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ERRATUM TO: A VARIATIONAL APPROACH TO
GIVENTAL’S NONLINEAR MASLOV INDEX

Peter Albers and Urs Frauenfelder

Abstract. In this article we consider a variant of Rabinowitz Floer homology in
order to define a homological count of discriminant points for paths of contacto-
morphisms. The growth rate of this count can be seen as an analogue of Givental’s
nonlinear Maslov index. As an application we prove a Bott–Samelson type obstruc-
tion theorem for positive loops of contactomorphisms.

1 Introduction

In [Giv89,Giv90a,Giv90b] Givental introduces his nonlinear Maslov index for the
prequantization spaces RP 2n−1. This concept had remarkable applications to sym-
plectic topology, for instance concerning the orderability of contact manifolds (see
[EP00]) the existence of Calabi quasimorphisms (see [EP03,BS07]) and existence of
Legendrian chords.

Let (Σ, ξ = kerα) be a cooriented contact manifold. Givental’s nonlinear Maslov
index is formally defined as the intersection number of a path of contactomorphisms
with the discriminant

{ϕ ∈ Cont(Σ, ξ) | ∃x ∈ Σ such that ϕ(x) = x and ϕ∗α|x = α|x}. (1.1)

Unfortunately, the discriminant has codimension-1 singularities (see [Giv90b]). For
Σ = RP2n−1 Givental resolves this problem by constructing the tail or train which
is a subset of the discriminant and defines an cooriented codimension-1 cycle. The
nonlinear Maslov index on RP2n−1 is then the intersection number with this cycle.
It seems very difficult to extend Givental’s constructions to other contact manifolds.
Givental already suggested to use Floer theoretic methods in the general case. In
this article we define a homological count of discriminant points for positive paths
of contactomorphisms (see Definition 2.1). Positive paths play a prominent role in
the theory of orderable contact manifolds by Eliashberg and Polterovich [EP00]. We
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use the following observation to give a variational characterization of the
discriminant.

Observation (cf. Remark 3.3). For every positive path of contactomorphisms there
exists a time-dependent Rabinowitz action functional whose critical points are in 1-1
correspondence to the discriminant points of the positive path.

Theorem (cf. Theorems 4.8 and 4.13 and Definition 4.16). If the contact mani-
fold admits an exact symplectic filling then we can assign a filtered Rabinowitz Floer
homology group to a generic positive path of contactomorphisms. It depends only
on the homotopy class with fixed end points of the positive path and is invariant
under conjugation of the path.

Our replacement for Givental’s nonlinear Maslov index for a positive path is
the growth rate of the filtered Rabinowitz Floer homology groups associated to this
positive path. We point out that the Rabinowitz Floer homology groups depend on
the choice of an exact symplectic filling as explicit examples show (see Section 5). For
unit cotangent bundles the growth rate of the Rabinowitz Floer homology groups
is related to growth rates of geodesics. As an application we prove the following
theorem.

Theorem (cf. Theorem 7.1). Let B be a closed manifold with finite fundamental
group such that the rational cohomology ring has at least two generators. Then
Σ := S∗B with its standard contact structure ξ admits no closed positive loops in
Cont(Σ, ξ).

This can be thought of as a generalization of the classical Bott–Samelson theorem
(see [Bes78]) to positive loops of contactomorphisms.

Remark 1.1. Eliashberg and Polterovich [EP00] that the absence of positive con-
tractible loops of contactomorphisms implies that the cone in C̃ont0(Σ, ξ) given by
non-negative paths of contactomorphisms defines a partial order on C̃ont0(Σ, ξ).

Leonid Polterovich explained to us that the absence of positive loops (contract-
ible or not) implies that the cone in Cont0(Σ, ξ) given by contactomorphisms which
can be joined to the identity by a non-negative path defines a partial order on
Cont0(Σ, ξ). In other words the partial order descends from the universal cover
C̃ont0(Σ, ξ) to Cont0(Σ, ξ).

Finally we like to point out that in Section 5 we show that the homological
intersection number defined below detects the rotation number for Σ = S1. On S1

Givental’s nonlinear Maslov index is given by the rotation number.

2 Positive Contact Isotopies

Let (Σ, ξ) be a cooriented contact manifold. We fix a contact form α for ξ.
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Definition 2.1. A smooth path {ϕt}t∈R in Cont(Σ) based at the identity is called
positive resp. twisted periodic if the function ht : Σ → R defined by

ht(ϕt(x)) := αϕt(x)

(
d

dt
ϕt(x)

)
(2.1)

is positive resp. 1-periodic. We set

P ≡ P(Σ, ξ) := {{ϕt}t∈R | {ϕt}t∈R is positive and twisted periodic}. (2.2)

Remark 2.2. The above definition is independent of the chosen contact form as
long as it defines the same coorientation. Moreover, ϕt is twisted periodic if and
only if ϕt+1 = ϕtϕ1 for all t ∈ R. In particular, a twisted periodic path satisfies
ϕm1 = ϕm for all m ∈ Z.

We denote by (SΣ := Σ × R>0, ω := d(rα)), r ∈ R≥0, the symplectization of Σ.

Proposition 2.3. The contact isotopy ϕt admits a lift to a Hamiltonian isotopy φt
of SΣ as follows:

φt(x, r) :=
(
ϕt(x),

r

ρt(x)

)
: SΣ → SΣ (2.3)

where ρt(x) : Σ → R>0 is defined by ϕ∗
tα|x = ρt(x)α|x. Moreover, φt is generated by

the Hamiltonian function Ht : SΣ → R given by

Ht(x, r) = rht(x). (2.4)

The proof of Proposition 2.3 can be found after Remark 2.6.

Definition 2.4. The function Ht : SΣ → R is called the contact Hamiltonian
associated to {ϕt}.

Following Givental [Giv89,Giv90a,Giv90b] we make the following definition.

Definition 2.5. Let {ϕt} be a smooth path in Cont(Σ). Then a pair (x, η) ∈ Σ×R

is called a discriminant point (with respect to {ϕt}) if

{
ϕη(x) = x
ϕ∗
ηα|x = α|x. (2.5)

Remark 2.6. We point out that for a pair (x, η) being a discriminant point is equiv-
alent to φη(x, r) = (x, r) for any r > 0 (see Proposition 2.3).

Proof of Proposition 2.3. We prove the stronger fact that φt preserves the 1-form
rα:

φ∗
t (rα)|(x,r) = r

ρt(x)
· ϕ∗

tα|x = rα|x. (2.6)
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We set

Yt(ϕt(x)) :=
d

dt
ϕt(x) (2.7)

and compute

Xt(φt(x, r)) :=
d

dt
φt(x, r)

= Yt(ϕt(x)) − r
ρ̇t(x)
ρ2
t (x)

∂

∂r
. (2.8)

Since φt preserves λ := rα we use Lemma 2.7 and compute

Ht = λ(Xt) = rα(Yt) = rht. (2.9)

��
Lemma 2.7. Let ω = dλ be an exact symplectic form and X a vector field satisfying

LXλ = 0 (2.10)

where L is the Lie derivative. Then the Hamiltonian vector field XH of the function
H := λ(X) equals X:

XH = X. (2.11)

Proof. From H = iXλ we compute using Cartan’s formula

dH = d(iXλ)
= 7LXλ− iXdλ

= −iXω. (2.12)

��
Remark 2.8. In particular, we have the equality

λ(XH) = H. (2.13)

3 The Rabinowitz Action Functional for Time-dependent
Hamiltonians and a Variational Approach to Discriminant Points

Let (M,ω = dλ) be an exact symplectic manifold and F : M × R → R a smooth
function. We denote by L := W 1,2(R/Z,M) the free loop space of M and define
the Rabinowitz action functional

A : L × R −→ R

(u, η) �→ A(u, η) =

1∫
0

u∗λ− η

1∫
0

Fηt(u(t))dt. (3.1)
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Its critical points (u, η) ∈ CritA satisfy

u̇(t) = ηXFηt
(u(t))

∫ 1

0

[
Fηt(u(t)) + ηtḞηt(u(t))

]
dt = 0

⎫⎪⎬
⎪⎭ . (3.2)

By the first equation we have

d

dt
Fηt(u(t)) = ηḞηt(u(t)) + dFηt(u(t))[u̇(t)]

= ηḞηt(u(t)) + dFηt(u(t))[ηXFηt
(u(t))]

= ηḞηt(u(t)) − ω
(
XFηt

(u(t)), ηXFηt
(u(t))

)
︸ ︷︷ ︸

=0

.

(3.3)

Thus, the second equation becomes after integration by parts

0 =

1∫
0

[
Fηt(u(t)) + ηtḞηt(u(t))

]
dt

=

1∫
0

[
Fηt(u(t)) + t

d

dt
Fηt(u(t))

]
dt

=

1∫
0

⎡
⎢⎢⎣Fηt(u(t)) −

(
d

dt
t

)
Fηt(u(t))︸ ︷︷ ︸

=0

⎤
⎥⎥⎦ dt+ tFηt(u(t))

∣∣∣1
0

= Fη(u(1)). (3.4)

We proved the following lemma.

Lemma 3.1. A pair (u, η) ∈ L ×R is a critical point of A if and only if the following
equations hold

u̇(t) = ηXFηt
(u(t))

Fη(u(1)) = 0

}
. (3.5)

Lemma 3.2. If the function Ft satisfies

λ(XFt
) = Ft + κ (3.6)

for some κ ∈ R then

A(u, η) = κη ∀(u, η) ∈ CritA. (3.7)



GAFA A VARIATIONAL APPROACH TO GIVENTAL’S NONLINEAR MASLOV INDEX 487

Proof. Using the critical point equation for A we see

A(u, η) =

1∫
0

λ[ηXFηt
(u(t))]dt− η

1∫
0

Fηt(u(t))dt

=

1∫
0

ηFηt(u(t))dt+ κη − η

1∫
0

Fηt(u(t))dt

= κη. (3.8)

��
Remark 3.3. If Ft = rht(x)−κ, where rht is the contact Hamiltonian of a positive
and twisted periodic path {ϕt} ∈ P, then discriminant points are in 1-1 correspon-
dence with critical points of Aκ := 1

κA where M = SΣ (see Proposition 2.3 and
Lemma 3.1).

4 A Homological Maslov Index (Periodic Case)

Let (Σ, ξ) be a closed, cooriented contact manifold and α a fixed contact form. We
assume that there exists a compact exact symplectic manifold (M̃, dλ̃) with Σ = ∂M̃

and α = λ|Σ. We attach to M̃ the positive part of the symplectization of Σ, that is,

M := M̃ ∪Σ Σ × {r ≥ 1}. (4.1)

On M we define a 1-form λ by λ̃ on M̃ and λ = rα on Σ × {r ≥ 1}. In partic-
ular, (M,ω = dλ) is an exact symplectic manifold. We point out, that the entire
symplectization SΣ of Σ embeds into M via the flow of the Liouville vector field
of λ.

Convention 4.1. In the following we only consider positive and twisted periodic
path, i.e. {ϕt} ∈ P(Σ, ξ) (see Definition 2.1).

We need to extend the functions of the form Ft = rht(x) − κ defined on the
symplectization SΣ over the filling M̃ . In order to control the actions of additional
critical points of A coming from the extension of Ft we fix R, κ > 1 with Rκ > 2
and choose a smooth function βR : R≥0 → [0, 1] satisfying

βR(r) =

⎧⎪⎨
⎪⎩

0 r ≤ 1
1 2 ≤ r ≤ Rκ

0 r ≥ Rκ+ 1

(4.2)

and {
0 ≤ β′

R(r) ≤ 2 1 ≤ r ≤ 2
−2 ≤ β′

R(r) ≤ 0 Rκ ≤ r ≤ Rκ+ 1.
(4.3)
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Moreover, we define

h(r) =

{
m r ≤ 2
M r > 2

(4.4)

where

0 < m ≤ min{ht(x) | x ∈ Σ, t ∈ R} (4.5)

and

M ≥ max{ht(x) | x ∈ Σ, t ∈ R}. (4.6)

m and M are well-defined since ht is 1-periodic. We set

F κ,Rt (z) :=

{
r[βR(r)ht(x) + (1 − βR(r))h(r)] − κ z = (x, r) ∈ SΣ
−κ z ∈ M \ SΣ

(4.7)

and consider the normalized Rabinowitz action functional

Aκ,R : L × R −→ R

(u, η) �→ Aκ,R(u, η) =
1
κ

⎛
⎝

1∫
0

u∗λ− η

1∫
0

F κ,Rηt (u(t))dt

⎞
⎠ . (4.8)

Obviously, the critical point equation does not change if we divide by κ, thus (u, η) ∈
CritAκ,R if and only if

u̇(t) = ηXFκ,R
ηt

(u(t))

F κ,Rη (u(1)) = 0

⎫⎬
⎭ . (4.9)

A glimpse at Lemma 3.2 reveals the reason why we divide by κ. In order to define
Floer homology for Aκ,R it is necessary to establish a bound on the Lagrange mul-
tiplier η along gradient flow lines in terms of the action of the corresponding critical
points (see Lemma 4.5). For this we need the following.

Lemma 4.2. Let (u, η) ∈ CritAκ,R be a critical point. Then

|Aκ,R(u, η)| ≥ |η|. (4.10)

Proof. We compute

λ(XFκ,R
ηt

) = dF κ,Rηt (r ∂∂r )

= F κ,Rηt + κ+ r2β′
R(r)[hηt(x) − h(r)]. (4.11)

We point out that

β′
R(r)[hηt(x) − h(r)] ≥ 0 (4.12)
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holds (see (4.2) and (4.3)). We estimate

|Aκ,R(u, η)| =
1
κ

∣∣∣∣∣∣
1∫

0

λ
(
ηXFκ,R

ηt
(u)
)− η

1∫
0

F κ,Rηt (u)dt

∣∣∣∣∣∣

=
|η|
κ

∣∣∣∣∣∣
1∫

0

[
F κ,Rηt (u) + κ+ r2β′

R(r)
[
hηt(x) − h(r)

]− F κ,Rηt (u)
]
dt

∣∣∣∣∣∣

=
|η|
κ

∣∣∣∣∣∣∣
κ+

1∫
0

r2 β′
R(r)[hηt(x) − h(r)]︸ ︷︷ ︸

≥0

dt

∣∣∣∣∣∣∣
≥ |η|. (4.13)

This finishes the proof. ��
In the next proposition and corollary we prove that in a given action window no

additional critical points appear for appropriate choices of κ and R.

Proposition 4.3. Given a < b there exists κ0 = κ0(a, b) > 0 and R0 = R0(a, b) ≥ 0
such that for all κ ≥ κ0 and R ≥ R0 the following holds. Let (u, η) ∈ CritAκ,R be a
critical point with critical value between a and b

a < Aκ,R(u, η) < b (4.14)

then u(t) = (x(t), r(t)) ∈ Σ × (2, Rκ) for all t ∈ S1 and Aκ,R(u, η) = η.

Proof. By Lemma 4.2 we have

|η| ≤ max{|a|, |b|}. (4.15)

We set

C ≡ C(a, b) := max

{∣∣∣∣∣η · ρ̇ηt(x)
ρ2
ηt(x)

∣∣∣∣∣ : x ∈ Σ, t ∈ [0, 1], |η| ≤ max{|a|, |b|}
}
. (4.16)

We fix κ0 > max{1, 3MeC}, R0 > max{ 1
me

C+1, 1
M } and choose κ ≥ κ0 and R ≥ R0.

Step 1: We prove that u(1) = (x(1), r(1)) ∈ Σ × [2, Rκ] and r(1)hη(x(1)) = κ.

Proof of Step 1. We examine three cases.

Case 1: We assume that u(1) 
∈ Σ × [1, Rκ+ 1].
We first observe that if u(1) 
∈ SΣ then F κ,Rη (u(1)) = −κ < 0. Therefore, the

critical point equation implies u(1) = (x(1), r(1)) ∈ SΣ. Since r(1) 
∈ [1, Rκ+ 1] we
have βR(r(1)) = 0 and therefore

0 = F κ,Rη (u(1)) = r(1)h(r(1)) − κ. (4.17)
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So either r(1) ≤ 1 and κ = r(1)m ≤ m or r(1) ≥ Rκ+1 and κ = r(1)M ≥ RMκ+M .
The former contradicts the assumption κ ≥ κ0 > 3MeC > m and the latter contra-
dicts the assumption RM > 1.

Case 2: We assume that 1 ≤ r(1) ≤ 2.
For simplicity we write r = r(1) and x = x(1). Using M ≥ hη(x) ≥ h(r) = m

and 0 ≤ βR(r) ≤ 1 we estimate using the critical point equation

κ = r[βR(r)hη(x) + (1 − βR(r))h(r)]
= r[βR(r)(hη(x) − h(r)) + h(r)]
≤ r[(hη(x) − h(r)) + h(r)]
≤ rhη(x)
≤ rM

≤ 2M. (4.18)

This contradicts κ0 > 3MeC > 2M .

Case 3: We assume that Rκ ≤ r(1) ≤ Rκ+ 1.
Again for simplicity we write r = r(1) and x = x(1). Using that hη(x) ≤ h(r)

and β(r) ≥ 0 we estimate

κ = r[βR(r)(hη(x) − h(r)) + h(r)]
≥ r[(hη(x) − h(r)) + h(r)]
= rhη(x)
≥ Rκm. (4.19)

This contradicts the assumption RM ≥ Rm > 1.
From the three cases we conclude that 2 ≤ r(1) ≤ Rκ. The definition of βR and

the critical point equation (see Lemma 3.1) imply

0 = F κ,Rη (u(1)) = r(1)hη(x(1)) − κ. (4.20)

This proves Step 1. ��
Step 2: We prove that u(t) = (x(t), r(t)) ∈ Σ × (2, Rκ) for all t ∈ S1.

Proof of Step 2. We set

I := {t ∈ [0, 1] | u(t) ∈ Σ × (2, Rκ)}. (4.21)

By Step 1 we have
κ

M
≤ r(0) = r(1) =

κ

hη(x(1))
≤ κ

m
. (4.22)

Then since R ≥ R0 ≥ 1
me

C + 1 ≥ 1
m + 1 and κ ≥ κ0 ≥ 1 we see

κ

m
≤ (R− 1)κ ≤ Rκ− 1. (4.23)
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Moreover, since κ ≥ κ0 ≥ 3MeC ≥ 3M we have

3 ≤ r(0) = r(1) ≤ Rκ− 1. (4.24)

Thus, 0 ∈ I 
= ∅. We denote by I0 the connected component of I containing 0.

Claim. If t ∈ I0 then 3 ≤ r(t) ≤ Rκ− 1.

Proof of the Claim. As long as u(t) = (x(t), r(t)) ∈ Σ × [2, Rκ] the function r(t)
satisfies

ṙ(t) = −ηr(t) ρ̇ηt(x(t))
ρ2
ηt(x(t))

, (4.25)

see (2.8) together with the critical point equation. Thus, for t ∈ I0 we can estimate

r(0)e−C ≤ r(t) ≤ r(0)eC (4.26)

where C ≡ C(a, b) is defined in (4.16). By Step 1 we have κ
M ≤ r(0) = r(1) ≤ κ

m
and we obtain

κ

M
e−C ≤ r(t) ≤ κ

m
eC . (4.27)

Since κ ≥ κ0 ≥ 3MeC we see

r(t) ≥ 3. (4.28)

Since R ≥ R0 ≥ 1
me

C + 1 and κ ≥ κ0 ≥ 1 we have

r(t) ≤ κ
1
m
eC

≤ κ(R− 1)
≤ κR− 1. (4.29)

This proves the Claim. ��
By definition I0 is open. By the Claim it is also closed. Since I0 
= ∅ we conclude

I0 = I = [0, 1]. This proves Step 2. ��

Since on Σ × (2, Rκ− 1) we have F κ,Rt (u) = rht(x) − κ. Thus, we get

λ(XFκ,R
t

) = F κ,Rt + κ. (4.30)

Therefore, Lemma 3.2 implies

Aκ,R(u, η) = η (4.31)

for all critical points contained in Σ × (2, Rκ− 1). This finishes the proof of Propo-
sition 4.3. ��
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Corollary 4.4. We fix a < b. If κ ≥ κ0 and R ≥ R0 where κ0 and R0 are the
constants in Proposition 4.3 then the critical point equation and the critical value
for critical points of Aκ,R with action values a < Aκ,R < b are independent of κ
and R. Moreover, they are critical points of A and thus correspond to discriminant
points (see Remark 3.3).

Proof. From Proposition 4.3 we know that critical points with action values a <
Aκ,R < b are contained in Σ × (2, Rκ − 1). On Σ × (2, Rκ − 1) we have F κ,Rt (u) =
rht(x)−κ. Thus, F κ,Rt (u) is independent of R. Therefore, the critical point equation
is independent (up to a κ-shift in the r-direction of the symplectization). The critical
value is independent of κ due to the normalization (see (4.8)). Remark 3.3 implies
the statement about critical points of A and discriminant points. ��

Now we are in the position to construct Floer homology for Aκ,R. We choose an
almost complex structure J which on Σ × [1,∞) is of SFT-type (see [CFO10]). We
define for κ > 0 the L2-metric mκ on L × R by

mκ
(z,η)((ξ, l), (ξ

′, l′)) :=
1
κ

1∫
0

ω(z,η)(ξ, Jξ
′)dt+

ll′

κ
. (4.32)

Then the gradient of Aκ,R at (u, η) ∈ L × R equals

∇κAκ,R(u, η) =

⎛
⎜⎜⎜⎝

u̇(t) − ηXFκ,R
ηt

(u(t))

1∫
0

[
F κ,Rηt (u(t)) + ηtḞ κ,Rηt (u(t))

]
dt

⎞
⎟⎟⎟⎠ (4.33)

and its norm

||∇κAκ,R(u, η)||2κ =
1
κ

||u̇(t) − ηXFκ,R
ηt

(u(t))||22

+
1
κ

⎛
⎝

1∫
0

[
F κ,Rηt (u(t)) + ηtḞ κ,Rηt (u(t))

]
dt

⎞
⎠

2

. (4.34)

Lemma 4.2 asserts that at critical points the Lagrange multiplier η is bounded
by the action. This continues to hold for almost critical points.

Lemma 4.5 (Fundamental lemma). There exists ε > 0 such that for all w = (u, η) ∈
L × R we have

||∇κAκ,R(w)||κ < ε =⇒ |η| ≤ 1
ε (Aκ,R(w) + 1). (4.35)

Proof. The proof follows by a standard scheme (see [CF09]). ��
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We point out that for r sufficiently large the Hamiltonian function equals
F κ,Rt (x, r) = Mr − κ. Thus, we can apply the techniques from [CFO10] to obtain
L∞-bounds for the r-coordinate of solutions of the Rabinowitz-Floer equation. L∞-
bounds for the Lagrange multiplier follow again by a standard scheme from the
Fundamental Lemma 4.5. Finally, there is no bubbling-off of holomorphic spheres
since the symplectic manifold M was assumed to be exact.

We recall (see Remark 3.3) that a positive and twisted periodic path {ϕt} of
contactomorphisms defines a Rabinowitz action functional A whose critical points
are in 1-1 correspondence with discriminant points. Moreover, the choice of κ0 and
R0 guarantee that the critical points of Aκ,R are exactly the critical points of A.

Definition 4.6. We call a path {ϕt} ∈ P non-degenerate if the Rabinowitz action
functional Aκ = 1

κA is Morse for one (and then any) κ.

Remark 4.7. Since positive and twisted periodic paths are generated by time-
dependent, 1-periodic functions it is straight forward to see that they are generically
non-degenerate.

Theorem 4.8. Let {ϕt} be non-degenerate. Then for a < b and κ ≥ κ0(a, b), R ≥
R0(a, b) Rabinowitz Floer homology RFHb

a(Aκ,R) is well-defined and independent of
κ and R up to chain complex isomorphisms. For simplicity we use Z/2-coefficients.

Proof. By the previous remarks compactness up to breaking of gradient flow lines
(in the sense of Floer) is guaranteed. Thus, RFHb

a(Aκ,R) is defined.
Since the critical points and values are independent of κ and R a continuation

argument implies that RFHb
a(Aκ,R) is independent of κ and R up to chain complex

isomorphisms. ��

Definition 4.9. Let {ϕt} be non-degenerate. Then we define the filtered Rabino-
witz Floer homology of {ϕt} to be

RFHb
a({ϕt}) := RFHb

a(Aκ,R) (4.36)

for some κ ≥ κ0(a, b), R ≥ R0(a, b).

Remark 4.10. We point out that RFHb
a({ϕt}) possibly depends on the filling M̃ of

Σ (see Section 5). Nevertheless, we suppress this in the notation.

Definition 4.11. A path {ϕt} ∈ P is non-resonant if Aκ has no integer critical
values for one (and then any) κ > 0 (see Remark 3.3). Then for n,m ∈ Z we define

RFHm
n ({ϕt}) (4.37)

using a sufficiently small perturbation of {ϕt} which is non-degenerate.
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Remark 4.12. RFHm
n ({ϕt}) is well-defined for non-resonant {ϕt} since any suffi-

ciently small perturbation is non-resonant and non-degenerate. Moreover, during a
sufficiently small perturbation no critical values crosses an integer.

Moreover, a path {ϕt} ∈ P being non-resonant is a property depending only of
ϕ1. Indeed, the critical value of (u, η) equals η and thus, if η ∈ Z then ϕη = ϕη1. In
particular, the discriminant points (x, η) with η ∈ Z depend only on ϕ1.

The same reasoning implies the following theorem.

Theorem 4.13. Let I ⊂ R be some interval and {ϕt,s}t∈R,s∈I be a smooth family
of contactomorphisms such that for all fixed σ ∈ I the path {ϕt,σ} ∈ P is non-reso-
nant. Then

RFHm
n ({ϕt,σ}) ∼= RFHm

n ({ϕt,0}) ∀σ ∈ I (4.38)

up to canonical isomorphism.

Definition 4.14. We define the set of positive contactomorphisms by

Cont+0 (Σ) := {ϕ ∈ Cont0(Σ) | ∃{ϕt} ∈ P with ϕ1 = ϕ} (4.39)

and define

{ϕ0
t } ∼ {ϕ1

t } (4.40)

if there exists a smooth family {ϕt,s}s,t∈[0,1] with {ϕt,σ} ∈ P for all σ ∈ [0, 1], and

ϕt,0 = ϕ0
t and ϕt,1 = ϕ1

t for all t ∈ [0, 1], and ϕ1,s = ϕ0
1 = ϕ1

1 ∈ Cont+0 (Σ) for all
s ∈ [0, 1].

Then the universal cover ˜Cont+0 (Σ) is given by ∼-equivalence classes of paths in

Cont+0 based at the identity. We call ℘ ∈ ˜Cont+0 (Σ) non-resonant if one representa-
tive (and hence all representatives) are non-resonant.

Remark 4.15. By Eliashberg and Polterovich [EP00, Lemma 3.1.A] ϕ ∈ Cont+0
if and only if the identity can be joint to ϕ through a positive segment {ϕt}t∈[0,1]

whose generating vector field need not be periodic.
We point out that Cont0(Σ) acts on Cont+0 (Σ) by conjugation. Indeed, if {ϕt} is

a positive path with contact Hamiltonian ht and ψ ∈ Cont0 then {ψϕtψ−1} has con-
tact Hamiltonian (fht) ◦ψ−1 where the positive function f is defined by ψ∗α = fα.

Moreover, discriminant points of {ϕt} are in 1-1 correspondence with discrim-
inant points of {ψϕtψ−1} via the map (x, η) �→ (ψ(x), η). In particular, {ϕt} is
non-resonant if and only if {ψϕtψ−1} is non-resonant.

The induced action of ψ on ˜Cont+0 (Σ) is denoted by Cψ.

Definition 4.16. Let ℘ ∈ ˜Cont+0 (Σ) be non-resonant. We define for integers n,m ∈
Z

RFHm
n (℘) := RFHm

n ({ϕt}) (4.41)

where {ϕt} a representative of ℘. This is well-defined by Theorem 4.13.
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Theorem 4.13 has the following important corollary.

Corollary 4.17. Let ℘ ∈ ˜Cont+0 (Σ) be non-resonant and let ψ ∈ Cont0(Σ). Then
for integers n < m ∈ Z

RFHm
n (Cψ(℘)) ∼= RFHm

n (℘) (4.42)

where we recall that Cψ(℘) is ℘ conjugated by ψ.

Proof. Let ψs be an isotopy connecting the identity and ψ. Then we can apply
Theorem 4.13 to ϕt,s := ψsϕtψ

−1
s (see Remark 4.15). ��

5 Diffeomorphisms of the Circle

We consider Σ = S1 := R/Z with contact form dx. Let a ∈ R \ Q be an irrational
and positive number. Then the maps ϕt : S1 → S1 defined by

ϕt(x) := x+ at (5.1)

is a positive and twisted period contact isotopy which is non-resonant. A pair (x, η) ∈
S1 ×R is a discriminant point if and only if ηa ∈ Z. Although {ϕt} is not non-degen-
erate it is of Morse–Bott type and therefore we can still define Rabinowitz Floer
homology once we choose a filling. We consider two fillings of S1.

First, we fill S1 by the standard disk and obtain as completion M the stan-
dard M = R

2. In that case S1 is Hamiltonianly displaceable thus Rabinowitz Floer
homology vanishes. In fact, it holds that dim RFHm

n ({ϕt}) ∈ {0, 2}.
If we fill S1 by a torus with a small disk removed we see that iterations of the

Reeb orbit ∼= S1 lie all in different free homotopy classes and hence cannot be joint
by a Floer differential. In particular, the complex has vanishing differential and

dim RFHm
n ({ϕ}) = 2

(⌊m
a

⌋
−
⌊n
a

⌋)
. (5.2)

In particular, it is possible to recover the rotation number a. As remarked earlier we
point out that Rabinowitz Floer homology depends on the filling.

6 A Homological Maslov Index (Boundary Value Case)

We recall the setup. Let (Σ, ξ) be a closed, cooriented contact manifold and α a
fixed contact form. We assume that there exists a compact exact symplectic mani-
fold (M̃, dλ̃) with Σ = ∂M̃ and α = λ|Σ. We attach to M̃ the positive part of the
symplectization of Σ, that is,

M := M̃ ∪Σ Σ × {r ≥ 1}. (6.1)

On M we define a 1-form λ by λ̃ on M̃ and λ = rα on Σ × {r ≥ 1}. In partic-
ular, (M,ω = dλ) is an exact symplectic manifold. We point out, that the entire
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symplectization SΣ of Σ embeds into M via the flow of the Liouville vector field of
λ.

In addition we assume that we are given two Lagrangian submanifolds L0, L1

inside M with the following properties for i = 0, 1:

• λ|Li
= 0 and Li � Σ =: Λi is a closed Legendrian submanifold and

• Li ∩ (Σ × {r ≥ 1}) = Λi × {r ≥ 1}.

An example is given by M = T ∗B,Σ = S∗B, a unit cotangent bundle, and
Li = T ∗

qi
B for qi ∈ B. We define the path space

P := {u : [0, 1] → M | u(i) ∈ Li, i = 0, 1}. (6.2)

For a function

F : M × S1 → R (6.3)

we define the Rabinowitz action functional

A : P × R → R (6.4)

by precisely the same formula as above (see (3.1)). Since λ|Li
= 0 the critical point

equation of A is unchanged. Thus, a pair (u, η) ∈ P × R is a critical point of A if
and only if the following equations hold

u̇(t) = ηXFηt
(u(t))

Fη(u(1)) = 0

}
. (6.5)

Again following Givental [Giv89,Giv90a,Giv90b] we make the following definition.

Definition 6.1. Let {ϕt} be a smooth path in Cont(Σ). Then a pair (x, η) ∈ Λ0×R

is called a Legendrian discriminant point (with respect to {ϕt}) if

ϕη(x) ∈ Λ1. (6.6)

Using Proposition 2.3 we assign to the path {ϕt} the contact Hamiltonian Ht :
SΣ → R. If we set

Ft(x, r) := Ht(x, r) − 1 (6.7)

then the critical points of A are again in 1-1 correspondence with Legendrian dis-
criminant points. For a positive and twisted path {ϕt} ∈ P(Σ, ξ) we define as in
Definition 4.9

RFHb
a({ϕt};L0, L1). (6.8)

We refer the reader to [Mer10] for details on Lagrangian Rabinowitz Floer homology.
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7 Asymptotics and Obstructions to Positive Loops in Cont(Σ)

We assume the same setting as in Section 6. We fix an element {ϕt} ∈ P and consider
the maps induced by inclusion

in,m : RFHm
0 ({ϕt}) → RFHn

0 ({ϕt}). (7.1)

Then the sequence n �→ dim(im in,m) is non-increasing and we set

μ(m) := min
n

{dim(im in,m)}. (7.2)

The mapm �→ μ(m) is non-decreasing and we consider the growth rate ofm �→ μ(m).
The following is second Theorem from the Introduction.

Theorem 7.1. Let B be a closed manifold with finite fundamental group such
that the rational cohomology ring has at least two generators. Then Σ := S∗B with
its standard contact structure ξ admits no closed positive loops in Cont(Σ, ξ).

Remark 7.2. Theorem 7.1 can be seen as a complement to a result by Chernov–Ne-
mirovski. Indeed, if the fundamental group of the manifold B is infinite then there
exist no positive loops in Cont(S∗B) (see [CN10, Corollary 8.1]).

According to Eliashberg et al. [EKP06] there are never positive contractible loops
of contactomorphism of S∗B since S∗B is orderable. Strictly speaking Eliashberg-
Kim-Polterovich could not treat the case of a manifold whose fundamental group is
infinite but has only finitely many conjugacy classes. The general case is covered by
the aforementioned result by Chernov–Nemirovski.

If the fundamental group is finite but the rational cohomology ring is gener-
ated by only one element there exist examples of positive loops in Cont(S∗B). For
instance the geodesic flow of any P-metric, e.g. the round metric on B = Sn, gives
rise to such a positive loop (see [Bes78]). Of course, these loops are not contractible
by the result of Eliashberg–Kim–Polterovich.

Proof of Theorem 7.1. We argue by contradiction. Let {ϕt} be a positive loop in
Cont(Σ, ξ). In particular, it is twisted periodic: {ϕt} ∈ P. As above we set Li := T ∗

qi
B

for qi ∈ B. Then for generic q0, q1 ∈ B the corresponding Rabinowitz action func-
tional is Morse and its Rabinowitz Floer homology

RFHb
a({ϕt};L0, L1) (7.3)

is well defined (see [Mer10]). Since {ϕt} is a loop the number of critical points of
the underlying Rabinowitz action functional grows linearly with the action value.
Therefore, the growth rate of the function m �→ μ(m) is at most linear.

As in Definition 2.1 we assign the 1-periodic, positive function ht : Σ → R>0 to
{ϕt}. We can homotope ht through positive and 1-periodic functions to the function

k(q, p) := 1
2 |p|2g (7.4)
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where g is a bumpy metric on B. The contact flow {ψt} induced by k is just the
geodesic flow on S∗

gB associated to g. Arguing as in [AF10, Section 5] it follows that
the growth rate of the positive, twisted periodic path {ψt} coincides with the growth
rate of {ϕt}. In particular, the growth rate of {ψt} is at most linear.

According to [Mer10, Theorem B] the Rabinowitz Floer homology in positive
degrees of the path {ψt} is isomorphic to the homology of the based loop space. It
follows from Gromov’s theorem [Gro78,Gro07] (see also [Pat99]) that if the homology
of the loop space grows at most linearly in action then it also grows at most linearly
in degree. Using the theory of minimal models by Sullivan [Sul75] and arguing as in
the proof of the Bott–Samelson theorem in [Bes78, Chapter 7.D] it follows that the
based loop space of a closed manifold with finite fundamental group such that the
rational cohomology ring has at least two generators grows at least quadratically.

This contradiction finishes the proof of the theorem. ��
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Mathematik (FIM), ETH Zürich. The authors thank the FIM for its stimulating
working atmosphere. The present article originates from inspiring discussions with
Leonid Polterovich. The authors express their gratitude. This material is supported
by the National Science Foundation Grant DMS-0903856 (PA) and by the Basic
Research fund 2010-0007669 funded by the Korean government (UF).

References

[AF10] P. Albers and U. Frauenfelder. Spectral invariants in Rabinowitz-Floer
homology and global Hamiltonian perturbations. Journal of Modern Dynamics,
(2)4 (2010), 329–357.

[Bes78] A.L. Besse. Manifolds All of Whose Geodesics are Closed, Ergebnisse der Math-
ematik und ihrer Grenzgebiete, Vol. 93. Springer-Verlag, Berlin (1978).

[BS07] G. Ben Simon. The nonlinear Maslov index and the Calabi homomorphism.
Communications in Contemporary Mathematics, (6)9 (2007), 769–780.

[CF09] K. Cieliebak and U. Frauenfelder. A Floer homology for exact contact em-
beddings. Pacific Journal of Mathematics, (2)293 (2009), 251–316.

[CFO10] K. Cieliebak, U. Frauenfelder, and A. Oancea. Rabinowitz Floer homol-
ogy and symplectic homology. Ann. Sci. Éc. Norm. Supér. (4), (6)43 (2010),
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