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Abstract.
The disjointness problem—where Alice and Bob are given two subsets
of {1, . . . , n} and they have to check if their sets intersect—is a central
problem in the world of communication complexity. While both deter-
ministic and randomized communication complexities for this problem
are known to be Θ(n), it is also known that if the sets are assumed
to be drawn from some restricted set systems then the communication
complexity can be much lower. In this work, we explore how commu-
nication complexity measures change with respect to the complexity of
the underlying set system. The complexity measure for the set system
that we use in this work is the Vapnik–Chervonenkis (VC) dimension.
More precisely, on any set system with VC dimension bounded by d, we
analyze how large can the deterministic and randomized communication
complexities be, as a function of d and n. The d-sparse set disjointness
problem, where the sets have size at most d, is one such set system
with VC dimension d. The deterministic and the randomized communi-
cation complexities of the d-sparse set disjointness problem have been
well studied and are known to be Θ (d log (n/d)) and Θ(d), respectively,
in the multi-round communication setting. In this paper, we address the
question of whether the randomized communication complexity of the
disjointness problem is always upper bounded by a function of the VC
dimension of the set system, and does there always exist a gap between
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the deterministic and randomized communication complexities of the
disjointness problem for set systems with small VC dimension.
We construct two natural set systems of VC dimension d, motivated
from geometry. Using these set systems, we show that the determin-
istic and randomized communication complexity can be ˜Θ (d log (n/d))
for set systems of VC dimension d and this matches the deterministic
upper bound for all set systems of VC dimension d. We also study
the deterministic and randomized communication complexities of the
set intersection problem when sets belong to a set system of bounded
VC dimension. We show that there exist set systems of VC dimension
d such that both deterministic and randomized (one-way and multi-
round) complexities for the set intersection problem can be as high as
Θ (d log (n/d)).

Keywords.
Communication complexity, VC dimension, Sparsity, and Geometric Set
System
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1. Introduction

Since its introduction by Yao (1979), communication complex-
ity occupies a central position in theoretical computer science. A
striking feature of communication complexity is its interplay with
other diverse areas like analysis, combinatorics and geometry (see,
e.g., Kushilevitz & Nisan (1996), Roughgarden (2016), and Rao
& Yehudayoff (2020)). Vapnik & Chervonenkis (1971) introduced
the measure Vapnik–Chervonenkis dimension or VC dimension for
set systems in the context of statistical learning theory. As was
the case with communication complexity, VC dimension has found
numerous connections and applications in many different areas
like approximation algorithms, discrete and combinatorial geom-
etry, computational geometry, discrepancy theory and many other
areas (see, e.g., Matousek (2009), Chazelle (2001), Pach & Agar-
wal (2011) and Matousek (2013)). In this work, we study commu-
nication complexity under the lens of restricted systems and, for
the first time, prove that geometric simplicity does not necessarily
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imply better communication complexity.
Let us start with recollecting some definitions from Vapnik-

Chervonenkis theory. Let S be a collection of subsets of a universe
U . For a subset y of U , we define

S|y := {y ∩ x : x ∈ S} .

We say a subset y of U is shattered by S if S|y = 2y, where 2y

denotes the power set of y. Vapnik–Chervonenkis (VC) dimension
of S, denoted as VC-dim(S), is the size of the largest subset y of
U shattered by S. VC dimension has been one of the fundamental
measures for quantifying complexity of a collection of subsets.

Now let us revisit the world of communication complexity. Let
f : Ω1 × Ω2 → Ω. In communication complexity, two players
Alice and Bob get as inputs x ∈ Ω1 and y ∈ Ω2, respectively, and
the goal for the players is to devise a protocol to compute f(x, y)
by exchanging as few bits of information between themselves as
possible.

The deterministic communication complexity D(f) of a function
f is the minimum number of bits Alice and Bob will exchange in
the worst case to deterministically compute the function f . In the
randomized setting, both Alice and Bob share an infinite random
source1 and the goal is to give the correct answer with probability
at least 2/3. The randomized communication complexity R(f) of
f denotes the minimum number of bits exchanged by the players in
the worst case (over the inputs) by the best randomized protocol
computing f . In both deterministic and randomized settings, Alice
and Bob are allowed to make multiple rounds of interaction. Com-
munication complexity when the number of rounds of interaction
is bounded is also often studied. An important special case is when
only one round of communication is allowed, that is, only Alice is
allowed to send messages to Bob and Bob computes the output.
We will denote by D→(f) and R→(f) the one way deterministic
communication complexity and one way randomized communica-
tion complexity, respectively, of f .

1This is the communication complexity setting with shared random coins.
If no random string is shared, it is called the private random coins setting.
Newman (1991) proved that the communication complexity in both the set-
tings differ by at most a logarithmic additive factor.
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One of the most well-studied functions in communication com-
plexity is the disjointness function. Given a universe U known to
both Alice and Bob, the disjointness function, DisjU : 2U × 2U →
{0, 1}, where 2U denotes the power set of U , is defined as

(1.1) DisjU(x, y) =

{

1, if x ∩ y = ∅
0, otherwise.

We also define the intersection function. Given a universe U known
to both Alice and Bob, the intersection function, IntU : 2U ×
2U → 2U is defined as IntU(x, y) = x ∩ y. It is easy to see that
IntU is a harder function to compute than DisjU . The DisjU
function and its different variants, like IntU , have been one of the
most important problems in communication complexity and have
found numerous applications in areas like streaming algorithms for
proving lower bounds (see, e.g., Roughgarden (2016) and Rao &
Yehudayoff (2020)). By abuse of the notation, when U = [n], where
[n] denotes the set {1, . . . , n}, we will denote the functions Disj[n]

and Int[n] by Disjn and Intn, respectively.
Using the standard rank argument (see, e.g., Kushilevitz &

Nisan (1996) and Rao & Yehudayoff (2020)), one can show that
D(Disjn) = Θ(n). In a breakthrough paper, Kalyanasundaram
& Schnitger (1992) proved that R(Disjn) = Ω(n). Razborov
(1992) and Bar-Yossef et al. (2004) gave alternate proofs for the
above result. From the above cited results, we can also see the
D(Intn) = R(Intn) = Θ(n). R(Disjn) = R(Intn) = Θ(n) also
follow from a recent result by Braverman et al. (2013).

Naturally, one would also like to ask what happens to the deter-
ministic and randomized communication complexities (one way or
multiple rounds) of Disjn, when both Alice and Bob know that
their inputs have more structure. In particular, what can we say
if the inputs are guaranteed to be from a subset of S ⊆ 2U , where
S is known to both players. We will denote by DisjU |S×S the
function DisjU restricted to S ×S. This problem has been studied
extensively, mostly for certain special classes of subsets S ⊆ 2U .
For example, the sparse set disjointness function, where the set S
contains all the subsets of U of size at most d, is an important
special case.
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We will denote by d-SparseDisjn and d-SparseIntn, the
functions Disjn |S×S and Intn |S×S , respectively, where S is
the collections of all subsets of [n] of size at most d. Again,
using the rank argument (see, e.g.,Kushilevitz & Nisan (1996)
and Rao & Yehudayoff (2020)) one show that, for all d ≤ n,
the deterministic communication complexity of d-SparseDisjn

is D (d-SparseDisjn) = Ω (d log (n/d)). H̊astad & Wigderson
(2007) and Dasgupta et al. (2012) showed that the randomized
communication complexity and one way randomized communica-
tion complexity of d-SparseDisjn are R(d-SparseDisjn) = Θ(d)
and R→(d-SparseDisjn) = Θ(d log d), respectively. In a follow
up work, Saglam & Tardos (2013) gave a randomized communi-
cation protocol that uses O(log∗ d) rounds of communication and
O(d) bits of communication to compute d-SparseDisjn. More
recently, Brody et al. (2014) proved that R→ (d-SparseIntn) =
Θ (d log d) and R(d-SparseIntn) = Θ(d). These results show that
in the d-sparse setting, there is a separation between randomized
and deterministic communication complexity of Disjn and Intn

functions.
One would like to ask what happens to the communication

complexity for other natural restrictions to the disjointness and
intersection problems. The following are two natural problems,
with a geometric flavor, for which one would like to study the
communication complexity.

Problem 1.2 (Discrete Line Disj). Let L be the set of all
lines in R

2, and we denote by Ld the collection of all d-size
subsets of L. Also, let G ⊂ Z

2 be a set of n points in Z
2,

and L ⊆ Ld. The Discrete Line Disj function on G and L,
DisjG |L×L: L × L → {0, 1}, is defined as

DisjG |L×L ({�1, . . . , �d}, {�′
1, . . . , �

′
d})

=

{

1, if ∃i, j ∈ [d] s.t. �i ∩ �′
j ∩ G 
= ∅

0, otherwise

In other words, DisjG |L×L ({�1, . . . , �d}, {�′
1, . . . , �

′
d}) is 1 if and

only if there exists a line in Alice’s set {�1, . . . , �d} that intersects
some line in Bob’s set {�′

1, . . . , �
′
d} at some point in G.
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Problem 1.3 (Discrete Interval Disj). Let Int be the set of
all possible intervals in R and Intd denote the collection of all d-
size subsets of Int. Let X ⊂ Z be a set of n points in Z and let
I ⊂ Intd. The Discrete Interval Disj function on X and I,
DisjX |I×I : I × I → {0, 1}, is defined as

DisjX |I×I ({I1, . . . , Id}, {I ′
1, . . . , I ′

d})

=

{

1, if ∃i, j ∈ [d] s.t. Ii ∩ I ′
j ∩ X 
= ∅

0, otherwise

In other words, DisjX |I×I ({I1, . . . , Id}, {I ′
1, . . . , I ′

d}) is 1 if and
only if there exists an interval in Alice’s set {I1, . . . , Id} that inter-
sects some interval in Bob’s set {I ′

1, . . . , I
′
d} at some point in X.

Note that both the Discrete Line Disj and Discrete

Interval Disj functions are generalizations of sparse set disjoint-
ness function.2 Although it may not be obvious at first look, but
both Discrete Line Disj and Discrete Interval Disj are
disjointness functions restricted to a suitable subset. Naturally
one would like to know, if the fact that the collection of subsets
S has VC dimension d has any implication on the communication
complexity of DisjU |S×S . Here we would like to point out that
special cases of Discrete Interval Disj and Discrete Line

Disj implies a nontrivial lower bound for DisjU |S×S , and we will
discuss these connections shortly. For the time being, we are inter-
ested in the following two questions:

Do the randomized communication complexities of Discrete

Line Disj function and Discrete Interval Disj function
upper bounded by a function of d (independent of n)?

Observe that an “Yes” answer to the above question implies that
these functions also have a separation between their randomized

2Take n integer points on the x-axis. For Discrete Line Disj setting,
restrict only to lines orthogonal to x-axis. For Discrete Interval Disj

setting, take n integer points on Z and only restrict to intervals containing one
integer point. Both of these restriction will give the disjointness problem in
the d-sparse setting.
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and deterministic communication complexities similar to that of
the Sparse Set Disjointness function (d-SparseDisjn). Unfortu-
nately, the answer to the above question is negative.

Theorem 1.4. For Discrete Line Disj: there exists a G ⊂ Z
2

with n points and L ⊂ Ld such that

D(DisjG |L×L) = D→(DisjG |L×L) = Θ (d log (n/d))

and, for the randomized setting, we have

R(DisjG |L×L) = Ω

(

d
log(n/d)

log log(n/d)

)

.

Theorem 1.5. For Discrete Interval Disj: there exists a
X ⊂ Z with n points and I ⊂ Intd such that

D(DisjX |I×I) = D→(DisjX |I×I) = Θ (d log (n/d))

and, for the randomized setting, we have

R→(DisjX |I×I) = Θ (d log (n/d)) .

Discrete Line Int, that is, the intersection finding version
of Discrete Line Disj is defined as follows : the objective is to
compute a function IntG |L×L: L × L → G that is defined as

IntG |L×L ({�1, . . . , �d}, {�′
1, . . . , �

′
d}) =

⋃

i,j∈[d]

(

�i ∩ �′
j ∩ G

)

.

As we have already mentioned, R(d-SparseIntn) = Θ(d) and
D(d-SparseIntn) = Θ (d log (n/d)). We also show that Dis-

crete Line Int does not demonstrate such a separation between
its deterministic and randomized communication complexities.

Theorem 1.6. For Discrete Line Int: there exists a G ⊂ Z
2

with n points and L ⊂ Ld such that

D→(IntG |L×L). = D(IntG |L×L) = Θ (d log (n/d))

and, for the randomized setting, we have

R→(IntG |L×L) = R(IntG |L×L) = Θ (d log (n/d)) .
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Note that Theorem 3.1, Theorem 2.1 and Theorem 3.2, given in
Section 3, Section 2 and Section 3, will directly imply Theorem 1.4,
Theorem 1.5 and Theorem 1.6, respectively. Note that the set sys-
tems used the proofs of Theorem 3.1, Theorem 2.1 and Theorem 3.2
have VC dimension Θ(d). For more details, see Section 3.1, Sec-
tion 2.1 and Section 3.1.

Sauer-Shelah Lemma (see Sauer (1972), Shelah (1972) and Vap-
nik & Chervonenkis (1971)) states that if S ⊆ 2[n] and VC-dim(S)
= d then

|S| ≤
d
∑

i=0

(

n

i

)

≤
(en

d

)d

.

Thus if VC-dim(S) = d, then the Sauer-Shelah Lemma implies
that

D→(Intn |S×S) = O (d log (n/d)) .

So, O (d log (n/d)) is an upper bound for randomized and determin-
istic and also for the one-way communication complexities. But
can the randomized communication complexity of DisjU |S×S and
IntU |S×S be even lower when S has VC dimension d? Using
Theorem 3.1, Theorem 2.1 and Theorem 3.2, given in Section 3,
Section 2 and Section 3, we get the following result.

Theorem 1.7 (Main result). Let 1 ≤ d ≤ n.

(i) There exists S ⊆ 2[n] with VC-dim(S) ≤ d and

R(Disjn |S×S) = Ω

(

d
log(n/d)

log log(n/d)

)

.

(ii) There exists S ⊆ 2[n] with VC-dim(S) ≤ d and

R→(Disjn |S×S) = Ω (d log (n/d)) .

(iii) There exists S ⊆ 2[n] with VC-dim(S) ≤ d and

R(Intn |S×S) = Ω (d log (n/d)) .

The following table compares our result with the previous best
known lower bound for DisjU |S×S and IntU |S×S among all sets
S ⊂ 2U of VC dimension d.
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Problems Previously Known This Paper

R(Disjn |S×S) Ω(d) Ω
(

d log(n/d)
log log(n/d)

)

H̊astad & Wigderson (2007)
R→(Disjn |S×S) Ω(d log d) Ω (d log (n/d))

Dasgupta et al. (2012)
R(Intn |S×S) Ω(d) Ω (d log (n/d))

Brody et al. (2014)
R→(Intn |S×S) Ω(d log d) Ω (d log (n/d))

Brody et al. (2014)

Table (1.1) This table gives the largest communication com-
plexity for the functions Disjn |S×S and Intn |S×S , among all
S ⊆ 2[n] of VC dimension d, that was previously known and
what we prove in this paper. Note that the lower bound of
Ω (d log (n/d)) for D(Disjn |S×S), D→(Disjn |S×S), D(Intn |S×S),
and D→(Intn |S×S) in the worst case, among all S ⊂ 2[n] of VC
dimension d, follows directly from the fact that if S is a collection
of all subsets of [n] of size at most d then we have D (Disjn |S×S) =
D(Intn |S×S) = Ω (d log (n/d)) (see, e.g., Kushilevitz & Nisan
(1996) and Rao & Yehudayoff (2020)).

Notations. We denote the set {1, . . . , n} by [n]. For any vec-
tor x ∈ {0, 1}n, num(x) denotes the number whose binary repre-
sentation over n bits is x, that is, num(x) =

∑n
i=1 2i−1xi where

x = (x1, . . . , xn). For two vectors x and y in {0, 1}n, x ∩ y = {i ∈
[n] : xi = yi = 1}, and x ⊆ y when xi ≤ yi for each i ∈ [n]. For
a finite set X, 2X denotes the power set of X. For x, y ∈ R with
x < y, [x, y] denotes the closed interval {z ∈ R | x ≤ z ≤ y}.

2. One way communication complexity

In this section, we prove the following result.

Theorem 2.1. For all n ≥ d, there exists X ⊂ Z with |X| = n
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and R ⊆ 2X with VC-dim(R) = 2d, such that

R ⊆
{

X ∩
(

⋃

1≤j≤d

Ij

)

∣

∣

∣ {I1, . . . , Id} ∈ Intd

}

and

R→(DisjX |R×R) = Ω (d log (n/d)) .

Note that the set Intd is defined in Problem 1.3.

Remark 2.2. The above result takes care of the proofs of Theo-
rem 1.5 and Theorem 1.7 (1).

The hard instance, for the proof of the above theorem, is
inspired by the interval set systems in combinatorial geometry
and is constructed in Section 2.1. In Section 2.2, we prove Theo-
rem 2.1 by using a reduction from Augmented Indexing, which
we denote by AugIndex�. Formally the problem AugIndex� is
defined as follows: Alice gets a string x ∈ {0, 1}� and Bob gets an
index j ∈ [�] and xj′ for all j′ < j. Bob wants to report xj as the
output.

Proposition 2.3 (Miltersen et al. 1998). R→(AugIndex�) =
Ω(�).

2.1. Construction of a hard instance. We construct a set
X ⊂ Z with |X| = n and R ⊆ 2X with VC-dim(R) = 2d. Infor-
mally, X is the union of the set of points present in the union of d
pairwise disjoint intervals, in Z, each containing n

d
points. Each set

in R is the union of the set of points in the subintervals anchored
either at the left or the right end point of each of the above d inter-
vals. Formally, the description of X and R are given below along
with some of its properties that are desired to show Theorem 2.1.

The ground set X: Let m = n
d

− 2. Without loss of generality
we can assume that m = 2k, where k ∈ N. Let J0 = {0, . . . ,m+1}
be the set of m + 2 consecutive integers that starts from the origin
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p1 p2 p3

Figure (2.1) Let us consider d = 3, n = 18 and m = 4. J1, J2

and J3 are the intervals of length 4 starting from p1, p2 and p3,
respectively. The ground set X is the set of all 18 points present
in three intervals.

and ends at m+1. Similarly, let Jp be the set of m+2 consecutive
integers that starts at p ∈ Z and ends at p + m + 1. Let p1, . . . ,
pd be d points in Z such that the sets Jp1 , . . . , Jpd

are pairwise
disjoint. Let the ground set X be

X =
d
⋃

i=1

Jpi
.

Note that X ⊂ Z and |X| = (m + 2)d = n. See Figure 2.1 for an
illustration.

The subsets of X in R: Before defining R ⊆ 2X , let us define
sets R0 ⊂ 2X and Rm+1 ⊂ 2X .

R0 ⊂ 2X : Set of d intervals R1, . . . , Rd of integer lengths are
said to be left good if they satisfy the following: for all
i ∈ [d], we have Ri = [pi, qi] where qi ∈ {pi, pi + 1, . . . , pi+
m + 1}. Note that Ri does not intersect with any X \ Jpi

.
For a set of left good d-intervals R1, . . . , Rd, the set A =
d
⋃

i=1

(Ri ∩ X) is said to be generated by R1, . . . , Rd. The set

R0 ⊂ 2X is defined as:

R0={A |A is generated by left good set of d-intervals}

Rm+1 ⊂ 2X : Set of d-intervals R′
1, . . . , R

′
d of integer lengths are

said to be right good if they satisfy the following: for
all i ∈ [d], we have R′

i = [qi, pi + m + 1] where qi ∈
{pi, pi + 1, . . . , pi + m + 1}. Note that R′

i does not intersect
with any X\Jpi

. For a set of right good d-intervals R′
1, . . . , R

′
d,
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the set B =
d
⋃

i=1

(R′
i ∩ X) is said to be generated by R′

1, . . . , R
′
d.

The set Rm+1 ⊂ 2X is defined as:

Rm+1 = {B |B is generated by right good set of d-intervals}

Finally, R = R0 ∪ Rm+1.

See Figure 2.2 for an illustration.

p1 p2 p3

(a) A and B intersect.

p1 p2 p3

(b) A and B does not intersect.
(a) A and B intersect.

(b) A and B does not intersect.

Figure (2.2) Consider n, d,m and X as in Figure 2.1. A is the set
of points in X that are present in the three blue intervals. Similarly,
B is the set of points in X that are present in the three red intervals.

The following claim bounds the VC dimension of R.

Claim 2.4. For X ⊂ Z with |X| = n and R ⊂ 2X , as described
above, we have VC-dim(R) = 2d.

Proof. The proof follows from the fact that any subset of X
containing 2d + 1 points will contain at least three points from
some Jpi

, where i ∈ [d]. These points in Jpi
cannot be shattered

by the sets in R. Also, observe that there exists 2d points, with
two from each Jpj

, that can be shattered by the sets in R. �

The following claim will be used in the proof of Theorem 2.1.
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Claim 2.5. Let A ∈ R0 and B ∈ Rm+1 be such that A is gen-
erated by R1, . . . , Rd and B is generated by R′

1, . . . , R
′
d. Then A

and B intersects if and only if there exists an i ∈ [d] such that Ri

intersects R′
i at a point in Jpi

.

The proof of Claim 2.5 follows directly from our construction of
X ⊂ Z and R ⊆ 2X , and the fact that Jp1 , . . . , Jpd

are pairwise
disjoint.

2.2. Reduction from AugIndexd logm to DisjX |R×R. Before
presenting the reduction, we recall the definitions of
AugIndexd logm and DisjX |R×R. In AugIndexd logm, Alice gets
x ∈ {0, 1}d logm and Bob gets an index j and xj′ for each j′ < j.
The objective of Bob is to report xj as the output. In DisjX |R×R,
Alice gets A ∈ R0 and Bob gets B ∈ Rm+1. The objective of Bob
is to determine whether A ∩ B = ∅. Note that X,R,R0 and Rm+1

are as discussed in Section 2.1.
Let P be a one-way protocol that solves DisjX |R×R using

o
(

d log n
d

)

= o(d log m) bits of communication. Now, we consider
the following protocol P ′ for AugIndexd logm that has the same
one way communication cost as that of DisjX |R×R. Then we will
be done with the proof of Theorem 2.1.

Protocol P ′ for AugIndexd logm problem

Step-1 Let x ∈ {0, 1}d logm be the input of Alice. Bob gets an
index j ∈ [d log m] and bits xj′ for each j′ < j.

Step-2 Alice will form d strings a1, . . . , ad ∈ {0, 1}logm by par-
titioning the string x into d parts such that, ∀i ∈ [d], we
have

ai = x(i−1) logm+1 . . . xi logm.

Bob first forms a string y ∈ {0, 1}d logm, where yj′ = xj′ for
each j′ < j, yj = 1, and yj′ = 0 for each j′ > j. Then Bob
finds b1, . . . ,bd ∈ {0, 1}logm by partitioning the string y into
d parts such that, ∀i ∈ [d], we have

bi = y(i−1) logm+1 . . . yi logm.
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Step-3 For each i ∈ [d], let Ri and R′
i be the intervals that starts

at pi and ends at pi + m + 1, respectively, where

Ri = [pi,m + pi − num(ai)]

and

R′
i = [pi + m + 1 − num(bi), pi + m + 1].

Alice finds the set A ∈ R0 generated by R1, . . . , Rd and Bob
finds the set B ∈ Rm+1 generated by R′

1, . . . , R
′
d, that is,

A =
⋃

i∈[d]

(Ri ∩ X) and B =
⋃

i∈[d]

(R′
i ∩ X).

Step-4 Alice and Bob solves DisjX |R×R on inputs A and B, and
report xj = 0 if and only if DisjX |R×R (A,B) = 0. Note
that xj is the output of AugIndexd logm problem.

The following observation follows from the description of the
protocol P ′ and from the construction of X ⊂ Z and R ⊆ 2X .

Observation 2.6. Let i∗ ∈ [d] such that j ∈ {(i∗ − 1) log m +
1, i∗ log m}. Then

(i) Ri ∩ R′
i = ∅ for all i 
= i∗.

(ii) Ri∗ ∩ R′
i∗ = ∅ if and only if num(bi∗) ≤ num(ai∗).

(iii) num(bi∗) > num(ai∗) if and only if xj = 0.

We will use the above observation to show the correctness of the
protocol P ′.

First consider the case DisjX |R×R (A,B) = 0. Then, by
Claim 2.5, there exists an i ∈ [d] such that Ri and R′

i intersects at
a point in Jpi

. From Observation 2.6 (i), we can say Ri∗ ∩ R′
i∗ 
= ∅.

Combining Ri∗ ∩ R′
i∗ 
= ∅ with Observation 2.6 (ii) and (iii), we

have xj = 0. Hence, DisjX |R×R (A,B) = 0 implies xj = 0. The
converse part, that is, xj = 0 implies DisjX |R×R (A,B) = 0, can
be shown in the similar fashion.
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The one-way communication complexity of protocol P ′ for
AugIndexd logm is the same as that of P for DisjX |R×R, that
is, o(d log m). However, this is impossible as the one-way commu-
nication complexity of Augmented Indexing, over d log m bits,
is Ω(d log m) = Ω (d log (n/d)) bits. This completes the proof of
Theorem 2.1.

3. Two way communication complexity

In this section, we prove the following theorems.

Theorem 3.1. For all n ≥ d, there exists a G ⊂ Z
2 with |G| = n

and T ⊆ 2G with VC-dim(T ) = 2d, such that

T ⊆
{

G ∩
(

⋃

1≤j≤d

�j

)

∣

∣

∣ {�1, . . . , �d} ∈ Ld

}

and

R(DisjG |T ×T ) = Ω

(

d
log(n/d)

log log(n/d)

)

.

The set Ld is as defined in Problem 1.2.

Theorem 3.2. For all n ≥ d, there exists a G ⊂ Z
2 with |G| = n

and T ⊆ 2G with VC-dim(T ) = 2d, such that

T ⊆
{

G ∩
(

⋃

1≤j≤d

�j

)

∣

∣

∣ {�1, . . . , �d} ∈ Ld

}

and

R(IntG |T ×T ) = Ω (d log (n/d)) .

The set Ld is as defined in Problem 1.2.
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Remark 3.3. Theorem 3.1 takes care of Theorem 1.4 and The-
orem 1.7 (2). Theorem 3.2 takes care of Theorem 1.6 and Theo-
rem 1.7 (3).

Note that the same set system will be used for proving both
of the above theorems. The hard instance used in the proof of
the above theorems is inspired by point line incidence set systems
from combinatorial geometry, see Section 3.1 for the details. We
prove Theorem 3.1 and Theorem 3.2 in Section 3.2 and Section 3.3,
respectively.

3.1. Set system used in the proofs of Theorem 3.1 and
Theorem 3.2. In this subsection, we give the descriptions of G ⊂
Z

2 with |G| = n, and T ⊆ 2G with VC-dim(T ) = 2d. The same G
and T will be our hard instance in the proofs of Theorem 3.1 and
Theorem 3.2. In this subsection, without loss of generality, we can
assume that d divides n and n/d is a perfect square.

Informally, G is the set of points present in the union of d many
pairwise disjoint square grids each containing n/d points and the
grids are taken in such a way that any straight line of non-negative
slope intersects with at most one grid. Also, each set in T is the
union of the set of points present in d many lines of non-negative
slope such that one line intersects with exactly one grid. Moreover,
all of the d lines have slopes either zero or positive. Formal details
of the constructions of G and T are given below along with some
of their properties.

The ground set G: Let m =
√

n
d
, and

G(0,0) :=
{

(x, y) ∈ Z
2 | 0 ≤ x, y ≤ m − 1

}

be the grid of size m × m anchored at the origin (0, 0). For any
p, q ∈ Z, the m × m grid anchored at (p, q) will be denoted by
G(p,q), that is,

G(p,q) :=
{

(i + p, j + q) | (i, j) ∈ G(0,0)

}

.

For d ∈ N, consider G(p1,q1), . . . , G(pd,qd) satisfying the following
property:
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(p1, q1)

(p2, q2)

(p3, q3)

Figure (3.1) Let us take n = 75, d = 3 and m = 5. The 5 × 5
grids centered at (p1, q1), (p2, q2) and (p3, q3) are G(p1,q1), G(p2,q2)

and G(p3,q3); respectively. The ground set G is the set of all 75
points present in three grids.

Property For any i, j ∈ [d], with i 
= j, let L1 and L2 be lines
of non-negative slopes that pass through at least two points of
G(pi,qi) and G(pj ,qj), respectively. Then L1 and L2 does not

intersect at any point inside
⋃d

�=1 G(p�,q�).

Observe that there exists G(p1,q1), . . . , G(pd,qd) satisfying Property.
See Figure 3.1 for an illustration. We will take the ground set G
as

G :=
d
⋃

�=1

G(p�,q�).

Without loss of generality, we can assume that (p1, q1) = (0, 0).
Note that G ⊂ Z

2 and |G| = dm2 = n.

The subsets of G in T : T contains two types of subsets T1 and
T2 of G, and they are generated by the following ways:

◦ Take any d lines L1, . . . , Ld of non-negative slope such that,
∀i ∈ [d], Li passes through (pi, qi) ∈ G(pi,qi) and (at least)
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another point in G(pi,qi). Note that Li does not contain any

point from G \ G(pi,qi). The set A =
⋃d

i=1

(

Li ∩ G(pi,qi)

)

is in
T1, and we say A is generated by the lines L1, . . . , Ld.

◦ Take any d vertical lines L′
1, . . . , L

′
d such that, ∀i ∈ [d],

L′
i contains at least one point from G(pi,qi). Note that

L′
i does not contain any point from G \ G(pi,qi). The set

B =
d
⋃

i=1

(

L′
i ∩ G(pi,qi)

)

is in T2, and we say B is generated by

the lines L′
1, . . . , L

′
d.

See Figure 3.2 for an illustration.
The following claim bounds the VC dimension of T , constructed

above.

Claim 3.4. For G ⊂ Z
2 and T ⊆ 2G as described above, we have

VC-dim(T ) = 2d.

Proof. The proof follows from the fact that any subset of X
containing 2d + 1 points will contain at least three points from
some G(pj ,qj), j ∈ [d]. These points in G(pj ,qj) cannot be shattered
by the sets in T . Also, observe that there exists 2d points from G,
two from each G(pj ,qj), that can be shattered by the sets in T . �

Now, we give two claims about G and T , constructed above,
that follow directly from our construction of G ⊂ Z

2 and T ⊆ 2G.

Claim 3.5. Let A ∈ T1 and B ∈ T2 such that A is generated by
lines L1, . . . , Ld and B is generated by lines L′

1, . . . , L
′
d. Then A

and B intersect if and only if there exists i ∈ [d] such that Li and
L′

i intersect at a point in G(pi,qi).

Claim 3.6. Let A ∈ T1 and B ∈ T2 such that A is generated by
lines L1, . . . , Ld and B is generated by lines L′

1, . . . , L
′
d. Also, let

|A ∩ B| = d. Then for each i ∈ [d], Li and L′
i intersect at a point

in G(pi,qi). Moreover, A (B) can be determined if we know B (A)
and A ∩ B.

The above claims will be used in the proofs of Theorem 3.1 and
Theorem 3.2.
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(p1, q1)

(p2, q2)

(p3, q3)

L′
1

L′
2

L′
3

L1

L2

L3

L1

L2
L3

L′
1

L′
2

(p1, q1)

(p2, q2)

(p3, q3)
L′
3

Figure (3.2) Consider n, d,m and G as in Figure 3.1. A is the
set of points in G that are present in three blue lines, that is,
L1 ∪L2 ∪L3. Similarly, B is the set of points in G that are present
in three red line L′

1∪L′
2∪L′

3. First figure shows the instance where
A and B intersect at a grid point, and the second figure shows an
instance where A and B does not intersect at a grid point.
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3.2. Proof of Theorem 3.1. Let us consider a problem in com-
munication complexity denoted by Or-Disj

t
{0,1}� that will be used

in our proof. In Or-Disj
t
{0,1}� , Alice gets t strings x1, . . . ,xt ∈

{0, 1}� and Bob also gets t strings y1, . . . ,yt ∈ {0, 1}�. The objec-
tive is to compute

Or-Disj
t
{0,1}� ((x1, . . . ,xt) , (y1, . . . ,yt)) =

t
∨

i=1

Disj{0,1}� (xi,yi) .

Note that Disj{0,1}�(xi,yi) is a binary variable that takes value 1
if and only if xi ∩ yi = ∅.

Proposition 3.7 (Jayram et al. 2003). R
(

Or-Disj
t
{0,1}�

)

=

Ω(�t).

Note that Proposition 3.7 directly implies the following result.

Proposition 3.8. R
(

Or-Disj
t
{0,1}� |S�×S�

)

= Ω(�t), where S� =

{0, 1}� \ {0�}.

Let k ∈ N be the largest integer such that first k consecutive
primes π1, . . . , πk satisfy the following inequality:

(3.9)
k
∏

i=1

πi ≤
√

n

d
.

Using the fact that

k
∏

i=d

πi = e(1+o(1))k log k,

we get

k = Θ

(

log(n/d)

log log(n/d)

)

.

We prove the theorem by a reduction from Or-Disj
d
{0,1}k |Sk×Sk

to DisjG |T ×T , where

Sk := {0, 1}k \ {0k}.
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Note that G ⊂ Z
2 with |G| = n, and T ⊆ 2G, with VC-dim(T ) =

2d, are the same as that we constructed in Section 3.1. To reach a
contradiction, assume that there exists a two-way protocol P that
solves DisjG |T ×T with communication cost of

o

(

d
log m

log log m

)

= o

(

d
log(n/d)

log log(n/d)

)

.

We will now give the details of the protocol P ′ that computes
the function Or-Disj

d
{0,1}k |Sk×Sk

, and it will use protocol P as a
subroutine.

Protocol P ′ for Or-Disj
d
{0,1}k |Sk×Sk

Step-1 Let A = (x1, . . . ,xd) ∈ [Sk]
d 3 and B = (y1, . . . ,yd) ∈

[Sk]
d be the inputs of Alice and Bob for Or-Disj

d
{0,1}k |Sk×Sk

.

Recall that Sk = {0, 1}k \{0k}. Bob finds B = (y1, . . . ,yd) ∈
[

{0, 1}k
]d

, where yi is obtained by complementing each bit
of yi.

Step-2 Both Alice and Bob privately determine the first k prime
numbers π1, . . . , πk without any communication.

Step-3 Let

φ : {0, 1}k → {0, 1}�log(√n
d )�

be the function such that φ(x) is the
⌈

log
(

√

n/d
)⌉

bit rep-

resentation of the number
∏k

i=1 πxi
i , where x = (x1, . . . , xk) ∈

{0, 1}k. Alice finds

A′ = (a1, . . . , ad) ∈
[

{0, 1}�log(√n
d )�
]d

and Bob finds

B′ = (b1, . . . ,bd) ∈
[

{0, 1}�log(√n
d )�
]d

privately without any communication. Here ai = φ(xi) and
bi = φ(yi) for each i ∈ [d].

3For a set W , [W ]d = W × · · · × W (d times).
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Step-4 For each i ∈ [d], let Li and L′
i be the lines having equation

Li : y − qi =
num(ai) − 1

num(ai)
(x − pi)

and

L′
i : x − pi = num(bi).

Here pi’s and qi’s are selected to satisfy Property. Alice
finds A′′ ∈ T that is generated by the lines L1, . . . , Ld, and
Bob finds B′′ ∈ T which is generated by the lines L′

1, . . . , L
′
d,

that is,

A′′ =
⋃

i∈[d]

(Li ∩ G(pi,qi)) and B′′ =
⋃

i∈[d]

(L′
i ∩ G(pi,qi)).

Step-5 Then Alice and Bob solve DisjG |T ×T (A′′, B′′), and report

d
∨

i=1

Disj{0,1}k(xi,yi) = 1

if and only if

DisjG |T ×T (A′′, B′′) = 0.

Now we argue for the correctness of the protocol P ′. Let
DisjG |T ×T (A′′, B′′) = 0, that is, A′′ ∩ B′′ 
= ∅. By Claim 3.5
and from the description of P ′, there exists i ∈ [d] such that the

lines Li : y − qi = num(ai)−1
num(ai)

(x − pi) and L′
i : x − pi = num(bi)

intersect at a point in G(pi,qi), that is, the lines y = num(ai)−1
num(ai)

x

and x = num(bi) intersect at a point in G(0,0). Now, we can
say that, there exists i ∈ [d] such that num(ai) divides num(bi).
This implies xi is a subset of yi (or xi ∩ yi = ∅) for some

i ∈ [d]. Hence,
d
∨

i=1

Disj{0,1}k(xi,yi) = 1. The converse part, that

is,
d
∨

i=1

Disj{0,1}k(xi,yi) = 1 implies DisjG |T ×T (A′′, B′′) = 0 can

be shown in the similar fashion.



cc Disjointness and VC Dimension Page 23 of 31 9

Observe that the communication cost of the protocol P ′ for
Or-Disj

d
{0,1}k |Sk×Sk

is same as that of the protocol P for
DisjG |T ×T , is

o

(

d
log m

log log m

)

= o

(

d
log(n/d)

log log(n/d)

)

= o(dk).

The above two equalities follows from the facts that m =
√

n
d

and

k = Θ
(

log(n/d)
log log(n/d)

)

. This contradicts Proposition 3.8 which says

that

R
(

Or-Disj
d
{0,1}k |Sk×Sk

)

= Ω(dk).

3.3. Proof of Theorem 3.2. Consider the problem
LearnG |T ×T , where the objective of Alice and Bob is to learn
each other’s set. Note that G ⊂ Z

2 with |G| = n and T ⊆ 2G with
VC-dim(T ) = 2d are same as that constructed in Section 3.1. In
LearnG |T ×T , Alice and Bob get two sets A and B, respectively,
from T with a promise |A ∩ B| = d. The objective of Alice (Bob)
is to learn B (A). Observe that R(LearnG |T ×T ) = Ω(d log n)

as there are Ω(md) = Ω

(

(

√

n/d
)d
)

many candidate sets for the

inputs of Alice and Bob. We prove the theorem by a reduction
from LearnG |T ×T to IntG |T ×T .

Let, by contradiction, us consider a protocol P that solves
IntG |T ×T by using o(d log n) bits of communication. To solve
LearnG |T ×T , Alice and Bob first run a protocol P and finds
A ∩ B. Now by Claim 3.5, it is possible for Alice (Bob) to deter-
mine B (A) by combining A (B) along with A ∩ B, without any
communication with Bob (Alice). Now, we have a protocol P ′ that
solves LearnG |T ×T with o(d log n) bits of communication. How-
ever, this is impossible as R(LearnG |T ×T ) = Ω(d log n). Hence,
we are done with the proof of Theorem 3.2.

4. Conclusion and discussion

In this paper, we studied Disjn |S×S and Intn |S×S when S is
a subset of 2[n] and VC-dim(S) ≤ d. One of the main contribu-
tions of our work is the result (Theorem 1.7) showing that unlike
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in the case of d-SparseDisjn and d-SparseIntn functions, there
is no separation between randomized and deterministic communi-
cation complexity of Disjn |S×S and Intn |S×S functions when
VC-dim(S) ≤ d. Note that we have settled both the one-way and
two-way (randomized) communication complexities of Intn |S×S
when VC-dim(S) ≤ d (Theorem 1.7 (1) and (3)). In the context
of Disjn |S×S , we have settled the one-way (randomized) commu-
nication complexity. The two-way communication complexity for
Disjn |S×S is tight up to factor log log (n/d) (see Theorem 1.7 (2)).
However, we believe that the factor of log log (n/d) should not be
present in the statement of Theorem 1.7 (2).

Conjecture 4.1. There exists S ⊆ 2[n] with VC-dim(S) ≤ d and
R(Disjn |S×S) = Ω (d log (n/d)).

Recall G ⊂ Z
2 with |G| = n and T ⊆ 2G with VC-dim(T ) = 2d

construction from Section 3.1, that served as the hard instance for
the proof of Theorem 3.1 and Theorem 3.2. The same G and T
cannot be the hard instance for the proof of Conjecture 4.1 because
of the following result.

Theorem 4.2. Let us consider G ⊂ Z
2 with |G| = n and T ⊆ 2G

with VC-dim(T ) = 2d as defined in Section 3.1. Also, recall the
definition of T1 and T2. There exists a randomized communication
protocol that can, ∀A ∈ T1 and ∀B ∈ T2, can compute DisjG |T ×T
(A,B), with probability at least 2/3, and uses

O

(

d log d log (n/d)

log log (n/d)
· log log log (n/d)

)

bits of communication.

Remark 4.3. If d = 2o( log log n
log log log n) then Theorem 4.2 implies

existence of a randomized communication protocol that uses
o (d log (n/d)) bits of communication.

We use the following observation to prove Theorem 4.2.
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Observation 4.4. Let us consider the communication prob-
lem Gcdk(a, b), where Alice and Bob get a and b respec-
tively from {1, . . . , k}, and the objective is for both the play-
ers to compute gcd(a, b). There exists a randomized protocol,
with success probability at least 1 − δ, for Gcdk that uses

O
(

log k
log log k

· log log log k · log 1
δ

)

bits of communication.

Proof. We will give a protocol P for the case when δ = 1/3 that

uses O
(

log k
log log k

· log log log k
)

bits of communication. By repeating

O
(

log 1
δ

)

times protocol P and reporting the majority of the out-
comes as the output, we will get the correct answer with probability
at least 1 − δ. Both Alice and Bob generate all the prime numbers
π1, . . . , πt between 1 and k. From the Prime Number Theorem,

we know that t = Θ
(

k
log k

)

(see, e.g., Chandrasekharan (1968) and

Apostol (1976)). Alice and Bob separately, construct the sets Sa

and Sb that contain the prime numbers that divides a and b respec-

tively. Note that |Sa| and |Sb| is bounded by O
(

log k
log log k

)

(see, e.g.,

Theorem 12 of Robin (1983)). Alice and Bob compute Sa ∩ Sb by
solving Sparse Set Intersection problem on input Sa and Sb using

O
(

log k
log log k

)

bits of communication, see Brody et al. (2014). For

p ∈ Sa ∩ Sb, let αp,a and αp,b denote the exponent of p in a and b,
respectively. Observe that

gcd(a, b) =
∏

p∈Sa∩Sb

pmin{αp,a, αp,b}.

For each p ∈ Sa, Alice sends αp,a to Bob. Number of bits of
communication required to send the exponents of all the primes in
Sa ∩ Sb, is

|Sa ∩ Sb| +
∑

p∈Sa∩Sb

log(αp,a)

≤ O

(

log k

log log k

)

+ |Sa ∩ Sb| log

⎛

⎝

∑

p∈Sa∩Sb

αp,a

|Sa ∩ Sb|

⎞

⎠
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≤ O

(

log k

log log k

)

+ |Sa ∩ Sb| log

(

log k

|Sa ∩ Sb|

)

≤ O

(

log k

log log k
· log log log k

)

In the above inequalities, we use the facts that |Sa ∩ Sb| =

O
(

log k
log log k

)

,
∑

p∈Sa∩Sb

αp,a ≤ log k and log x is a concave function.

After getting the exponents αp,a of the primes p ∈ Sa ∩Sb from
Alice, Bob also sends the exponents αp,b of the primes p ∈ Sa ∩ Sb

to Alice using O
(

log k
log log k

log log log k
)

bits of communication to

Alice. Since both Alice and Bob now know the set Sa ∩ Sb, and
the exponents αp,a and αp,b for all p ∈ Sa ∩ Sb, both of them can
compute gcd(a, b). Total number of bits communicated in this

protocol is O
(

log k
log log k

log log log k
)

. �

We will now give the proof of Theorem 4.2.

Proof (Proof of the Theorem 4.2). Consider the case when d =
1. From the description of G and T in Section 3.1, we can say that
G = G(0,0), where

G(0,0) := {(x, y) ∈ Z
2 | 0 ≤ x, y ≤

√
n}.4

Moreover, each set in T1 is a set of points present in a straight line
of non-negative slope that passes through two points of G(0,0) with
one point being (0, 0) and each set in T2 is a set of points present
in a vertical straight line that passes through exactly

√
n many

grid points. Keeping Claim 3.5 and Claim 3.6 in mind, we will be
done if we can show the existence of a randomized communication
protocol for computing the function DisjG |T ×T , with probability
of success at least 1 − δ and number of bits communicated by the

protocol being bounded by O
(

logn
log log n

· log log log n · log 1
δ

)

, for the

special case when d = 1. This is because for general d, we will
be solving d instances of the above problem, with the number of
points in each grid being n/d5 and setting δ = 1

3d
for each of the d

instances.
4Without loss of generality, we assume that

√
n is an integer.

5Recall that we have assumed, without loss of generality, that d divides n.
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Protocol for d = 1. Alice and Bob get A and B from T1 and
T2, respectively. Let A is generated by the straight line LA and B
is generated by LB, where LA is a straight line with non-negative
slope and LB is a vertical line. If LA is a horizontal one : Alice just
sends this information to Bob and then both report that A∩B 
= ∅.
If LA is a vertical line : Alice sends this information to Bob and
he reports A ∩ B 
= ∅ if and only if LB passes through origin. Now
assume that LA is neither a horizontal nor a vertical line. Let the
equation of LA be y = p

q
x, where 1 ≤ p, q ≤ √

n, and p and q
are relatively prime to each other. Also, let equation of Bob’s line
LB be x = r, where 0 ≤ r ≤ √

n. Observe that A ∩ B 
= ∅ if
and only if LA and LB intersect at a point of G(0,0). Moreover,
LA and LB intersect at a grid point if and only if q divides r and
1 ≤ pr

q
≤ √

n. So, Alice and Bob run the communication protocol

for Gcd
√

n(q, r) to decide whether q = gcd(q, r). If q = gcd(q, r)
and 1 ≤ pr

q
≤ √

n (again Alice and Bob can decide this using O(1)

bits of communications) then A ∩ B 
= ∅, otherwise A ∩ B = ∅.
Alice and Bob can decide if q = gcd(q, r) and 1 ≤ pr

q
≤ √

n using

O(1) bits of communication.

The communication cost of our protocol is dominated by the
communication complexity of Gcd

√
n(q, r), which is equal to

O

(

log n

log log n
log log log n log

1

δ

)

by Observation 4.4. �

Acknowledgements

Part of this work was done when Anup Bhattacharya was sup-
ported by SERB-National Post Doctoral Fellowship, India, and
Arijit Ghosh was supported in part by Ramanujan Fellowship (No.
SB/S2/RJN-064/2015), India. Gopinath Mishra is supported in
part by the Centre for Discrete Mathematics and its Applications
(DIMAP) and by EPSRC award EP/V01305X/1. The authors
would like to thank Sudeshna Kolay and Arijit Bishnu for the many
discussions in the early stages of this work.



9 Page 28 of 31 Bhattacharya et al. cc

Open Access
This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party mate-
rial in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

References

Tom M. Apostol (1976). Introduction to Analytic Number Theory.
Springer, New York, NY, 1st edition.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar & D. Sivakumar

(2004). An Information Statistics Approach to Data Stream and Com-
munication Complexity. Journal of Computer and System Sciences
68(4), 702–732.

Mark Braverman, Ankit Garg, Denis Pankratov & Omri

Weinstein (2013). From information to exact communication. In Sym-
posium on Theory of Computing Conference, STOC, 151–160.

Joshua Brody, Amit Chakrabarti, Ranganath Kondapally,
David P. Woodruff & Grigory Yaroslavtsev (2014). Beyond
Set Disjointness: The Communication Complexity of Finding the Inter-
section. In ACM Symposium on Principles of Distributed Computing,
PODC, 106–113.

Komaravolu Chandrasekharan (1968). Introduction to Analytic
Number Theory. Springer, Berlin, Heidelberg, 1st edition.

http://creativecommons.org/licenses/by/4.0/


cc Disjointness and VC Dimension Page 29 of 31 9

Bernard Chazelle (2001). The Discrepancy Method: Randomness
and Complexity. Cambridge University Press.

Anirban Dasgupta, Ravi Kumar & D. Sivakumar (2012). Sparse
and Lopsided Set Disjointness via Information Theory. In International
Workshop on Randomization and Computation, RANDOM, 517–528.
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