Skip to main content
Log in

Kähler–Einstein metrics on group compactifications

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We obtain a necessary and sufficient condition of existence of a Kähler–Einstein metric on a G × G-equivariant Fano compactification of a complex connected reductive group G in terms of the associated polytope. This condition is not equivalent to the vanishing of the Futaki invariant. The proof relies on the continuity method and its translation into a real Monge–Ampère equation, using the invariance under the action of a maximal compact subgroup K × K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexeev, V., Brion, M.: Stable reductive varieties. II. Projective case. Adv. Math. 184(2), 380–408 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9(6), 641–651 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexeev, V., Katzarkov, L.: On \(K\)-stability of reductive varieties. Geom. Funct. Anal. 15(2), 297–310 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Azad and J.-J. Loeb. Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces. Indag. Math. (N.S.), 3(4):365–375, 1992

  5. T. Aubin. Équations du type Monge-Ampère sur les variétés kähleriennes compactes. C. R. Acad. Sci. Paris Sér. A-B, 283(3):Aiii, A119–A121, 1976

  6. Bielawski, R.: Prescribing Ricci curvature on complexified symmetric spaces. Math. Res. Lett. 11(4), 435–441 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brion, M., Kumar, S.: Frobenius splitting methods in geometry and representation theory. Progress in Mathematics, vol. 231. Birkhäuser Boston Inc, Boston, MA (2005)

    MATH  Google Scholar 

  8. Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. Ecole Norm. Sup. 3(73), 157–202 (1956)

    MATH  Google Scholar 

  9. A. Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991

  10. Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397–424 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brion, M.: The total coordinate ring of a wonderful variety. J. Algebra 313(1), 61–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28(1), 183–197 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \(2\pi \). J. Amer. Math. Soc. 28(1), 199–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \(2\pi \) and completion of the main proof. J. Amer. Math. Soc. 28(1), 235–278 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Chen, S. Sun, B. Wang. Kähler-Ricci flow, Kähler-Einstein metric and K-stability. arXiv:1508.04397

  16. C. De Concini and C. Procesi. Complete symmetric varieties. In Invariant theory (Montecatini, 1982), volume 996 of Lecture Notes in Math., pages 1–44. Springer, Berlin, 1983

  17. T. Delcroix. K-stability of Fano spherical varieties. arXiv:1608.01852

  18. T. Delcroix. Log canonical thresholds on group compactifications. arXiv:1510.05079v1

  19. T. Delcroix. Métriques de Kähler-Einstein sur les compactifications de groupes. Theses, Université Grenoble Alpes, October 2015.

  20. S. K. Donaldson. Kähler geometry on toric manifolds, and some other manifolds with large symmetry. In Handbook of geometric analysis. No. 1, volume 7 of Adv. Lect. Math. (ALM), pages 29–75. Int. Press, Somerville, MA, 2008

  21. T. Darvas and Y. Rubinstein. Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. arXiv:1506.07129v2

  22. V. Datar and G. Székelyhidi. Kähler-Einstein metrics along the smooth continuity method. arXiv:1506.07495

  23. W. Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry

  24. Gagliardi, G., Hofscheier, J.: Gorenstein spherical Fano varieties. Geom. Dedicata 178, 111–133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gandini, J., Ruzzi, A.: Normality and smoothness of simple linear group compactifications. Math. Z. 275(1–2), 307–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978

  27. Hochschild, G.: The structure of Lie groups. Holden-Day Inc, San Francisco-London-Amsterdam (1965)

    MATH  Google Scholar 

  28. John, F.: Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pages 187–204. Interscience Publishers Inc., New York, N. Y. (1948)

  29. Kazarnovskiĭ, B.Y.: Newton polyhedra and Bezout's formula for matrix functions of finite-dimensional representations. Funktsional. Anal. i Prilozhen. 21(4), 73–74 (1987)

    MathSciNet  Google Scholar 

  30. A. W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston Inc, Boston, MA, second edition, 2002

  31. Li, C.: Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226(6), 4921–4932 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mabuchi, T.: Einstein-K ähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24(4), 705–737 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Matsushima, Y.: Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne. Nagoya Math. J. 11, 145–150 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Oda. Convex bodies and algebraic geometry, volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese

  35. Perrin, N.: On the geometry of spherical varieties. Transform. Groups 19(1), 171–223 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pezzini, G.: Automorphisms of wonderful varieties. Transform Groups 14(3), 677–694 (2009)

    Article  MathSciNet  Google Scholar 

  37. Podestà, F., Spiro, A.: Kähler-Ricci solitons on homogeneous toric bundles. J. Reine Angew. Math. 642, 109–127 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Ruzzi, A.: Fano symmetric varieties with low rank. Publ. Res. Inst. Math. Sci. 48(2), 235–278 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. T. Siu. The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group. Ann. of Math. (2), 127(3):585–627, 1988

  40. Székelyhidi, G.: Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147(1), 319–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds with \(C_1(M) > 0\). Invent. Math. 89(2), 225–246 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian, G.: K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68(7), 1085–1156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. D. A. Timashev. Homogeneous spaces and equivariant embeddings, volume 138 of Encyclopaedia of Mathematical Sciences. Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8

  44. Wang, X.-J., Zhu, X.: Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  46. Zhang, X., Zhang, X.: Generalized Kähler-Einstein metrics and energy functionals. Canad. J. Math. 66(6), 1413–1435 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Delcroix.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delcroix, T. Kähler–Einstein metrics on group compactifications. Geom. Funct. Anal. 27, 78–129 (2017). https://doi.org/10.1007/s00039-017-0394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-017-0394-y

Navigation