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SIMULTANEOUS SMALL FRACTIONAL PARTS OF
POLYNOMIALS

James Maynard

Abstract. Let f1, . . . , fk ∈ R[X] be polynomials of degree at most d with f1(0) =
· · · = fk(0) = 0. We show that there is an n < x such that ‖fi(n)‖R/Z � xc/k for
all 1 ≤ i ≤ k for some constant c = c(d) depending only on d. This is essentially
optimal in the k-aspect, and improves on earlier results of Schmidt who showed the
same result with c/k2 in place of c/k.

1 Introduction

In this paper we consider the following question:

Question. Given k polynomials f1, . . . , fk ∈ R[X] of degree at most d with f1(0) =
· · · = fk(0) = 0, how small can we make the fractional parts ‖f1(n)‖R/Z, . . . ,
‖fk(n)‖R/Z over positive integers n ≤ x?

Here ‖·‖R/Z denotes the distance to the nearest integer. Since the polynomial f(n) =
n + 1/2 certainly doesn’t attain arbitrarily small fractional parts, it is natural to
impose the condition f1(0) = · · · = fk(0) = 0 so that all polynomials individually
can obtain small fractional parts. Indeed, it is known that if f ∈ R[X] has degree
at most d ≥ 2 and satisfies f(0) = 0 then the fractional part ‖f(n)‖R/Z can become
arbitrarily small, and the recent work of Baker [Bak16] shows that

min
n≤x

‖f(n)‖R/Z �d
1

x1/(2d2−2d)+o(1)
. (1.1)

It is worth emphasizing that the bound depends only on x and d, and is otherwise
completely uniform over all such polynomials f . The exponent 1/(2d2 −2d) is based
on the resolution of Vinogradov’s Mean Value Theorem for d ≥ 4by Bourgain–
Demeter–Guth [BDG16], but estimates of the shape O(1/d2) were known since the
work of Wooley [Woo12] and estimates of the form O(1/d2 log d) go back to Vino-
gradov [Vin04]. The bound (1.1) is certainly not expected to be tight; for monomials
the exponent can be improved to O(1/d log d), for example, and it is conjectured
[Bak86] that this should be improvable to 1 + o(1). Unfortunately there currently
does not appear to be a feasible approach to make progress on the shape of these
exponents with the current techniques.
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In the case of k polynomials f1, . . . , fk ∈ R[X] of degree at most d with f1(0) =
· · · = fk(0) = 0, the current record due to Baker and Harman [BH84] is for some
cd > 0

min
n≤x

max
i≤k

‖fi(n)‖R/Z �k,d
1

x1/(k2+kcd)+o(1)
. (1.2)

This refines the initial groundbreaking work of Schmidt [Sch77] from 1977 who had
a similar exponent of the form 1/2k2 when d = 2. A simple argument based on
choosing the coefficients of f1, . . . , fk uniformly at random shows that one certainly
cannot hope to have a result stronger than

min
n≤x

max
i≤k

‖fi(n)‖R/Z � 1
x1/k

. (1.3)

These and related questions have been the object of a large amount of study in
analytic number theory; see [MT19, Bak17, Bak78, Bak77, Bak80, Bak08, VW00,
Woo13, Woo93, Bak18, Sch95, Zah95] for some recent related work. We refer the
reader to the book [Bak86] for a comprehensive overview of these questions.

Our main result is to establish a bound for (1.2) with an exponent Od(1/k). By
comparing this with (1.3) we see that this bound is of the optimal shape in the
k-aspect. This result is new even in the simplest non-linear case when fi(n) = αin

2

for 1 ≤ i ≤ k which corresponds to simultaneous Diophantine approximation with
squares. More precisely, our main result is the following.

Theorem 1.1. Let k, d be positive integers. There is a constant Cd > 2 depending
only on d and a constant Cd,k > 2 depending only on d and k such that the following
holds.

Let f1, . . . , fk ∈ R[X] be polynomials of degree at most d such that f1(0) = · · · =
fk(0) = 0. Let ε1, . . . , εk ∈ (0, 1/100], and put Δ =

∏k
i=1 εi.

If Δ−1 ≤ x1/Cd and x > Cd,k then there is a positive integer n < x such that

‖fi(n)‖R/Z ≤ εi for all i ∈ {1, . . . , k}.

Choosing ε1 = · · · = εk = x−1/(kCd) in Theorem 1.1 gives the improvement mentioned
above. In the language of [Bak79], this confirms the conjecture that an arbitrary
system of polynomials with f1(0) = · · · = fk(0) = 0 has ‘Heillbronn status’.

Corollary 1.2. Let f1, . . . , fk ∈ R[X] be polynomials of degree at most d such
that f1(0) = · · · = fk(0) = 0. Then there is a positive integer n < x such that

‖fi(n)‖R/Z �d,k x−cd/k for all i ∈ {1, . . . , k}.

Here cd > 0 is a constant depending only on d, and the implied constant depends
only on d and k.

Specializing just to the case when fi(n) = αin
d for each i (for any choice of fixed d ≥

2), we find that we obtain a new result on simultaneous Diophantine approximation
with dth powers, which is of the optimal shape.
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Corollary 1.3 (Simultaneous Diophantine approximation). Let d ≥ 2 and α1, . . . ,
αk ∈ R. Then there is a positive integer n < x such that

‖αin
d‖R/Z �d,k x−cd/k for all i ∈ {1, . . . , k}.

Here cd > 0 is a constant depending only on d, and the implied constant depends
only on d and k.

As with previous works, a noteworthy feature of Theorem 1.1 and Corollary 1.2
is that the result is completely uniform over the coefficients of the polynomials (or
the choice of the αi in Corollary 1.3), with the implied constants depending only on
d and k.

The proof as given in this paper would yield a constant cd in Corollary 1.2 or
Corollary 1.3 which is exponentially small in d (cd = 10−d would probably suffice),
but it is likely that with only a small amount of additional effort the constant could
be taken to be of the form cd = C/d2 or perhaps even C/(d + d2/k) for a relatively
small explicit absolute constant C. In the interests of emphasizing the main ideas we
have chosen not to pursue such explicit bounds in the d-aspect. Similarly we have
made no effort to control the implied constant’s dependence on d or k, although
it is likely that adapting the ideas behind [GT09, Proposition A.2] would give a
reasonable and explicit dependence on k and d.

2 Outline

In the interest of simplicity we consider the case when fi(n) = αin
2, since this case

still has most of the main features of the problem at hand. As in Schmidt’s original
work, the argument follows an increment strategy, where either the situation looks
‘random’ or there is additive structure allowing us to pass to a self-similar situation
with one fewer polynomial. We obtain improved bounds by getting more structural
control over the arithmetic nature of the large Fourier coefficients, allowing for a
more complicated but more efficient increment strategy (this successfully achieves
the challenge mentioned in [Bak86, Page 5] of sharpening Schmidt’s ‘determinant
argument’).

For a generic choice of α1, . . . , αk, we expect that the vector of fractional parts
v(n) = (‖α1n

2‖R/Z, . . . , ‖αkn
2‖R/Z) will equidistribute in the torus R

k/Zk. Fourier
analysis is well-suited to showing such equidistribution, and one finds that given any
intervals I1, . . . , Ik of length δ (for some small δ > 0) and x > δ−k−o(1), there is an
n < x such that v(n) ∈ I1 × · · · × Ik unless there is a Diophantine relation

h1α1 + · · · + hkαk ≈ a

q

for some constants hi ≤ δ−1−o(1) and some q < δ−O(k). If δ > x−c/k for some small
c > 0, such a relation is unusual but would mean that it is genuinely not the case
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that v(n) equidistributes at this scale. (For example, if α1 = α2, then there is clearly
not equidistribution.)

Schmidt [Sch77] addressed this potential issue by restricting to considering in-
tegers n such that n was a multiple of h1q whenever there is such a Diophantine
relation (assuming h1 �= 0, as we may do by relabeling the indices.) For such n’s we
see that

‖α1n
2‖R/Z ≈

∥
∥
∥
∥
∥

k∑

i=2

hiαin
2/h1

∥
∥
∥
∥
∥
R/Z

,

and so if we can find a1, . . . , ak ∈ Z and n′ < x/qh1 such that |αi(qh1n
′)2 − ai| <

δ−1−o(1) for 2 ≤ i ≤ k and such that
∑k

i=1 hiai = 0 then we can find an n < x such
that ‖αin

2‖R/Z < δ−1 for 1 ≤ i ≤ k. This essentially reduces the problem of finding
n < x such that ‖αin

2‖R/Z is small for 1 ≤ i ≤ k to one of finding m < xδk+o(1)

such that ‖α′
im

2‖R/Z is small for 1 ≤ i ≤ k−1 for some reals α′
1, . . . , α

′
k−1. Since the

problem is now analogous to the original but with one fewer variable, we may repeat
the above procedure O(k) times. We maintain a non-trivial range for n provided
δ > x−c/k2

for some small constant c > 0, which gives Schmidt’s result that there
is an n < x such that ‖αin

2‖R/Z < x−c/k2
for some constant c independent of k or

α1, . . . , αk.
The above procedure would produce a bound of size ‖αin

2‖R/Z < x−c/k if at each
stage the denominator q was of size δ−O(1) instead of size δ−O(k). Therefore let us
consider the most problematic case when q is of size δ−O(k) ≈ xc. In this case one
still has suitable equidistribution via Fourier analysis unless there are many vectors
(h1, . . . , hk) ∈ [0, δ−1+o(1)] and coprime integers a, q with q ∈ [Q, 2Q] such that

h1α1 + · · · + hkαk ≈ a

q
.

The key new idea in our proof is to exploit the fact we have many such relations
rather than just one, and that the hi must lie in an additively structured set, which
will show the rationals a/q cannot have many distinct denominators. In fact, we will
show that it must be the case that several of these relations must have the same
denominator q, from which we can reduce to a much lower dimensional situation.

If many of the relations do have the same denominator q, then there must be
many linearly independent solutions with the same denominator, and so (after rela-
belling) we can find short vectors h(1) = (h(1)

1 , . . . , h
(1)
k ), . . . ,h(r) = (h(r)

1 , . . . , h
(r)
k ) in

[0, δ−1+o(1)]k such that (h(1)
1 , . . . , h

(1)
r ), . . . , (h(r)

1 , . . . , h
(r)
r ) are linearly independent
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in Z
r and if q|n then

∥
∥
∥
∥
∥

r∑

i=1

h
(1)
i αin

2

∥
∥
∥
∥
∥
R/Z

≈
∥
∥
∥
∥
∥

k∑

i=r+1

h
(1)
i αin

2

∥
∥
∥
∥
∥
R/Z

,

...
∥
∥
∥
∥
∥

r∑

i=1

h
(r)
i αrn

2

∥
∥
∥
∥
∥
R/Z

≈
∥
∥
∥
∥
∥

k∑

i=r+1

h
(r)
i αin

2

∥
∥
∥
∥
∥
R/Z

.

If we also restrict to det(h(i)
j )1≤i,j≤r|n then we find that, similarly to in Schmidt’s

argument, we can reduce the problem to a lower dimensional one. In this case,
however, we reduce the dimension by r rather than just 1, and in fact we can take
r 	 log x/ log q. In the case when we always have q ≈ xc this process terminates
after O(1) iterations rather than O(k) iterations, allowing us to maintain a non-
trivial range of n if δ > x−c/k for some small constant c.

Alternatively, if there are many different denominators which occur - say Q1/100

different denominators of size Q—then it turns out we may find a subset of Q1/200

of these denominators which are almost all coprime to one another apart from some
fixed integer d which divides all of the denominators in this subset. From this copri-
mality relation, we see that by adding r of these equations together one finds

∥
∥
∥
∥
∥
∥

r∑

j=1

k∑

i=1

αih
(j)
i

∥
∥
∥
∥
∥
∥
R/Z

≈
∥
∥
∥
∥

a(1)

q(1)
+ · · · +

a(r)

q(r)

∥
∥
∥
∥
R/Z

≥ 1
q(1) · · · q(r)

.

In particular, we see that almost all combinations of r/2 of the equations are distinct,
and so there are 	 Qr/200 different non-zero combinations. However, we also have
that the number of different choices of the coefficients of the αi in these relations
is bounded by rkδ−k−o(1). This is less than Qr/200 if r is sufficiently large, giving a
contradiction. Hence there cannot be many relations with different denominators q.

The above sketch is too simplistic in multiple ways—there are quantitative issues
if the vectors h(j) are not essentially orthogonal to each other, and one actually needs
to find suitable low height relations to avoid an accumulation of losses through the
induction procedure. These can be achieved by exploiting ideas from the geometry
of numbers. It is also the case (and was even in Schmidt’s original argument) that it
is necessary to consider more general approximations by lattice vectors of the vector
of polynomials such that the difference lies in a given convex set, which is essentially
equivalent to considering approximations of the form ‖fi(n)‖R/Z ≤ εi for some given
reals ε1, . . . , εk.

Remark. It is interesting to note that the above argument can be interpreted as a
density-increment argument in the style of Roth’s theorem on arithmetic progres-
sions. This is the first setting which we are aware of when such a strategy produces
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essentially optimal polynomial-type bounds in a non-trivial situation. Moreover, it
has been speculated (see [Gow]) that even in less structured problems one might hope
to have either a small density increment on a ‘small codimension’ set, or a large den-
sity increment on a ‘large codimension’ set. We achieve something very much along
these lines in this (more structured) setting of fractional parts of polynomials.

3 Notation

Throughout the paper we assume that we have polynomials f1, . . . , fk ∈ R[X] of
degree at most d with f1(0) = · · · = fk(0) = 0. We let these polynomials be given
by fi(X) =

∑d
j=1 fi,jX

j . Furthermore, we have reals ε1, . . . , εk ∈ (0, 1/100], and we
put Δ :=

∏k
i=1 εi.

To avoid any confusion about the quantifiers in statements of the form ‘if A � 1
then B � 1, with all implied constants depending only on d and k’, we emphasize
that we take this statement to mean for any positive function f(d, k) of d and k,
there is a positive function gf (d, k) depending only on f such that if |A| ≤ f(d, k)
then we have |B| ≤ gf (d, k).

4 The Main Argument

Our proof of Theorem 1.1 relies on three key propositions. In this section we show
how the theorem follows quickly from the propositions, leaving us with the task of
establishing the propositions separately from one another.

Our first proposition is a standard result which follows from Weyl’s bound for
polynomial exponential sums.

Proposition 4.1 (Equidistribution or many linear relations). Let f1, . . . , fk ∈ R[X]
be polynomials of degree at most d such that f1(0) = · · · = fk(0) = 0. Put fi(X) =∑d

j=1 fi,jX
j . Let ε1, . . . , εk ∈ (0, 1/100], and put Δ =

∏k
i=1 εi.

Then there is a constant Cd > 0 depending only on d such that, provided Δ−Cd <
x, at least one of the following holds:

(1) We have

#{n ≤ x : ‖fi(n)‖R/Z < εi ∀i} 	 x

k∏

i=1

εi.

(2) There is some Q ≤ Δ−Cd such that there are at least Q1/Cd triples (a,q,h) ∈
Z

d × Z
d × Z

k satisfying:
(a) gcd(aj , qj) = 1 and 1 ≤ qj ≤ Q for 1 ≤ j ≤ d.
(b) hi � ε−1

i Δ−1/(2k)4 for 1 ≤ i ≤ k.



156 J. MAYNARD GAFA

(c) For each j ∈ {1, . . . , d} we have

k∑

i=1

hifi,j =
aj

qj
+ O

(
QCd

xj

)

.

All implied constants depend only on d and k.

Our second proposition allows us to find structure in the large Fourier coefficients
with many of them giving rise to rationals with the same denominator.

Proposition 4.2 (Many relations must have the same denominator). Let f1, . . . , fk ∈
R[X] be polynomials of degree at most d such that f1(0) = · · · = fk(0) = 0. Put
fi(X) =

∑d
j=1 fi,jX

j . Let ε1, . . . , εk ∈ (0, 1/100], and put Δ =
∏k

i=1 εi.

Let C > 2 and Q ≤ Δ−C be such that there are at least Q1/C triples (a,q,h) ∈
Z

d × Z
d × Z

k satisfying:

(1) gcd(aj , qj) = 1 and 1 ≤ qj ≤ Q for 1 ≤ j ≤ d.
(2) hi � ε−1

i Δ−1/(2k)4 for 1 ≤ i ≤ k.
(3) For each j ∈ {1, . . . , d} we have

k∑

i=1

hifi,j =
aj

qj
+ O

(
QC

xj

)

.

Then there is a constant C ′
d > 0 depending only on d and C such that provided

Δ−C′
d < x there is some positive integer q ≤ QC′

d and at least Q1/C′
d pairs (a,h) ∈

Z
d × Z

k such that:

(1) hi � ε−1
i Δ−2/(2k)4 for i ∈ {1, . . . , k}.

(2) For each j ∈ {1, . . . , d} we have
k∑

i=1

hifi,j =
aj

q
+ O

(
QC′

d

xj

)

.

All implied constants depend only on d and k.

Our third key proposition allows us to pass from many relations with the same
denominator to a reduced system of approximations.

Proposition 4.3 (Many relations with the same denominator give rise to a reduced
dimension problem). Let f1, . . . , fk ∈ R[X] be polynomials of degree at most d such
that f1(0) = · · · = fk(0) = 0. Put fi(X) =

∑d
j=1 fi,jX

j . Let ε1, . . . , εk ∈ (0, 1/100],
and put Δ =

∏k
i=1 εi.

Let C > 2 be such that Δ−1 ≤ x1/4C2
, and let q be a positive integer with

q < QC .
Let S be the set of pairs (a,h) ∈ Z

d × Z
k such that for j ∈ {1, . . . , d} we have

∣
∣
∣
∣
∣

k∑

i=1

hifi,j − aj

q

∣
∣
∣
∣
∣
� QC

xj
,
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and such that |hi| � ε−1
i Δ−2/(2k)4 . Assume that #S > Q1/C .

Then there is an integer k′ < k, polynomials g1, . . . , gk′ ∈ R[X] of degree at most
d with g1(0) = · · · = gk′(0) = 0 and quantities ε′

1, . . . , ε
′
k′ ∈ (0, 1/100] and y < x

such that:

(1) (Approximations in the new system produce approximations in the old system.)
If there is an integer n′ < y such that,

‖gi(n′)‖R/Z < ε′
i for all 1 ≤ i ≤ k′

then there is an integer n < x such that

‖fi(n)‖R/Z < εi for all 1 ≤ i ≤ k.

(2) (Increased density of approximations.) We have

y(ε′
1 · · · ε′

k′)3C2−C2/k′3 	 x(ε1 · · · εk)3C2−C2/k3
.

All implied constants depend only on k and d.

We see that case (2) of the conclusion of Proposition 4.1 satisfies the assumptions
of Proposition 4.2, and the conclusion of Proposition 4.2 satisfies the conditions of
Proposition 4.3. Thus, putting these three propositions together we obtain

Proposition 4.4 (Induction Step). Let d, k be positive integers. There is a constant
Cd > 2 depending only on d and Cd,k > 2 depending only on d and k such that the
following holds.

Let f1, . . . , fk ∈ R[X] be polynomials of degree at most d such that f1(0) =
· · · = fk(0) = 0. Put fi(X) =

∑d
j=1 fi,jX

j . Let ε1, . . . , εk ∈ (0, 1/100], and put

Δ =
∏k

i=1 εi. Let Δ−1 ≤ x2/Cd .
If there is no positive integer n < x such that

‖fi(n)‖R/Z < εi for all i ∈ {1, . . . , k},

then there is a positive integer k′ < k and polynomials g1, . . . , gk′ ∈ R[X] of degree
at most d with g1(0) = · · · = gk′(0) = 0 and reals ε′

1, . . . , ε
′
k′ ∈ (0, 1/100] and y ∈ R

with y < x such that both of the following hold:

(1) There is no positive integer n′ < y such that

‖gi(n′)‖R/Z < ε′
i for all i ∈ {1, . . . , k′}.

(2) We have

y(ε′
1 · · · ε′

k′)Cd(3−1/(k′)3) ≥ x(ε1 · · · εk)Cd(3−1/k3)

Cd,k
.

All implied constants depend only on k and d.
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Proof of Theorem 1.1 assuming Proposition 4.4. Let Cd and Cd,k be the constants
of Proposition 4.4, and let C0 = supj≤k Cd,j (which depends only on d and k).
Assume for a contradiction that there is no positive n < x such that ‖fi(n)‖R/Z ≤ εi

for all i ∈ {1, . . . , k}.
We will apply Proposition 4.4 repeatedly to reduce the dimension of the problem

we consider. Let us define a System to be a tuple (k,g, δ, y) consisting of:

(1) A positive integer k.
(2) A k-tuple g of real polynomials (g1, . . . , gk) of degree at most d satisfying

g1(0) = · · · = gk(0) = 0.
(3) A k-tuple δ of reals (δ1, . . . , δk) with δi ∈ (0, 1/100] for all i ∈ {1, . . . , k}.
(4) A real y such that there is no positive integer n < y satisfying

‖gi(n)‖R/Z ≤ δi for all i ∈ {1, . . . , k}.

Given a System (k,g, δ, y), let Δ(δ) =
∏k

i=1 δi. By Proposition 4.4, if a system
(kj ,gj , δj , yj) satisfies Δ(δj)−1 < y

2/Cd

j then there is a system (kj+1,gj+1, δj+1, yj+1)
such that kj+1 < kj , yj+1 ≤ yj and

yj+1Δ(δj+1)Cd(3−1/k2
j+1) ≥ yjΔ(δj)Cd(3−1/k2

j )

C0
.

In particular, if

yjΔ(δj)Cd(3−1/k2
j ) > C

kj

0

then

yj+1Δ(δj+1)Cd(3−1/k2
j+1) > C

kj−1
0 ≥ C

kj+1

0 .

Moreover, since Cd, C0 > 2, this implies that Δ(δj+1)−1 < y
2/Cd

j+1 . Thus, given a Sys-
tem (k1,g1, δ1, y1) with y1Δ(δ1)Cd(3−1/k2

1) > Ck1
0 , we may repeatedly apply Proposi-

tion 4.4 to obtain an infinite sequence of Systems (kj ,gj , δj , yj) for all j = 1, 2, . . . .
But the kj are a decreasing sequence of positive integers, and so no such sequence
can exist. Thus there can be no System (k1,g1, δ1, y1) with y1Δ(δ1)Cd(3−1/k2

1) > Ck1
0 .

Let us be given a positive integer k, a k-tuple f = (f1, . . . , fk) of real polynomials
of degree at most d with f1(0) = · · · = fk(0) = 0, a k-tuple of reals ε = (ε1, . . . , εk)
with εi ∈ (0, 1/100] for all i ∈ {1, . . . , k} and a real x with x > Δ(ε)−C∗

d , where
C∗

d := 3Cd(1 − 1/k2) + log C0/ log 100. Then, since εi ≤ 1/100, we see that Δ(ε) ≤
100−k so

x > Δ(ε)−3Cd(1−1/k2)Δ(ε)− log C0/ log 100 ≥ Ck
0 Δ(ε)−Cd(3−1/k2).

Therefore (k, f , ε, x) cannot form a System, and so there must be a positive integer
n < x such that

‖fi(n)‖R/Z < εi for all i ∈ {1, . . . , k}.

This gives the result. ��
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Since Proposition 4.4 follows immediately from Propositions 4.1, 4.2 and 4.3, it
remains to establish these three propositions. We establish each of these in turn
over the next three sections.

5 Initial Fourier Analysis and Proposition 4.1

In this section we establish Proposition 4.1. The arguments in this section are stan-
dard and well-known to researchers in the field, but for completeness we give com-
plete proofs since the versions we use are slightly different from some occurrences in
the literature.

Lemma 5.1 (Weyl exponential sum bound). Let f ∈ R[X] be a monic polynomial
of degree d, and α ∈ R satisfy α = a/q + O(1/qQ) for some q < Q. Then there is a
constant cd > 0 depending only on d such that

∑

n<x

e(f(n)α) � x

qcd
+

x

(xd/q)cd
.

The implied constant depends only on d.

Proof. This follows from [Vau97, Lemma 2.4]. ��
Lemma 5.2 (Modified Weyl exponential sum bound). Let f(X) =

∑d
i=1 fiX

i ∈
R[X] be a polynomial of degree d with f(0) = 0. Then there is a constant C ′′

d > 2
depending only on d such that the following holds.

If there is some Q ∈ [2, x1/C′′
d ] such that
∣
∣
∣
∣
∣

∑

n<x

e(f(n))

∣
∣
∣
∣
∣
≥ x

Q

then there are positive integers q1, . . . , qd < QC′′
d and integers a1, . . . , ad such that

gcd(aj , qj) = 1 for j ∈ {1, . . . , d} and

fj =
aj

qj
+ O

(
QC′′

d

xj

)

for j ∈ {1, . . . , d}. The implied constants depend only on d.

Proof. We prove the result by induction. Assume that for each j > d − � we have
that the coefficient fj of f(X) satisfies

fj =
aj

qj
+ O

(
QC′′

j

xj

)

(5.1)

for some coprime integers aj , qj with qj < QC′′
j and some constants C ′′

j bounded only
in terms of d. In the base case with � = 0 we make no assumption. We wish to show
that there is a constant C ′′

d−� bounded only in terms of d such that if Q ≤ x1/C′′
d−�
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then there are coprime integers ad−�, qd−� with qd−� < QC′′
d−� such that (5.1) holds

with j = d − �. This would then give the result by applying this statement for each
� ∈ {0, . . . , d − 1} in turn (noting that the since there are only d different values of
� to consider, all implied constants remain bounded only in terms of d).

Let C ≥ maxj>d−� C ′′
j be taken sufficiently large in terms of d, and let q̃ =

qdqd−1 · · · qd−�+1 < QdC (let q̃ = 1 if � = 0). Since we assume that Q < x1/C′′
d−� ,

we have Q2C q̃ < x1/3 on restricting to C ′′
d−� > 10dC. We can split {1, . . . , x} into

O(Q2C q̃) disjoint arithmetic progressions with modulus q̃ each containing between
x/Q2C q̃ and 2x/Q2C q̃ elements. (For each residue class b (mod q̃) greedily take the
x/Q2C q̃� smallest elements until less than 2x/Q2C q̃� remain.) Then by the triangle
inequality

∣
∣
∣
∣
∣

∑

n<x

e(f(n))

∣
∣
∣
∣
∣
� Q2C q̃ sup

x/Q2C q̃≤y≤2x/Q2C q̃
x0≤x

∣
∣
∣
∣
∣

∑

n<y

e(f(x0 + q̃n))

∣
∣
∣
∣
∣
.

By the hypothesis of the lemma, the left hand side is at least x/Q. Thus there must
be a choice of integers y � x/q̃QC and x0 < x such that

∣
∣
∣
∣
∣

∑

n<y

e(f(x0 + q̃n))

∣
∣
∣
∣
∣
	 y

Q
. (5.2)

From the Diophantine approximations (5.1) and the periodicity of e(t) we see that
for q̃n < x/Q2C we have

e

⎛

⎝
∑

j>d−�

(x0 + q̃n)jfj

⎞

⎠ = e

⎛

⎝
∑

j>d−�

fjx
j
0

⎞

⎠ e

⎛

⎝
∑

j>d−�

j∑

i=1

(
j

i

)

fj q̃
inixj−i

0

⎞

⎠

= e

⎛

⎝
∑

j>d−�

fjx
j
0

⎞

⎠ e

(

O

(
QC q̃n

x

))

= e

⎛

⎝
∑

j>d−�

fjx
j
0

⎞

⎠ + O

(
1

QC

)

.

Thus we have
∣
∣
∣
∣
∣

∑

n<y

e(f(x0 + q̃n))

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∑

n<y

e(g(n))

∣
∣
∣
∣
∣
+ O

(
y

QC

)

, (5.3)

where g is the degree d − � polynomial

g(X) =
d−�∑

i=1

(x0 + q̃X)ifi.
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Taking C sufficiently large in terms of d, we see that (5.2) and (5.3) show that
∣
∣
∣
∣
∣

∑

n<y

e(g(n))

∣
∣
∣
∣
∣
	 y

Q
(5.4)

for some y � x/Q2C q̃ and some x0. Let α = fd−�q̃
d−� be the lead coefficient of g.

If α = 0 then (5.1) clearly holds for j = d − �. Thus we may assume α �= 0. By
Dirichlet’s Theorem, for any choice of C ′, there is an approximation

α =
ad−�

qd−�
+ O

(
QC′

qd−�xd−�

)

for some coprime integers ad−�, qd−� with qd−� < xd−�/QC′
. By applying Lemma 5.1

to the polynomial g(X)/α we see that

y

Q
�

∣
∣
∣
∣
∣

∑

n<y

e(g(n))

∣
∣
∣
∣
∣
� y

qcd

d−�

+
y

(yd−�/qd−�)cd
. (5.5)

We recall that

yd−� ≥ xd−�

Q2C(d−�)q̃d−�
≥ xd−�

Q(d+2)C(d−�)
,

and that qd−� ≤ xd−�/QC′
. Therefore

yd−�/qd−� > QC′−(d+2)C(d−�).

On choosing C ′ large compared with cd and C, we see that this implies (yd−�/qd−�)cd ≥
Q2. Thus (5.5) implies that qd−� ≤ Q1/cd ≤ QC′

. This gives (5.1) with j = d − � and
C ′′

d−� large enough in terms of d, and so gives the result. ��
Lemma 5.3 (Equidistribution or many large Fourier coefficients). Let f1, . . . , fk ∈
R[X] be real valued functions, and ε1, . . . , εk ∈ (0, 1/2] be real numbers, with Δ :=∏k

i=1 εi. Then at least one of the following holds:

(1) We have

#{n ≤ x : ‖fi(n)‖R/Z ≤ εi ∀i} 	 Δx.

(2) There is a quantity Q ≥ 2 such that there are at least Q1/2 distinct values of
h ∈ Z

k\{0} with |hi| < ε−1
i Δ−1/(2k)4 such that

x

Q
≤

∣
∣
∣
∣
∣
∣

∑

n≤x

e

(
k∑

i=1

hifi(n)

)∣
∣
∣
∣
∣
∣
≤ 2x

Q
.
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Proof. We fix a smooth function φ : R → [0, 1] with φ(t) supported on |t| < 1 which
is 1 on |t| < 1/2 and let all implied constants depend on φ. Let

Φi(t) =
∑

m∈Z

φ

(
t + m

εi

)

,

which is clearly 1-periodic, smooth, and supported on ‖t‖R/Z < εi. By Poisson sum-
mation

Φi(t) = εi

∑

h∈Z

φ̂(εih)e(hfi(t)).

Since φ is fixed and smooth, φ(j)(t) �j 1, so |φ̂(u)| �j u−j for all j ≥ 0. Thus we
see that the terms with |h| ≥ εiΔ−1/(2k)4 contribute O(Δ100), and so

Φi(t) = εi

∑

|h|≤ε−1
i Δ−1/(2k)4

φ̂(εih)e(hfi(t)) + O(Δ100).

Thus we find that (recalling φ̂(t) � 1)

#{n ≤ x : ‖fi(n)‖R/Z ≤ εi∀i} ≥
∑

n≤x

k∏

i=1

Φi(fi(n))

= Δ
∑

h1,...hk

|hi|<ε−1
i Δ−1/(2k)4

(
k∏

i=1

φ̂(εihi)

)
∑

n≤x

e

(
k∑

i=1

hifi(n)

)

+ O(xΔ99)

= xΔφ̂(0)k + O

⎛

⎜
⎜
⎜
⎝

Δ
∑

h∈Z
k\{0}

|hi|<ε−1
i Δ−1/(2k)4

∣
∣
∣
∣
∣
∣

∑

n≤x

e

(
k∑

i=1

hifi(n)

)∣
∣
∣
∣
∣
∣

⎞

⎟
⎟
⎟
⎠

+ O(xΔ99).

For Δ sufficiently small we see that Δφ̂(0)k + O(Δ99) 	 Δ, and so either

#{n ≤ x : ‖fi(n)‖R/Z ≤ εi∀i} 	 Δx

or

∑

h∈Z
k\{0}

|hi|<ε−1
i Δ−1/(2k)4

∣
∣
∣
∣
∣
∣

∑

n≤x

e

(
k∑

i=1

hifi(n)

)∣
∣
∣
∣
∣
∣
	 x.

In the latter case, by the pigeonhole principle there is some Q = 2j such that there
are at least Q1/2 choices of h in the outer summation such that

x

Q
≤

∣
∣
∣
∣
∣
∣

∑

n≤x

e

(
k∑

i=1

hifi(n)

)∣
∣
∣
∣
∣
∣
≤ 2x

Q
.

This gives the result. ��



GAFA SIMULTANEOUS SMALL FRACTIONAL PARTS OF POLYNOMIALS 163

Proof of Proposition 4.1. Assume that conclusion (1) of Proposition 4.1 does not
hold, so that we wish to establish conclusion (2). By Lemma 5.3, there is a parameter
Q1 such that there are Q

1/2
1 choices of h for which the corresponding exponential sum

is large (of size 	 x/Q1). Since the total number of choices of h is O(Δ−1−k/(2k)4),
we must have Q1 � Δ−2−2k/(2k)4 , and so if Δ−1 < x1/B for B sufficiently large in
terms of d, then Q1 < x1/C′′

d . We can then apply Lemma 5.2, which shows that each
of these values of h = (h1, . . . , hk) then gives rise to a linear equation

k∑

i=1

hifi,j =
aj

qj
+ O

(
QCd

1

xj

)

with (aj , qj) = 1 and qj ≤ Q
C′′

d

1 . Letting Q = Q
C′′

d

1 and taking Cd sufficiently large
compared with C ′′

d then gives the result. ��

6 Structure in the Large Fourier Coefficients and Proposition 4.2

In this section we prove Proposition 4.2 by showing many different linear relations
with small denominators must give rise to several relations with the same denomi-
nator.

Lemma 6.1 (Expansion or same denominators). Let δ ∈ (0, 1/200) and r a positive
integer. Let Q > 0 be large enough in terms of δ and r, and let S ⊂ Z × Z × Z

k be
a set of triples (a, q,h) with gcd(a, q) = 1 and q ≤ Q such that #S ≥ Qδ. Then one
of the following holds:

(1) There is a q0 ≤ Q such that at least #S1/2 of the triples (a, q,h) ∈ S have
q = q0.

(2) The set

A =
{

a1

q1
+ · · · +

ar

qr
: there exists h1, . . . ,hr

∈ Z
k s.t. (ai, qi,hi) ∈ S for 1 ≤ i ≤ r

}

has cardinality at least #Sr/5.

Proof. Throughout the lemma we will assume that Q is large enough in terms of δ
and r without further comment. We first restrict our attention to a suitable subset
of the q’s appearing in S. For j = 0, 1, . . . let

Bj =
{

q ∈ [2j , 2j+1) : ∃ (a,h) ∈ Z × Z
k with (a, q,h) ∈ S

}
.

Clearly Bj is empty if j > 2 log Q since if (a, q,h) ∈ S then q ≤ Q.
If

#{q : ∃(a,h) ∈ Z × Z
k with (a, q,h) ∈ S} =

∑

2j≤Q

#Bj ≤ #S1/2
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then (by the pigeonhole principle) there is a q ≤ Q such that there are at least
#S1/2 choices of (a,h) with (a, q,h) ∈ S, since there are this many on average.
Thus condition (1) is satisfied in this case.

Thus we may assume that
∑

j

#Bj > #S1/2 ≥ Qδ/2,

and so there is some j0 ≤ 2 log Q such that #Bj0 > #S2/5. Note that we must have
2j0 > Qδ/3 from the trivial bound #Bj ≤ 2j .

If there is an integer d which divides at least #Bj0/dδ/10 elements of Bj0 , we
restrict our attention to this subset. By performing this repeatedly, we may assume
that there is a fixed integer d0 and a set B′

j0
⊆ Bj0 such that #B′

j0
≥ #Bj0/d

δ/10
0 , all

elements of B′
j0

are a multiple of d0, and there is no integer � > 1 such that at least
#B′

j0
/�δ/10 elements of B′

j0
are a multiple of d0�. Since we must have d0 ≤ 2j0+1 ≤ 2Q,

we see that #B′
j0

≥ #S2/5/Qδ/10 ≥ #S1/4. Since B′
j0

⊆ {b ∈ [2j0 , 2j0+1) : d0|b} a set
of size O(2j0/d0), we see this also implies that d0 < 2j0/Qδ/4. Finally, we let

B = {b : d0b ∈ B′
j0},

and note that B ⊆ [B, 2B) where we have set B := 2j0/d0. The above discussion
implies that #B ≥ #S1/4, that B ∈ [#S1/4, Q], and that there is no integer � > 1
such that � divides at least #B/�δ/10 elements of B.

We now wish to show that if we fix a choice of integers a(b) for b ∈ B satisfying
gcd(a(b), d0b) = 1, then as (b1, . . . , br) varies in Br, many of the sums

a(b1)
d0b1

+ · · · +
a(br)
d0br

have different denominators when written as a single fraction in reduced terms,
and so in particular many of the expressions are distinct. If all of d0, b1, . . . , br were
pairwise coprime then the denominator would be d0b1 · · · br, and by the divisor bound
there are few different choices of b1, . . . , br which would give the same denominator.
Instead we are in the situation where the bi’s are ‘close’ to coprime, since we expect
they typically have small gcds by construction of B.

Consider the graph G = (V, E) where the vertex set V is taken to be B, and the
edge set E is defined by

E = {(b1, b2) ∈ B2 : gcd(b1, b2) ≥ Bδ2/r2}.

We consider separately two cases.
Case 1: #E ≥ #V2/10r2.

In this case there are many pairs with a gcd of some size. If we pick a vertex v
in G at random, then the expected number of vertices connected to v is at least
#V/10r2, and so (by the pigeonhole principle) there is some b0 ∈ B such that there
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are at least #B/10r2 elements b ∈ B with gcd(b, b0) > Bδ2/r2
. Since there are at

most Bo(1) divisors of b0, there must be a divisor d > Bδ2/r2
such that d|b for at least

#B/(10r2Bo(1)) > #B/dδ/10 elements b ∈ B. But this contradicts the fact that B is
constructed to have no such integers. Thus we must instead have #E < #V2/10r2.

Case 2: #E < #V2/10r2.
In this case the edge density is small, and so a large number of pairs have a very
small gcd. If we pick r distinct vertices in G uniformly at random, then the expected
number of edges between these vertices is less than 1/9. In particular, the probability
that there are no edges between any of the r chosen vertices is at least 8/9 (by
Markov’s inequality). Thus, if we define

C =
{

(b1, . . . , br) ∈ Br : gcd(bi, bj) < Bδ2/r2
for 1 ≤ i < j ≤ r

}
,

then #C 	r #Br.
We now consider the possible denominators of rationals of the form a1/b1 + ... +

ar/br where (b1, . . . , br) ∈ C. Given (b1, . . . , br) ∈ C, let

R(b1, . . . , br) =
{
(b′

1, . . . , b
′
r) ∈ C : ∃ a1, . . . , ar, a

′
1, . . . , a

′
r s.t.

gcd(ai, d0bi) = gcd(a′
i, d0b

′
i) = 1∀i,

a1

b1
+ · · · +

ar

br
=

a′
1

b′
1

+ · · · +
a′

r

b′
r

}

.

We note that for any choice of a1, . . . , ar with gcd(ai, bi) = 1, the denominator of
a1/b1 + · · · + ar/br is a multiple of p� if p� divides exactly one of b1, . . . , br and p�+1

divides none of them. Let gcd(b, p∞) denote the largest power of p dividing b > 1,
and gcd(bi, bj , p

∞) the largest power of p dividing both bi and bj . We now define

gp :=
∏r

i=1 gcd(bi, p
∞)

∏
1≤i<j≤r gcd(bi, bj , p∞)2

.

We see that gp ≤ p� if p� divides exactly one of b1, . . . , br and p�+1 divides none of
them. Similarly, gp ≤ 1 if p� divides at least 2 of the bi but p�+1 divides none of them.
(If bj maximizes gcd(bj , p

∞), then gcd(bj , bi, p
∞) = gcd(bi, p

∞).) Taking the product
over all p, we see that for any choice of a1, . . . , ar with (ai, bi) = 1, the denominator
of a1/b1 + · · ·+ar/br must be of size at least

∏
p gp. However, if (b1, . . . , br) ∈ C then

all pairwise gcd’s are small. Therefore, (regardless of a1, . . . , ar) the denominator
must be of size at least

∏

p

gp =
∏r

i=1 bi∏
1≤i<j≤r gcd(bi, bj)2

≥ Br−2δ2
.

Moreover, any such denominator is clearly of size O(Br). Thus, given (b1, . . . , br) ∈
C, there are O(B2δ2

) possible denominators for a1/b1 + · · · + ar/br. Given such a
denominator q > Br−2δ2

, if the denominator of a′
1/b′

1 + · · · + a′
r/b′

r is also equal to
q then q must divide

∏r
i=1 b′

i. Thus there are O(B2δ2
) such choices of

∏r
i=1 b′

i � Br

given q, and so O(B2δ2+o(1)) choices of b′
1, . . . , b

′
r (using the divisor bound). Hence
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for any choice of (b1, . . . , br) ∈ C there are at most B5δ2
choices of (b′

1, . . . , b
′
r) in

total, and so #R(b1, . . . , br) ≤ B5δ2
.

For each b ∈ B, let a(b) be an integer coprime to d0b such that (a(b), d0b,h) ∈
S for some h. (This exists from the definition of B.) We now note that given
(b1, . . . , br) ∈ C the rational a(b1)/d0b1+· · ·+a(br)/d0br occurs for at most R(b1, . . . , br)
other elements of C. Thus

#A ≥ #
{

a(b1)
d0b1

+ · · · +
a(br)
d0br

: (b1, . . . , br) ∈ C
}

≥
∑

(b1,...,br)∈C

1
#R(b1, . . . , br)

≥ #C
B5δ2 ≥ #Br

Q6δ2 .

Recalling that r ≥ 1 > 200δ and #B > #S1/4 ≥ Qδ/4, this gives condition (2), as
required. ��
Lemma 6.2 (Many linear relations must have the same denominator). Let δ ∈
(0, 1/200), let k ≥ 2 a positive integer and let α1, . . . , αk ∈ [0, 1). Let Q be large
enough in terms of δ and k, and let ε1, . . . εk ∈ (0, 1] be such that Δ =

∏k
i=1 εi

satisfies Q10δ ≤ Δ−1 ≤ Q(2k)4 .
Let S ⊂ Z × Z × Z

k be a set of triples (a, q,h) with gcd(a, q) = 1, q ≤ Q and
|hi| ≤ ε−1

i Δ−1/(2k)4 such that #S ≥ Qδ and such that if (a, q,h) ∈ S then

∣
∣
∣
∣h1α1 + · · · + hkαk − a

q

∣
∣
∣
∣ ≤

(
k∏

i=1

εi

)100/δ

.

Then there is a q0 ≤ Q such that at least #S1/2 of the triples (a, q,h) ∈ S have
q = q0.

Proof. Choose an integer r such that Qδr/20 >
∏k

i=1 ε−1
i ≥ Qδr/30. We see that such

an r must exist and satisfy r ∈ [20, 30(2k)4/δ] from our bounds on
∏k

i=1 ε−1
i in

terms of Q. In particular, we may assume that Q is sufficiently large in terms of r.
If (a1, q1,h1), . . . , (ar, qr,hr) ∈ S then we have for 1 ≤ j ≤ r

k∑

i=1

αi(hj)i =
aj

qj
+ O

(
k∏

i=1

εi

)100/δ

=
aj

qj
+ O(Q−10r/3).

Adding these together (and recall that Q is sufficiently large so rQ−r/3 ≤ 1 ) gives

a1

q1
+ · · · +

ar

qr
+ O(Q−3r) =

k∑

i=1

αih̃i,
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where h̃i =
∑r

j=1(hj)i. Since the denominator of a1/q1 + · · · + ar/qr when written
as a single fraction is at most Qr, we see that this fraction is uniquely determined
by the integers h̃1, . . . , h̃k, since it is the best rational approximation to

∑k
i=1 αih̃i

with denominator at most Qr. But |h̃i| � rε−1
i Δ−1/(2k)4 , and so we find

#
{

a1

q1
+ · · · +

ar

qr
: ∃h1, . . . ,hr s.t. (a1, q1,h1), . . . , (ar, qr,hr) ∈ S

}

≤ #{(h̃1, . . . , h̃r) ∈ Z
r : |h̃i| � rε−1

i Δ−1/(2k)4}

≤
(

k∏

i=1

ε−1
i

)2

≤ Qδr/10.

Here we used the fact that r ≤ δ−1 log(
∏k

i=1 ε−1
i ) and

∏k
i=1 ε−1

i ≥ Q10δ can be
assumed to be sufficiently large in terms of δ and k.

We see that our situation satisfies all the hypotheses of Lemma 6.1, but the
above bound is incompatible with the bound of case (2) in Lemma 6.1, since in our
situation case (2) would imply that

#
{

a1

q1
+ · · · +

ar

qr
: ∃h1, . . . ,hr s.t. (a1, q1,h1), . . . , (ar, qr,hr) ∈ S

}

≥ Qδr/5.

Thus, case (1) of Lemma 6.1 must hold; there must be a q0 ≤ Q such that at least
#S1/2 of the triples (a, q,h) ∈ S have q = q0. ��
Lemma 6.3 (Many systems of linear relations must have the same denominators).
Let δ ∈ (0, 1/200), let k, d ≥ 2 be positive integers and let αi,j ∈ [0, 1) for 1 ≤ i ≤ k,
1 ≤ j ≤ d be reals. Let Q be large enough in terms of δ, d and k, and let ε1, . . . εk ∈
(0, 1] be such that Δ =

∏k
i=1 εi satisfies Q10δ ≤ Δ−1 ≤ Q(2k)4 .

Let S ⊂ Z
d × Z

d × Z
k be a set of triples (a,q,h) satisfying:

(1) gcd(aj , qj) = 1 and qj ≤ Q for j ∈ {1, . . . , d}.
(2) hi ≤ ε−1

i Δ−1/(2k)4 for i ∈ {1, . . . , k}.

(3) #S ≥ Q2dδ .
(4) For each j ∈ {1, . . . , d} we have

∣
∣
∣
∣h1α1,j + · · · + hkαk,j − aj

qj

∣
∣
∣
∣ ≤

(
k∏

i=1

εi

)100/δ

.

Then there is a q0 ∈ Z
d such that at least #S1/2d

of the triples (a,q,h) ∈ S have
q = q0.

Proof. This follows from d applications of Lemma 6.2. Given S ′ ⊆ S, for j ∈
{1, . . . , d} let

πj(S ′) = {(a, q,h) : ∃a,q s.t. (a,q,h) ∈ S ′ and aj = a, qj = q}.
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We note that
(

k∏

i=1

εi

)100/δ

≤ Q−10,

and so given h ∈ Z
k there is at most one choice of a,q ∈ Z

d such that (a,q,h) ∈
S, since aj/qj is the best rational approximation with denominator at most Q to
h1α1,j + · · · + hkαk,j if there is any a,q such that (a,q,h) ∈ S (recall that we must
have gcd(aj , qj) = 1 if (a,q,h) ∈ S). In particular, #πj(S ′) = #S ′ for all j for any
set S ′ ⊆ S.

Given S ′ ⊆ S, let �j(S ′) be an integer maximizing

#{(a,h) : (a, �,h) ∈ πj(S)}
over all choices of � ∈ Z (if there are multiple possibilities we make an arbitrary
choice of one). If #πj(S ′) ≥ Qδ, then by Lemma 6.2 at least #πj(S ′)1/2 triples
(a, q,h) ∈ πj(S ′) have q = �j(S ′). We now let S0 = S, and define S1 ⊇ · · · ⊇ Sd in
turn, by

Sj := {(a,q,h) ∈ Sj−1 : qj = �j(Sj−1)}.

Since #S ≥ Q2dδ, we see that #Sj ≥ #S1/2
j−1 ≥ Q2d−jδ ≥ Qδ for j ∈ {1, . . . , d} by

repeatedly applying Lemma 6.2. In particular, we have #Sd ≥ #S1/2d

. Finally, we
note that Sd is the set of triples (a,q,h) ∈ S such that

q = q0 := (�1(S0), �2(S1), . . . , �d(Sd−1)),

and so we have the result. ��
Proof of Proposition 4.2. By assumption, there is some Q ≤ (

∏k
i=1 εi)−C such that

there are at least Q1/C triples (a,q,h) ∈ Z
d × Z

d × Z
k with gcd(aj , qj) = 1 and

qj ≤ Q for j ∈ {1, . . . , d}, and with hi � ε−1
i Δ−1/(2k)4 for i ∈ {1, . . . , k}, and with

k∑

i=1

hifi,j =
aj

qj
+ O

(
QC

xj

)

.

If Q ≤ Δ−1/(2k)4 then we just take one such triple (a,q,h). In this case the triples
(ja, jq, jh) for j ∈ {1, . . . , Q} then give Q relations of the desired type provided
C ′

d > C + 1, since jhi � Qε−1
i Δ−1/(2k)4 � ε−1

i Δ−2/(2k)4 . Thus we may assume that
Q(2k)4 >

∏k
i=1 ε−1

i .
We now apply Lemma 6.3 with δ = (10 · 2d · C)−1. Provided C ′

d > 100/δ + C2

we see the bounds Q ≤ (
∏k

i=1 ε−1
i )C and (

∏k
i=1 ε−1

i )C′
d < x imply that we have

QC/xd < (
∏k

i=1 εi)100/δ, and so all the hypotheses of Lemma 6.3 are satisfied. This
shows that there is a q0 ∈ Z

d such that at least Qδ of the triples (a,q,h) have
q = q0. Thus these all give rise to a rational aj/q where q =

∏d
i=1(q0)i. This gives

the result. ��
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7 Dimension Reduction via Geometry of Numbers and
Proposition 4.3

In this section we prove Proposition 4.3 using estimates from the geometry of num-
bers, thereby completing the proof of Theorem 1.1.

Lemma 7.1 (Many relations give rise to orthogonal generators). Let η > 0 be suffi-
ciently small in terms of k and d. Let B1, . . . , Bk > 1 satisfy

∏k
i=1 Bi ≤ η−1/2, and

βi,j ∈ R for 1 ≤ i ≤ k, 1 ≤ j ≤ d. Let R be the region in R
k+d defined by

R =

{

(h1, . . . , hk, a1, . . . , ad) ∈ R
k+d :

∣
∣
∣
∣
∣

k∑

i=1

hiβi,j − aj

∣
∣
∣
∣
∣
≤ ηj for 1 ≤ j ≤ d,

|hi| ≤ Bi for 1 ≤ i ≤ k} ,

and assume that #(R ∩ Z
k+d) = N , with N sufficiently large in terms of k and d.

Then there is an integer r ∈ {1, . . . , k} and vectors h(1), . . . ,h(r) ∈ Z
k and

a(1), . . . ,a(r) ∈ Z
d such that:

(1) (The h(j),a(j) are a system of Diophantine approximations.) For each j ∈
{1, . . . , r} the vector (h(j)

1 , . . . , h
(j)
k , a

(j)
1 , . . . , a

(j)
d ) lies in R ∩ Z

k+d.

(2) (The h(j) are quasi-orthogonal after rescaling.) Let h̃
(j)
i = h

(j)
i /Bi for 1 ≤ j ≤ r,

1 ≤ i ≤ k. Then we have

‖h̃(1) ∧ · · · ∧ h̃(r)‖ � ‖h̃(1)‖∞ · · · ‖h̃(r)‖∞.

(3) (The h(j) generate many elements of R∩Z
k+d). Let h̃(j) be as above. We have

‖h̃(1)‖∞ · · · ‖h̃(r)‖∞ � 1
N1/(d+1)

.

All implied constants depend at most on k and d.

We recall that ‖h(1) ∧ · · · ∧ h(r)‖ is the r-dimensional volume of the parallelepiped
formed by the vectors h(1), . . . ,h(r), which is the (Euclidean) length of the vector
in R

(k

r) of all determinants of r × r submatrices of the k × r matrix with columns
h(1), . . . ,h(r).

Proof. After potentially permuting the Bi and βi,j , we may assume without loss of
generality that B1 ≥ B2 ≥ · · · ≥ Bk. Let Λ ⊂ R

k+d be the lattice

Z

⎛

⎝ 1
B1

e1 −
d∑

j=1

β1,j

ηj
ek+j

⎞

⎠ + · · · + Z

⎛

⎝ 1
Bk

ek −
d∑

j=1

βk,j

ηj
ek+j

⎞

⎠

+Z
1
η
ek+1 + · · · + Z

1
ηd

ek+d,

where e1, . . . , ek+d are the standard basis vectors of Zk+d. We see that elements of
R∩Z

k+d correspond to elements of Λ with all components bounded by 1 in absolute
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value. By standard lattice theory, there is a basis b1, . . . ,bk+d of Λ (see [May20,
Lemma 4.1], for example) such that for any n1, . . . , nk+d ∈ Z we have

∥
∥
∥
∥
∥

k+d∑

i=1

nibi

∥
∥
∥
∥
∥

∞
�

k+d∑

i=1

|ni|‖bi‖∞ �
k+d∑

i=1

|ni|λi

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λk+d are the successive minima of Λ and the implied
constants depend only on k and d.

If λ1 ≤ 1/N1/(d+1) then the conclusion of the lemma is satisfied with r = 1 and
h

(1)
i = (b1)iBi for 1 ≤ i ≤ k and a

(1)
j = η(b1)k+j +

∑k
i=1(b1)iβi,jBi for 1 ≤ j ≤ d.

(Such a vector h(1) is non-zero since if b(1) was 0 in the first k coordinates it must
have norm at least 1/η > 1.) We see this choice satisfies the conclusion of the lemma.
Thus we may assume that λ1 > 1/N1/(d+1).

Recall that B1 · · ·Bk < η−1/2 and λ1 · · ·λk+d � det(Λ). We have that

1
det(Λ)

= vol

⎧
⎨

⎩
t ∈ R

d+k :

∥
∥
∥
∥
∥
∥

k∑

i=1

⎛

⎝ ti
Bi

ei +
d∑

j=1

tiβi,j

ηj
ek+j

⎞

⎠ −
d∑

i=1

tk+i

ηi
ek+i

∥
∥
∥
∥
∥
∥

∞

≤ 1

⎫
⎬

⎭

= B1 · · ·Bkη
d(d+1)/2

≤ ηd2/2.

In particular, λ1 · · ·λk 	 η−d/2 > 1, and so λj > 1 for some j (since η is sufficiently
small in terms of k and d). Since R∩Z

k+d �= ∅, we also have that λ1 ≤ 1. Thus there
must be some integer J such that λJ ≤ 1 < λJ+1. We note that for some suitably
large constant C (depending only on k and d)

{x ∈ Λ : ‖x‖∞ < 1} =

{
k+d∑

i=1

nibi : (n1, . . . , nk+d) ∈ Z
k+d,

∥
∥
∥
∥
∥

k+d∑

i=1

nibi

∥
∥
∥
∥
∥

∞
≤ 1

}

⊆
{

k+d∑

i=1

nibi : (n1, . . . , nk+d) ∈ Z
k+d,

k+d∑

i=1

|ni|‖bi‖∞ ≤ C

}

⊆
{

k+d∑

i=1

nibi : (n1, . . . , nk+d) ∈ Z
k+d, |ni| ≤ Cλ−1

i

}

.

The final set on the right hand side has cardinality

�
k∏

i=1

(

1 +
C

λi

)

� 1
λ1 · · ·λJ

.

Thus we have λ1 · · ·λJ � N−1. Since λ1 ≥ N−1/(d+1) we have λ1 · · ·λd ≥ N−d/(d+1) 	
λ1 · · ·λJ . Thus we see that J > d.

The determinant of Λ is given by the determinant of the (k+d)×(k+d) matrix M1

with columns b1, . . . ,bk+d, and satisfies det(Λ) = det(M1) � ‖b1‖∞ · · · ‖bk+d‖∞ �
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λ1 · · ·λk+d. This implies that some J×J submatrix M2 of the (k+d)×J matrix with
columns b1, . . . ,bJ has det(M2) � λ1 · · ·λJ . (If all such submatrices had determi-
nant bounded by δλ1 · · ·λJ , then by expanding the determinant of M1 into a sum of
such determinants, and using ‖bj‖∞ ≤ λj , we see the determinant of M1 would be
Ok(δλ1 · · ·λk+d), contradicting our lower bound if δ is sufficiently small in terms of k
and d). Similarly, we see that there is some choice of I = {i1, . . . , iJ−d} ⊆ {1, . . . , J}
such that the (J − d) × (J − d) submatrix MI of M2 formed by removing the final
d rows and removing the ith column for each i ∈ {1, . . . , J} \ I from M2 satisfies

det(MI) 	
∏

i∈I
λi.

(Consider expanding the determinant of M2 via the bottom d rows so that it is a sum
of O(1) of such determinants with the coefficient of det(MI) of size � ∏

i/∈I ‖bi‖∞ �∏
i/∈I λi.)
Let b′

i ∈ R
k be the vector formed by removing the last d coordinates of bi for

1 ≤ i ≤ k + d. The above discussion implies that

‖b′
i1 ∧ · · · ∧ b′

iJ−d
‖ ≥ det(MI) 	

∏

i∈I
λi ≥

∏

i∈I
‖b′

i‖∞,

since one of the (J − d) × (J − d) submatrices formed from taking J − d rows from
b′

i1
, . . . ,b′

iJ−d
is MI . (Recall that MI was formed from M2 be removing the final d

rows, and so cannot contain the row corresponding to the final d coordinates of the
bi.) Finally, on recalling that N−1/(d+1) ≤ λ1 ≤ · · · ≤ λJ and λ1 · · ·λJ � N−1, we
have

∏

i∈I
‖b′

i‖∞ � ‖b′
i1 ∧ · · · ∧ b′

iJ−d
‖ �

∏

i∈I
λi � Nd/(d+1)λ1 · · ·λJ � 1

N1/(d+1)
.

We now have the result of the lemma on putting r = J − d and taking

h(j) = (B1(bij
)1, . . . , Bk(bij

)k) ∈ Z
k,

a
(j)
� = η(bij

)k+� +
k∑

i=1

(bij
)iβi,�Bi for 1 ≤ � ≤ d,

for 1 ≤ j ≤ r = J − d. Note that this choice has h̃(j) = b′
ij
. ��

Lemma 7.2. Let H1 be a r × r invertible integer matrix and H2 an r × � integer
matrix. Let Λ1, Λ2 ⊆ Z

r and Λ3 ⊆ Z
� be lattices defined by

Λ1 = H1(Zr),

Λ2 = H1(Zr) + H2(Z�),

Λ3 = {y ∈ Z
� : ∃x ∈ Z

r s.t. H1x = H2y}.

Then

det(Λ1) = det(Λ3) det(Λ2).
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Proof. We first note that Λ1, Λ2, Λ3 are all full rank since H1 has non-zero determi-
nant. Let Λ1 have determinant D1 = det(H1) and Λ2 have determinant D2. Since
Λ1 ⊆ Λ2 ⊆ Z

r, D1 and D2 are integers with D2|D1. Since D1Z
r ⊆ Λ1, we have

that D1Z
� ⊆ Λ3. We also have that D1Z

r ⊆ D2Z
r ⊆ Λ2. Thus, letting [D1] denote

{1, . . . , D1}, we have

Dr
1

det(Λ2)
= #{z ∈ [D1]r : ∃x ∈ [D1]r,y ∈ [D1]� s.t. H1x − H2y = z (mod D1)}.

The number of representations r(z) of z as H1x − H2y with x ∈ [D1]r, y ∈ [D1]�

is either 0 (if z /∈ Λ2) or equal to r(0) (if z ∈ Λ2) by linearity. Thus, since∑
z∈[D1]r

r(z) = D�+r
1 , we have

Dr
1

det(Λ2)
=

D�+r
1

r(0)
.

But then we have that for any given y ∈ [D1]�, the number r2(y) of x ∈ [D1]r

such that H1x = H2y (mod D1) is either 0 (if H2y /∈ Λ1) or is equal to r2(0) (if
H2y ∈ Λ1). Thus

r(0) = #{y ∈ [D1]� : ∃x ∈ [D1]r s.t. H1x = H2y (mod D1)} · r2(0)

=
D�

1

det(Λ3)
· #{x ∈ [D1]r : H1x = 0 (mod D1)}

=
D�

1

det(Λ3)
· Dr

1

[D1Z
r : Λ1]

.

But det(Λ1) = D1 = [Λ1 : Zr], and [D1Z
r : Zr] = Dr

1 so [D1Z
r : Λ1] = Dr

1/ det(Λ1).
Thus we have

Dr
1

det(Λ2)
=

D�+r
1

r(0)
= det(Λ3) · [D1Z

r : Λ1] = Dr
1

det(Λ3)
det(Λ1)

. ��
Lemma 7.3 (Orthogonal relations give rise to reduced dimension problem). Let C >
2 and f1, . . . , fk ∈ R[X] be polynomials of degree at most d with f1(0) = · · · =
fk(0) = 0. Put fi(X) =

∑d
j=1 fi,jX

j .
Let B1, . . . , Bk ≥ 1 and q0 ∈ Z>0. Let η ∈ [0, 1/100] be such that

η <
qC
0

x
.

Let r ∈ {1, . . . , k} and h(1), . . . ,h(r) ∈ Z
k and a(1), . . . ,a(r) ∈ Z

d satisfy:

(1) |h(�)
i | ≤ Bi for 1 ≤ i ≤ k and 1 ≤ � ≤ r.

(2) For 1 ≤ � ≤ r and 1 ≤ j ≤ d we have
∣
∣
∣
∣
∣

k∑

i=1

h
(�)
i fi,j − a

(�)
j

q0

∣
∣
∣
∣
∣
≤ ηj .
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(3) Put h̃
(�)
i = h

(�)
i /Bi for 1 ≤ � ≤ r and 1 ≤ i ≤ k. We have

‖h̃(1) ∧ · · · ∧ h̃(r)‖ � ‖h̃(1)‖∞ · · · ‖h̃(r)‖∞,

and

‖h̃(1)‖∞ · · · ‖h̃(r)‖∞ � 1

q
1/C
0

.

Then there is an integer k′ < k, real polynomials g1, . . . , gk′ ∈ R[X] of degree at
most d with g1(0) = · · · = gk′(0) = 0 and quantities B′

1, . . . , B
′
k′ ≥ 2 and y < x such

that:

(1) (Approximations in the new system produce approximations in the old system)
If there is an integer n′ < y such that

‖gi(n′)‖R/Z <
1
B′

i

for all 1 ≤ i ≤ k′

then there is an integer n < x such that

‖fi(n)‖R/Z <
1
Bi

for all 1 ≤ i ≤ k.

(2) (Increased density of approximations) We have

y

(B′
1 · · ·B′

k′)3C2−C2/k′3 	 x

(B1 · · ·Bk)3C2−C2/k3−C2/k4 .

All implied constants depend only on k and d.

Proof. Let M̃ be the r × k matrix with rows h̃(1), . . . , h̃(r), and M be the r × k
matrix with rows h(1), . . . ,h(r). Let H̃1 be the r × r submatrix of M̃ with largest
determinant (in absolute value). By permuting the coordinates, (and permuting the
fi), we may assume that H̃1 is formed by taking the first r columns of M̃ . Let H̃2

be the r × (k − r) matrix formed by taking the final k − r columns of M̃ . Similarly,
let H1 be the matrix formed by taking the first r columns of M , and H2 formed by
taking the last k − r columns of M .

By the set-up of the lemma, we have for each j ∈ {1, . . . , d}

H̃1

⎛

⎜
⎝

f1,jB1
...

fr,jBr

⎞

⎟
⎠ = −H̃2

⎛

⎜
⎝

fr+1,jBr+1
...

fk,jBk

⎞

⎟
⎠ +

1
q0

⎛

⎜
⎜
⎝

a
(1)
j
...

a
(r)
j

⎞

⎟
⎟
⎠ + O(ηj). (7.1)

By construction, det(H̃1) is the largest determinant of any r × r submatrix of M
formed with columns h̃(1), . . . , h̃(r), and so det(H̃1) 	 ‖h̃(1) ∧ · · · ∧ h̃(r)‖. By the
assumption of the lemma we have ‖h̃(1) ∧ · · · ∧ h̃(r)‖ 	 ‖h̃(1)‖∞ · · · ‖h̃(r)‖∞, and so
det(H̃1) � ‖h̃1‖∞ · · · ‖h̃r‖∞. It follows that (H−1)i,j � ‖h̃j‖−1∞ for all 1 ≤ i, j ≤ r.
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We multiply (7.1) by nj and then sum over j ∈ {1, . . . , d}. Rearranging, we find
that for any choice of b1, . . . , bk ∈ Z, we have

⎛

⎜
⎝

(f1(n) − b1)B1
...

(fr(n) − br)Br

⎞

⎟
⎠ = −H̃−1

1 H̃2

⎛

⎜
⎝

(fr+1(n) − br+1)Br+1
...

(fk(n) − bk)Bk

⎞

⎟
⎠

+ H̃−1
1

⎛

⎜
⎜
⎝H2

⎛

⎜
⎝

br+1
...
bk

⎞

⎟
⎠ − H1

⎛

⎜
⎝

b1
...
br

⎞

⎟
⎠ +

1
q0

⎛

⎜
⎜
⎝

∑d
j=1 a

(1)
j nj

...
∑d

j=1 a
(r)
j nj

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠

+ O

⎛

⎜
⎝(nη + ndηd)

⎛

⎜
⎝

1/‖h̃1‖∞
...

1/‖h̃r‖∞

⎞

⎟
⎠

⎞

⎟
⎠ .

We note that (H̃2)i,j � ‖h̃(i)‖∞ for all 1 ≤ i ≤ r and 1 ≤ j ≤ k − r. Recalling that
(H̃−1

1 )i,j � ‖h̃(j)‖−1∞ for all 1 ≤ i, j ≤ r, we see that all entries of H̃−1
1 H̃2 are of size

O(1). In particular, if b1, . . . , bk are such that for each r + 1 ≤ j ≤ k

|fj(n) − bj | ≤ δ

Bj
, (7.2)

then we have that

−H̃−1
1 H̃2

⎛

⎜
⎝

(fr+1(n) − br+1)Br+1
...

(fk(n) − bk)Bk

⎞

⎟
⎠ = O(δ).

If we have δ < 1 and

n ≤ δ mini ‖h̃i‖∞
η

, (7.3)

then (recalling ‖h̃i‖∞ ≤ 1)

(nη + ndηd)

⎛

⎜
⎝

1/‖h̃1‖∞
...

1/‖h̃r‖∞

⎞

⎟
⎠ = O(δ).

Thus, if (7.2) and (7.3) hold and also we have

H1

⎛

⎜
⎝

b1
...
br

⎞

⎟
⎠ − H2

⎛

⎜
⎝

br+1
...
bk

⎞

⎟
⎠ =

1
q0

⎛

⎜
⎜
⎝

∑d
j=1 a

(1)
j nj

...
∑d

j=1 a
(r)
j nj

⎞

⎟
⎟
⎠ , (7.4)
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then we have for each 1 ≤ i ≤ r

‖fi(n)‖R/Z � δ

Bi
.

In particular, we have ‖fi(n)‖R/Z ≤ 1/Bi for 1 ≤ i ≤ r if δ is chosen to be a
sufficiently small constant (depending only on k and d) provided (7.4), (7.2) and
(7.3) hold.

Let Λ1 ⊆ Λ2 ⊆ Z
r be full-rank lattices defined in terms of the matrices H1, H2

by

Λ1 = H1(Zr), Λ2 = H1(Zr) + H2(Zk−r).

(They are both full rank since H1 has non-zero determinant.) Let Λ1 have determi-
nant D1 = det(H1) and Λ2 have determinant D2. Since Λ1 ⊆ Λ2 ⊆ Z

r, D1 and D2

are integers with D2|D1. Any sublattice of Zr with determinant D2 contains D2Z
r.

Therefore for each j ∈ {1, . . . , d} there exists a choice of b′
1,j , . . . , b

′
k,j ∈ Z such that

H1

⎛

⎜
⎝

b′
1,j
...

b′
r,j

⎞

⎟
⎠ − H2

⎛

⎜
⎝

b′
r+1,j
...

b′
k,j

⎞

⎟
⎠ = Dj

2q
j−1
0

⎛

⎜
⎜
⎝

a
(1)
j
...

a
(r)
j

⎞

⎟
⎟
⎠ .

We restrict our attention to bi of the form bi =
∑d

j=1 b′
i,jn

j/qj
0D

j
2 + b′′

i for 1 ≤ i ≤ k,
where b′′

1, . . . , b
′′
k ∈ Z satisfy

H1

⎛

⎜
⎝

b′′
1
...
b′′
r

⎞

⎟
⎠ − H2

⎛

⎜
⎝

b′′
r+1
...
b′′
k

⎞

⎟
⎠ = 0. (7.5)

To ensure that b1, . . . , bk ∈ Z, we will restrict our consideration to integers n such
that D2q0|n.

The equation (7.5) forces (b′′
r+1, . . . , b

′′
k) to lie in a rank r −k lattice Λ3, given by

Λ3 = {y ∈ Z
k−r : ∃x ∈ Z

r s.t. H1x = H2y}.

By Lemma 7.2, Λ3 has determinant D1/D2.
Let z1, . . . , zr−k be a Minkowski-reduced basis for Λ3, so in particular D1/D2 =

det(Λ3) � ‖z1‖∞ · · · ‖zk−r‖∞. Let n = D2q0n
′ for some n′ ∈ Z. We see that we

can find (b1, . . . , bk) satisfying the conditions (7.4) and (7.2) provided we can find
m1, . . . , mk−r ∈ Z such that for r + 1 ≤ i ≤ k we have

∣
∣
∣
∣
∣
∣
fi(D2q0n

′) −
d∑

j=1

b′
i,j(n

′)j −
k−r∑

i=1

mi(zi)j−r

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
f̃i(n′) −

k−r∑

i=1

mi(zi)j−r

∣
∣
∣
∣
∣

≤ δ

Bj
. (7.6)
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Here we have set f̃i(X) ∈ R[X] to be the polynomial

f̃i(X) = fi(D2q0X) −
d∑

j=1

b′
i,jX

j

for each i ∈ {r + 1, . . . , k}. We note that f̃ has degree at most d and has f̃i(0) = 0.
Let Z be the (k − r) × (k − r) matrix with columns z1, . . . , zr−k. Since det(Z) �

‖z1‖∞ · · · ‖zr−k‖∞ we have that Z−1
i,j � ‖zj‖−1∞ . Thus we see that if we can find n′

and m1, . . . , mk−� such that
∣
∣
∣
∣
∣
∣
∣

Z−1

⎛

⎜
⎝

f̃r+1(n′)
...

f̃k(n′)

⎞

⎟
⎠ −

⎛

⎜
⎝

m1
...

mk−r

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

≤ δ2

⎛

⎜
⎝

1/(Br+1‖z1‖∞)
...

1/(Bk‖zr−k‖∞)

⎞

⎟
⎠ ,

then (7.6) holds if δ is a sufficiently small constant (depending only on k). We now
let k′ = k − r and B′

i = δ−2Br+i‖zi‖∞ and g1, . . . , gk−r ∈ R[X] be given by
⎛

⎜
⎝

g1(n′)
...

gk−r(n′)

⎞

⎟
⎠ = Z−1

⎛

⎜
⎝

f̃r+1(n′)
...

f̃k(n′)

⎞

⎟
⎠ .

We see that the gi are polynomials of degree at most d with gi(0) = 0 since the f̃i

are. Finally, we put y = δx mini ‖h̃i‖∞/(qC+1
0 D2), and note that since η < qC

0 /x we
have y < δ mini ‖h̃i‖∞/(ηq0D2).

Putting everything together, we see that if there is an n′ < y such that

‖g(n′)‖R/Z ≤ 1
B′

i

for 1 ≤ i ≤ k′ = k − r, then there is an n = n′q0D2 with n < x and n <
δ mini ‖h̃i‖∞/η such that

‖fi(n)‖R/Z ≤ 1
Bi

for 1 ≤ i ≤ k.
Thus we are left to verify the size estimates with this choice of B′

1, . . . , B
′
k−r and

y. We have that (recalling that 1/δ = O(1))

k−r∏

i=1

B′
i =

‖z1‖∞ · · · ‖zk−r‖∞
∏k

i=r+1 Bi

δ2(k−r)

� D1
∏k

i=r+1 Bi

D2
.
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This implies that

y

(
∏k−r

i=1 B′
i)C2

=
δx mini ‖h̃i‖∞

qC+1
0 D2(

∏k−r
i=1 B′

i)C2

	 xDC2
2 mini ‖h̃i‖∞

qC+1
0 DC2

1 (
∏k

i=r+1 Bi)C2
.

We recall that D1 = det(H1) � ‖h1‖∞ · · · ‖hr‖∞ � B1 · · ·Br/q
1/C
0 , and that

mini ‖h̃i‖∞ 	 ∏r
i=1 ‖h̃i‖∞ 	 D1/(B1 · · ·Br). This gives

y

(
∏k−r

i=1 B′
i)C2

	 x

(
∏k

i=r+1 Bi)C2

DC2−1
2

DC2−1
1 qC+1

0 B1 · · ·Br

	 x

(
∏k

i=1 Bi)C2
q
(C2−1)/C−C−1
0 DC2−1

2 .

Finally, we choose C2 = 3C2−C2/(k−r)3. Since D2, q0 ≥ 1 and (C2−1)/C−C−1 >
0, this gives

y

(
∏k−r

i=1 B′
i)3C2−C2/(k−r)3

	 x

(B1 · · ·Br)3C2−C2/(k−r)3
.

Since k > r ≥ 1 we have 1/(k − r)3 ≥ 1/k3 + 1/k4, which gives the result. ��
Proof of Proposition 4.3. Lemma 7.1 (taking βi,j = fi,j , η = QC/x and Bi �
ε−1
i Δ−2/(2k)4) shows that if the assumptions of Proposition 4.3 hold then we can find

a subset of essentially orthogonal generators. Using these generators in Lemma 7.3
then gives the required conclusion by taking ε′

i = 1/B′
i. Indeed, the first two claims

of the proposition are clear. For the final claim we note that

y(ε′
1 · · · ε′

k′)3C2−C2/k′3
=

y

(B′
1 · · ·B′

k′)3C2−C2/k′3

	 x

(B1 · · ·Bk)3C2−C2/k3−C2/k4

= x(ε1 · · · εkΔ2k/(2k)4)(3C2−C2/k3−C2/k4)

	 x(ε1 · · · εk)3C2−C2/k3
.

This gives the final claim, establishing Proposition 4.3. ��
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