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                    Abstract
Intraoperative magnetic resonance imaging (iMRI) has dramatically expanded and nowadays presents state-of-the-art technique for image-guided neurosurgery, facilitating critical precision and effective surgical treatment of various brain pathologies. Imaging hardware providing basic imaging sequences as well as advanced MRI can be seamlessly integrated into routine surgical environments, which continuously leads to emerging indications for iMRI-assisted surgery. Besides the obvious intraoperative diagnostic yield, the initial clinical benefits have to be confirmed by future-controlled long-term studies.
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                                    Introduction
In modern neurosurgery, the desire for accurate and effective tumor resection control and the need for accommodation of brain shift during surgery indicated the periodical imaging-based update in the operating room (OR). The unparalleled capacity of magnetic resonance imaging (MRI) to generate contrast between tissues and the lack of any ionization burden for the patient dictated the need to embody MRI into neurosurgical ORs. In this pictorial essay, we review the distinctive features of intraoperative magnetic resonance imaging (iMRI) including both conventional morphologic as well as up-to-date functional imaging, its implementation into the OR-workflows and patient management, the key indications for performing iMRI-guided neurosurgery, and the initial evidence on clinical benefits that may arise by utilizing iMRI in tumor patients.


Overview of iMRI Systems
iMRI has started with the so-called “double doughnut” system at a field strength of 0.2–0.5 T (T) moving nowadays to high-field solutions with 1.5 T or 3 T [1]. The most important differences are significantly lower costs and required time and space in low-field units, which has to be balanced against reduced imaging quality compared to high-field systems. Because of the full imaging capabilities of modern 1.5 or 3 T iMRI scanners, advanced iMRI (namely spectroscopy, diffusion tensor imaging, perfusion- and diffusion-weighted MR) is developing rapidly aiming to further support surgeons while resecting intraaxial lesions. High-field systems offer a variety of individual room solutions. The main concepts are either a stationary magnet in the same, or a separate room close-by, with the need of moving the patient using a shuttle system from the OR table to the magnet, or ceiling-mounted scanners with the possibility to move the magnet from a shielded “parking bay” into the OR and over the patient (Fig. 1). Depending on the individual room concept in each iMRI center, the scanners can be used for diagnostic imaging outside the routine intraoperative use as well, which can help to significantly compensate acquisition and running costs of the systems.

                Fig. 1[image: figure 1]

                                    a–b One-room multifunctional operating theater (IMRIS, Winnipeg, Manitoba, Canada). The suite utilizes the concept of zones and creates secure access requirements. Blue color indicates the critical region of highfield strength; anesthesia equipment should be placed in the 5 Gauss zone, which is demarcated on the room floor by the light blue isocontour. Ferromagnetic surgical equipment has to be placed and secured on the outer zone of the operation room or outside it (a), when not in use, the magnetic resonance (MR) exits the operating room completely into a parking bay (seen on the background), enabling surgeons to use standard surgical instruments and workflows. Specialized tables and head fixation devices preserve preferred surgical techniques and enable optimal patient positioning for surgical access. On-demand, the ceiling-mounted high-field MR scanner travels into the operating room and intraoperative magnetic resonance imaging (iMRI) is facilitated (b)
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iMRI Scanning Protocol
iMRI scanners have essentially the same scanning properties and are fully equipped with the scanning protocols as commercially available “conventional” MRI scanners. Besides T1- and T2-weighted imaging, which is preferably performed as 3D acquisitions, T2*-weighted or susceptibility-weighted imaging are obligatory in order to rule out any hemorrhage, whereas diffusion-weighted imaging (DWI) will assist in differentiation between acute iatrogenic infarction from any tumor-related vasogenic edema. Serial intraoperative T1-weighted imaging after repeated contrast application may hinder evaluation of residual contrast-enhancing tumor due to the diffuse enhancement of surrounding tissues, mainly due to surgical manipulations and an open blood–brain barrier.
Advanced MRI can be performed depending on the lesion location and the length of time that is deemed necessary to obtain adequate and clinically relevant information. Any image distortion due to increased magnetic susceptibility effects caused either by the head clamp or by the open skull, the brain–air interface on the surface of the resection cavity, and any sterile drapes on the surgical site may affect echo-planar imaging (EPI) sequences (DWI, diffusion tensor imaging, perfusion-weighted imaging) and MR spectroscopy (MRS) thus manual shimming of the target site in such cases is recommended. In future, advanced postprocessing methods like field map corrections, nonlinear registration and transformation algorithms, and de-noising filters may help to increase the iMRI quality [2].


iMRI Indications
Low-Grade Gliomas
Extended and if possible complete resection is not merely the neurosurgeon’s goal but may have significant prognostic value as shown by several studies [3]. Undoubtedly, gliomas distinct feature to diffusively infiltrate brain tissue makes a macroscopic distinction of low-grade gliomas from adjacent healthy parenchyma extremely difficult. Especially in these cases, iMRI might help to identify residual disease for a resection as radical as possible (Figs. 2, 3). Publications on the influence of iMRI-guidance in low-grade glioma surgery are still rare but they suggest not merely higher resection rates but also potential survival benefits for the patients [4]. Unpublished data from the retrospective multicenter study in the German iMRI centers demonstrate that gross total resection is an independent positive prognostic factor for progression-free survival in low-grade gliomas and is facilitated by iMRI (personal communication, Dr. Jan Coburger, Department of Neurosurgery, University of Ulm, Germany).

                  Fig. 2[image: figure 2]

                                       a–c Serial intraoperative magnetic resonance imaging (iMRI) in a patient with nonenhancing, histologically proven low-grade astrocytoma. The preoperative MR scan (performed in iMRI suite) (a), shows the hyperintense tumor, while the intraoperative scan after assumed gross total resection demonstrates residual T2-hyperintense remnants on the medial part of the resection cavity (b), which were subsequently successfully removed after update of the neuronavigation. The intraoperative diffusion tensor imaging, used to update the neuronavigation before the resection of tumor remnant, shows the close proximity of the resection cavity to the blue color-encoded pyramidal tract (c)
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                  Fig. 3[image: figure 3]

                                       a–c Preoperative (a), intraoperative (b), postoperative (c) magnetic resonance imaging (MRI) scans as well as intraoperative MR spectroscopy (d) in a patient with low-grade astrocytoma on the right frontotemporal area. After initial resection, the iMRI reveals nonenhancing tumor remnants on the posterior margin of the resection cavity (double-headed arrow in b). Further resection after update of the neuronavigation was pursued, which was stopped upon deterioration of the intraoperative monitoring findings, resulting in further reduction of the residual tumor burden (arrows in c). The intraoperative single-voxel spectroscopy (1.5 T field strength) in the tumor mass is feasible, meets the diagnostic quality criteria, and demonstrates significant increase of the choline components in the tumor (d).
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                High-Grade Gliomas
Independent of the system used, a common conclusion is that the extent of resection (EOR) of contrast-enhancing lesions can be improved by iMRI compared to conventional surgery [5, 6]. Overall, the costly use of iMRI systems is currently being challenged by the use of 5-aminolevulenic acid (ALA) fluorescence that besides the real-time feedback and specific tumor-cell marking is significantly faster and cheaper compared to iMRI. Yet, little remnants, especially those residing in niches not visible from the neurosurgeon’s view angle as well as those under non-ALA-fluorescent tissue surface, might still be overlooked by the surgeon leading to an incomplete resection of contrast-enhancing parts of the tumor, which might be detected by additionally using iMRI (Fig. 4). In conclusion, a limited number of studies with satisfactory study design in low- as well as high-field systems have been conducted to demonstrate that iMRI-guided surgery (partly assisted by 5-ALA or intraoperative ultrasound) might be superior to conventional resections with or without the use of 5-ALA-fluorescence in terms of residual tumor volumes, total resections, and neurological outcomes [5–7].

                  Fig. 4[image: figure 4]

                                       a–c Baseline intraoperative magnetic resonance imaging (iMRI) (contrast-enhanced T1-weighted sequence) a prior to craniotomy for resection of a glioblastoma in the right frontal lobe. Surgery was continued until a great degree of certainty as to completeness of the resection was achieved. Control iMRI for evaluation of the extent of resection shows residual contrast-enhancing residual tumor b beneath a layer of nonenhancing brain tissue, which is however hyperperfused on the perfusion-weighted image c indicating high-grade neoplastic tissue. Note the considerable brain shift effect
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                Pituitary and Skull Base Lesions
Pituitary and skull-base tumors are in many aspects different to gliomas; nevertheless pituitary macroadenomas represent a major indication for the use of iMRI. These tumors pose a surgical challenge taking into account the frequent invasive growth into neurovascular structures (e.g., the cavernous sinus), the complex altered anatomy and spread patterns of the residual disease, as well as the commonly used minimally invasive endoscopic approach (Fig. 5). Yet, no higher-level evidence is available for the use of iMRI in the abovementioned pathologies. However, retrospective analysis of larger cohorts, suggest a significantly higher extent of resection/number of total resections along with longer progression-free survival [8, 9].

                  Fig. 5[image: figure 5]

                                       a–c Serial scans in intraoperative magnetic resonance (MR) suite in a patient with a clival chordoma. Preoperative contrast-enhanced T1-weighted image (a) demonstrates the mass in the midline infiltrating the middle and posterior skull base in vicinity to eloquent structures including the internal carotid arteries. The intraoperative MR scan during the tumor resection shows remnants on the right posterior border (ellipse in b). The findings prompted a new resection in this area, which resulted into further tumor mass reduction (arrows in postoperative MR scan, c)
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                Pediatric Tumors
Most pediatric brain tumors might even be cured by a complete microsurgical resection. Nevertheless, the pursued radical resection with the risk of producing new neurological deficits needs to be well-balanced against long overall survival- and good success rates of chemo- and/or radiotherapies [10]. Retrospective analyses concluded that more radical tumor removal with perioperative deficits comparable to the ones after conventional surgery might be achieved by using iMRI, reducing the costs and risks associated with any re-resections for residual tumor [11, 12]. Pediatric patients may further profit from iMRI control scans after surgery by refraining from a later postoperative MR scan that necessitates extended or new anesthesia.
Advanced iMRI-Guided Tumor Resection
In order to enhance the diagnostic yield of iMRI, advanced MR techniques may be utilized. MRS is extremely helpful in defining the assumed malignant part of the lesion and the method may be performed in high-field iMRI systems prior to craniotomy and/or during the tumor resection with a diagnostic yield for the surgeon [5, 13]. Due to image distortion because of increased magnetic susceptibility effects in intraoperative imaging, manual shimming of the target site is highly recommended prior to any MRS measurement. Additionally, the operator of the iMRI system should bear in mind the technical limitations of the technique, including the limited spatial resolution and the contamination effect with neighboring healthy tissue or cerebrospinal fluid (CSF)-filled cavities. Practically, single-voxel spectroscopy seems to have inherent advantages, due to the limited shimming volume and less partial volume effect, over chemical shift imaging, thus it is recommended especially after tumor resection (Fig. 3d).
There is adequate evidence in literature that dynamic susceptibility contrast-enhanced (DSC) MRI may be applied to detect the target lesion, confirm the correct sampling site during biopsies, as well as to precisely identify any residual tumor (Fig. 4c) [14]. This is particularly important in an intraoperative setting since edema, bleeding, hemostatic agents, and iatrogenic disruption of the blood–brain barrier (BBB) are introducing bias in the image evaluation. Perfusion-weighted iMRI presents a safe and reliable technique to more precisely detect residual disease. The perfusion values in the adjacent nontumorous white matter, irrespectively of edematous changes are expected to be lower than the ones in the enhancing or neo-angiogenetically altered parts of the tumor. The dynamic series excludes from the analysis any bleeding due to the lack of enhancement, whereas the disrupted blood–brain barrier, which results in a contrast agent extravasation in the interstitial space, may be saturated by the preloading contrast agent administration or modifications of the postprocessing software as well as low flip-angle methods that reduce the sensitivity to T1 effect but they may also result in poor tumor contrast in the perfusion maps.
Dynamic contrast-enhanced (DCE)- MRI provides a measurement of tissue permeability to the paramagnetic contrast agent and has superior anatomical resolution to DSC-MRI, whereas is less vulnerable to susceptibility artifacts arising from blood in the resection bed, air–fluid–tissue interface, or metallic head-fixation pins. Initial work on intraoperative DCE-MRI using one-compartment simplified approach demonstrated distinct values between the tumor mass, nontumoral regions, and surgically induced contrast-enhancing areas, aiding in differentiating surgically induced enhancement from residual tumor (Fig. 6) [15]. However, the results should be critically encountered since surgically induced enhancement and the leakage of contrast material into the resection cavity may bias the measurements at the resection margin. DCE-MRI-based estimates of vessel permeability (K
                           trans) or extravascular extracellular volume have been established on approximations regarding the tracer kinetics and after measurements in (more or less) not operatively treated solid tumors; thus any translation of this methodology into a priori BBB-injured vessels may introduce bias. For example, K
                           trans has a significant positive correlation with blood flow, permeability, and blood volume; any backflux of the tracer into the injured vessels is unknown; and interstitial volume exhibits a strong positive dependence on both intra- and extravascular volume [16]. Further work with more elaborated DCE-models is essential for evaluating the benefit of intraoperative DCE-MRI.

                  Fig. 6[image: figure 6]

                                       a–e Preoperative intraoperative magnetic resonance imaging (iMRI) (a) in a patient with glioblastoma on the left frontal lobe was followed by intraoperative MR scans, which demonstrate residual tissue hyperintensity on the posterior resection margin (arrow in b) with disrupted blood–brain barrier (BBB) (arrow in c). It is unclear whether the contrast enhancement is iatrogenic or represents high-grade tumor parts. Intraoperative dynamic contrast-enhanced MRI shows nonpathological permeability values (arrow in d) and low intravascular blood volume values in the suspected area corroborating the hypothesis that the BBB disruption is surgically induced and thus no further resection should be pursued


Full size image


                Finally, high-field iMRI profits from the application of diffusion tensor imaging (DTI) for visualizing the normal course of axons, any displacement or interruption of white matter tracts around a tumor, as well as widening of fiber bundles due to edema or tumor infiltration (Fig. 2). Two main tracking approaches are used in DTI: deterministic and probabilistic. In the deterministic, the principal direction of the diffusion tensor is tracked from voxel to voxel starting from a seed voxel or region of interest (ROI) until the fractional anisotropy (FA) falls below a preset threshold without knowing prior to the tracking process the point that is eventually reached. In the probabilistic approach, the tracking process is the result of consecutive directions sampled at random from a Gaussian probability density function whose covariance matrix is defined by the tensor at each voxel. In this approach, the connectivity between two areas of the brain can be tested given the probability of the pathways that connect these regions. A variety of methods, including simple median/mean values to histogram analysis over selected ROIs, are used to analyze diffusion information. Mean diffusivity (MD) measures the magnitude of diffusion within cerebral tissues, presenting inverse correlation between MD and cellularity in brain tumors, whereas FA reflects the degree of alignment of tissue microstructure. FA has to be interpreted along with the morphological imaging, since brain abscesses and areas of hemorrhage may present with high FA as glioblastomas and lymphomas. Electrophysiological monitoring and direct subcortical mapping may also be accommodated in the iMRI environment leading to the highest possible safety for patients to prevent from new neurological deficits [17–19]. As a matter of fact, neurosurgeons achieved increased tumor resection, improved postoperative outcome, and extended survival when DTI data were used to navigate intraoperatively in patients harboring lesions in pyramidal tract or optic radiation compared to controls who underwent surgery with conventional neuronavigation using MRI data [18]. Hulls around the DTI-reconstructed white matter tracts may then visualize the safety margins though standardization and validation of this technique are mandatory since technical limitations of EPI imaging (image distortion, coarse resolution, drawbacks of rigid registration to anatomy), impediment of correct tracking due to edema or erroneous tracking at sites with crossing fibers are known flaws of the method [19, 20]. Furthermore, the processing of DTI remains considerably user-dependent concerning the limit values for variables like FA and maximum allowed angulations of tracts. This limits the ability to compare and reproduce results and create optimal imaging methods between centers. Nonetheless, intraoperative DTI is a reliable procedure compensating for the effects of brain shift [21].
iMRI may finally open new highways in exploring the brain function at resting-state during anesthesia or awake surgery by using resting-state functional MRI (rs-fMRI). Ideally, the method could be a useful adjunct to intraoperative electrophysiological monitoring (IOM) for lesions located within highly eloquent areas like the central region, pyramidal tract, or speech-related areas. The path has been paved by previous works demonstrating that rs-fMRI networks are remarkably stable in humans throughout sleep as well as under propofol-induced anesthesia [22]. Preliminary results in an iMRI-setting demonstrated that a significant number of resting-state networks (including the sensorimotor ones) can be identified by independent component analysis of intraoperative rs-fMRI [23]. Further development and evaluation of this technique might open a new field of rs-fMRI research and could help to optimize neurosurgical strategies to minimize postoperative neurological deficits.
Minimally Invasive Neurosurgery
MRI-guided catheter placement lies on the rational for brain shift adjustment as well as the technical challenges to place catheters in premature neonates, to perform third ventriculostomies, to shunt complex multiloculated hydrocephalus, to cannulate cystic lesions or in case of congenital anomalies or varying skull geometry. As plugin to any neuroendoscopic procedures, iMRI has been shown to be beneficial as control for the immediate detection of complications and anatomical changes during the operation [24].
Compensating any brain shift, avoiding awake surgery, minimizing time-off medication, and minimizing brain penetrations while simultaneously interpreting physiologic results as a means of reducing hemorrhage risk are strong arguments in favor of iterative iMRI scans for deep brain stimulation (DBS) electrode implantation or high frequency thermocoagulation. The adding value of iMRI for DBS is expected to gain more acceptances in the future, especially by refining the mechanical steering in the bore of the magnet, being at the moment rather cumbersome and user-unfriendly [25].
Other Indications for iMRI-Guided Surgery
High-field iMRI may be meaningful in monitoring endovascular procedures to demonstrate early procedure-related changes. For example, in patients undergoing extracranial to intracranial bypass for occlusive cerebrovascular disease or in patients with vascular malformations in deep structures or adjacent to eloquent structures iMRI may be useful for the immediate assessment of surgical outcome or for minimization of surgical morbidity [26, 27].
Furthermore, iMRI can be easily implemented into epilepsy surgery. The morphological and advanced MRI can be also combined with functional and metabolic positron emission tomography (PET) data facilitating the best possible quality control in terms of electrodes positioning in relation to brain structures, accurate resection of brain tissue according to the treatment plan, and detection of hemorrhages as early as possible [28–30].


Conclusion
iMRI clearly offers advantages over conventional surgery and high-field iMRI has enhanced functionality that warrants safe and efficient surgical outcome, being no longer a proof of concept. In meantime, augmentation of indications is emerging by launching iMRI-guided robotic neurosurgery or MRI-guided focused ultrasound surgery in the brain [31]. Undoubtedly, the constant expanding indications for iMRI ponders the question of its dissemination and clinical necessity in routine neurosurgical interventions, bearing also in mind the significant and rising medical costs and the up-front expenditure related to the acquisition and running of iMRI scanners. Nevertheless, iMRI has already revolutionized the perception of modern neurosurgery bringing together neurosurgeons and neuroradiologists. The harmonic and seamless cooperation of both disciplines is also expected to boost the technique in the next decade and provide evidence of the benefits in relation to costs, net health outcomes, efficacy, and research advancements.
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