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THE HARDEST HALFSPACE

Alexander A. Sherstov

Abstract. We study the approximation of halfspaces h : {0, 1}n →
{0, 1} in the infinity norm by polynomials and rational functions of any
given degree. Our main result is an explicit construction of the “hard-
est” halfspace, for which we prove polynomial and rational approxima-
tion lower bounds that match the trivial upper bounds achievable for
all halfspaces. This completes a lengthy line of work started by Myhill
and Kautz (1961). As an application, we construct a communication
problem that achieves essentially the largest possible separation, of O(n)
versus 2−Ω(n), between the sign-rank and discrepancy. Equivalently, our
problem exhibits a gap of logn versus Ω(n) between the communication
complexity with unbounded versus weakly unbounded error, improving
quadratically on previous constructions and completing a line of work
started by Babai, Frankl, and Simon (FOCS 1986). Our results further
generalize to the k-party number-on-the-forehead model, where we ob-
tain an explicit separation of logn versus Ω(n/4n) for communication
with unbounded versus weakly unbounded error.

Keywords. Small-bias communication, Multiparty communication,
UPP, PP, Halfspaces, Approximation by polynomials and rational func-
tions.
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1. Introduction

Representations of Boolean functions by real polynomials play a
central role in theoretical computer science. The notion of approx-
imating a Boolean function f : {0, 1}n → {−1, +1} pointwise by
polynomials of given degree has been particularly fruitful. For-
mally, let E(f, d) denote the minimum error in an infinity-norm
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approximation of f by a real polynomial of degree at most d:

E(f, d) = min
p

{‖f − p‖∞ : deg p � d}.

This quantity clearly ranges between 0 and 1 for any function
f : {0, 1}n → {−1, +1}. In more detail, we have 0 = E(f, n) �
E(f, n − 1) � · · · � E(f, 0) � 1, where the first equality holds
because any such f is representable exactly by a polynomial of
degree at most n. The study of the polynomial approximation of
Boolean functions dates back to the pioneering work of Myhill &
Kautz (1961) and Minsky & Papert (1969). This line of research
has grown remarkably over the decades, with numerous connections
discovered to other subjects in theoretical computer science. Lower
bounds for polynomial approximation have complexity-theoretic
applications, whereas upper bounds are a tool in algorithm de-
sign. In the former category, polynomial approximation has en-
abled significant progress in circuit complexity (Beigel et al. 1995;
Aspnes et al. 1994; Krause & Pudlák 1997, 1998; Sherstov 2009b;
Beame & Huynh 2012), quantum query complexity (Beals et al.
2001; Aaronson & Shi 2004; Ambainis 2005; Bun et al. 2020), and
communication complexity (Buhrman & de Wolf 2001; Razborov
2002; Buhrman et al. 2007b; Sherstov 2009b, 2011; Razborov &
Sherstov 2010; Lee & Shraibman 2009; Chattopadhyay & Ada
2008; Sherstov 2008a; Beame & Huynh 2012; Sherstov 2016, 2014).
On the algorithmic side, polynomial approximation underlies many
of the strongest results obtained to date in computational learn-
ing (Tarui & Tsukiji 1999; Klivans & Servedio 2004; Klivans et al.
2004; Kalai et al. 2008; O’Donnell & Servedio 2010; Ambainis et al.
2010), differentially private data release (Thaler et al. 2012; Chan-
drasekaran et al. 2014), and algorithm design in general (Linial &
Nisan 1990; Kahn et al. 1996; Sherstov 2009a).

1.1. The hardest halfspace. The paper of Myhill & Kautz
(1961) and many of the papers that followed (Muroga 1971; Siu
& Bruck 1991; Paturi 1992; Beigel 1994; H̊astad 1994; Sherstov
2013a,b; Thaler 2016) focused on halfspaces. Also known as a lin-
ear threshold function, a halfspace is any function h : {0, 1}n →
{−1, +1} representable as h(x) = sgn(

∑n
i=1 zixi−θ) for some fixed
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reals z1, z2, . . . , zn, θ. The fundamental question taken up in this
line of research is: how well can halfspaces be approximated by
polynomials of given degree? An early finding, due to Muroga
(1971), was the upper bound

(1.1) E(h, 1) � 1 − 1

nΘ(n)

for every halfspace h in n variables. In words, every halfspace
can be approximated pointwise by a linear polynomial to error
just barely smaller than the trivial bound of 1. Many authors
pursued matching lower bounds on E(h, 1) for specific halfspaces
h, culminating in an explicit construction by H̊astad (1994) that
matches Muroga’s bound (1.1).

The study of E(h, d) for d � 2 proved to be challenging. For a
long time, essentially the only result was the lower bound E(h, d) �
1 − 2−Θ(n/d2)+1 due to Beigel (1994), where h is the so-called odd-
max-bit halfspace. Paturi (1992) proved the incomparable lower
bound E(h, Θ(n)) � 1/3, where h is the majority function on
n bits. Much later, the bound E(h, Θ(

√
n)) � 1 − 2−Θ(

√
n) was

obtained by Sherstov (2013a) for an explicit halfspace. This frag-
mented state of affairs persisted until the question was resolved
completely by Sherstov (2013b), with an existence proof of a half-
space h such that E(h, d) � 1 − 2−Θ(n) for d = 1, 2, . . . , Θ(n). This
result is clearly as strong as one could hope for, since it essen-
tially matches Muroga’s upper bound for approximation by linear
polynomials. The work of Sherstov (2013b) further determined the
minimum error, denoted R(h, d), to which this h can be approxi-
mated by a degree-d rational function, showing that this quantity
too is as large for h as it can be for any halfspace. Explicitly con-
structing a halfspace with these properties is our main technical
contribution:

Theorem 1.2. There is an algorithm that takes as input an inte-
ger n � 1, runs in time polynomial in n, and outputs a halfspace
hn : {0, 1}n → {−1, +1} with

E(hn, d) � 1 − 2−Ω(n), d = 1, 2, . . . , �cn�,
R(hn, d) � 1 − 2−Ω(n/d), d = 1, 2, . . . , �cn�,
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where c > 0 is an absolute constant.

Classic bounds for the approximation of the sign function imply
that for any d, the lower bounds in Theorem 1.2 are essentially
the best possible for any halfspace on n variables (see Section 5.1
and Section 5.2 for details). Thus, the construction of Theorem 1.2
is the “hardest” halfspace from the point of view of approximation
by polynomials and rational functions.

Theorem 1.2 is not a de-randomization of the existence proof
of Sherstov (2013b), which incidentally we are still unable to de-
randomize. Rather, it is based on a new and simpler approach,
presented in detail at the end of this section. Given the role that
halfspaces play in theoretical computer science, we see Theorem 1.2
as answering a basic question of independent interest. In addition,
Theorem 1.2 has applications to communication complexity and
computational learning, which we now discuss.

1.2. Discrepancy versus sign-rank. Consider the standard
model of randomized communication (Kushilevitz & Nisan 1997),
which features players Alice and Bob and a Boolean function F : X×
Y → {−1, +1}. On input (x, y) ∈ X × Y, Alice and Bob receive
the arguments x and y, respectively. Their objective is to compute
F on any given input with minimal communication. To this end,
each player privately holds an unlimited supply of uniformly ran-
dom bits which he or she can use in deciding what message to send
at any given point in the protocol. The cost of a protocol is the
total number of bits exchanged by Alice and Bob in a worst-case
execution. The ε-error randomized communication complexity of
F , denoted Rε(F ), is the least cost of a protocol that computes F
with probability of error at most ε on every input.

Our interest in this paper is in communication protocols with
error probability close to that of random guessing, 1/2. There are
two standard ways to define the complexity of a function F in this
setting, both inspired by probabilistic polynomial time for Turing
machines (Gill 1977):

UPP(F ) = inf
0�ε<1/2

Rε(F )
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and

PP(F ) = inf
0�ε<1/2

{

Rε(F ) + log2

(
1

1
2

− ε

)}

.

The former quantity, introduced by Paturi & Simon (1986), is
called the communication complexity of F with unbounded er-
ror, in reference to the fact that the error probability can be
arbitrarily close to 1/2. The latter quantity, proposed by Babai
et al. (1986), includes an additional penalty term that depends
on the error probability. We refer to PP(F ) as the communica-
tion complexity of F with weakly unbounded error. For all func-
tions F : {0, 1}n × {0, 1}n → {−1, +1}, one has the trivial bounds
UPP(F ) � PP(F ) � n + 2. These two complexity measures give
rise to corresponding complexity classes in communication com-
plexity theory, defined in the seminal paper of Babai et al. (1986).
Formally, UPP is the class of families {Fn}∞

n=1 of communication
problems Fn : {0, 1}n × {0, 1}n → {−1, +1} whose unbounded er-
ror communication complexity is at most polylogarithmic in n. Its
counterpart PP is defined analogously for the complexity measure
PP.

These two models of large-error communication are synony-
mous with two central notions in communication complexity: sign-
rank and discrepancy, defined formally in Section 2.8 and Sec-
tion 2.9. In more detail, Paturi & Simon (1986) proved that the
communication complexity of any problem with unbounded error
is characterized up to an additive constant by the sign-rank of its
communication matrix, [F (x, y)]x,y. Analogously, Klauck (2007)
showed that the communication complexity of any F : {0, 1}n ×
{0, 1}n → {−1, +1} with weakly unbounded error is essentially
characterized in terms of the discrepancy of F . Discrepancy and
sign-rank enjoy a rich mathematical life (Linial et al. 2007; Sherstov
2008b, 2010; Linial & Shraibman 2009) outside communication
complexity, which further motivates the study of PP and UPP as
fundamental complexity classes.

Communication with weakly unbounded error is by definition
no more powerful than unbounded error communication, and for
20 years after the paper of Babai et al. (1986) it was unknown
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whether this containment is proper. Buhrman et al. (2007b) and
the author (Sherstov 2008b) answered this question in the affirma-
tive, independently and with unrelated techniques. These papers
exhibited functions F : {0, 1}n × {0, 1}n → {−1, +1} with an ex-
ponential gap between communication complexity with unbounded
error versus weakly unbounded error: UPP(F ) = O(log n) in both
works, versus PP(F ) = Ω(n1/3) in Buhrman et al. (2007b) and
PP(F ) = Ω(

√
n) in Sherstov (2008b). In complexity-theoretic no-

tation, these results show that PP � UPP. A simpler alternate
proof of the result of Buhrman et al. (2007b) was given by Sherstov
(2011) using the pattern matrix method. More recently, Thaler
(2016) exhibited another, remarkably simple communication prob-
lem F : {0, 1}n × {0, 1}n → {−1, +1}, with communication com-
plexity UPP(F ) = O(log n) and PP(F ) = Ω(n/ log n)2/5.

To summarize, the strongest explicit separation of communica-
tion complexity with unbounded versus weakly unbounded error
prior to our work was the separation of O(log n) versus Ω(

√
n)

from 12 years ago (Sherstov 2008b). The existence of a commu-
nication problem with a quadratically larger gap, of O(log n) ver-
sus Ω(n), follows from the work of Sherstov (2013b). This state of
affairs parallels other instances in communication complexity, such
as the P versus BPP question in multiparty communication (Beame
et al. 2007), where the best existential separations are significantly
stronger than the best explicit ones. There is considerable interest
in communication complexity in explicit separations because they
provide a deeper and more complete understanding of the complex-
ity classes, whereas the lack of a strong explicit separation indicates
a basic gap in our knowledge. As an application of Theorem 1.2,
we obtain:

Theorem 1.3. There is a communication problem Fn : {0, 1}n ×
{0, 1}n → {−1, +1}, defined by

Fn(x, y) = sgn

(

w0 +
n∑

i=1

wixiyi

)

(1.4)
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for some explicitly given reals w0, w1, . . . , wn, such that

UPP(Fn) � log n + O(1),

PP(Fn) = Ω(n).

Moreover,

rk±(Fn) � n + 1,

disc(Fn) = 2−Ω(n).

Theorem 1.3 gives essentially the strongest possible separation of
the communication classes PP and UPP, improving quadratically
on previous constructions and matching the previous nonconstruc-
tive separation. Another compelling aspect of the theorem is the
simple form (1.4) of the communication problem in question. The
last two bounds in Theorem 1.3 state that Fn has sign-rank at most
n+1 and discrepancy 2−Ω(n), which is essentially the strongest pos-
sible separation. The best previous construction (Sherstov 2008b)
achieved sign-rank O(n) and discrepancy 2−Ω(

√
n).

We further extend Theorem 1.3 to the number-on-the-forehead
k-party model, the standard formalism of multiparty communica-
tion. Analogous to two-party communication, the k-party model
has its own classes UPPk and PPk of problems solvable efficiently
by protocols with unbounded error and weakly unbounded error,
respectively. Their formal definitions can be found in Section 2.8.
In this setting, we prove:

Theorem 1.5. There exists a k-party communication problem
Fn : ({0, 1}n)k → {−1, +1}, defined by

Fn(x1, x2, . . . , xk) = sgn

(

w0 +
n∑

i=1

wix1,ix2,i · · · xk,i

)

for some explicitly given reals w0, w1, . . . , wn, such that

UPP(Fn) � log n + O(1),

PP(Fn) = Ω
( n

4k

)
,

disc(Fn) = exp
(
−Ω
( n

4k

))
.
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Theorem 1.5 gives essentially the strongest possible explicit sepa-
ration of the k-party communication complexity classes UPPk and
PPk for up to k � (0.5−ε) log n parties, where ε > 0 is an arbitrary
constant. The previous best explicit separation (Chattopadhyay
& Mande 2018; Sherstov 2018) of these classes was quadratically
weaker, with communication complexity O(log n) for unbounded
error and Ω(

√
n/4k) for weakly unbounded error. The communi-

cation lower bound in Theorem 1.5 reflects the state of the art in
the area, in that the strongest PP lower bound for any explicit com-
munication problem F : ({0, 1}n)k → {−1, +1} to date is Ω(n/2k)
due to Babai et al. (1992).

1.3. Computational learning. A sign-representing polynomial
for a given function f : {0, 1}n → {−1, +1} is any real polyno-
mial p such that f(x) = sgn p(x) for all x. The minimum degree
of a sign-representing polynomial for f is called the threshold de-
gree of f, denoted deg±(f). Clearly 0 � deg±(f) � n for every
Boolean function f on n variables. The reader can further verify
that sign-representation is equivalent to pointwise approximation
with error strictly less than, but arbitrarily close to, the trivial er-
ror of 1. Sign-representing polynomials are appealing from a learn-
ing standpoint because they immediately lead to efficient learning
algorithms. Indeed, any function of threshold degree d is by defi-
nition a linear combination of N =

(
n
0

)
+
(

n
1

)
+ · · ·+(n

d

)
monomials

and can thus be viewed as a halfspace in N dimensions. As a
result, f can be PAC learned (Valiant 1984) under arbitrary dis-
tributions in time polynomial in N, using a variety of halfspace
learning algorithms.

The study of sign-representing polynomials started 50 years ago
with the seminal monograph of Minsky & Papert (1969), who ex-
amined the threshold degree of several common functions. Since
then, the threshold degree approach has yielded the fastest known
PAC learning algorithms for notoriously hard concept classes, in-
cluding DNF formulas (Klivans & Servedio 2004) and AND-OR
trees (Ambainis et al. 2010). Conspicuously absent from this list
of success stories is the concept class of intersections of halfspaces.
While solutions are known to several restrictions of this learning
problem (Blum & Kannan 1997; Kwek & Pitt 1998; Vempala 2010;
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Arriaga & Vempala 2006; Klivans et al. 2004; Klivans & Servedio
2008; Klivans et al. 2009), no algorithm has been discovered for
PAC learning the intersection of even two halfspaces in time faster
than 2Θ(n). Known hardness results, on the other hand, only apply
to polynomially many halfspaces or to proper learning, e.g., Blum
& Rivest (1992); Alekhnovich et al. (2008); Klivans & Sherstov
(2009); Khot & Saket (2011).

This state of affairs has motivated a quest to determine the
threshold degree of the intersection of two halfspaces (Minsky &
Papert 1969; O’Donnell & Servedio 2010; Klivans 2002; Sherstov
2013a,b). Prior to our work, the best lower bound was Ω(

√
n)

for an explicit intersection of two halfspaces (Sherstov 2013a),
complemented by a tight but highly nonconstructive Ω(n) lower
bound (Sherstov 2013b). Using Theorem 1.2, we prove:

Theorem 1.6. There exists a halfspace hn : {0, 1}n → {−1, +1},
given explicitly, such that

deg±(hn ∧ hn) = Ω(n).

The symbol hn ∧hn above stands for the intersection of two copies
of hn on disjoint sets of variables. In other words, Theorem 1.6 con-
structs an explicit intersection of two halfspaces whose threshold
degree is asymptotically maximal, Ω(n). While the nonconstruc-
tive Ω(n) lower bound of Sherstov (2013b) already ruled out the
threshold degree approach as a way to learn intersections of half-
spaces, we see Theorem 1.6 as contributing a key qualitative piece
of the puzzle. Specifically, it constructs a small and simple family
of intersections of two halfspaces that are off-limits to all known
algorithmic approaches (namely, the family obtained by applying
hn ∧ hn to different subsets of the variables x1, x2, . . . , x4n).

1.4. Proof overview. Our solution has two main components:
the construction of a sparse set of integers that appear random
modulo m, and the univariatization of a multivariate Boolean func-
tion. We describe each of these components in detail.

Discrepancy of integer sets. Let m � 2 be a given integer.
Key to our work is the notion of m-discrepancy, which quanti-
fies the pseudorandomness or aperiodicity modulo m of any given
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multiset of integers. It is largely unrelated to the notion of dis-
crepancy in communication complexity (Section 1.2). Formally,
the m-discrepancy of a nonempty multiset Z = {z1, z2, . . . , zn} is
defined as

disc(Z,m) = max
k=1,2,...,m−1

∣
∣
∣
∣
∣

1

n

n∑

j=1

ωkzj

∣
∣
∣
∣
∣
,

where ω is a primitive mth root of unity. This fundamental quan-
tity arises in combinatorics and theoretical computer science, e.g.,
Galil et al. (1989); Ruzsa (1987); Ajtai et al. (1990); Katz (1989);
Razborov et al. (1993); Alon & Roichman (1994). The identity
1 + ω + ω2 + · · · + ωm−1 = 0 for any mth root of unity ω 	= 1
implies that the set Z = {0, 1, 2, . . . , m − 1} achieves the small-
est possible m-discrepancy: disc(Z,m) = 0. Much sparser sets
with small m-discrepancy can be shown to exist using the prob-
abilistic method (Fact 3.5 and Corollary 3.6). Specifically, one
easily verifies for any constant ε > 0 the existence of a set Z ⊆
{0, 1, 2, . . . , m − 1} with m-discrepancy at most ε and cardinal-
ity O(log m), an exponential improvement in sparsity compared to
the trivial set {0, 1, 2, . . . , m − 1}. We are aware of two efficient
constructions of sparse sets with small m-discrepancy, due to Aj-
tai et al. (1990) and Katz (1989). The approach of Ajtai et al. is
elementary except for an appeal to the prime number theorem,
whereas Katz’s construction relies on deep results in number the-
ory. Neither work appears to directly imply the kind of optimal
de-randomization that we require, namely, an algorithm that runs
in time polynomial in log m and produces a multiset of cardinality
O(log m) with m-discrepancy bounded away from 1. We obtain
such an algorithm by adapting the approach of Ajtai et al. (1990).

The centerpiece of the construction of Ajtai et al. (1990) is
what the authors call the iteration lemma, stated in this paper as
Theorem 3.12. Its role is to reduce the construction of a sparse set
with small m-discrepancy to the construction of sparse sets with
small p-discrepancy, for primes p � m. Ajtai et al. (1990) proved
their iteration lemma for m prime, but we show that their argu-
ment readily generalizes to arbitrary moduli m. By applying the
iteration lemma in a recursive manner, one reaches smaller and
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smaller primes. Ajtai et al. (1990) continue this recursive process
until they reach primes p so small that the trivial construction
{0, 1, 2, . . . , p − 1} can be considered sparse. We proceed differ-
ently and terminate the recursion after just two stages, at which
point the input size is small enough for brute force search based on
the probabilistic method. The final set that we construct has size
logarithmic in m and m-discrepancy a small constant, as opposed
to the superlogarithmic size and o(1) discrepancy in the work of
Ajtai et al. (1990).

We note that this modified approach additionally gives the first
explicit circulant expander on n vertices of degree O(log n), which
is optimal and improves on the previous best degree bound of
(log∗ n)O(log∗ n) · O(log n) due to Ajtai et al. (1990). Background
on circulant expanders, and the details of our expander construc-
tion, can be found in Section 5.6.

Univariatization. We now describe the second major compo-
nent of our proof. Consider a halfspace hn(x) = sgn(

∑
zixi − θ)

in Boolean variables x1, x2, . . . , xn, where the coefficients can be
assumed without loss of generality to be integers. Then the linear
form
∑

zixi − θ ranges in the discrete set {±1,±2, . . . ,±N}, for
some integer N proportionate to the magnitude of the coefficients.
As a result, one can approximate hn to any given error ε by approx-
imating the sign function to ε on {±1,±2, . . . ,±N}. This approach
works for both rational approximation and polynomial approxima-
tion. We think of it as the black-box approach to the approximation
of hn because it uses the linear form

∑
zixi − θ rather than the

individual bits. There is no reason to expect that the black-box
construction is anywhere close to optimal. Indeed, there are half-
spaces (Sherstov 2013a, Section 1.3) that can be approximated to
arbitrarily small error by a rational function of degree 1 but require
a black-box approximant of degree Ω(n). Surprisingly, we are able
to construct a halfspace hn with exponentially large coefficients
for which the black-box approximant is essentially optimal. As a
result, tight lower bounds for the rational and polynomial approxi-
mation of hn follow immediately from the univariate lower bounds
for approximating the sign function on {±1,±2,±3, . . . ,±2Θ(n)}.
The role of hn is to reduce the multivariate problem taken up in
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this work to a well-understood univariate question, hence the term
univariatization.

The construction of hn involves several steps. First, we study
the probability distribution of the weighted sum z1X1 + z2X2 +
· · · + znXn modulo m, where z1, z2, . . . , zn are given integers and
the bits X1, X2, . . . , Xn ∈ {0, 1} are chosen uniformly at random.
We show that the distribution is exponentially close to uniform
whenever the multiset {z1, z2, . . . , zn} has m-discrepancy bounded
away from 1 (Lemma 4.3). For the next step, fix any multiset
{z1, z2, . . . , zn} with small m-discrepancy and consider the linear
map L : {0, 1}n → Zm given by L(x) =

∑
zixi. At this point in

the proof, we know that for uniformly random X ∈ {0, 1}n, the
probability distribution of L(X) is exponentially close to uniform.
This implies that the characteristic functions of

L−1(0), L−1(1), . . . , L−1(m − 1)

have approximately the same Fourier spectrum up to degree cn, for
some constant c > 0. We substantially strengthen this conclusion
by proving that there are probability distributions μ0, μ1, . . . , μm−1,
supported on L−1(0), L−1(1), . . . , L−1(m − 1), respectively, such
that the Fourier spectra of μ0, μ1, . . . , μm−1 are exactly the same
up to degree cn. Our proof relies on a general tool from Sherstov
(2013b, Theorem 4.1), proved there using the Gershgorin circle
theorem.

As our final step, we use μ0, μ1, . . . , μm−1 to construct a half-
space in terms of z1, z2, . . . , zn whose approximation by rational
functions and polynomials gives corresponding approximants for
the sign function on the discrete set {±1,±2, . . . ,±m}. More gen-
erally, for any tuple z1, z2, . . . , zn, we define an associated half-
space and prove a lower bound on m in terms of the discrepancy
of the multiset {z1, z2, . . . , zn}. Combining this result with the ef-
ficient construction of an integer set with small m-discrepancy
for m = 2Θ(n), we obtain an explicit halfspace hn : {0, 1}n →
{−1, +1} whose approximation by polynomials and rational func-
tions is equivalent to the univariate approximation of the sign func-
tion on {±1,±2,±3, . . . ,±2Θ(n)}. Theorem 1.2 now follows by ap-
pealing to known lower bounds for the polynomial and rational
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approximation of the sign function. To obtain the exponential
separation of communication complexity with unbounded versus
weakly unbounded error (Theorem 1.3), we use the pattern matrix
method (Sherstov 2009b, 2011) to “lift” the lower bound of Theo-
rem 1.2 to a discrepancy bound. Finally, our result on the threshold
degree of the intersection of two halfspaces (Theorem 1.6) works
by combining the rational approximation lower bound of Theo-
rem 1.2 with a structural result from Sherstov (2013a) on the sign-
representation of arbitrary functions of the form f ∧ f.

A key technical contribution of this paper is the identification
of m-discrepancy as a pseudorandom property that is weak enough
to admit efficient de-randomization and strong enough to allow the
univariatization of the corresponding halfspace. The previous, ex-
istential result in Sherstov (2013b) used a completely different and
more complicated pseudorandom property based on affine shifts of
the Fourier transform on {0, 1}n, which we have not been able to
de-randomize. Apart from the construction of a low-discrepancy
set, our proof is simpler and more intuitive than the existential
proof in Sherstov (2013b).

1.5. Recent progress. Following up on our work, Hatami et al.
(2020) recently obtained a sharper version of Theorem 1.3. Specif-
ically, Hatami et al. (2020) constructed a communication problem
Fn : {0, 1}n × {0, 1}n → {−1, +1} with sign-rank 3 and discrep-
ancy exp(−Ω(n)). This gives a separation of O(1) versus Ω(n) for
communication with unbounded versus weakly unbounded error,
improving on our O(log n) versus Ω(n) separation. However, the
work of Hatami et al. (2020) does not generalize to multiparty
communication and does not recover our approximation-theoretic
results for halfspaces. In particular, Theorem 1.2, Theorem 1.5,
and Theorem 1.6 remain the strongest to date.

2. Preliminaries

We start with a review of the technical preliminaries. The purpose
of this section is to make the paper as self-contained as possible,
and comfortably readable by a broad audience. The expert reader
should therefore skim this section for notation or skip it altogether.
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2.1. Notation. There are two common arithmetic encodings for
the Boolean values: the traditional encoding false ↔ 0, true ↔ 1,
and the Fourier-motivated encoding false ↔ 1, true ↔ −1.
Throughout this manuscript, we use the former encoding for
the domain of a Boolean function and the latter for the range.
With this convention, Boolean functions are mappings {0, 1}n →
{−1, +1} for some n. For Boolean functions f : {0, 1}n → {−1, +1}
and g : {0, 1}m → {−1, +1}, we let f ◦g denote the coordinatewise
composition of f with g. Formally, f ◦ g : ({0, 1}m)n → {−1, +1}
is given by

(2.1) (f ◦ g)(x1, x2, . . . , xn)

= f

(
1 − g(x1)

2
,
1 − g(x2)

2
, . . . ,

1 − g(xn)

2

)

,

where the linear map on the right-hand side serves the purpose
of switching between the distinct arithmetizations for the domain
versus range. A partial function f on a set X is a function whose
domain of definition, denoted dom f, is a nonempty proper subset
of X. We generalize coordinatewise composition f ◦ g to partial
Boolean functions f and g in the natural way. Specifically, f ◦ g
is the Boolean function given by (2.1), with domain the set of all
inputs (. . . , xi, . . . ) ∈ (dom g)n for which (. . . , (1− g(xi))/2, . . . ) ∈
dom f.

We use the following two versions of the sign function:

sgn x =

⎧
⎪⎨

⎪⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0,

s̃gn x =

{
−1 if x < 0,

1 if x � 0.

For a subset X ⊆ R, we let sgn |X denote the restriction of the
sign function to X . A halfspace for us is any Boolean function
h : {0, 1}n → {−1, +1} given by

h(x) = sgn

(
n∑

i=1

wixi − θ

)

for some reals w1, w2, . . . , wn, θ. The majority function
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MAJn : {0, 1}n → {−1, +1} is the halfspace defined by

MAJn(x) = − sgn

(
n∑

i=1

xi − n

2
− 1

4

)

=

{
−1 if x1 + x2 + · · · + xn > n/2,

1 otherwise.

Some authors define MAJn only for n odd, in which case the
tiebreaker term 1/4 can be omitted.

The complement and the power set of a set S are denoted as
usual by S and P(S), respectively. The symmetric difference of
sets S and T is S ⊕ T = (S ∩ T ) ∪ (S ∩ T ). Throughout this
manuscript, we use brace notation as in {z1, z2, . . . , zn} to specify
multisets rather than sets. The cardinality |Z| of a finite mul-
tiset Z is defined as the total number of element occurrences in
Z, with each element counted as many times as it occurs. The
equality and subset relations on multisets are defined analogously,
with the number of element occurrences taken into account. For
example, {1, 1, 2} = {1, 2, 1} but {1, 1, 2} 	= {1, 2}. Similarly,
{1, 2} ⊆ {1, 1, 2} but {1, 1, 2} � {1, 2}.

The infinity norm of a function f : X → R is denoted ‖f‖∞ =
supx∈X |f(x)|. For real-valued functions f and g and a nonempty
finite subset X of their domain, we write

〈f, g〉X =
1

|X |
∑

x∈X
f(x)g(x).

We will often use this notation with X a nonempty proper sub-
set of the domain of f and g. We let ln x and log x stand for the
natural logarithm of x and the logarithm of x to base 2, respec-
tively. The binary entropy function H : [0, 1] → [0, 1] is given by
H(p) = −p log p − (1 − p) log(1 − p) and is strictly increasing on
[0, 1/2]. The following bound is well known (Jukna 2001, p. 283):

k∑

i=0

(
n

i

)

� 2H(k/n)n, k = 0, 1, 2, . . . ,
⌊n

2

⌋
.(2.2)
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For a complex number x, we denote the real part, imaginary part,
and complex conjugate of x as usual by Re(x), Im(x), and x, respec-
tively. We typeset the imaginary unit i in boldface to distinguish
it from the index variable i.

For an arbitrary integer a and a positive integer m, recall that
a mod m denotes the unique element of {0, 1, 2, . . . , m − 1} that
is congruent to a modulo m. For an integer m � 2, the symbols
Zm and Z∗

m refer to the ring of integers modulo m and the multi-
plicative group of integers modulo m, respectively. For a multiset
Z = {z1, z2, . . . , zn} of integers, we adopt the standard notation

−Z = {−z1, . . . ,−zn},(2.3)

aZ = {az1, . . . , azn},(2.4)

Z + b = {z1 + b, . . . , zn + b},(2.5)

Z mod m = {z1 mod m, . . . , zn mod m}.(2.6)

Note that the multisets in (2.3)–(2.6) each have cardinality n, the
same as the original set Z. We often use these shorthands in com-
bination, as in (aZ + b) mod m = {(az1 + b) mod m, . . . , (azn +
b) mod m}.

For a logical condition C, we use the Iverson bracket

I[C] =

{
1 if C holds,

0 otherwise.

The following concentration inequality, due to Hoeffding (1963), is
well-known.

Fact 2.7 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be inde-
pendent random variables with Xi ∈ [ai, bi]. Let

p =
n∑

i=1

EXi.

Then

P

[∣
∣
∣
∣
∣

n∑

i=1

Xi − p

∣
∣
∣
∣
∣
� δ

]

� 2 exp

(

− 2δ2

∑n
i=1(bi − ai)2

)

.

In Fact 2.7 and throughout this paper, we typeset random variables
using capital letters.
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2.2. Number-theoretic preliminaries. For positive integers
a and b that are relatively prime, (a−1)b ∈ {1, 2, . . . , b− 1} denotes
the multiplicative inverse of a modulo b. The following fact is well-
known and straightforward to verify; cf. Ajtai et al. (1990).

Fact 2.8. For any positive integers a and b that are relatively
prime,

(2.9)
(a−1)b

b
+

(b−1)a

a
− 1

ab
∈ Z.

Proof. We have a(a−1)b + b(b−1)a ≡ b(b−1)a ≡ 1 (mod a),
and analogously a(a−1)b + b(b−1)a ≡ a(a−1)b ≡ 1 (mod b). Thus,
a(a−1)b + b(b−1)a − 1 is divisible by both a and b. Since a and b are
relatively prime, we conclude that a(a−1)b + b(b−1)a − 1 is divisible
by ab, which is equivalent to (2.9). �

Recall that the prime counting function π(x) for a real argument
x � 0 evaluates to the number of prime numbers less than or equal
to x. In what follows, it will be clear from the context whether π
refers to 3.14159 . . . or the prime counting function. The asymp-
totic growth of the latter is given by the prime number theorem,
which states that π(n) ∼ n/ ln n. Many explicit bounds on π(n)
are known, such as the following theorem of Rosser (1941).

Fact 2.10 (Rosser). For n � 55,

n

ln n + 2
< π(n) <

n

ln n − 4
.

The number of distinct prime divisors of a natural number n is
denoted ν(n). We will need the following first-principles bound on
ν(n), which is asymptotically tight for infinitely many n.

Fact 2.11. The number of distinct prime divisors of n obeys

(2.12) (ν(n) + 1)! � n.

In particular,

(2.13) ν(n) � (1 + o(1))
ln n

ln ln n
.
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Proof. An integer n � 1 has by definition ν(n) distinct prime
divisors. Letting pk denote the kth prime, we have

ln n � ln p1p2 . . . pν(n)

�
ν(n)∑

k=1

ln(k + 1)

�
∫ ν(n)

1

ln x dx

= ν(n) ln ν(n) − ν(n) + 1,

where the second step uses the trivial estimate pk � k + 1. The
second step in this derivation settles (2.12), whereas the last step
settles (2.13). �

2.3. Matrix analysis. For an arbitrary set X such as X = C

or X = {−1, 1}, the symbol Xn×m denotes the family of n × m
matrices with entries in X. The symbols In and Jn,m stand for
the order-n identity matrix and the n × m matrix of all ones, re-
spectively. When the dimensions of the matrix are clear from the
context, we omit the subscripts and write simply I or J. The short-
hand diag(d1, d2, . . . , dn) refers to the diagonal matrix with entries
d1, d2, . . . , dn on the diagonal:

diag(d1, d2, . . . , dn) =

⎡

⎢
⎢
⎢
⎣

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

⎤

⎥
⎥
⎥
⎦

.

For a matrix M = [Mi,j], recall that its complex conjugate is given
by M = [Mi,j]. The transpose and conjugate transpose of M
are denoted MT and M∗ = MT , respectively. The conjugation,
transpose, and conjugate transpose operations apply as a special
case to vectors, which we view as matrices with a single column.
We use the familiar matrix norms ‖M‖∞ = max |Mij| and ‖M‖1 =∑ |Mij|. Again, these definitions carry over to vectors as a special
case. A matrix M ∈ Cn×n is called unitary if MM∗ = M∗M = I.
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A circulant matrix is any matrix C ∈ Cm×m of the form

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 c1 c2 · · · cm−2 cm−1

cm−1 c0 c1 · · · cm−3 cm−2

cm−2 cm−1 c0 · · · cm−4 cm−3
...

...
...

. . .
...

...
c2 c3 c4 · · · c0 c1

c1 c2 c3 · · · cm−1 c0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.14)

for some c0, c1, . . . , cm−1 ∈ C. Thus, every row of C is obtained
by a circular shift of the previous row one entry to the right. We
let circ(c0, c1, . . . , cm−1) denote the right-hand side of (2.14). In
this notation, circ(1, 0, . . . , 0) = I and circ(1, 1, . . . , 1) = J. The
eigenvalues and eigenvectors of a circulant matrix are well-known
and straightforward to determine. For the reader’s convenience, we
include the short derivation below in Fact 2.15 and Corollary 2.17.

Fact 2.15. Let C = circ(c0, c1, . . . , cm−1) be a circulant matrix.
Then for every mth root of unity ω, the vector

(2.16)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
ω
ω2

...
ωm−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is an eigenvector of C with eigenvalue
∑m−1

j=0 cjω
j.

Proof. Let v denote the vector in (2.16). Then for k =
1, 2, 3, . . . , m,

(Cv)k =
m−1∑

j=0

c(j−k+1) mod m ωj

=

(
m−1∑

j=0

c(j−k+1) mod m ωj−k+1

)

vk
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=

(
m−1∑

j=0

c(j−k+1) mod m ω(j−k+1) mod m

)

vk

=

(
m−1∑

j=0

cjω
j

)

vk,

where the third step uses ωm = 1. �
As a corollary to Fact 2.15, one recovers the full complement of
eigenvalues for any circulant matrix C and furthermore learns that
C is unitarily similar to a diagonal matrix. In the statement below,
recall that a primitive mth root of unity is any generator, such as
exp(2πi/m), for the multiplicative group of the roots of xm − 1 ∈
C[x]. We further remind the reader that 1+ω+ω2+· · ·+ωm−1 = 0
for any mth root of unity ω 	= 1.

Corollary 2.17. Let C = circ(c0, c1, . . . , cm−1) be a circulant
matrix. Let ω be a primitive mth root of unity. Then the matrix

W = [ωjk/
√

m]j,k=0,1,...,m−1

is unitary and satisfies

(2.18) W ∗CW

= diag

(
m−1∑

j=0

cj,
m−1∑

j=0

cjω
j,

m−1∑

j=0

cjω
2j, . . . ,

m−1∑

j=0

cjω
(m−1)j

)

.

In particular, the eigenvalues of C, counting multiplicities, are

m−1∑

j=0

cjω
kj, k = 0, 1, 2, . . . , m − 1.

Proof. For k, k′ = 0, 1, . . . , m − 1, we have

m−1∑

j=0

ωjk

√
m

· ωjk′

√
m

=
1

m

m−1∑

j=0

ωj(k−k′)

=

{
1 if k = k′,

0 otherwise,
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where the second step is valid because ω is primitive and in par-
ticular ωk 	= ωk′

. We conclude that

(2.19) WW ∗ = W ∗W = I.

Fact 2.15 implies that

CW = W diag

(
m−1∑

j=0

cj,

m−1∑

j=0

cjω
j,

m−1∑

j=0

cjω
2j, . . . ,

m−1∑

j=0

cjω
(m−1)j

)

,

which in light of (2.19) is equivalent to (2.18). �

2.4. Polynomial approximation. Recall that the total degree
of a multivariate real polynomial p : Rn → R, denoted deg p, is the
largest degree of any monomial of p. We use the terms “degree”
and “total degree” interchangeably. Let f : X → R be a given
function with domain X ⊆ Rn. For any d � 0, define

E(f, d) = inf
p

‖f − p‖∞,

where the infimum is over real polynomials p of degree at most d.
In words, E(f, d) is the least error in a pointwise approximation of
f by a polynomial of degree no greater than d. The ε-approximate
degree of f is the minimum degree of a polynomial p that approx-
imates f pointwise within ε:

‖f − p‖∞ � ε.

In this overview, we focus on the polynomial approximation of the
sign function. We start with an elementary construction of an
approximant due to Buhrman et al. (2007a).

Fact 2.20 (Buhrman et al.). For any N > 1 and 0 < ε < 1, the
sign function can be approximated on [−N,−1] ∪ [1, N ] pointwise
to within ε by a polynomial of degree

O

(

N2 log
2

ε

)

.
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The degree upper bound in Fact 2.20 is not tight. Indeed, a
quadratically stronger bound of O(N log(2/ε)) follows in a straight-
forward manner from Jackson’s theorem in approximation the-
ory (Rivlin 1981, Theorem 1.4). Our applications do not benefit
from this improvement, however, and we opt for the construction
of Buhrman et al. (2007a) because of its striking simplicity. For
the reader’s convenience, we provide their short proof below.

Proof (adapted from Buhrman et al.). For a positive integer d,
consider the degree-d univariate polynomial

Bd(t) =
d∑

i=�d/2�

(
d

i

)

ti(1 − t)d−i.

In words, Bd(t) is the probability of observing at least as many
heads as tails in a sequence of d independent coin flips, each coming
up heads with probability t. By Hoeffding’s inequality (Fact 2.7)
for sufficiently large d = O(N2 log(2/ε)), the polynomial Bd sends
[0, 1

2
− 1

2N
] → [0, ε

2
] and similarly [1

2
+ 1

2N
, 1] → [1− ε

2
, 1]. As a result,

the shifted and scaled polynomial 2Bd

(
1

2N
· t + 1

2

)−1 approximates
the sign function pointwise on [−N,−1] ∪ [1, N ] within ε. �

On the lower bounds side, Paturi proved that low-degree polyno-
mials cannot approximate the majority function well. He in fact
obtained analogous results for all symmetric functions, but the
special case of majority will be sufficient for our purposes.

Theorem 2.21 (Paturi). For some constant c > 0 and all integers
n � 1,

E(MAJn, cn) � 1

3
.

The constant 1/3 in Paturi’s theorem can be replaced by any other
in (0, 1). His result is of interest to us because along with Fact 2.20,
it implies a lower bound for the approximation of the sign function
on the discrete set of points {±1,±2, . . . ,±N} for any N.
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Proposition 2.22. For all positive integers N and d,

E(sgn |{±1,±2,...,±N}, d) � 1 − O

(
d

N

)1/2

.

Proof. Abbreviate ε = E(sgn |{±1,±2,...,±N}, d) and fix a poly-
nomial p of degree at most d that approximates the sign function
on {±1,±2, . . . ,±N} within ε. Fact 2.20 gives a polynomial s of
degree O(1/(1 − ε)2) that sends [−1 − ε,−1 + ε] → [−4/3,−2/3]
and [1 − ε, 1 + ε] → [2/3, 4/3]. Then the composition of these two
approximants obeys

max
t=±1,±2,...,±N

| sgn(t) − s(p(t))| � 1

3
.

This in turn gives an approximant for the majority function on
n = �(N − 1)/2� bits:

max
x∈{0,1}n

∣
∣
∣
∣
∣
MAJn(x) − s

(

p

(

2
n∑

j=1

(−1)xj + 1

))∣
∣
∣
∣
∣

= max
x∈{0,1}n

∣
∣
∣
∣
∣
sgn

(

2
n∑

j=1

(−1)xj + 1

)

− s

(

p

(

2
n∑

j=1

(−1)xj + 1

))∣
∣
∣
∣
∣

� max
t=±1,±2,...,±N

| sgn(t) − s(p(t))|

� 1

3
.

In view of Paturi’s lower bound for the majority function (Theo-
rem 2.21), the approximant s(p(2

∑
(−1)xj + 1)) must have de-

gree Ω(n) = Ω(N). But this composition is a polynomial in
x ∈ {0, 1}n of degree deg s · deg p = O(d/(1 − ε)2). We conclude
that d/(1 − ε)2 � Ω(N), whence ε � 1 − O(d/N)1/2. �

2.5. Rational approximation. Consider a rational function
r(x) = p(x)/q(x), where p and q are polynomials on Rn. We refer
to the degrees of p and q as the numerator degree and denominator
degree, respectively, of r. The degree of r is, then, the maximum of
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the numerator and denominator degrees. For a function f : X → R

with domain X ⊆ Rn, we define

R(f, d0, d1) = inf
p,q

sup
x∈X

∣
∣
∣
∣f(x) − p(x)

q(x)

∣
∣
∣
∣ ,(2.23)

where the infimum is over multivariate polynomials p and q of
degree at most d0 and d1, respectively, such that q does not vanish
on X. In words, R(f, d0, d1) is the least error in an approximation
of f by a multivariate rational function with numerator degree
and denominator degree at most d0 and d1, respectively. We will
be mostly working with R(f, d0, d1) in the regimes d0 = d1 and
d0 � d1. In the former regime, we use the shorthand

R(f, d) = R(f, d, d).

As a limiting case of the latter regime, we have

E(f, d) = R(f, d, 0).

The study of the rational approximation of the sign function
dates back to the seminal work by Zolotarev (1877) in the 1870s.
The problem was revisited almost a century later by Newman
(1964), who proved the following result.

Fact 2.24 (Newman). For any N > 1 and any integer d � 1,

R(sgn |[−N,−1]∪[1,N ], d) � 1 − 1

N1/d
.

For a recent exposition of Newman’s construction, we refer the
reader to Sherstov (2013a, Theorem 2.4). As an important special
case, Newman’s work gives upper bounds for the rational approxi-
mation of the sign function on the discrete set {±1,±2, . . . ,±N}.
Newman’s upper bounds were sharpened and complemented with
matching lower bounds in Sherstov (2013a, Eq. (2.2) and Theo-
rem 5.1), to the following effect.
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Theorem 2.25 (Sherstov). For any positive integers N and d,

R(sgn |{±1,±2,...,±N}, d) =

{
1 − N−Θ(1/d) if 1 � d � log N,

2−Θ(d/ log(N/d)) if log N < d < N/2.

Among other things, Theorem 2.25 implies the following result
on the rational approximation of the majority function (Sherstov
2013a, Eq. (2.2) and Theorems 5.1, 5.9).

Theorem 2.26 (Sherstov). For any positive integers n and d,

R(MAJn, d) =

{
1 − n−Θ(1/d) if 1 � d � log n,

2−Θ(d/ log(n/d)) if log n � d < �n/4�.

2.6. Sign-representation. Let f : X → {−1, +1} be a given
function, where X ⊂ Rn is finite. The threshold degree of f,
denoted deg±(f), is the least degree of a polynomial p(x) such
that f(x) ≡ sgn p(x). For functions f : X → {−1, +1} and
g : Y → {−1, +1}, we let the symbol f ∧ g stand for the func-
tion X × Y → {−1, +1} given by (f ∧ g)(x, y) = f(x) ∧ g(y).
Note that in this notation, f and f ∧ f are completely different
functions, the former having domain X and the latter X ×X. The
following ingenious observation, due to Beigel et al. (1995), relates
the notions of sign-representation and rational approximation for
conjunctions of Boolean functions.

Theorem 2.27 (Beigel et al.). Let f : X → {−1, +1} and
g : Y → {−1, +1} be given functions, where X,Y ⊆ Rn. Let d
be any integer with

R(f, d) + R(g, d) < 1.

Then

deg±(f ∧ g) � 4d.

Proof (adapted from Beigel et al.). Fix arbitrary rational
functions p1(x)/q1(x) and p2(y)/q2(y) of degree at most d such
that

sup
X

∣
∣
∣
∣f(x) − p1(x)

q1(x)

∣
∣
∣
∣+ sup

Y

∣
∣
∣
∣g(y) − p2(y)

q2(y)

∣
∣
∣
∣ < 1.
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Then

f(x) ∧ g(y) ≡ sgn(1 + f(x) + g(y))

≡ sgn

(

1 +
p1(x)

q1(x)
+

p2(y)

q2(y)

)

.

Multiplying through by the positive quantity q1(x)2q2(y)2 gives
the desired sign-representing polynomial: f(x) ∧ g(y) ≡
sgn{q1(x)2q2(y)2 + p1(x)q1(x)q2(y)2 + p2(y)q2(y)q1(x)2}. �
The construction of Theorem 2.27 is somewhat ad hoc, and there
is no particular reason to believe that it gives a sign-representing
polynomial of asymptotically optimal degree. Remarkably, it does.
The following converse to the theorem of Beigel et al. was estab-
lished by Sherstov (2013a, Theorem 3.16).

Theorem 2.28 (Sherstov). Let f : X → {−1, +1} and g : Y →
{−1, +1} be given functions, where X,Y ⊂ Rn are arbitrary finite
sets. Assume that f and g are not identically false. Let d =
deg±(f ∧ g). Then

R(f, 4d) + R(g, 2d) < 1.

2.7. Symmetrization. Let Sn denote the symmetric group on
n elements. For σ ∈ Sn and x ∈ {0, 1}n, we denote σx =
(xσ(1), . . . , xσ(n)) ∈ {0, 1}n. For x ∈ {0, 1}n, we define |x| =
x1 +x2 + · · ·+xn. A function φ : {0, 1}n → R is called symmetric if
φ(x) = φ(σx) for every x ∈ {0, 1}n and every σ ∈ Sn. Equivalently,
φ is symmetric if φ(x) is uniquely determined by |x|. Symmetric
functions on {0, 1}n are intimately related to univariate polyno-
mials, as borne out by the symmetrization argument (Minsky &
Papert 1969).

Proposition 2.29 (Minsky and Papert). Let p : {0, 1}n → R be
a polynomial of degree d. Then there is a univariate polynomial p∗

of degree at most d such that for all x ∈ {0, 1}n,

E
σ∈Sn

p(σx) = p∗(|x|).
Minsky and Papert’s result generalizes to block-symmetric func-
tions, as pointed out by Razborov & Sherstov (2010, Proposi-
tion 2.3):
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Proposition 2.30 (Razborov and Sherstov). Let n1, . . . , nk be
positive integers. Let p : {0, 1}n1 ×· · ·×{0, 1}nk → R be a polyno-
mial of degree d. Then there is a polynomial p∗ : Rk → R of degree
at most d such that for all x1 ∈ {0, 1}n1 , . . . , xk ∈ {0, 1}nk ,

E
σ1∈Sn1 ,...,σk∈Snk

p(σ1x1, . . . , σkxk) = p∗(|x1|, . . . , |xk|).

Proposition 2.30 follows in a straightforward manner from Min-
sky and Papert’s Proposition 2.29 by induction on the number of
blocks k.

2.8. Communication complexity. An excellent reference on
communication complexity is the monograph by Kushilevitz &
Nisan (1997). In this overview, we will limit ourselves to key def-
initions and notation. We adopt the randomized number-on-the-
forehead model, due to Chandra et al. (1983). The model features k
communicating players, tasked with computing a (possibly partial)
Boolean function F on the Cartesian product X1 × X2 × · · · × Xk

of some finite sets X1, X2, . . . , Xk. A given input (x1, x2, . . . , xk) ∈
X1 × X2 × · · · × Xk is distributed among the players by placing
xi, figuratively speaking, on the forehead of the ith player (for
i = 1, 2, . . . , k). In other words, the ith player knows the arguments
x1, . . . , xi−1, xi+1, . . . , xk but not xi. The players communicate by
sending broadcast messages, taking turns according to a protocol
agreed upon in advance. Each of them privately holds an unlimited
supply of uniformly random bits, which he can use along with his
available arguments when deciding what message to send at any
given point in the protocol. The protocol’s purpose is to allow accu-
rate computation of F everywhere on the domain of F . An ε-error
protocol for F is one which, on every input (x1, x2, . . . , xk) ∈ dom F,
produces the correct answer F (x1, x2, . . . , xk) with probability at
least 1 − ε. The cost of a protocol is the total bit length of the
messages broadcast by all the players in the worst case; here the
contribution of a b-bit broadcast to the protocol cost is b rather
than k ·b. The ε-error randomized communication complexity of F,
denoted Rε(F ), is the least cost of an ε-error randomized protocol
for F . As a special case of this model for k = 2, one recovers the
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original two-party model of Yao (1979) reviewed in the introduc-
tion.

We focus on randomized protocols with probability of error
close to that of random guessing, 1/2. There are two natural ways
to define the communication complexity of a multiparty problem
F in this setting. The communication complexity of F with un-
bounded error, introduced by Paturi & Simon (1986), is the quan-
tity

UPP(F ) = inf
0�ε<1/2

Rε(F ).

The error probability in this formalism is “unbounded” in the sense
that it can be arbitrarily close to 1/2. Babai et al. (1986) proposed
an alternate quantity, which includes an additive penalty term that
depends on the error probability:

PP(F ) = inf
0�ε<1/2

{

Rε(F ) + log
1

1
2

− ε

}

.

We refer to PP(F ) as the communication complexity of F with
weakly unbounded error. These two complexity measures naturally
give rise to corresponding complexity classes UPPk and PPk in
multiparty communication complexity (Babai et al. 1986), both
inspired by Gill’s probabilistic polynomial time for Turing ma-
chines (Gill 1977). Formally, let {Fn,k}∞

n=1 be a family of k-party
communication problems Fn,k : ({0, 1}n)k → {−1, +1}, where k =
k(n) is either a constant or a function. Then {Fn,k}∞

n=1 ∈ UPPk if
and only if UPP(Fn,k) � logc n for some constant c and all n � c.
Analogously, {Fn,k}∞

n=1 ∈ PPk if and only if PP(Fn,k) � logc n for
some constant c and all n � c. By definition,

PPk ⊆ UPPk.

It is standard practice to abbreviate PP = PP2 and UPP = UPP2.
The following well-known fact, whose proof in the stated gener-
ality is available in Sherstov (2018, Fact 2.4), gives a large class
of communication problems that are efficiently computable with
unbounded error.
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Fact 2.31. Let F : ({0, 1}n)k → {−1, +1} be a k-party commu-
nication problem such that F (x) = sgn p(x) for some polynomial
p with 
 monomials. Then

UPP(F ) � �log 
� + 2.

In the setting of k = 2 parties, Paturi & Simon (1986) showed
that unbounded error communication complexity has a natural
matrix-analytic characterization. For a matrix M without zero
entries, the sign-rank of M is denoted rk±(M) and defined as the
minimum rank of a real matrix R such that sgn Ri,j = sgn Mi,j for
all i, j. In words, the sign-rank of M is the minimum rank of a real
matrix that has the same sign pattern as M. We extend the notion
of sign-rank to communication problems F : X × Y → {−1, +1}
by defining rk±(F ) = rk±(MF ), where MF = [F (x, y)]x∈X,y∈Y is
the characteristic matrix of F. The following classic result due to
Paturi & Simon (1986, Theorem 3) relates two-party unbounded
error communication complexity to sign-rank.

Theorem 2.32 (Paturi and Simon). Let F : X × Y → {−1, +1}
be a two-party communication problem. Then

log rk±(F ) � UPP(F ) � log rk±(F ) + 2.

2.9. Discrepancy. A k-dimensional cylinder intersection is a
function χ : X1 × X2 × · · · × Xk → {0, 1} of the form

χ(x1, x2, . . . , xk) =
k∏

i=1

χi(x1, . . . , xi−1, xi+1, . . . , xk),

where χi : X1×· · ·×Xi−1×Xi+1×· · ·×Xk → {0, 1}. In other words,
a k-dimensional cylinder intersection is the product of k functions
with range {0, 1}, where the ith function does not depend on the
ith coordinate but may depend arbitrarily on the other k −1 coor-
dinates. Introduced by Babai et al. (1992), cylinder intersections
are the fundamental building blocks of communication protocols
and for that reason play a central role in the theory. For a (pos-
sibly partial) Boolean function F on X1 × X2 × · · · × Xk and a
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probability distribution P on X1 × X2 × · · · × Xk, the discrepancy
of F with respect to P is given by

discP (F ) =
∑

x/∈dom F

P (x) + max
χ

∣
∣
∣
∣
∣

∑

x∈dom F

F (x)P (x)χ(x)

∣
∣
∣
∣
∣
,

where the maximum is over cylinder intersections χ. The minimum
discrepancy over all distributions is denoted

disc(F ) = min
P

discP (F ).

Upper bounds on a function’s discrepancy give lower bounds on its
randomized communication complexity, a classic technique known
as the discrepancy method (Chor & Goldreich 1988; Babai et al.
1992; Kushilevitz & Nisan 1997).

Theorem 2.33. Let F be a (possibly partial) Boolean function
on X1 × X2 × · · · × Xk. Then for 0 � ε � 1/2,

2Rε(F ) � 1 − 2ε

disc(F )
.

A proof of Theorem 2.33 in the stated generality is available
in Sherstov (2016, Theorem 2.9). Combining this theorem with
the definition of PP(F ) gives the following corollary.

Corollary 2.34. Let F be a (possibly partial) Boolean function
on X1 × X2 × · · · × Xk. Then

PP(F ) � log
2

disc(F )
.

2.10. Pattern matrix method. Theorem 2.33 and Corol-
lary 2.34 highlight the role of discrepancy in proving lower bounds
on randomized communication complexity. Apart from a few
canonical examples (Kushilevitz & Nisan 1997), discrepancy is a
challenging quantity to analyze. The pattern matrix method is a
technique that gives tight bounds on the discrepancy and commu-
nication complexity for a large class of communication problems.
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The technique was developed by Sherstov (2009b, 2011) for two-
party communication complexity and has since been generalized
by several authors to the multiparty setting. We now review the
strongest form (Sherstov 2016, 2014) of the pattern matrix method,
focusing our discussion on discrepancy bounds.

Set disjointness is the k-party communication problem of deter-
mining whether k given subsets of the universe {1, 2, . . . , n} have
empty intersection, where, as usual, the ith party knows all the
sets except for the ith. Identifying the sets with their character-
istic vectors, set disjointness corresponds to the Boolean function
DISJn,k : ({0, 1}n)k → {−1, +1} given by

DISJn,k(x1, x2, . . . , xk) = ¬
n∨

i=1

x1,i ∧ x2,i ∧ · · · ∧ xk,i .(2.35)

The partial function UDISJn,k on ({0, 1}n)k, called unique set dis-
jointness, is defined as DISJn,k with domain restricted to inputs
x ∈ ({0, 1}n)k such that x1,i ∧ x2,i ∧ · · · ∧ xk,i = 1 for at most one
coordinate i. In set-theoretic terms, this restriction corresponds to
requiring that the k sets either have empty intersection or intersect
in a unique element.

The pattern matrix method pertains to the communication
complexity of composed communication problems. Specifically,
let G be a (possibly partial) Boolean function on X1 × X2 ×
· · · × Xk, representing a k-party communication problem, and
let f : {0, 1}n → {−1, +1} be given. The coordinatewise com-
position f ◦ G is then a k-party communication problem on
Xn

1 × Xn
2 × · · · × Xn

k . We are now in a position to state the pat-
tern matrix method for discrepancy bounds (Sherstov 2016, The-
orem 5.7).

Theorem 2.36 (Sherstov). For every Boolean function
f : {0, 1}n → {−1, +1}, all positive integers m and k, and
all reals 0 < γ < 1,

disc(f ◦ UDISJm,k) �
(

e · 2kn

deg1−γ(f)
√

m

)deg1−γ(f)

+ γ .
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This theorem makes it possible to prove communication lower
bounds by leveraging the existing literature on polynomial approx-
imation. In follow-up work, the author improved Theorem 2.36 to
an essentially tight upper bound (Sherstov 2014, Theorem 5.7).
However, we will not need this sharper version.

3. Discrepancy of integer sets

Let m � 2 be an integer modulus. Key to our work is the no-
tion of m-discrepancy, which quantifies the pseudorandomness or
aperiodicity of any given multiset of integers modulo m. The m-
discrepancy of a nonempty multiset Z = {z1, z2, . . . , zn} of arbi-
trary integers is defined as

disc(Z,m) = max
k=1,2,...,m−1

∣
∣
∣
∣
∣

1

n

n∑

j=1

ωkzj

∣
∣
∣
∣
∣
,

where ω is a primitive mth root of unity; the right-hand side is
obviously the same for any such ω. By way of terminology, we
emphasize that the notion of m-discrepancy just defined is unre-
lated to the notion of discrepancy from Section 2.9. As a matter
of convenience, we define

(3.1) disc(∅,m) = 0.

The notion of m-discrepancy has a long history in combinatorics
and theoretical computer science, e.g., Galil et al. (1989); Ruzsa
(1987); Ajtai et al. (1990); Katz (1989); Razborov et al. (1993);
Alon & Roichman (1994). The m-discrepancy of an integer
multiset Z has a natural interpretation in terms of the discrete
Fourier transform on Zm. Specifically, consider the frequency vec-
tor (f0, f1, . . . , fm−1) of Z, where fj is the total number of element
occurrences in Z that are congruent to j modulo m. Applying
the discrete Fourier transform to (fj)

m−1
j=0 produces the sequence

(
∑m−1

j=0 fj exp(−2πikj/m))m−1
k=0 = (

∑n
j=1 exp(−2πikzj/m))m−1

k=0 ,

which is a permutation of (n,
∑n

j=1 ωzj , . . . ,
∑n

j=1 ω(m−1)zj). Sum-
marizing, the m-discrepancy of Z coincides up to a normalizing
factor with the largest absolute value of a nonconstant Fourier co-
efficient of the frequency vector of Z.
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3.1. Basic properties. We collect a few elementary properties
of m-discrepancy. To start with, we quantify the “continuity” of
disc(Z,m) in the first argument. By way of notation, we remind
the reader that the cardinality |Z| of a multiset Z is found by
summing, for each distinct element z ∈ Z, the number of times z
occurs in Z.

Proposition 3.2. Fix a natural number m � 2. Then for any
nonempty finite multisets Z,Z ′ of integers with Z ′ ⊆ Z,

(3.3) 1 + disc(Z ′,m) � (1 + disc(Z,m)) · |Z|
|Z ′| .

Proof. Abbreviate n = |Z| and n′ = |Z ′|, and fix an enu-
meration z1, z2, . . . , zn of the elements of Z such that Z ′ =
{z1, z2, . . . , zn′}. Then for a primitive mth root of unity ω,

n disc(Z,m) = max
k=1,2,...,m−1

∣
∣
∣
∣
∣

n∑

j=1

ωkzj

∣
∣
∣
∣
∣

� max
k=1,2,...,m−1

{∣
∣
∣
∣
∣

n′
∑

j=1

ωkzj

∣
∣
∣
∣
∣
−

n∑

j=n′+1

∣
∣ωkzj
∣
∣

}

= max
k=1,2,...,m−1

∣
∣
∣
∣
∣

n′
∑

j=1

ωkzj

∣
∣
∣
∣
∣
− (n − n′)

= n′ disc(Z ′,m) − (n − n′),

which directly implies (3.3). �
The m-discrepancy of Z is invariant under a variety of operations
on Z, such as shifting the elements of Z by any given integer or
multiplying the elements of Z by an integer relatively prime to m.
For our purposes, the following observation will be sufficient.

Proposition 3.4. Fix a natural number m � 2 and a nonempty
finite multiset Z of integers. Then

disc(−Z,m) = disc(Z,m).

Proof. The claim is immediate from the definition of m-
discrepancy because ω is a primitive mth root of unity if and only
if ω−1 is. �
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3.2. Existential bounds. Since the m-discrepancy of a multi-
set remains unchanged when one reduces its elements modulo m,
we can focus without loss of generality on multisets with elements
in {0, 1, 2, . . . , m−1}. The identity 1+ω +ω2 + · · ·+ωm−1 = 0 for
any mth root of unity ω 	= 1 implies that Z = {0, 1, 2, . . . , m − 1}
achieves the smallest possible m-discrepancy: disc(Z,m) = 0. The
problem of constructing sparse nonempty multisets with small dis-
crepancy has seen considerable work. Their existence is straight-
forward to verify, as follows.

Fact 3.5. Fix 0 < ε < 1 and an integer m � 2. Let Z be a
random multiset of size n whose elements are chosen independently
and uniformly at random from {0, 1, 2, . . . , m − 1}. Then

P [disc(Z,m) � ε] � 4m exp

(

−nε2

8

)

.

Fact 3.5 has been proved in one form or another by many authors,
e.g., Galil et al. (1989); Ruzsa (1987); Alon & Roichman (1994).
For the reader’s convenience, we include a short proof below.

Proof. Let Z1, Z2, . . . , Zn be independent random variables,
each distributed uniformly in {0, 1, 2, . . . , m − 1}. For any mth
root of unity ω 	= 1, we have |ωZj | = 1 and EωZj = 0 for
j = 1, 2, . . . , n. Hence, Re(ωZ1), Re(ωZ2), . . . , Re(ωZn) are indepen-
dent random variables with range in [−1, 1] and expectation 0, and
likewise for Im(ωZ1), Im(ωZ2), . . . , Im(ωZn). As a result,

P

[∣
∣
∣
∣
∣

1

n

n∑

j=1

ωZj

∣
∣
∣
∣
∣
� ε

]

� P

[∣
∣
∣
∣
∣
Re

(
1

n

n∑

j=1

ωZj

)∣
∣
∣
∣
∣
� ε

2

]

+ P

[∣
∣
∣
∣
∣
Im

(
1

n

n∑

j=1

ωZj

)∣
∣
∣
∣
∣
� ε

2

]

� 4 exp

(

−nε2

8

)

,

where the second step uses Hoeffding’s inequality (Fact 2.7). Ap-
plying the union bound across all mth roots of unity ω 	= 1, we
conclude that the probability that disc({Z1, Z2, . . . , Zn},m) � ε is
at most 4(m − 1) exp(−nε2/8). �
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In some applications, one is restricted to working with subsets of
{0, 1, 2, . . . , m−1} as opposed to arbitrary multisets with possibly
repeated elements. We record a version of Fact 3.5 for this setting.

Corollary 3.6. Fix 0 < ε < 1 and an integer m � 2. Let Z
be a random multiset of size n � m whose elements are chosen
independently and uniformly at random from {0, 1, 2, . . . , m − 1}.
Then with probability at least

(3.7)
(
1 − n

m

)n

− 4m exp

(

−nε2

8

)

,

the elements of Z are nonzero and pairwise distinct, and obey
disc(Z,m) � ε.

Proof. The probability that Z does not contain 0 or repeated
elements is easily seen to be

∏n
i=1

m−i
m

� (1 − n
m

)n. As a result, the
claim follows from Fact 3.5. �

In all of our applications, the error parameter ε > 0 will be a small
constant. In this regime, Corollary 3.6 guarantees the existence
of a set Z ⊆ {1, 2, . . . , m − 1} with m-discrepancy at most ε and
cardinality O(log m), an exponential improvement in sparsity com-
pared to the trivial set {0, 1, 2, . . . , m−1}. No further improvement
is possible: it is well known that any nonempty multiset with m-
discrepancy bounded away from 1 has cardinality Ω(log m). This
classical lower bound has a remarkable variety of proofs, e.g., us-
ing random walks (Alon & Roichman 1994), sphere packing argu-
ments (Friedman et al. 2006), and diophantine approximation (Le-
ung et al. 2011). We include here a particularly simple and self-
contained proof, adapted from Leung et al. (2011). Unlike all other
technical statements in this paper, Fact 3.8 is not used in the proof
of our main result and is provided solely for completeness.

Fact 3.8 (Leung et al.). Fix a natural number m � 2. Let Z =
{z1, z2, . . . , zn} be a multiset of integers. Then

disc(Z,m) � 1 − 2π

�(m − 1)1/n� .
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Proof (adapted from Leung et al. 2011). The proof is based on
a classic technique from simultaneous diophantine approximation.
For a nonnegative real number x, let frac(x) denote the fractional
part of x. Abbreviate q = �(m−1)1/n� and consider the q intervals

(3.9)

[

0,
1

q

)

,

[
1

q
,
2

q

)

,

[
2

q
,
3

q

)

, . . . ,

[
q − 1

q
, 1

)

.

By the pigeonhole principle, there must be a pair of distinct inte-
gers k′, k′′ ∈ {0, 1, 2, . . . , qn} such that

frac

(
z1k

′

m

)

, frac

(
z2k

′

m

)

, . . . , frac

(
znk′

m

)

are in the same intervals of (3.9) as

frac

(
z1k

′′

m

)

, frac

(
z2k

′′

m

)

, . . . , frac

(
znk

′′

m

)

,

respectively. Without loss of generality, k′ > k′′. Then the integer
k = k′ − k′′ obeys

k ∈ {1, 2, . . . , m − 1},(3.10)
∣
∣
∣
∣
zjk

m
− uj

∣
∣
∣
∣ �

1

q
, j = 1, 2, . . . , n(3.11)

for some u1, u2, . . . , un ∈ Z. Now

disc(Z,m) � 1

n

∣
∣
∣
∣
∣

n∑

j=1

exp

(

2πi · kzj

m

)∣∣
∣
∣
∣

� 1 − 1

n

n∑

j=1

∣
∣
∣
∣1 − exp

(

2πi · kzj

m

)∣
∣
∣
∣

= 1 − 1

n

n∑

j=1

∣
∣
∣
∣1 − exp

(

2πi ·
(

kzj

m
− uj

))∣
∣
∣
∣

� 1 − 1

n

n∑

j=1

2π

∣
∣
∣
∣
kzj

m
− uj

∣
∣
∣
∣

� 1 − 2π

q
,
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where the first step uses the definition of m-discrepancy; the sec-
ond step applies the triangle inequality; the third step is valid
by periodicity; the fourth step uses the bound |1 − exp(2πxi)| =√

2 − 2 cos(2πx) � 2π|x| for all real x; and the final step is imme-
diate from (3.11). �

3.3. An explicit construction. We now turn to the problem
of efficiently constructing sparse sets with small m-discrepancy.
Two such constructions are known to date, due to Ajtai et al.
(1990) and Katz (1989). The approach of Ajtai et al. is elemen-
tary except for an appeal to the prime number theorem. Katz’s
construction, on the other hand, relies on deep results in number
theory. Neither work appears to directly imply the kind of optimal
de-randomization that we require, namely, an algorithm that runs
in time polynomial in log m and produces a multiset of cardinality
O(log m) with m-discrepancy bounded away from 1. We obtain
such an algorithm by adapting the approach of Ajtai et al. (1990).
The following technical result plays a central role.

Theorem 3.12 (cf. Ajtai et al.). Fix an integer R � 1 and a real
number P � 2. Let m be an integer with m � P 2(R + 1). Fix a
set Sp ⊆ {1, 2, . . . , p − 1} for each prime p ∈ (P/2, P ] with p � m,
such that all Sp have the same cardinality. Consider the multiset

S = {(r + s · (p−1)m) mod m :

r = 1, . . . , R; p ∈ (P/2, P ] prime with p � m; s ∈ Sp}.

Then the elements of S are pairwise distinct and nonzero. More-
over,

disc(S,m) � c√
R

+
c log m

log log m
· log P

P
+ max

p
{disc(Sp, p)}

for some (explicitly given) constant c � 1 independent of P,R,m.

Ajtai et al. (1990) proved a special case of Theorem 3.12 for m
prime, but their argument readily generalizes to arbitrary moduli
m as just stated. For the reader’s convenience, we provide a com-
plete proof of Theorem 3.12 in Section 6. The theorem’s purpose is
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to reduce the construction of a sparse set with small m-discrepancy
to the construction of sparse sets with small p-discrepancy, for
primes p � m. By applying Theorem 3.12 in a recursive manner,
one reaches smaller and smaller primes. Ajtai et al. (1990) con-
tinue this recursive process until they reach primes p so small that
the trivial construction {1, 2, 3, . . . , p−1} can be considered sparse.
We proceed differently and terminate the recursion after just two
stages, at which point the input size is small enough for brute force
search based on Corollary 3.6. The final set that we construct
has size logarithmic in m and m-discrepancy a small constant, as
opposed to the superlogarithmic size and o(1) discrepancy in the
work of Ajtai et al. (1990). A detailed exposition of our algorithm
follows.

Theorem 3.13. Let 0 < ε � 1 be given. Then there is an algo-
rithm that takes as input an integer m � 2, runs in time polynomial
in log m, and outputs a nonempty set Z ⊆ {0, 1, 2, . . . , m−1} with

disc(Z,m) � ε,

|Z| � Cε log m,

where Cε � 1 is a constant. Moreover, the constant Cε and the
algorithm are given explicitly.

Proof. Set δ = ε/(11c), where c � 1 is the explicit constant
from Theorem 3.12. Define

P ′ =
1

δ
ln

(
1

δ
ln m

)

,

P ′′ =
1

δ
ln m.

We may assume that

P ′ � 1

δ2
,(3.14)

P ′ > 4

⌈
8 ln 8P ′

δ2

⌉2
,(3.15)

P ′′ � 2P ′2
⌈

1

δ2
+ 1

⌉

,(3.16)



cc The Hardest Halfspace Page 39 of 85 11

m � P ′′2
⌈

1

δ2
+ 1

⌉

,(3.17)

π(P ′) > π

(
P ′

2

)

,(3.18)

π(P ′′) − π

(
P ′′

2

)

> ν(m),(3.19)

where π is the prime counting function and ν is the number of
distinct prime divisors function. Indeed, if any of (3.14)–(3.17) is
violated, then by elementary calculus m is bounded in terms of
1/δ = O(1) and therefore the trivial set Z = {0, 1, 2, . . . , m − 1}
satisfies disc(Z,m) = 0 and |Z| = O(1). Analogously, the explicit
bounds for π and ν in Fact 2.10 and Fact 2.11 ensure that (3.18)
and (3.19) can fail only if m is bounded in terms of 1/δ = O(1), so
that we may again output Z = {0, 1, 2, . . . , m − 1}.

Assuming (3.14)–(3.19), our construction of Z has three stages.
In the first and second stages, we construct sparse sets Sp ⊆
{1, 2, . . . , p − 1} with small p-discrepancy for all primes p ∈
(P ′/2, P ′] and p ∈ (P ′′/2, P ′′], respectively. In the final stage,
we construct the set Z in the theorem statement. We ensure that
each stage runs in time polynomial in ln m.

Stage 1. For every prime p′ ∈ (P ′/2, P ′], Corollary 3.6 along
with (3.15) guarantees the existence of a set Sp′ ⊆ {1, 2, . . . , p′ −1}
with

|Sp′| =

⌈
8 ln 8P ′

δ2

⌉

, prime p′ ∈ (P ′/2, P ′],(3.20)

disc(Sp′ , p′) � δ, prime p′ ∈ (P ′/2, P ′].(3.21)

The primes in (P ′/2, P ′] can be identified by the trivial algorithm in
time polynomial in P ′ = O(ln ln m). For each such prime p′, we can
find a set Sp′ with the above properties in time P ′O(|Sp′ |) = o(ln m)
by trying out all candidate sets.

Stage 2. Apply the construction of Theorem 3.12 with param-
eters P = P ′ and R = �1/δ2� to the sets constructed in Stage 1 to
obtain a set Sp′′ ⊆ {1, 2, . . . , p′′−1} for each prime p′′ ∈ (P ′′/2, P ′′].
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This choice of parameters is legitimate by (3.16). By (3.20), the
new sets have the same cardinality, namely,

|Sp′′| = R

⌈
8 ln 8P ′

δ2

⌉(

π(P ′) − π

(
P ′

2

))

, prime p′′ ∈ (P ′′/2, P ′′].

The prime number theorem (Fact 2.10) implies that |Sp′′| =
O(P ′) = O(ln ln m). In view of (3.14), (3.21), and P ′′ = exp(δP ′),
the new sets have

disc(Sp′′ , p′′) � 6cδ, prime p′′ ∈ (P ′′/2, P ′′].(3.22)

We now show that Stage 2 runs in time polynomial in lnm. To
start with, the primes in (P ′′/2, P ′′] can be identified by the trivial
algorithm in time polynomial in P ′′ = O(ln m). For any such prime
p′′, the construction of the corresponding set Sp′′ in Theorem 3.12
amounts to O(|Sp′′|) = O(ln ln m) arithmetic operations in the field
Fp′′ of size |Fp′′| = O(ln m), and therefore can be carried out in time
polynomial in ln ln m.

Stage 3. Apply the construction of Theorem 3.12 with param-
eters P = P ′′ and R = �1/δ2� to the sets constructed in Stage 2 to
obtain a set Sm ⊆ {1, 2, . . . , m − 1}. This choice of parameters is
legitimate by (3.17). This new set has cardinality

|Sm| = R2

⌈
8 ln 8P ′

δ2

⌉(

π(P ′) − π

(
P ′

2

))

×
∣
∣
∣
∣

{

p′′ prime : p′′ ∈
(

P ′′

2
, P ′′
]

and p′′ � m

}∣
∣
∣
∣ ,

which in view of (3.18) and (3.19) guarantees that Sm is nonempty.
Simplifying,

|Sm| �
⌈

1

δ2

⌉2 ⌈
8 ln 8P ′

δ2

⌉

· π(P ′) · π(P ′′)

= O

(

ln P ′ · P ′

ln P ′ · P ′′

ln P ′′

)

= O(ln m),
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where the second step applies the prime number theorem
(Fact 2.10). The multiplicative constant in this asymptotic bound
on |Sm| can be easily recovered from the explicit bounds in
Fact 2.10. Using (3.16), (3.22), and m = exp(δP ′′), we further
obtain

disc(Sm,m) � 11cδ.

Since δ = ε/(11c), the set Z = Sm satisfies the requirements of
the theorem. Finally, the construction of Sm in Stage 3 amounts
to O(|Sm|) = O(ln m) arithmetic operations in the ring Zm and
therefore can be carried out in time polynomial in lnm. �

4. Univariatization

Consider a halfspace hn(x) = sgn(
∑

zixi − θ) in Boolean vari-
ables x1, x2, . . . , xn ∈ {0, 1}, where the coefficients can be assumed
without loss of generality to be integers. Then the linear form∑

zixi − θ ranges in the discrete set {±1,±2, . . . ,±N}, for some
integer N proportionate to the magnitude of the coefficients. As
a result, one can approximate hn to any given error ε by approxi-
mating the sign function to ε on {±1,±2, . . . ,±N}. This approach
works for both rational approximation and polynomial approxima-
tion. Needless to say, there is no reason to expect that the degree
of the approximant in this näıve construction is anywhere close to
optimal. Perhaps the most dramatic example is the odd-max-bit
function, defined by OMBn(x) = sgn(1 +

∑n
i=1(−2)ixi). A mo-

ment’s thought reveals that OMBn can be approximated to any
given error ε > 0 by a rational function of degree 1, whereas the
näıve construction produces an approximant of degree Ω(n).

Surprisingly, we are able to construct a halfspace hn(x) =
sgn(
∑

zixi − θ) with exponentially large coefficients for which the
näıve construction is essentially optimal. Specifically, we show that
a rational approximant for hn with given error and given numerator
and denominator degrees implies an analogous univariate rational
approximant for the sign function on {±1,±2,±3, . . . ,±2Θ(n)}. As
a result, tight lower bounds for the rational and polynomial ap-
proximation of hn follow immediately from the univariate lower
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bounds for the sign function. The construction of hn, carried out
in this section, is the centerpiece of our paper. The role of hn is to
reduce the multivariate problem taken up in this work to a well-
understood univariate question, whence the title of this section.
We have broken down the proof into four steps, corresponding to
subsections 4.1–4.4 below.

4.1. Distribution of a linear form modulo m . We start by
studying the probability distribution of the weighted sum z1X1 +
z2X2 + · · ·+znXn modulo m, where z1, z2, . . . , zn are given integers
and X1, X2, . . . , Xn ∈ {0, 1} are chosen uniformly at random. We
will show that the distribution is close to uniform whenever the
multiset {z1, z2, . . . , zn} has small m-discrepancy. This result uses
the following classical fact on linear forms modulo m.

Fact 4.1 (cf. Gould 1972; Thathachar 1998). Fix a natural num-
ber m � 2 and a multiset Z = {z1, z2, . . . , zn} of integers. Let ω
be a primitive mth root of unity. Then

(4.2)

∣
∣
∣
∣
∣

P
X∈{0,1}n

[
n∑

j=1

zjXj ≡ s (mod m)

]

− 1

m

∣
∣
∣
∣
∣

� 1

m

m−1∑

k=1

∣
∣
∣
∣
∣

n∏

j=1

1 + ωkzj

2

∣
∣
∣
∣
∣
, s ∈ Z.

Proof (adapted from Thathachar 1998, Lemma 13). The frac-
tion of vectors X ∈ {0, 1}n that satisfy the equation

∑n
j=1 zjXj ≡ s

(mod m) can be computed directly, as follows:

P
X∈{0,1}n

[
n∑

j=1

zjXj ≡ s (mod m)

]

= E
X∈{0,1}n

I

[
n∑

j=1

zjXj ≡ s (mod m)

]

= E
X∈{0,1}n

1

m

m−1∑

k=0

ωk(
∑n

j=1 zjXj−s)
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= E
X∈{0,1}n

1

m

m−1∑

k=0

ω−ks

n∏

j=1

ωkzjXj

=
1

m

m−1∑

k=0

ω−ks E
X∈{0,1}n

n∏

j=1

ωkzjXj

=
1

m

m−1∑

k=0

ω−ks

n∏

j=1

1 + ωkzj

2

=
1

m
+

1

m

m−1∑

k=1

ω−ks

n∏

j=1

1 + ωkzj

2
.

This implies (4.2) because |ω−ks| = 1 for all k, s ∈ Z. �

In the original version of this manuscript, we proved (4.2) using
a different, matrix-analytic argument, which we include as Sec-
tion 7. The short and elegant proof above was pointed out to us
by T. S. Jayram, who kindly allowed us to include it.

We now simplify the right-hand side of (4.2) and relate it to
m-discrepancy.

Lemma 4.3. Fix a natural number m � 2 and a multiset Z =
{z1, z2, . . . , zn} of integers. Then for all s ∈ Z,
∣
∣
∣
∣
∣

P
X∈{0,1}n

[
n∑

j=1

zjXj ≡ s (mod m)

]

− 1

m

∣
∣
∣
∣
∣
�
(

1 + disc(Z,m)

2

)n/2

.

Proof. Let ω be a primitive mth root of unity. For k =
1, 2, . . . , m − 1, we have

∣
∣
∣
∣
∣

n∏

j=1

1 + ωkzj

2

∣
∣
∣
∣
∣
=

(
n∏

j=1

(1 + ωkzj)(1 + ωkzj)

4

)1/2

=

(
n∏

j=1

1 + Re(ωkzj)

2

)1/2

�
(

1

n

n∑

j=1

1 + Re(ωkzj)

2

)n/2
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=

(
1

2
+

1

2
Re

(
1

n

n∑

j=1

ωkzj

))n/2

�
(

1

2
+

1

2

∣
∣
∣
∣
∣

1

n

n∑

j=1

ωkzj

∣
∣
∣
∣
∣

)n/2

,

where the second step uses |ω| = 1, and the third step follows by
convexity since 1 + Re(ωkzj) � 0. Maximizing over k, we arrive at

max
k=1,2,...,m−1

∣
∣
∣
∣
∣

n∏

j=1

1 + ωkzj

2

∣
∣
∣
∣
∣
�
(

1

2
+

1

2
max

k=1,2,...,m−1

∣
∣
∣
∣
∣

1

n

n∑

j=1

ωkzj

∣
∣
∣
∣
∣

)n/2

=

(
1 + disc(Z,m)

2

)n/2

.

In view of Fact 4.1, the proof is complete. �

4.2. Fooling distributions. Let Z = {z1, z2, . . . , zn} be a
multiset with m-discrepancy bounded away from 1. Consider
the linear map L : {0, 1}n → Zm given by L(x) =

∑
zixi.

We have shown that for uniformly random X ∈ {0, 1}n, the
probability distribution of L(X) is exponentially close to uni-
form. This implies, for some constant c > 0, that the sets
L−1(0), L−1(1), . . . , L−1(m − 1) cannot be reliably distinguished
by a real polynomial of degree up to cn. More precisely, the
characteristic functions of L−1(0), L−1(1), . . . , L−1(m−1) have ap-
proximately the same Fourier spectrum up to degree cn. We
will now substantially strengthen this conclusion by proving that
there are probability distributions μ0, μ1, . . . , μm−1, supported on
L−1(0), L−1(1), . . . , L−1(m− 1), respectively, such that the Fourier
spectra of μ0, μ1, . . . , μm−1 are exactly the same up to degree cn.
To use a technical term, these distributions fool any polynomial
p of degree up to cn, in that Eμ0 p = Eμ1 p = · · · = Eμm−1 p.
Our proof relies on the following technical result (Sherstov 2013b,
Theorem 4.1).

Theorem 4.4 (Sherstov). Let f, χ1, . . . , χk : X → {−1, +1} be
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given functions on a finite set X . Suppose that

k∑

i=1

|〈f, χi〉X | <
1

2
,(4.5)

k∑

j=1
j 
=i

|〈χi, χj〉X | � 1

2
, i = 1, 2, . . . , k.(4.6)

Then there exists a probability distribution μ on X such that

E
μ

[f(x)χi(x)] = 0, i = 1, 2, . . . , k.

By way of notation, we remind the reader that 〈f, g〉X =
1

|X |
∑

x∈X f(x)g(x) for any real-valued functions f and g and a
nonempty subset X of their domain. In words, Theorem 4.4
states that if χ1, χ2, . . . , χk each have small correlation with f
and, in addition, have small pairwise correlations, then a distri-
bution exists with respect to which f is completely uncorrelated
with χ1, χ2, . . . , χk. We are now in a position to prove the exis-
tence of the promised fooling distributions. In the statement that
follows, recall that H(p) = −p log p−(1−p) log(1−p) is the binary
entropy function.

Lemma 4.7. Fix δ ∈ [0, 1/2) and a nonempty multiset Z =
{z1, z2, . . . , zn} of integers. Let m be an integer with

(4.8) 2 � m �
(

2(1 − 2δ)

1 + disc(Z,m)

)( 1
2
−δ)n

2−H(δ)n−2.

Define

Xs =

{

x ∈ {0, 1}n :
n∑

j=1

zjxj ≡ s (mod m)

}

, s ∈ Z.(4.9)

Then each Xs is nonempty. Moreover, there is a probability distri-
bution μs on Xs (for each s) such that

(4.10) E
X∼μs

p(X) = E
X∼μs′

p(X)

for all s, s′ ∈ Z and all real polynomials p : {0, 1}n → R of degree
at most δn.
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Proof. For a subset A ⊆ {1, 2, . . . , n}, define χA : {0, 1}n →
{−1, +1} by χA(x) = (−1)

∑
i∈A xi . The centerpiece of the proof is

the following claim.

Claim 4.11. For every s ∈ Z and every nonempty proper subset
A ⊂ {1, 2, . . . , n},

Xs 	= ∅,(4.12)

|〈χA, 1〉Xs | � 2m

(
1 + disc(Z,m)

2
· n

n − |A|
)n−|A|

2

.(4.13)

We will proceed with the main proof and settle the claim after
we are finished. Fix s ∈ Z arbitrarily. Let A denote the family of
nonempty subsets of {1, 2, . . . , n} of cardinality at most δn. Recall
from (2.2) that

(4.14) |A| � 2H(δ)n − 1.

As a result,

∑

A∈A
|〈χA, 1〉Xs |

� |A| · max
1�|A|�δn

|〈χA, 1〉Xs |

� (2H(δ)n − 1) · 2m max
1�k�δn

(
1 + disc(Z,m)

2
· n

n − k

)n−k
2

= (2H(δ)n − 1) · 2m

(
1 + disc(Z,m)

2(1 − δ)

) (1−δ)n
2

<
1

2
,

(4.15)

where the second step uses (4.14) and Claim 4.11; the third step is
valid because 1 + disc(Z,m) < 2(1 − δ) by (4.8); and the final step
is immediate from (4.8). An analogous calculation shows that for
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every A ∈ A,

∑

A′∈A\{A}
|〈χA, χA′〉Xs | =

∑

A′∈A
A′ 
=A

|〈χA⊕A′ , 1〉Xs |

� (2H(δ)n − 1) · 2m

(
1 + disc(Z,m)

2(1 − 2δ)

) (1−2δ)n
2

<
1

2
,(4.16)

where the second step follows from (4.14) and Claim 4.11, and the
last step uses (4.8).

Recall from Claim 4.11 that each Xs is nonempty. Applying
Theorem 4.4 with (4.15) and (4.16) to the functions χA (A ∈ A)
and f = 1, we infer the existence of a probability distribution μs

on Xs such that

E
X∼μs

χA(X) = 0, A ∈ A.(4.17)

Now that the probability distributions μs have been constructed
for each s ∈ Z, consider an arbitrary polynomial p : {0, 1}n → R

of degree at most δn. Then p =
∑

|A|�δn pAχA for some reals pA.

As a result, (4.17) implies that Eμs p = p∅ for all s ∈ Z, thereby
settling (4.10). �

Proof of Claim 4.11. By symmetry, we may assume that
A = {1, 2, . . . , k} for some 0 < k < n. Let X = (X1, X2, . . . , Xn)
be a random variable with uniform distribution on {0, 1}n. Then

|Xs|
2n

� 1

m
−
∣
∣
∣
∣
|Xs|
2n

− 1

m

∣
∣
∣
∣

=
1

m
−
∣
∣
∣
∣PX

[X ∈ Xs] − 1

m

∣
∣
∣
∣

� 1

m
−
(

1 + disc(Z,m)

2

)n/2

� 1

2m
,(4.18)
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where the last two steps follow from Lemma 4.3 and (4.8), respec-
tively. This settles (4.12). Moreover,

|Xs|
2n

|〈χA, 1〉Xs |

=
∣
∣
∣E
X

χ{1,2,...,k}(X) · I[X ∈ Xs]
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

x∈{0,1}k

(−1)x1+···+xk

2k
P[x1 . . . xkXk+1 . . . Xn ∈ Xs]

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

x∈{0,1}k

(−1)x1+···+xk

2k

(

P[x1 . . . xkXk+1 . . . Xn ∈ Xs] − 1

m

)
∣
∣
∣
∣
∣
∣

� 1

2k

∑

x∈{0,1}k

∣
∣
∣
∣P[x1 . . . xkXk+1 . . . Xn ∈ Xs] − 1

m

∣
∣
∣
∣

=
1

2k

∑

x∈{0,1}k

∣
∣
∣
∣
∣
P

[
n∑

j=k+1

zjXj ≡ s −
k∑

j=1

zjxj (mod m)

]

− 1

m

∣
∣
∣
∣
∣

�
(

1 + disc({zk+1, zk+2, . . . , zn},m)

2

)(n−k)/2

�
(

1 + disc(Z,m)

2
· n

n − k

)(n−k)/2

,

(4.19)

where the third step uses k � 1; the next-to-last step is legit-
imate by Lemma 4.3; and the last step applies Proposition 3.2.
Now (4.13) is immediate from (4.18) and (4.19). �

4.3. The univariate reduction. At last, we present a generic
construction of a halfspace whose approximation by rational func-
tions and polynomials gives corresponding approximants for the
sign function on the discrete set {±1,±2, . . . ,±m}. In more de-
tail, let z1, z2, . . . , zn be given integers. For any such n-tuple, we
define an associated halfspace and prove a lower bound on m in
terms of the discrepancy of the multiset {z1, z2, . . . , zn}. The fol-
lowing first-principles calculation will be helpful.
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Proposition 4.20. Let a1, a2, . . . , ak ∈ R and b1, b2, . . . , bk > 0.
Then

(4.21) min
ai

bi

� E ai

E bi

� max
ai

bi

.

Proof. Abbreviate m = min ai/bi and M = max ai/bi. Since
each bi is positive, we obtain mbi � ai � Mbi. Taking a weighted
sum of these inequalities, we arrive at mE bi � E ai � M E bi,
which is equivalent to (4.21). �

We have:

Theorem 4.22. Fix δ ∈ [0, 1/2) and a nonempty multiset Z =
{z1, z2, . . . , zn} of integers. Let m be an integer with

(4.23) 2 � m �
(

2(1 − 2δ)

1 + disc(Z,m)

)( 1
2
−δ)n

2−H(δ)n−2.

Define f : {0, 1}n × {0, 1}n → {−1, +1} by

f(x, y) = sgn

(
1

2
+

n∑

j=1

(zj mod m)xj − m
n∑

j=1

yj

)

.

Then

R(f, d0, d1) � R(sgn |{±1,±2,...,±m}, 2d0, 2d1)

for all d0, d1 = 0, 1, 2, . . . , �δn/2�.

Proof. Fix 0 < ε < 1 arbitrarily for the remainder of the proof,
and suppose that R(f, d0, d1) < ε for some d0, d1 � δn/2. Our goal
is to show that

(4.24) R(sgn |{±1,±2,...,±m}, 2d0, 2d1) < ε.

The proof is algorithmic and involves three steps. Given any
approximant for f , we will first manipulate it to control the
sign behavior in the numerator and denominator, then sym-
metrize it with respect to y, and finally—the arduous part of the
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proof—symmetrize it with respect to x. The result of these manip-
ulations will be a univariate approximant for the sign function.

Step 1: Original approximant. Since R(f, d0, d1) < ε, there are
polynomials p and q of degree at most d0 and d1, respectively, with

∣
∣
∣
∣f(x, y) − p(x, y)

q(x, y)

∣
∣
∣
∣ < ε

for all x, y ∈ {0, 1}n. This inequality is equivalent to

1 − ε <
p(x, y)

q(x, y)
f(x, y) < 1 + ε.(4.25)

Observe that for all x, y ∈ {0, 1}n, we have p(x, y) 	= 0 and
q(x, y) 	= 0, where the former is a consequence of ε < 1 and the
latter follows from the definition of a rational approximant. As a
result, (4.25) gives

1 − ε <
p(x, y)q(x, y)f(x, y)

q(x, y)2
< 1 + ε,(4.26)

1 − ε <
p(x, y)2

p(x, y)q(x, y)f(x, y)
< 1 + ε.(4.27)

Step 2: Symmetrization on y. The fractions in (4.26) and (4.27)
have positive numerators and denominators. Therefore, Proposi-
tion 4.20 implies that

1 − ε <
Eσ∈Sn [p(x, σy)q(x, σy)f(x, σy)]

Eσ∈Sn [q(x, σy)2]
< 1 + ε,(4.28)

1 − ε <
Eσ∈Sn [p(x, σy)2]

Eσ∈Sn [p(x, σy)q(x, σy)f(x, σy)]
< 1 + ε.(4.29)

Minsky and Papert’s symmetrization technique (Proposition 2.29)
ensures the existence of polynomials p∗, q∗, r∗ of degree at most
2d0, 2d1, and d0 + d1, respectively, such that for all x, y ∈ {0, 1}n,

E
σ∈Sn

[p(x, σy)2] ≡ p∗(x, |y|),
E

σ∈Sn

[q(x, σy)2] ≡ q∗(x, |y|),
E

σ∈Sn

[p(x, σy)q(x, σy)] ≡ r∗(x, |y|).
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Moreover,

f(x, σy) ≡ f ∗(x, |y|)

for all σ ∈ Sn, where f ∗ : {0, 1}n × {0, 1, 2, . . . , n} → {−1, +1} is
given by

f ∗(x, t) = sgn

(
1

2
+

n∑

j=1

(zj mod m)xj − mt

)

.

Now (4.28) and (4.29) simplify to

1 − ε <
r∗(x, t)f ∗(x, t)

q∗(x, t)
< 1 + ε,(4.30)

1 − ε <
p∗(x, t)

r∗(x, t)f ∗(x, t)
< 1 + ε(4.31)

for all x ∈ {0, 1}n and t = 0, 1, 2, . . . n. The numerators and de-
nominators of these fractions are again positive, being averages of
positive numbers. Since d0, d1 � δn/2 by hypothesis, we have

deg p∗ � δn,(4.32)

deg q∗ � δn,(4.33)

deg r∗ � δn.(4.34)

Step 3: Symmetrization on x. We have reached the most de-
manding part of the proof, where we symmetrize the approximants
obtained so far with respect to x. For s ∈ Z, let Xs ⊆ {0, 1}n

be given by (4.9). Then Lemma 4.7 guarantees that each Xs

is nonempty, and additionally provides a probability distribu-
tion μs on Xs (for each s ∈ Z) such that for every polynomial
P : {0, 1}n → R,

(4.35) deg P � δn =⇒ E
μs

P (x) = E
μs′

P (x) ∀s, s′ ∈ Z.

Now fix an integer s ∈ [−m − 1,m − 1]. On the support of μs, we
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have

n∑

j=1

(zj mod m)xj − s ∈ [0 · n − m + 1, (m − 1) · n + m + 1] ∩ mZ

⊆ (−m, (n + 1)m) ∩ mZ

= {0,m, 2m, . . . , nm},

where the second step is valid because n � 2 by (4.23). It follows
that on the support of μs, the linear form


(x, s) =
1

m

(
n∑

j=1

(zj mod m)xj − s

)

ranges in {0, 1, 2, . . . , n}, forcing f ∗(x, 
(x, s)) = sgn(s + 1
2
).

Now (4.30) and (4.31) imply that

1 − ε <
r∗(x, 
(x, s)) sgn(s + 1

2
)

q∗(x, 
(x, s))
< 1 + ε,

1 − ε <
p∗(x, 
(x, s))

r∗(x, 
(x, s)) sgn(s + 1
2
)

< 1 + ε

for all integers s ∈ [−m − 1,m − 1] and all x in the support of
μs. Since the numerators and denominators of these fractions are
positive, Proposition 4.20 allows us to pass to expectations with
respect to x ∼ μs to obtain

1 − ε <
Ex∼μs [r

∗(x, 
(x, s))] sgn(s + 1
2
)

Ex∼μs [q
∗(x, 
(x, s))]

< 1 + ε,

1 − ε <
Ex∼μs [p

∗(x, 
(x, s))]

Ex∼μs [r
∗(x, 
(x, s))] sgn(s + 1

2
)

< 1 + ε,

or equivalently

∣
∣
∣
∣
Ex∼μs [r

∗(x, 
(x, s))]

Ex∼μs [q
∗(x, 
(x, s))]

− sgn

(

s +
1

2

)∣
∣
∣
∣ < ε,(4.36)

∣
∣
∣
∣
Ex∼μs [p

∗(x, 
(x, s))]

Ex∼μs [r
∗(x, 
(x, s))]

− sgn

(

s +
1

2

)∣
∣
∣
∣ < ε,(4.37)
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for all integers s ∈ [−m − 1,m − 1].
Consider the univariate polynomials

p∗∗(s) = E
x∼μs

[p∗(x, 
(x, s))],

q∗∗(s) = E
x∼μs

[q∗(x, 
(x, s))],

r∗∗(s) = E
x∼μs

[r∗(x, 
(x, s))].

Equations (4.36) and (4.37) show that r∗∗(s − 1)/q∗∗(s −
1) and p∗∗(s − 1)/r∗∗(s − 1) approximate sgn s pointwise on
{±1,±2, . . . ,±m} to error less than ε. Moreover, (4.32)–(4.35) en-
sure that the degrees of p∗∗, q∗∗, r∗∗ are at most the degrees of
p∗, q∗, r∗, respectively. We conclude that

R(sgn |{±1,±2,...,±m}, d0 + d1, 2d1) < ε,

R(sgn |{±1,±2,...,±m}, 2d0, d0 + d1) < ε.

These complementary bounds force (4.24) and thereby complete
the proof. �

4.4. The master theorem. We now combine Theorem 4.22
with the efficient construction, in Theorem 3.13, of an integer
set with small m-discrepancy for m = 2Θ(n). The result is an
explicit halfspace hn : {0, 1}n → {−1, +1} whose approximation
by polynomials and rational functions is asymptotically equiv-
alent to the univariate approximation of the sign function on
{±1,±2,±3, . . . ,±2Θ(n)}. We refer to this result as our master
theorem since all our main theorems are derived from it.

Theorem 4.38. For some constant c′ > 0, there is an algorithm
that takes as input an integer n � 1, runs in time polynomial in
n, and outputs a halfspace hn : {0, 1}n → {−1, +1} with

(4.39) R(hn, d0, d1) � R
(
sgn |{±1,±2,±3,...,±2�c′n�}, 2d0, 2d1

)

for all d0, d1 = 0, 1, 2, . . . , �c′n�. Moreover, the constant c′ and the
algorithm are given explicitly.
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Proof. Let

(4.40) c′ = min

{
1

200
,

1

2C1/10

}

,

where C1/10 � 1 is the constant defined in Theorem 3.13. On input
n, the construction of hn is as follows. For n < 1/c′, the sought
property (4.39) amounts to R(hn, 0, 0) � R(sgn |{−1,1}, 0, 0), which
is in turn equivalent to R(hn, 0, 0) � 1 and holds trivially for the
halfspace hn(x) = (−1)x1 .

We now turn to the nontrivial case, n � 1/c′. Abbreviate m =
2c′n�. Then the algorithm of Theorem 3.13 constructs, in time
polynomial in n, a nonempty multiset Z with m-discrepancy

disc(Z,m) � 1

10
(4.41)

and cardinality |Z| � n/2. Observe that for any integer k � 1, the
union of k copies of Z is a multiset with m-discrepancy disc(Z,m)
and cardinality k|Z|. Therefore, we may assume without loss of
generality that

(4.42)
n

4
� |Z| � n

2
.

We let

hn(x) = sgn

⎛

⎝1

2
+

|Z|∑

j=1

(zj mod m)xj − m

2|Z|∑

j=|Z|+1

xj

⎞

⎠ ,

where z1, z2, z3, . . . , z|Z| denote the elements of the multiset Z. Tak-
ing δ = 1/25, we have from (4.40) and (4.42) that

(4.43) c′n � δ|Z|
2

.

Moreover,

m ∈ [2, 2c′n]

⊆ [2, 2n/200]

⊆
[

2,

(
2(1 − 2δ)

1 + disc(Z,m)

)( 1
2
−δ)·|Z|

2−H(δ)·|Z|−2

]

,
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where the second step applies (4.40), and the third step uses (4.41),
(4.42), and n � 1/c′ � 200. As a result, Theorem 4.22 im-
plies (4.39) for all d0, d1 � δ|Z|/2. In view of (4.43), the proof
is complete. �

5. Main results

Using the halfspace hn constructed in our master theorem, we will
now establish the main results of this paper.

5.1. Polynomial approximation. Prior to our work, the
strongest lower bound for the approximation of an explicit half-
space fn : {0, 1}n → {−1, +1} by polynomials was E(fn, c

√
n) �

1 − 2−c
√

n for an absolute constant c > 0, proved by Sherstov
(2013a,b). The result that we are about to prove is a quadratic
improvement on previous work, with respect to both degree and
error. As we will discuss shortly, this new result is essentially the
best possible.

Theorem 5.1 (Polynomial approximation). Let hn : {0, 1}n →
{−1, +1} be the halfspace constructed in Theorem 4.38. Then
for some constant c > 0 and all n,

(5.2) E(hn, cn) > 1 − 2−cn.

Proof. Let c′ > 0 be the constant in Theorem 4.38. Then

E(hn, c
′n) � E(sgn |{±1,±2,±3,...,±2�c′n�}, 2�c′n�)

� 1 − O
( n

2c′n

)1/2

,

where the first step corresponds to taking d0 = �c′n� and d1 = 0
in Theorem 4.38, and the second step is immediate from Proposi-
tion 2.22. This implies (5.2) for c > 0 small enough. �

Theorem 5.1 is essentially as strong as one could hope for. First
of all, any function in n Boolean variables can be approximated
to zero error by a polynomial of degree at most n, i.e., at most a
constant factor larger than what is assumed in (5.2). Moreover,
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a classic result due to Muroga (1971) implies that for every half-
space, the error bound in (5.2) is almost achieved by polynomials
of degree 1:

Fact 5.3. There is an absolute constant c > 0 such that for every
n and every halfspace h : {0, 1}n → {−1, +1},

E(h, 1) � 1 − n−cn.

Proof. Muroga (1971) showed that every halfspace
h : {0, 1}n → {−1, +1} can be represented as h(x) =
sgn(
∑n

j=1 zjxj − θ) for some integers z1, z2, . . . , zn, θ whose

absolute values sum to nO(n). It follows that

E(h, 1) � max
x∈{0,1}n

∣
∣
∣
∣
∣
h(x) − 1

|θ| +
∑n

j=1 |zj|

(
n∑

j=1

zjxj − θ

)∣
∣
∣
∣
∣

� 1 − 1

|θ| +
∑n

j=1 |zj|
� 1 − n−O(n). �

5.2. Rational approximation. We now show that the half-
space hn constructed in our master theorem cannot be approxi-
mated pointwise to any small constant except by rational functions
of degree Ω(n). This degree lower bound matches the trivial up-
per bound and is a quadratic improvement on the previous best
construction (Sherstov 2013a,b). More generally, we derive a lower
bound on the approximation of hn by rational functions of any
given degree d, and this lower bound too is essentially the best
possible for any halfspace. Details follow.

Theorem 5.4 (Rational approximation). Let hn : {0, 1}n →
{−1, +1} be the halfspace constructed in Theorem 4.38. Then
for some constant c > 0 and all n,

R(hn, d) � 1 − exp
(
−cn

d

)
, d = 1, 2, . . . , �cn�.(5.5)



cc The Hardest Halfspace Page 57 of 85 11

Proof. Let c′ > 0 be the constant in Theorem 4.38. Then for
d = 1, 2, . . . , �c′n�, we have

R(hn, d) � R(sgn |{±1,±2,±3,...,±2�c′n�}, 2d)

� 1 − exp
(
−Θ
(n

d

))
,

where the first step corresponds to taking d0 = d1 = d in Theo-
rem 4.38, and the second step is immediate from Theorem 2.25.
This implies (5.5) for c > 0 small enough. �

We now show that the lower bounds on the approximation error in
Theorem 5.4 are essentially the best possible for any halfspace.

Fact 5.6. There exists an absolute constant c > 0 such that for
every n and every halfspace h : {0, 1}n → {−1, +1},

R(h, d) � 1 − exp

(

−cn log n

d

)

, d = 1, 2, . . . , n.

Proof. As already mentioned, Muroga (1971) showed that
h(x) ≡ sgn p(x) for some linear polynomial p(x) that ranges in
[−N,−1] ∪ [1, N ], where N = exp(cn log n) for some absolute con-
stant c > 0. This makes it possible to obtain a rational approx-
imant for h(x) by taking any rational approximant for the sign
function on [−N,−1] ∪ [1, N ] and composing it with p(x). We
conclude that for any integer d,

R(h, d) � R(sgn |[−N,−1]∪[1,N ], d)

� 1 − 1

N1/d

= 1 − exp

(

−cn log n

d

)

,

where the second step uses Newman’s rational approximation
(Fact 2.24). �

5.3. Threshold degree. Here, we use the halfspace hn con-
structed in our master theorem to study the degree required to
sign-represent intersections of halfspaces. Our result is a lower



11 Page 58 of 85 Alexander A. Sherstov cc

bound of Ω(n) for the intersection hn ∧ hn of two independent
copies of hn. This result improves quadratically on the previous
best construction (Sherstov 2013a,b) and matches the trivial up-
per bound of O(n) for sign-representing any Boolean function in n
variables.

Theorem 5.7. Let hn : {0, 1}n → {−1, +1} be the halfspace con-
structed in Theorem 4.38. Then

deg±(hn ∧ hn) = Ω(n).

Proof. Abbreviate Dn = deg±(hn ∧ hn). Taking f = g = hn in
Theorem 2.28 shows that R(hn, 4Dn) < 1/2, which by Theorem 5.4
forces Dn = Ω(n). �

Theorem 5.7 should be contrasted with the result of Beigel et al.
(1995) that the conjunction of any constant number of majority
functions on {0, 1}n has threshold degree O(log n). We now derive
a lower bound of Ω(

√
n log n) on the threshold degree of the inter-

section of an explicitly given halfspace and a majority function, im-
proving quadratically on the previous best construction (Sherstov
2013a,b). As we discuss shortly, the new construction is optimal
up to a logarithmic factor.

Theorem 5.8. Let hn : {0, 1}n → {−1, +1} be the halfspace con-
structed in Theorem 4.38. Then

deg±(hn ∧ MAJn) = Ω(
√

n log n).(5.9)

Proof. Abbreviate Dn = deg±(hn∧MAJn). Then R(hn, 4Dn)+
R(MAJn, 2Dn) < 1 by Theorem 2.28. The lower bounds for the
rational approximation of hn and MAJn in Theorem 2.26 and The-
orem 5.4 now imply that Dn = Ω(

√
n log n). �

Remark 5.10. The construction of Theorem 5.8 is essentially the
best possible, in that

(5.11) deg±(h ∧ MAJn) = O(
√

n log n)
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for every halfspace h : {0, 1}n → {−1, +1}. Indeed, taking d =
C

√
n log n in Theorem 2.26 and Fact 5.6 for a large enough con-

stant C � 1 yields R(h,C
√

n log n) + R(MAJn, C
√

n log n) < 1,
which in turn implies (5.11) in view of Theorem 2.27.

5.4. Threshold density. In addition to threshold degree,
several other complexity measures are of interest when sign-
representing Boolean functions by real polynomials. One such
complexity measure is threshold density, defined as the least k for
which a given function can be sign-represented by a linear com-
bination of k parity functions. Formally, for a given function
f : {0, 1}n → {−1, +1}, its threshold density dns(f) is the min-
imum size |S| of a family S ⊆ P({1, 2, . . . , n}) such that

f(x) ≡ sgn

(
∑

S∈S
wS(−1)

∑
j∈S xj

)

for some reals wS. It is clear from the definition that dns(f) � 2n

for all functions f : {0, 1}n → {−1, +1}, and we will now con-
struct a pair of halfspaces whose intersection has threshold density
2Θ(n). Prior to our work, the best construction (Sherstov 2013a)
had threshold density 2Θ(

√
n).

To proceed, we recall a technique due to Krause & Pudlák
(1997) that transforms Boolean functions with high threshold de-
gree into Boolean functions with high threshold density. Their
transformation works in a black-box manner and sends a func-
tion f : {0, 1}n → {−1, +1} to the function fKP : ({0, 1}n)3 →
{−1, +1} defined by

fKP(x, y, z) = f(. . . , (zi ∧ xi) ∨ (zi ∧ yi), . . . ).

The threshold degree of f and the threshold density of fKP are
related as follows (Krause & Pudlák 1997, Proposition 2.1).

Theorem 5.12 (Krause and Pudlák). For every function
f : {0, 1}n → {−1, +1},

dns(fKP) � 2deg±(f).

We are now in a position to obtain the claimed density results.
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Theorem 5.13. There is an (explicit) algorithm that takes as in-
put an integer n � 1, runs in time polynomial in n, and outputs a
halfspace Hn : {0, 1}n → {−1, +1} such that

dns(Hn ∧ Hn) = 2Ω(n),(5.14)

dns(Hn ∧ MAJn) = 2Ω(
√

n log n).(5.15)

Proof. For any function f : {0, 1}n → {0, 1}, standard arith-
metization gives

(5.16) fKP(x, y, z) = f

(

. . . ,
1

2
(xi + yi + xi ⊕ zi − yi ⊕ zi), . . .

)

,

where a⊕b ∈ {0, 1} denotes as usual the XOR of a and b. Similarly,
one has

(5.17) MAJKP
n (x, y, z) = MAJ4n(x, y, x ⊕ z, y ⊕ z),

where the XOR and complement operations are applied bitwise.
Let hn : {0, 1}n → {−1, +1} be the halfspace from Theorem 5.7,

so that hn ∧ hn has threshold degree Ω(n). By Theorem 5.12, the
function (hn ∧ hn)KP = hKP

n ∧ hKP
n has threshold density 2Ω(n). Ob-

serve from (5.16) that hKP
n ∧ hKP

n is the result of starting with the
intersection H4n ∧H4n of two explicitly given halfspaces in 4n vari-
ables each, and replacing their input variables with appropriately
chosen parity functions. This replacement cannot increase the
threshold density because the parity of several parity functions is
another parity function. We conclude that dns(H4n ∧H4n) = 2Ω(n).
This completes the proof of (5.14).

The proof of (5.15) is closely analogous. Specifically, recall from
Theorem 5.8 that hn ∧ MAJn has threshold degree Ω(

√
n log n).

By Theorem 5.12, the function (hn ∧ MAJn)KP = hKP
n ∧ MAJKP

n

has threshold density exp(Ω(
√

n log n)). It follows from (5.16)
and (5.17) that hKP

n ∧ MAJKP
n is the result of starting with the

intersection H4n ∧ MAJ4n for an explicit halfspace H4n in 4n vari-
ables, and replacing the input variables with appropriately cho-
sen parity functions or their negations. This replacement can-
not increase the threshold density because the parity of several
parity functions is another parity function. We conclude that
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dns(H4n ∧ MAJ4n) = exp(Ω(
√

n log n)). This completes the proof
of (5.15). �

Both lower bounds in Theorem 5.13 are essentially the best possible
for any halfspace Hn : {0, 1}n → {−1, +1}. Indeed, the first lower
bound is tight by definition, while the second lower bound nearly
matches the upper bound of exp(O(

√
n log2 n)) that follows from

Remark 5.10.

5.5. Communication complexity. Using the pattern matrix
method, we will now “lift” the approximation lower bound of The-
orem 5.1 to communication complexity. As a result, we will ob-
tain an explicit separation of k-party communication complexity
with unbounded and weakly unbounded error (which for k = 2
is equivalent to a separation of sign-rank and discrepancy). Our
application of the pattern matrix method is based on the fact that
the unique set disjointness function UDISJm,k has an exact rep-
resentation on its domain as a polynomial with a small number
of monomials; cf. Sherstov (2011, Section 10), Thaler (2016, Sec-
tion 4.2.3), and Sherstov (2018, Section 3.1). Specifically, define
UDISJ∗

m,k : ({0, 1}m)k → R by

UDISJ∗
m,k(x) = −1 + 2

m∑

i=1

x1,ix2,i · · ·xk,i .

Then

UDISJm,k(x) = UDISJ∗
m,k(x), x ∈ dom UDISJm,k.(5.18)

Theorem 5.19. For some constant C > 1 and all positive inte-
gers n and k, there is an (explicitly given) k-party communication
problem Fn,k : ({0, 1}n)k → {−1, +1} such that

UPP(Fn,k) � log n + 4,(5.20)

PP(Fn,k) �
⌊ n

C · 4k

⌋
,(5.21)

disc(Fn,k) � exp
(
−
⌊ n

C · 4k

⌋)
.(5.22)
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Moreover,

Fn,k(x1, x2, . . . , xk) = sgn

(

w0 +
n∑

i=1

wix1,ix2,i · · ·xk,i

)

(5.23)

for some explicitly given reals w0, w1, . . . , wn.

Proof. Let hn : {0, 1}n → {−1, +1} be the halfspace con-
structed in Theorem 4.38. Then by definition, hn(x) = sgn pn(x)
for a linear polynomial pn : Rn → R. Moreover, Theorem 5.1 en-
sures that

deg1−2−cn(hn) � cn(5.24)

for some constant c > 0 independent of n. Abbreviate m =
�2k+1e/c�2 and consider the k-party communication problem
F ′

n,k : ({0, 1}nm)k → {−1, +1} given by

(5.25) F ′
n,k

= s̃gn pn

(
1 − UDISJ∗

m,k

2
,
1 − UDISJ∗

m,k

2
, . . . ,

1 − UDISJ∗
m,k

2

)

,

where the right-hand side features the coordinatewise composition
of the polynomial pn with n independent copies of the polynomial
(1 − UDISJ∗

m,k)/2. The identity (5.18) implies that F ′
n,k coincides

with hn ◦ UDISJm,k on the domain of the latter. Therefore,

disc(F ′
n,k) � disc(hn ◦ UDISJm,k)

� 2−cn + 2−cn

= 2 · 2−cn,(5.26)

where the second step uses (5.24) and the pattern matrix method
(Theorem 2.36). Applying the discrepancy method (Corol-
lary 2.34), we obtain

PP(F ′
n,k) � log

2

disc(F ′
n,k)

� cn.(5.27)
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To complete the proof, define the functions Fn,k for any positive
integers n and k by

Fn,k =

{
F ′

n/�2k+1e/c�2�,k if n � �2k+1e/c�2,

0 otherwise.

Then (5.21)–(5.23) are immediate from (5.25)–(5.27),
whereas (5.20) is a consequence of (5.23) and Fact 2.31. �
Theorem 5.19 gives an explicit separation PPk � UPPk for up to
k � (0.5 − ε) log n parties, where ε > 0 is an arbitrary constant.
The special case k = 2 can be equivalently stated as an explicit
separation of sign-rank and discrepancy:

Corollary 5.28. There is an (explicitly given) family {Fn}∞
n=1

of communication problems Fn : {0, 1}n ×{0, 1}n → {−1, +1} with

rk±(Fn) � n + 1,(5.29)

disc(Fn) = 2−Ω(n),(5.30)

UPP(Fn) � log n + 4,(5.31)

PP(Fn) = Ω(n).(5.32)

Moreover,

Fn(x, y) = sgn

(

w0 +
n∑

i=1

wixiyi

)

(5.33)

for some explicitly given reals w0, w1, . . . , wn.

Proof. Equations (5.30)–(5.33) result from setting k = 2 in
Theorem 5.19. The new item, (5.29), is immediate from (5.33). �
Theorem 5.19 and Corollary 5.28 settle Theorem 1.5 and Theo-
rem 1.3, respectively, from the introduction.

5.6. A circulant expander. Consider a d-regular undirected
graph G on n vertices, with adjacency matrix A. Since A is sym-
metric, it has n real eigenvalues (counting multiplicities). We de-
note these eigenvalues by λ1(G) � λ2(G) � · · · � λn(G) and de-
fine λ(G) = max{|λ2(G)|, |λ3(G)|, . . . , |λn(G)|}. It is well known
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and straightforward to verify that λ1(G) = d and |λi(G)| � d
for i = 2, 3, . . . , n. We say that G is an ε-expander if λ(G) � εd.
This spectral notion is intimately related to key graph-theoretic
and stochastic properties of G, such as vertex expansion and the
convergence rate of a random walk on G to the uniform distribu-
tion. One is typically interested in ε-expanders that are d-regular
for d as small as possible, where 0 < ε < 1 is a constant. The
existence of expanders with strong parameters can be verified us-
ing the probabilistic method (Alon & Spencer 2008), and explicit
constructions are known as well.

In this section, we study the problem of constructing circulant
expanders. Formally, a graph is circulant if its adjacency ma-
trix is circulant. It is clear that a circulant graph is d-regular for
some d, meaning that every vertex has out-degree d and in-degree
d. We focus on circulant graphs that are undirected and have no
self-loops, which corresponds to adjacency matrices that are sym-
metric and have zeroes on the diagonal. It is well known (Alon &
Roichman 1994) that for any 0 < ε < 1 and all large enough n,
there exists a circulant ε-expander on n vertices of degree O(log n).
This degree bound is asymptotically optimal (Alon & Roichman
1994; Friedman et al. 2006; Leung et al. 2011), and the problem of
constructing such circulant expanders explicitly has been studied
by several authors (Alon 1986; Ajtai et al. 1990; Alon & Roich-
man 1994). The best construction prior to our work, due to Ajtai
et al. (1990), achieves degree (log∗ n)O(log∗ n) log n. In this section,
we construct a circulant ε-expander of optimal degree, O(log n),
for any constant 0 < ε < 1. By way of terminology, recall that
the adjacency matrix of a circulant graph on n vertices is circ(1S)
for some subset S ⊆ {0, 1, 2, . . . , n − 1}. With this in mind, we
say that an algorithm constructs a circulant graph on n vertices in
time T (n) if the algorithm outputs in time T (n) the elements of the
associated subset S. The formal statement of our result follows.

Theorem 5.34. Let 0 < ε < 1 be given. Then there is an
(explicitly given) algorithm that takes as input an integer n � 2
and constructs in time polynomial in log n an undirected simple
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d-regular circulant graph Gn on n vertices, where

1 � d � O(log n),(5.35)

λ(Gn) � max

{

ε,
1

n − 1

}

d.(5.36)

Proof. Let Cε be the constant from Theorem 3.13. We first
consider the trivial case when 2(Cε log n)2 � n, which means that
n is bounded by an explicit constant. In this case, we take Gn

to be the complete graph on n vertices. It is clear that Gn is a
d-regular circulant graph for d = n − 1. The adjacency matrix of
Gn is circ(0, 1, 1, . . . , 1), whose eigenvalues by Corollary 2.17 are
n − 1,−1,−1, . . . ,−1. In particular, λ(Gn) = 1 = d/(n − 1). This
settles (5.36), whereas (5.35) holds trivially because d and n are
bounded by a constant.

We now turn to the nontrivial case when 2(Cε log n)2 < n. The
algorithm of Theorem 3.13 constructs, in time polynomial in log n,
a set Z ⊆ {0, 1, 2, . . . , n − 1} with

disc(Z, n) � ε,(5.37)

1 � |Z| � Cε log n.(5.38)

For any z, z′ ∈ Z, the linear congruence z+Δ ≡ −(z′+Δ) (mod n)
has at most two solutions Δ ∈ {0, 1, 2, . . . , n − 1}. Recalling that
2|Z|2 < n in the case under consideration, we conclude that there
exists Δ ∈ {0, 1, 2, . . . , 2|Z|2} with

(5.39) z + Δ 	≡ −(z′ + Δ) (mod n), z, z′ ∈ Z.

Moreover, such Δ can clearly be found by brute force search in time
polynomial in |Z| = O(log n). Equation (5.39) now implies that no
two elements of the multiset (Z + Δ) ∪ (−Z − Δ) are congruent
modulo n, and in particular no element of Z + Δ is congruent to 0
modulo n.

We define Gn to be the undirected graph with vertex set
{0, 1, 2, . . . , n − 1} in which (i, j) is an edge if and only if i − j
is congruent modulo n to an element of (Z + Δ) ∪ (−Z − Δ). The
roles of i and j in this definition are symmetric, making Gn an
undirected graph. It is obvious that the adjacency matrix of Gn is
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circulant. Furthermore, Gn has no self-loops because by construc-
tion no element of Z + Δ is congruent to 0 modulo n. Since the
elements of (Z +Δ)∪(−Z −Δ) are pairwise distinct modulo n, the
degree of Gn is |(Z + Δ) ∪ (−Z − Δ)| = 2|Z|. Now (5.35) follows
from (5.38). To settle the remaining property (5.36), observe that
the first row of the adjacency matrix of Gn is the characteristic
vector of the set ((Z + Δ) ∪ (−Z − Δ)) mod n. As a result, Corol-
lary 2.17 implies that the eigenvalues of the adjacency matrix of
Gn are

∑

z∈Z+Δ

ωkz +
∑

z∈−Z−Δ

ωkz, k = 0, 1, 2, . . . , n − 1,

where ω is a primitive nth root of unity. Setting k = 0 yields the
largest eigenvalue, 2|Z|. The other eigenvalues are bounded by

λ(Gn) = max
k=1,2,...,n−1

∣
∣
∣
∣
∣

∑

z∈Z+Δ

ωkz +
∑

z∈−Z−Δ

ωkz

∣
∣
∣
∣
∣

� max
k=1,2,...,n−1

∣
∣
∣
∣
∣

∑

z∈Z+Δ

ωkz

∣
∣
∣
∣
∣
+ max

k=1,2,...,n−1

∣
∣
∣
∣
∣

∑

z∈−Z−Δ

ωkz

∣
∣
∣
∣
∣

= 2|Z| disc(Z, n).

Along with (5.37), this proves (5.36). �

6. The iteration lemma of Ajtai et al.

The purpose of this section is to provide a detailed and self-
contained proof of Theorem 3.12, which we restate below for the
reader’s convenience.

Theorem. Fix an integer R � 1 and a real number P � 2. Let
m be an integer with

m � P 2(R + 1).

Fix a set Sp ⊆ {1, 2, . . . , p − 1} for each prime p ∈ (P/2, P ] with
p � m, such that all Sp have the same cardinality. Consider the
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multiset

S = {(r + s · (p−1)m) mod m :

r = 1, . . . , R; p ∈ (P/2, P ] prime with p � m; s ∈ Sp}.

Then the elements of S are pairwise distinct and nonzero. More-
over,

(6.1) disc(S,m) � c√
R

+
c log m

log log m
· log P

P
+ max

p
{disc(Sp, p)}

for some (explicitly given) constant c � 1 independent of P,R,m.

This result is a slight generalization of the iteration lemma of Ajtai
et al. (1990), which corresponds to the special case for m prime.
We closely follow their proof but provide ample detail to make it
more accessible. We have structured the presentation around five
key milestones, corresponding to Section 6.1–Section 6.5 below.
Before proceeding, the reader may wish to review the number-
theoretic preliminaries in Section 2.2.

6.1. Shorthand notation. In the remainder of this manuscript,
we adopt the shorthand

e(x) = exp(2πxi),

where i is the imaginary unit. We will need the following bounds,
illustrated in Figure 6.1:

|1 − e(x)| � 2πx, 0 � x � 1,(6.2)

|1 − e(x)| � 4 min(x, 1 − x), 0 � x � 1.(6.3)

To verify these bounds, write |1 − e(x)| = |1 − exp(2πxi)| =√
2 − 2 cos(2πx) and apply elementary calculus.
We let P denote the set of prime numbers p ∈ (P/2, P ] with

p � m. In this notation, the multiset S is given by

S = {(r + s · (p−1)m) mod m : p ∈ P, s ∈ Sp, r = 1, 2, . . . , R}.

There are precisely π(P ) − π(P/2) primes in (P/2, P ], of which at
most ν(m) are prime divisors of m. Therefore,

(6.4) |P| � π(P ) − π

(
P

2

)

− ν(m).
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Figure 6.1: A graph of |1 − e(x)| and its approximations by piece-
wise linear functions.

6.2. Elements of S are nonzero and distinct. As our first
step, we verify that the elements of S are nonzero modulo m. Con-
sider any r ∈ {1, 2, . . . , R}, any prime p ∈ (P/2, P ] with p � m, and
any s ∈ Sp. Then pr+s ∈ [1, PR+P −1] ⊆ [1,m). This means that
pr + s 	≡ 0 (mod m), which in turn implies that r + s · (p−1)m 	≡ 0
(mod m).

We now show that the multiset S contains no repeated ele-
ments. For this, consider any r, r′ ∈ {1, 2, . . . , R}, any primes
p, p′ ∈ P, and any s ∈ Sp and s′ ∈ Sp′ such that

(6.5) r + s · (p−1)m ≡ r′ + s′ · (p′−1)m (mod m).

Our goal is to show that p = p′, r = r′, s = s′. To this end, multiply
(6.5) through by pp′ to obtain

(6.6) r · pp′ + s · p′ ≡ r′ · pp′ + s′ · p (mod m).

The left-hand side and right-hand side of (6.6) are integers in
[1, RP 2 + (P − 1)P ] ⊆ [1,m), whence

(6.7) r · pp′ + s · p′ = r′ · pp′ + s′ · p.
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This implies that p | s ·p′, which in view of s < p and the primality
of p and p′ forces p = p′. Now (6.7) simplifies to

(6.8) r · p + s = r′ · p + s′,

which in turn yields s ≡ s′ (mod p). Recalling that s, s′ ∈
{1, 2, . . . , p − 1}, we arrive at s = s′. Finally, substituting s = s′

in (6.8) gives r = r′.

6.3. Correlation for k small. So far, we have shown that the
elements of S are distinct and nonzero. Recall that our objective
is to bound the m-discrepancy of this set. Put another way, we
must bound the exponential sum

(6.9)

∣
∣
∣
∣
∣

∑

s∈S

e

(
k

m
· s

)∣∣
∣
∣
∣

for all k = 1, 2, . . . , m − 1. This subsection and the next provide
two complementary bounds on (6.9). The first bound, presented
below, is preferable when k is close to zero modulo m.

Claim 6.10. Let k ∈ {1, 2, . . . , m − 1} be given. Then

∣
∣
∣
∣
∣

∑

s∈S

e

(
k

m
· s

)∣∣
∣
∣
∣
�
(

2π min(k,m − k)

m

+ max
p∈P

{disc(Sp, p)} +
ν(k) + ν(m − k)

|P|
)

|S|.

Proof. Let P ′ be the set of those primes in P that do not divide
k or m − k. Then clearly

(6.11) |P \ P ′| � ν(k) + ν(m − k).
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We have
∣
∣
∣
∣
∣

∑

s∈S

e

(
k

m
· s

)∣∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

R∑

r=1

∑

p∈P

∑

s∈Sp

e

(
k

m
· (r + s · (p−1)m

)
∣
∣
∣
∣
∣
∣

�
R∑

r=1

∑

p∈P

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
k

m
· (r + s · (p−1)m

)
∣
∣
∣
∣
∣
∣

= R
∑

p∈P

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣

� R
∑

p∈P ′

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣

+ R
∑

p∈P\P ′

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣

� R
∑

p∈P ′

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣
+ R
∑

p∈P\P ′
|Sp|.(6.12)

We proceed to bound the two summations in (6.12). Bounding
the second summation is straightforward:

R
∑

p∈P\P ′
|Sp| = R · |P \ P ′|

|P|
∑

p∈P
|Sp|

=
|P \ P ′|

|P| · |S|

� ν(k) + ν(m − k)

|P| · |S|,(6.13)

where the first step is valid because all sets Sp have the same
cardinality, and the last step uses (6.11).
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The other summation in (6.12) requires more work. For p ∈ P ′

and K ∈ {k, k − m}, we have

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
Ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(

−Ks · (m−1)p

p

)

e

(
Ks

pm

)
∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(

−Ks · (m−1)p

p

)(

e

(
Ks

pm

)

− 1

)
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(

−Ks · (m−1)p

p

)
∣
∣
∣
∣
∣
∣

�

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(

−Ks · (m−1)p

p

)(

e

(
Ks

pm

)

− 1

)
∣
∣
∣
∣
∣
∣

+ disc(Sp, p) · |Sp|
�
∑

s∈Sp

∣
∣
∣
∣e

(
Ks

pm

)

− 1

∣
∣
∣
∣+ disc(Sp, p) · |Sp|

=
∑

s∈Sp

∣
∣
∣
∣e

( |K|s
pm

)

− 1

∣
∣
∣
∣+ disc(Sp, p) · |Sp|

� |Sp| · 2π|K|
m

+ disc(Sp, p) · |Sp|,

where the second step uses Fact 2.8 and the relative primality of
p and m; the third step applies the triangle inequality; the fourth
step follows from p � |K|, and the last step is valid by (6.2) and
s < p. We have shown that

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣
� 2π min(k,m − k)

m
· |Sp| + disc(Sp, p) · |Sp|
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for p ∈ P ′. Summing over P ′,

R
∑

p∈P ′

∣
∣
∣
∣
∣
∣

∑

s∈Sp

e

(
ks · (p−1)m

m

)
∣
∣
∣
∣
∣
∣

� R
∑

p∈P ′

(
2π min(k,m − k)

m
· |Sp| + disc(Sp, p) · |Sp|

)

� R
∑

p∈P

(
2π min(k,m − k)

m
· |Sp| + disc(Sp, p) · |Sp|

)

�
(

2π min(k,m − k)

m
+ max

p∈P
{disc(Sp, p)}

)

R
∑

p∈P
|Sp|

=

(
2π min(k,m − k)

m
+ max

p∈P
{disc(Sp, p)}

)

|S|.
(6.14)

By (6.12)–(6.14), the proof of the claim is complete. �

6.4. Correlation for k large. We now present an alternative
bound on the exponential sum (6.9), which is preferable to the
bound of Claim 6.10 when k is far from zero modulo m.

Claim 6.15. Let k ∈ {1, 2, . . . , m − 1} be given. Then

∣
∣
∣
∣
∣

∑

s∈S

e

(
k

m
· s

)∣∣
∣
∣
∣
� m

2R min(k,m − k)
· |S|.

Proof. We have:

∣
∣
∣
∣
∣

∑

s∈S

e

(
k

m
· s

)∣∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑

p∈P

∑

s∈Sp

R∑

r=1

e

(
k

m
· (r + s · (p−1)m)

)
∣
∣
∣
∣
∣
∣

�
∑

p∈P

∑

s∈Sp

∣
∣
∣
∣
∣

R∑

r=1

e

(
k

m
· (r + s · (p−1)m)

)∣∣
∣
∣
∣

=
∑

p∈P

∑

s∈Sp

∣
∣
∣
∣
∣

R∑

r=1

e

(
kr

m

)∣∣
∣
∣
∣
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=
∑

p∈P

∑

s∈Sp

|1 − e(kR/m)|
|1 − e(k/m)|

�
∑

p∈P

∑

s∈Sp

2

|1 − e(k/m)|

�
∑

p∈P

∑

s∈Sp

m

2 min(k,m − k)

=
m

2R min(k,m − k)
· |S|,

where the last two steps use (6.3) and |S| = R
∑

p∈P |Sp|, respec-
tively. �

6.5. Finishing the proof. Fact 2.10 and Fact 2.11 imply that

π(P ) − π

(
P

2

)

� P

C log P
(P � C),(6.16)

max
k=1,2,...,m

ν(k) � C log m

log log m
,(6.17)

where C � 1 is a constant independent of R,P,m. Moreover, C
can be easily calculated from the explicit bounds in Fact 2.10
and Fact 2.11. We will show that the theorem conclusion (6.1)
holds with c = 4C2. We may assume that

P � C,(6.18)

C log m

log log m
� P

2C log P
,(6.19)

since otherwise the right-hand side of (6.1) exceeds 1 and the theo-
rem is trivially true. By (6.4), (6.16), (6.17), and (6.19), we obtain

|P| � P

2C log P
,

which along with (6.17) gives

max
k=1,2,...,m−1

ν(k) + ν(m − k)

|P| � 2C log m

log log m
· 2C log P

P

=
c log m

log log m
· log P

P
.(6.20)
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Claim 6.10 and Claim 6.15 ensure that for every k = 1, 2, . . . , m−1,
∣
∣
∣
∣
∣

∑

s∈S

e

(
k

m
· s

)∣∣
∣
∣
∣

�
(

min

(
2π min(k,m − k)

m
,

m

2R min(k,m − k)

)

+ max
p∈P

{disc(Sp, p)} +
ν(k) + ν(m − k)

|P|
)

|S|

�
(√

π

R
+ max

p∈P
{disc(Sp, p)} +

ν(k) + ν(m − k)

|P|
)

|S|

�
(

c√
R

+ max
p∈P

{disc(Sp, p)} +
ν(k) + ν(m − k)

|P|
)

|S|.

Substituting the estimate from (6.20), we conclude that

max
k=1,2,...,m−1

∣
∣
∣
∣
∣

∑

s∈S

e

(
k

m
· s

)∣∣
∣
∣
∣

�
(

c√
R

+ max
p∈P

{disc(Sp, p)} +
c log m

log log m
· log P

P

)

|S|.

This conclusion is equivalent to (6.1). The proof of Theorem 3.12
is complete.

7. An alternate proof of Fact 4.1

The purpose of this section is to give an alternate, matrix-analytic
proof of Fact 4.1.

Fact (restatement of Fact 4.1). Fix a natural number m � 2 and
a multiset Z = {z1, z2, . . . , zn} of integers. Let ω be a primitive
mth root of unity. Then

(7.1)

∣
∣
∣
∣
∣

P
X∈{0,1}n

[
n∑

j=1

zjXj ≡ s (mod m)

]

− 1

m

∣
∣
∣
∣
∣

� 1

m

m−1∑

k=1

∣
∣
∣
∣
∣

n∏

j=1

1 + ωkzj

2

∣
∣
∣
∣
∣
, s ∈ Z.
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Proof. For any integer z, consider the circulant matrix

Tz =
1

2
circ(1, 0, . . . , 0
︸ ︷︷ ︸

m

) +
1

2
circ(

z mod m
︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0
︸ ︷︷ ︸

m

).

By Corollary 2.17, the matrix W = [ωjk/
√

m]j,k=0,1,...,m−1 obeys

WW ∗ = I,(7.2)

(7.3) W ∗TzW

= diag

(

1,
1 + ωz

2
,
1 + ω2z

2
, . . . ,

1 + ω(m−1)z

2

)

, z ∈ Z.

In particular,

W ∗T−znT−zn−1 · · ·T−z1W

= (W ∗T−znW )(W ∗T−zn−1W ) · · · (W ∗T−z1W )

=
n∏

j=1

diag

(

1,
1 + ω−zj

2
,
1 + ω−2zj

2
, . . . ,

1 + ω−(m−1)zj

2

)

= diag

(

1,
n∏

j=1

1 + ω−zj

2
,

n∏

j=1

1 + ω−2zj

2
, . . . ,

n∏

j=1

1 + ω−(m−1)zj

2

)

,

where the first two steps use (7.2) and (7.3), respectively. Apply-
ing (7.2) yet again, we arrive at

T−znT−zn−1 · · ·T−z1

= W diag

(

1,
n∏

j=1

1 + ω−zj

2
,

n∏

j=1

1 + ω−2zj

2
, . . . ,

n∏

j=1

1 + ω−(m−1)zj

2

)

W ∗

=
1

m
J +

m−1∑

k=1

n∏

j=1

1 + ω−kzj

2
WkW

∗
k ,
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where W1,W2, . . . ,Wm−1 denote the last m − 1 columns of W.
Since the components of each Wk are bounded in absolute value
by 1/

√
m, we conclude that

(7.4)

∥
∥
∥
∥T−znT−zn−1 · · ·T−z1 − 1

m
J

∥
∥
∥
∥

∞
� 1

m

m−1∑

k=1

∣
∣
∣
∣
∣

n∏

j=1

1 + ω−kzj

2

∣
∣
∣
∣
∣
.

We are now in a position to prove (7.1). Let X =
(X1, X2, . . . , Xn) be a random variable distributed uniformly in
{0, 1}n. Consider the random variables Y0, Y1, Y2, . . . , Yn given
by Yk = (z1X1 + z2X2 + · · · + zkXk) mod m. The sequence
Y0, Y1, Y2, . . . , Yn has a natural interpretation in terms of an n-step
random walk in Zm. Specifically, the random walk starts at Y0 = 0
and evolves according to

Yk =

{
Yk−1 with probability 1/2,

(Yk−1 + zk) mod m with probability 1/2.

In particular, the kth step of the random walk has transition prob-
ability matrix

1

2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

1
1

. . .

1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+
1

2

−zk mod m
︷ ︸︸ ︷
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

. . .

1
1

. . .

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the unspecified entries are zero, and the rows and columns
correspond in the usual manner to the values 0, 1, . . . , m − 1. In
the notation of the opening paragraph of the proof, this matrix is
precisely T−zk

. Letting p0, p1, . . . , pn be the m-dimensional vectors
that represent the probability distributions of Y0, Y1, . . . , Yn, re-
spectively, we obtain the recursive relations pk = T−zk

pk−1. There-
fore,

pn = T−znT−zn−1 · · ·T−z1p0.
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Now
∥
∥
∥
∥
∥
pn −
[

1

m

1

m
· · · 1

m

]T
∥
∥
∥
∥
∥

∞

=
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m
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∥
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∥
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�
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m
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=
1
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k=1

∣
∣
∣
∣
∣

n∏

j=1

1 + ωkzj

2

∣
∣
∣
∣
∣
,

where the next-to-last step uses (7.4). This conclusion is obviously
equivalent to (7.1). �
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separators for k-page graphs and simulations by nondeterministic one-
tape Turing machines. J. Comput. Syst. Sci. 38(1), 134–149.

John Gill (1977). Computational complexity of probabilistic Turing
machines. SIAM J. Comput. 6(4), 675–695.

Henry W. Gould (1972). Combinatorial Identities: A Standardized
Set of Tables Listing 500 Binomial Coefficient Summations. Morgan-
town Printing and Binding Co.
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A. Razborov, E. Szemerédi & A. Wigderson (1993). Constructing
small sets that are uniform in arithmetic progressions. Combinatorics,
Probability and Computing 2(4), 513–518.

Alexander A. Razborov (2002). Quantum communication complex-
ity of symmetric predicates. Izvestiya of the Russian Academy of Sci-
ences, Mathematics 67, 145–159.

Alexander A. Razborov & Alexander A. Sherstov (2010). The
sign-rank of AC0. SIAM J. Comput. 39(5), 1833–1855.

Theodore J. Rivlin (1981). An Introduction to the Approximation of
Functions. Dover Publications, New York.

Barkley Rosser (1941). Explicit bounds for some functions of prime
numbers. American Journal of Mathematics 63(1), 211–232.

Imre Z. Ruzsa (1987). Essential components. Proceedings of the Lon-
don Mathematical Society 53-54(1), 38–56.

Alexander A. Sherstov (2008a). Communication lower bounds us-
ing dual polynomials. Bulletin of the EATCS 95, 59–93.

Alexander A. Sherstov (2008b). Halfspace matrices. Computational
Complexity 17(2), 149–178.



11 Page 84 of 85 Alexander A. Sherstov cc

Alexander A. Sherstov (2009a). Approximate inclusion-exclusion
for arbitrary symmetric functions. Computational Complexity 18(2),
219–247.

Alexander A. Sherstov (2009b). Separating AC0 from depth-2 ma-
jority circuits. SIAM J. Comput. 38(6), 2113–2129.

Alexander A. Sherstov (2010). Communication complexity un-
der product and nonproduct distributions. Computational Complexity
19(1), 135–150.

Alexander A. Sherstov (2011). The pattern matrix method. SIAM
J. Comput. 40(6), 1969–2000.

Alexander A. Sherstov (2013a). The intersection of two halfspaces
has high threshold degree. SIAM J. Comput. 42(6), 2329–2374.

Alexander A. Sherstov (2013b). Optimal bounds for sign-
representing the intersection of two halfspaces by polynomials. Com-
binatorica 33(1), 73–96.

Alexander A. Sherstov (2014). Communication lower bounds using
directional derivatives. J. ACM 61(6), 1–71.

Alexander A. Sherstov (2016). The multiparty communication
complexity of set disjointness. SIAM J. Comput. 45(4), 1450–1489.

Alexander A. Sherstov (2018). On multiparty communication with
large versus unbounded error. Theory of Computing 14(22), 1–17.

Kai-Yeung Siu & Jehoshua Bruck (1991). On the power of thresh-
old circuits with small weights. SIAM J. Discrete Math. 4(3), 423–435.

Jun Tarui & Tatsuie Tsukiji (1999). Learning DNF by approxi-
mating inclusion-exclusion formulae. In Proceedings of the Fourteenth
Annual IEEE Conference on Computational Complexity (CCC), 215–
221.

Justin Thaler (2016). Lower bounds for the approximate degree
of block-composed functions. In Proceedings of the Forty-Third In-
ternational Colloquium on Automata, Languages and Programming
(ICALP), 17:1–17:15.



cc The Hardest Halfspace Page 85 of 85 11

Justin Thaler, Jonathan Ullman & Salil P. Vadhan (2012).
Faster algorithms for privately releasing marginals. In Proceedings of the
Thirty-Ninth International Colloquium on Automata, Languages and
Programming (ICALP), 810–821.

Jayram S. Thathachar (1998). On separating the read-k-times
branching program hierarchy. ECCC Report TR98-002. URL https://
eccc.weizmann.ac.il/report/1998/002. Extended abstract in Pro-
ceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting (STOC), 1998.

Leslie G. Valiant (1984). A theory of the learnable. Commun. ACM
27(11), 1134–1142.

Santosh Vempala (2010). A random-sampling-based algorithm for
learning intersections of halfspaces. J. ACM 57(6), 32.

Andrew Chi-Chih Yao (1979). Some complexity questions related
to distributive computing. In Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing (STOC), 209–213.

E. I. Zolotarev (1877). Application of elliptic functions to questions
of functions deviating least and most from zero. Izvestiya Imp. Akad.
Nauk 30(5).

Manuscript received 31 July 2019

Alexander A. Sherstov

Computer Science Department
UCLA
Los Angeles, CA 90095 USA
sherstov@cs.ucla.edu

https://eccc.weizmann.ac.il/report/1998/002
https://eccc.weizmann.ac.il/report/1998/002

	The Hardest Halfspace
	Introduction
	The hardest halfspace
	Discrepancy versus sign-rank
	Computational learning
	Proof overview
	Recent progress

	Preliminaries
	Notation
	Number-theoretic preliminaries
	Matrix analysis
	Polynomial approximation
	Rational approximation
	Sign-representation
	Symmetrization
	Communication complexity
	Discrepancy
	Pattern matrix method

	Discrepancy of integer sets
	Basic properties
	Existential bounds
	An explicit construction

	Univariatization
	Distribution of a linear form modulo m
	Fooling distributions
	The univariate reduction
	The master theorem

	Main results
	Polynomial approximation
	Rational approximation
	Threshold degree
	Threshold density
	Communication complexity
	A circulant expander

	The iteration lemma of Ajtai et al.
	Shorthand notation
	Elements of S are nonzero and distinct
	Correlation for k small
	Correlation for k large
	Finishing the proof

	An alternate proof of Fact 4.1
	Acknowledgements




