer. J Clin Oncol 25:3116–3123. https://doi.org/10.1200/jco.2006.10.3747

    Article  PubMed  Google Scholar 

  52. Mahasittiwat P, Yuan S, Xie C et al (2013) metabolic tumor volume on PET reduced more than gross tumor volume on ct during radiotherapy in patients with non-small cell lung cancer treated with 3DCRT or SBRT. J Radiat Oncol 2:191–202. https://doi.org/10.1007/s13566-013-0091-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kong FM, Ten Haken RK, Schipper M et al (2017) Effect of midtreatment PET/CT-adapted radiation therapy with concurrent chemotherapy in patients with locally advanced non-small-cell lung cancer: a phase 2 clinical trial. JAMA Oncol 3:1358–1365. https://doi.org/10.1001/jamaoncol.2017.0982

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liang J, Bi N, Wu S et al (2017) Etoposide and cisplatin versus paclitaxel and carboplatin with concurrent thoracic radiotherapy in unresectable stage III non-small cell lung cancer: a multicenter randomized phase III trial. Ann Oncol 28:777–783. https://doi.org/10.1093/annonc/mdx009

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by a grant from Sichuan Provincial Science and Technology Funding to Youling Gong (2018SZ0184). This work has been selected to be presented partly in digital poster form at the American Society for Radiation Oncology Annual Meeting, 2019.

Author information

Authors and Affiliations

Authors

Contributions

Youling Gong conceived and designed the study. Yin Zhou, Tiansheng Yan, Xiaojuan Zhou, Peng Cao, Chunli Luo, and Youling Gong collected the data. Yin Zhou, Tiansheng Yan, and Youling Gong analyzed and interpreted the data and drafted the article. Lin Zhou, Yong Xu, Yongmei Liu, Jianxin Xue, Jin Wang, Yongsheng Wang, You Lu, and Binmiao Liang critically revised the paper. All of the authors approved the final submitted version.

Corresponding author

Correspondence to Youling Gong MD, PhD.

Ethics declarations

Conflict of interest

Y. Zhou, T. Yan, X. Zhou, P. Cao, C. Luo, L. Zhou, Y. Xu, Y. Liu, J. Xue, J. Wang, Y. Wang, Y. Lu, B. Liang, and Y. Gong declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee (West China Hospital of Sichuan University Biomedical Research Ethics Committee) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

The authors Ying Zhou and Tiansheng Yan contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yan, T., Zhou, X. et al. Acute severe radiation pneumonitis among non-small cell lung cancer (NSCLC) patients with moderate pulmonary dysfunction receiving definitive concurrent chemoradiotherapy: Impact of pre-treatment pulmonary function parameters. Strahlenther Onkol 196, 505–514 (2020). https://doi.org/10.1007/s00066-019-01552-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-019-01552-4

Keywords

Navigation