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Abstract. We show a new connection between the clause space mea-
sure in tree-like resolution and the reversible pebble game on graphs.
Using this connection, we provide several formula classes for which
there is a logarithmic factor separation between the clause space com-
plexity measure in tree-like and general resolution. We also provide
upper bounds for tree-like resolution clause space in terms of general
resolution clause and variable space. In particular, we show that for
any formula F , its tree-like resolution clause space is upper bounded
by space(π) log

(
time(π)

)
, where π is any general resolution refutation

of F . This holds considering as space(π) the clause space of the refu-
tation as well as considering its variable space. For the concrete case
of Tseitin formulas, we are able to improve this bound to the optimal
bound space(π) log n, where n is the number of vertices of the corre-
sponding graph.
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1. Introduction

Resolution is one of the best-studied systems for refuting unsat-
isfiable propositional formulas. This is due to its theoretical sim-
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plicity, as well as its practical importance since it is the proof sys-
tem at the root of many modern SAT solvers. Several complexity
measures for the analysis of resolution refutations have been used
in the last decades. In this paper, we will mainly concentrate on
space bounds, which measure the amount of memory that is needed
in a resolution refutation. Intuitively, the clause space (CS) mea-
sures the number of clauses required simultaneously in a refutation,
while the variable space (VS) measures the maximum number of
distinct variables kept simultaneously in memory during this pro-
cess. Experimental results in Ansótegui et al. (2008) and Järvisalo
et al. (2012) have shown that space measures for resolution corre-
late well with the hardness of refuting unsatisfiable formulas with
SAT solvers in practice.

Tree-like resolution is a restricted kind of resolution that is es-
pecially important since the original DPLL algorithm of Davis &
Putnam (1960) and Davis et al. (1962) on which many SAT solvers
are based, is equivalent to this restriction of the resolution system.
Contrary to general resolution, in the tree-like case, if a clause is
needed more than once in a refutation, it has to be rederived each
time. It is known from Bonet et al. (1998) and Ben-Sasson et al.
(2004) that general resolution can be exponentially more efficient
than tree-like resolution in terms of the number of clauses in a re-
futation. In Ben-Sasson et al. (2004), the authors give an almost
optimal separation between general and tree-like resolution. They
show that for each positive integer n, there are unsatisfiable formu-
las in O(n) variables that have resolution refutations of length L,
linear in n, but for which any tree-like resolution refutation of the
formula requires length exp

(
Ω( L

logL
)
)
. They also give an almost

matching upper bound of exp
(
O

(
L log logL

logL

))
for the tree-like res-

olution length of any formula that can be refuted in length L by
general resolution.

In this paper, we study clause space separations between gen-
eral and tree-like resolution. Space separations are much more
modest than the ones for length. It is known from Esteban &
Torán (2001) that all space measures considered in this paper for
a formula with n variables are between constant and n + 2. Also,
it is not hard to see that variable space coincides in general and
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tree-like resolution. Therefore, we only consider the clause space
measure for the case of tree-like resolution.

The first clause space separation between general and tree-like
resolution was given in Esteban & Torán (2003). A family of for-
mulas (Fn)∞

n=1 was presented which requires tree-resolution clause
space sn but has a general resolution refutation in clause space c·sn,
for some constant c < 1, where sn is logarithmic in the number of
variables of the formulas. More recently, in Järvisalo et al. (2012),
a family of formulas (Fn)∞

n=1 is given with O(n) variables that can
be refuted by general resolution in constant clause space but re-
quires Θ(log n) tree-like resolution clause space, thus showing that
both measures are fundamentally different.

In this paper, we present a systematic study of tree-like resolu-
tion clause space providing upper bounds for this measure, which
show that the logarithmic factor in the separation of Järvisalo et al.
(2012) as well as in other separations provided here are basically
optimal. Our main tools are several versions of pebbling games
played on graphs, which have been extensively used in the past
for analyzing different computation models and in particular for
analyzing proof systems (see Nordström (2015) for an excellent
survey). Intuitively, the idea of the pebble games is to measure
the number of pebbles needed by a single player in order to place
a pebble on the sink of a directed acyclic graph following certain
rules. Black pebbles can only be placed on a vertex if it is a source
or if all its direct predecessors already have a pebble, but these
pebbles can be removed at any time. White pebbles (modeling
non-determinism) can be placed on any vertex at any time but can
only be removed if all its direct predecessors contain a pebble. In
the reversible pebble game, pebbles can only be placed or removed
from a vertex if all the direct predecessors of the vertex contain
a pebble. Based on the pebble game, a class of contradictory for-
mulas, called pebbling formulas, was introduced by Ben-Sasson &
Wigderson (2001). These formulas have been extremely useful for
analyzing several proof systems. The reason for this is that some of
the pebbling properties of the underlying graphs can be translated
into parameters for the complexity of their corresponding pebbling
contradictions. Known results of pebbling can therefore be trans-
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lated into proof complexity results. Chan (2013) proved the first
relationship between reversible pebbling and proof complexity. He
showed that the resolution depth of a pebbling formula corresponds
to the reversible pebbling number of its underlying graph.

The formulas used for the separation between general and tree-
like resolution clause space in Esteban & Torán (2003) are pebbling
formulas. An examination of this result shows that it relies on the
fact that the graphs on which the formulas are based have a black-
white pebbling price that is smaller than their black pebbling num-
ber. With this observation and using existing separation results for
pebble games, the separation in Esteban & Torán (2003) can be sig-
nificantly improved. On the one hand, in Ben-Sasson et al. (2004)
the authors implicitly show that for any graph G the tree-like clause
space of the pebbling contradiction associated with G is at least
as large as the black pebbling number of the graph. On the other
hand, Nordström (2012) shows that for most of the graph exam-
ples existing in the literature with a difference between their black
and black-white pebbling numbers, the resolution clause space of a
version of the pebbling contradictions based on the graphs (more
precisely, the second degree XORification of the pebbling contra-
diction) is upper bounded by the black-white pebbling number of
the graphs. Putting these two facts together, it follows that there
are unsatisfiable formulas that have resolution clause space O(s)
(logarithmic in the number of variables of the formulas) while their
tree-like resolution clause space is lower bounded by Ω(s2). This
is the largest separation that can be obtained using this method
since it is known from Meyer auf der Heide (1981) that the differ-
ence between the black and black-white pebbling number of any
graph is at most quadratic and can therefore not explain the loga-
rithmic factor in the separation of Järvisalo et al. (2012) where the
(pebbling) formulas have constant general resolution clause space.

1.1. Our contributions.

New connection of Tree-CS and reversible pebbling. We
prove new connections between tree-like resolution clause space
and the reversible pebble game. We show that for any graph G,
the tree-like resolution clause space of a certain kind of pebbling
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contradiction (the second degree XORification of the pebbling con-
tradiction) coincides asymptotically with the reversible pebbling
number of the graph:

Rev(G) ≤ Tree-CS
(
PebG[⊕2] ��

) ≤ 2 · Rev(G) + 4.

More interestingly, we show a close relation between the tree-like
space of any unsatisfiable CNF formula F with n variables, and the
minimum reversible pebbling price of a resolution refutation Gπ

for F , not necessarily a tree-like refutation:

Tree-CS(F ��) � min
π:F � �

Rev(Gπ) � Tree-CS(F ��) · log n.

This result can be seen as a loose analogue of the relation be-
tween general clause space and black pebbling and adds one more
connection to the rich set of interrelations between pebbling and
resolution surveyed in Nordström (2015).

Separations between Tree-CS and CS. Using these connec-
tions to reversible pebbling and known pebbling results by Chan
et al. (2015), we show that there are families of pebbling formulas
(Fn)∞

n=1 with O(n) variables that have general clause space O(s)
but tree-like resolution clause space Ω(s log n) for any function s
smaller than n1/2−ε. This separation—as well as the one in Järvisalo
et al. (2012)—is not far from optimal for this kind of formulas since
we also show that for any pebbling formula

Tree-CS
(
PebG[⊕2] ��

)
= O

(
min

P
(
space(P) · log time(P)

))
,

where P is a black pebbling of the underlying graph G of the peb-
bling formula. This means that for graphs of size n where the small-
est black pebbling space is achieved in a one-shot pebbling strategy,
that is, a strategy in which every vertex in the graph is pebbled
at most once, the log n factor in the separation is optimal and the
only room for improvement is obtainable with graph families in
which the space-optimal black pebbling is not one-shot. It could
be possible that there exists such a family, for which the log n sepa-
ration factor can be improved to a log time(P) factor. We provide,
however, a family of graphs (based on the Carlson–Savage graphs)
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for which the minimum pebbling space is obtained in a strategy
that is not one-shot, but for which the clause space separation be-
tween general and tree-like resolution is also only a log n factor.
We thus conjecture that this is indeed optimal and that this sepa-
ration cannot be improved for other graph classes. We remark that
this question is closely related to proving optimal upper bounds for
reversible pebbling in terms of black pebbling. Another motivation
for analysing this graph family based on the Carlson–Savage graphs
is to increase the set of examples of formulas with concrete tree-like
resolution clause space bounds that can be used for the testing of
SAT solvers, as done for example in Järvisalo et al. (2012).

Upper bounds for Tree-CS for general formulas. Addition-
ally, we prove upper bounds on the tree-like clause space for any
unsatisfiable CNF formula F in terms of the variable space and
clause space for general resolution of the formula. We use the amor-
tized space measures for resolution introduced in Razborov (2018)
that penalize configurational proofs for being unreasonably long.
We show that tree-like resolution clause space is upper bounded
by amortized variable space as well as by amortized clause space:

Tree-CS(F ��) � VS∗(F ��), and

Tree-CS(F ��) � CS∗(F ��).

The first inequality follows from known results and provides a new
bound for clause space in terms of variable space.

Optimal separations for Tseitin formulas. Finally, we give
optimal separations for the clause space in tree-like resolution for
the class of Tseitin formulas. We show that for any graph G with n
vertices and odd marking χ, the inequalities

Tree-CS
(
Ts(G,χ) ��

)
� CS

(
Ts(G,χ) ��

) · log n, and

Tree-CS
(
Ts(G,χ) ��

)
� VS

(
Ts(G,χ) ��

) · log n

hold, thus improving the previously discussed upper bounds from
logarithmic in the resolution length down to a log n factor. We also
provide a class of formulas with a matching clause space separation
showing that these upper bounds are optimal.
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1.2. Outline of this paper. The rest of this paper is organized
as follows. In the Preliminaries, pebble games, resolution complex-
ity measures, and all formula families needed are introduced. We
recall the combinatorial characterization for tree-like clause space
in resolution through the Prover–Delayer game and introduce the
Raz–McKenzie game. In Section 3, we prove separations between
tree-like and general resolution clause space for pebbling formulas.
Further upper bounds for tree-like resolution clause space, now for
general formulas, are proven in Section 4. Finally, in Section 5, op-
timal separations between general and tree-like resolution clause
space are provided for Tseitin formulas. We conclude in Section 6
with some conclusions and open problems.

2. Preliminaries

For a positive integer n, we write [n] to denote the set of integers
{1, 2, . . . , n}. The base of all logarithms in this paper is 2. The size
of a graph is the number of vertices of the graph. Given a directed
acyclic graph (DAG) G = (V,E), we say that a vertex u is a
direct predecessor of a vertex v, if there exists a directed edge from
u to v. We denote by predG(v) the set of all direct predecessors
of v in G. The maximal in-degree of a graph G is defined to be
maxv∈V | predG(v)|. A vertex in a DAG with no incoming edges is
called a source and one with no outgoing edges is called a sink.

2.1. Pebble games. Black pebbling was first mentioned implic-
itly in Paterson & Hewitt (1970) and has been studied extensively
during the 1980s. Note, that there exist several variants of the peb-
ble game in the literature. In this paper, we focus on the variant
without sliding and requiring the sink of the graph to be pebbled
at the end. For differences between these variants, we refer to the
survey Nordström (2015), from which we borrowed most of our
notation. For the following definitions, let G = (V,E) be a DAG
with a unique sink vertex z.

Definition 2.1 (Black pebble game). The black pebble game on
G is the following one-player game: At any time i of the game,
we have a pebble configuration Pi, where Pi ⊆ V is the set of
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black pebbles. A pebble configuration Pi−1 can be changed to Pi

by applying exactly one of the following rules:

Black pebble placement on v: If all direct predecessors of an
empty vertex v have pebbles on them, a black pebble may be
placed on v. More formally, letting Pi = Pi−1∪{v} is allowed
if v �∈ Pi−1 and predG(v) ⊆ Pi−1. In particular, a black pebble
can always be placed on an empty source vertex.

Black pebble removal from v: A black pebble may be removed
from any vertex at any time. Formally, if v ∈ Pi−1, then we
can set Pi = Pi−1\{v}.

A black pebbling of G is a sequence of pebble configurations P =
(P0, P1, . . . , Pt) such that P0 = ∅, Pt = {z}, and for all i ∈ [t] it
holds that Pi can be obtained from Pi−1 by applying exactly one of
the above-stated rules. A pebbling is called one-shot if each v ∈ V
is pebbled at most once.

Finally, we mention the reversible pebble game introduced by
Bennett (1989). In the reversible pebble game, the moves per-
formed in reverse order should also constitute a legal black peb-
bling, which means that the rules for pebble placements and re-
movals have to become symmetric.

Definition 2.2 (Reversible pebble game). The reversible pebble
game on G is the following one-player game: At any time i of the
game, we have a pebble configuration Pi ⊆ V . A pebble configu-
ration Pi−1 can be changed to Pi by applying exactly one of the
following rules:

Pebble placement on v: If all direct predecessors of an empty
vertex v have pebbles on them, a pebble may be placed on v.
More formally, letting Pi = Pi−1 ∪ {v} is allowed if v �∈ Pi−1

and predG(v) ⊆ Pi−1. In particular, a pebble can always be
placed on an empty source vertex.

Reversible pebble removal from v: If all direct predecessors
of a pebbled vertex v have pebbles on them, the pebble on v
may be removed. Formally, letting Pi = Pi−1\{v} is allowed



cc Tree-Like and General Resolution Space Page 9 of 37 7

if v ∈ Pi−1 and predG(v) ⊆ Pi−1. In particular, a pebble can
always be removed from a source vertex.

A reversible pebbling of G is a sequence of pebble configurations
P = (P0, P1, . . . , Pt) such that P0 = ∅, Pt = {z}, and for all i ∈ [t]
it holds that Pi can be obtained from Pi−1 by applying exactly one
of the above-stated rules.

Definition 2.3 (Pebbling time, space, and price). The time of a
pebbling P = (P0, P1, . . . , Pt) is time(P) := t and the space of it is
space(P) := maxi∈[t] |Pi|. The (black) pebbling price (or number)
of G, denoted by Black(G), is the minimum space of any black
pebbling of G, whereas the reversible pebbling price of G, which
we will denote by Rev(G), is the minimum space of any reversible
pebbling of G.

2.2. Resolution. A literal over a Boolean variable x is either x
itself (also denoted as x1) or its negation x (also denoted as x0). A
clause C = a1 ∨· · ·∨a� is a (possibly empty) disjunction of literals
ai over pairwise disjoint variables. The set of variables occurring in
a clause C will be denoted by Vars(C). A clause C is called unit
or unitary if |Vars(C)| = 1. We let � denote the contradictory
empty clause (the clause without any literals). A CNF formula
F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. It is often advan-
tageous to think of clauses and CNF formulas as sets. The notion
of the set of variables in a clause is extended to CNF formulas by
taking unions. A CNF formula is a k-CNF, if all clauses in it have
at most k literals. An assignment/restriction α for a CNF for-
mula F is a function that maps some subset of Vars(F ) to {0, 1}.
It is applied to F , which we denote by F�α, by replacing variables
by the truth values specified for them in α and simplifying the
resulting expression.

The standard definition of a resolution derivation of a clause D
from a CNF formula F (denoted by π : F � D) is an ordered se-
quence of clauses π = (C1, . . . , Ct) such that Ct = D, and each
clause Ci, for i ∈ [t], is either an axiom clause Ci ∈ F or is derived
from clauses Cj and Ck with j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C

.(2.4)
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In the resolution rule (2.4), we call B∨x and C ∨x the parents and
B ∨ C the resolvent. A derivation π : F � � of the empty clause
from an unsatisfiable CNF formula F is called refutation. Note that
resolution is a sound and complete proof system for unsatisfiable
formulas in CNF.

To study space in resolution, we consider the following defini-
tions of the resolution proof system from Alekhnovich et al. (2002);
Esteban & Torán (2001).

Definition 2.5 (Configuration-style resolution). A resolution re-
futation π : F � � of an unsatisfiable CNF formula F is an or-
dered sequence of memory configurations (sets of clauses) π =
(M0, . . . , Mt) such that M0 = ∅, � ∈ Mt and for each i ∈ [t], the
configuration Mi is obtained from Mi−1 by applying exactly one of
the following rules:

Axiom Download: Mi = Mi−1 ∪ {C} for some axiom C ∈ F .

Erasure: Mi = Mi−1\{C} for some C ∈ Mi−1.

Inference: Mi = Mi−1 ∪ {D} for some resolvent D inferred from
clauses C1, C2 ∈ Mi by the resolution rule (2.4).

In Esteban & Torán (2001), a proof π was defined to be tree-like,
if we replace the inference rule with the following rule:

Tree-like Inference: Mi =
(
Mi−1 ∪ {D})\{C1, C2} for some re-

solvent D inferred from C1, C2 ∈ Mi by the resolution rule
(2.4), i. e., we immediately delete both parent clauses.

To every configurational refutation π, we can associate a re-
futation-DAG Gπ, with the downloaded or inferred clauses of the
refutation labeling the vertices of the DAG and with edges from
the parents to the resolvent for each application of the resolution
rule (2.4). There might be several different derivations of a clause C
during the course of the refutation, but if so, we can label each oc-
currence of C with a timestamp when it was derived and keep track
of which copy of C is used where (Nordström 2015). Using this
representation, if π is tree-like, then Gπ is a tree.
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Definition 2.6 (Complexity measures for resolution). The leng-
th of a refutation π = (M0, . . . , Mt) is defined to be L(π) := t.

The depth Depth(π) of a refutation π is the length of the
longest path in the underlying refutation DAG Gπ.

The clause space of a memory configuration M is defined as
CS(M) := |M|, i. e., the number of clauses in M. The variable
space of a memory configuration M is defined as

VS(M) :=

∣
∣
∣
∣
∣

⋃

C∈M

Vars(C)

∣
∣
∣
∣
∣
,

i. e., the number of distinct variables mentioned in M.
The clause space of a refutation π = (M0, . . . , Mt) is defined

by CS(π) := maxi∈[t] CS(Mi) and its variable space by VS(π) :=
maxi∈[t] VS(Mi).

For a complexity measure C ∈ {L, Depth, CS, VS}, by taking
the minimum over all refutations of a formula F , we define

C(F ��) := min
π:F � �

C (π)

as the length, depth, clause space and variable space of refuting F
in resolution, respectively. We further define Tree-CS(F ��) :=
minπ′:F � � CS(π′), where the minimum is taken over all tree-like
refutations π′ of the formula F .

Remark 2.7. In some publications, the authors allow for subsets
of the previous memory configuration to be erased. We will not
allow this, since our version is more suitable when working with
pebbling. Note that not allowing subset-erasures can at most dou-
ble the number of configurations in a refutation.

Also note, that in the literature, the length of a proof π is
sometimes defined to be the total number of axiom downloads and
inferences made in π, i. e., the total number of clauses counted
with repetitions. We, however, also consider the amount of era-
sure steps, since this is more natural when working with pebbling.
Counting the erasure steps can, however, again only increase the
length measure by a factor of 2, since every clause being deleted
has to be downloaded or inferred prior to its deletion and thus was
already counted once in the length measure.
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The following proposition is immediately clear from the defini-
tion of the clause space measure and was first mentioned in Esteban
& Torán (2001).

Proposition 2.8 (Esteban & Torán 2001). Let F be an unsatis-
fiable formula. Then it holds CS(F ��) = minπ:F � � Black(Gπ).

As shown by Razborov (2018), most resolution complexity mea-
sures can be related to resolution depth. It is not hard to see that
resolution depth is also an upper bound for tree-like clause space:

Proposition 2.9. For any unsatisfiable formula F , we have

Tree-CS(F ��) ≤ Depth(F ��) + 2.

Proof. Any refutation graph for F can be “unfolded” into a
tree of the same depth, and the black pebbling number of a tree of
depth d is at most d + 2. �

Amortized space measures for resolution were also introduced
by Razborov (2018).

Definition 2.10 (Amortized space measures for resolution). The
amortized clause space (amortized variable space) of a resolution
refutation π is defined by CS∗(π) := CS(π)·log L(π) and VS∗(π) :=
VS(π) · log L(π), respectively.

Taking the minimum over all refutations of a formula F , we let

CS∗(F ��) := min
π:F � �

CS∗(π), and

VS∗(F ��) := min
π:F � �

VS∗(π).

2.3. Formula families. In this section, we will introduce two
families of formulas used throughout this paper.

Pebbling formulas and their XORification. In the last years,
there has been renewed interest in pebbling in the context of proof
complexity. This is so because pebbling results can be partially
translated into proof complexity results by studying so-called
pebbling formulas (Ben-Sasson & Nordström 2011; Ben-Sasson &
Wigderson 2001). These are unsatisfiable CNF formulas encoding
the pebble game played on a DAG G.
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Definition 2.11 (Pebbling formulas). Let G = (V,E) be a DAG
with a set of sources S ⊆ V and a unique sink z. We identify every
vertex v ∈ V with a Boolean variable v. The pebbling contradic-
tion over G, denoted PebG, is the conjunction of the clauses:

◦ for all sources s ∈ S, a unit clause s, (source axioms)

◦ for all v �∈ S, the clause
∨

u∈predG(v) u ∨ v, (pebbling axioms)

◦ for the unique sink z, the unit clause z. (sink axiom)

Often, it turns out, that the formulas in Definition 2.11 are a bit
too easy to refute. A good way to make them slightly harder is to
substitute some suitable Boolean function f(x1, . . . , xd) of arity d
for each variable x and expand the result into CNF. This general
case is discussed in Nordström (2015). We restrict ourselves to the
special case of the second degree XORification.

For notational convenience, we assume that the formula F we
are trying to make harder only has variables x, y, z, et cetera, with-
out subscripts, so that x1, x2, y1, y2, z1, z2, et cetera, are new vari-
ables not occurring in F .

Definition 2.12. (Substitution formulas, Ben-Sasson & Nord-
ström (2008)). For a positive literal x define the XORification
of x to be x[⊕2] := {x1 ∨ x2, x1 ∨ x2}. For a negative literal y, the
XORification is y[⊕2] := {y1 ∨ y2, y1 ∨ y2}. The XORification of a
clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[⊕2] :=
∧

C1∈a1[⊕2]

· · ·
∧

Ck∈ak[⊕2]

(C1 ∨ · · · ∨ Ck)

and the XORification of a CNF formula F is F [⊕2] :=
∧

C∈F C[⊕2].

Remark 2.13 (Ben-Sasson & Nordström 2008). If the graph G
has n vertices and maximal in-degree �, then PebG[⊕2] is an un-
satisfiable 2(� + 1)-CNF formula with at most 2�+1 · n clauses over
2n variables.
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Tseitin formulas. Tseitin formulas encode the combinatorial
principle that for all graphs the sum of the degrees of the vertices
is even. This class of formulas was introduced in Tseitin (1968)
and has been extremely useful for the analysis of proof systems.

Definition 2.14 (Tseitin formulas). Let G = (V,E) be a con-
nected undirected graph and let χ : V → {0, 1} be a marking of
the vertices of G. A marking χ is called odd if it satisfies the prop-
erty

∑
v∈V χ(v) ≡ 1 (mod 2) otherwise it is called even. Associate

to every edge e ∈ E a propositional variable e. The CNF formula
PARITYv,χ(v) states that the parity of the values of the edges that
have vertex v as endpoint coincides with χ(v), i. e.,

PARITYv,χ(v) :=
∧

{
∨

e�v

ea(e)

∣
∣
∣
∣
∣

a(e) ∈ {0, 1}, such that⊕
e�v

(
a(e) ⊕ 1

) �≡ χ(v)

}

.

Then, the Tseitin formula associated to the graph G and the mark-
ing χ is defined by Ts(G,χ) :=

∧
v∈V PARITYv,χ(v).

For a partial truth assignment α, applying α to Ts(G,χ) cor-
responds to the following simplification of the underlying graph:
Setting a variable e = {u, v} to 0 corresponds to deleting the edge e
in the graph, and setting it to 1 corresponds to deleting the edge
from the graph and toggling the values of χ(u) and χ(v) in G. We
denote by G�α and by χ�α the remaining graph and marking after
applying α according to this process.

Fact 2.15 (Tseitin 1968; Urquhart 1987). (i) If χ is an even
marking of a connected graph G, then Ts(G,χ) is satisfiable.

(ii) Let χ be an odd marking of a connected graph G and e an
edge in G that, when deleted divides G in two connected
components G1 and G2. Then for i ∈ {1, 2} there is a partial
assignment αi of the variable e such that χ �αi

is an odd
marking of Gi.

2.4. Combinatorial games for Tree-CS in resolution. Im-
portant tools for our results are two two-player combinatorial games.
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The Prover–Delayer game is played on formulas and was intro-
duced in Pudlák & Impagliazzo (2000) in order to prove lower
bounds for tree-like resolution length. Later it was shown in Este-
ban & Torán (2003) that the game exactly characterizes tree-like
resolution clause space.

The Raz–McKenzie game is played on DAGs and was intro-
duced in Raz & McKenzie (1999) as a tool for studying the depth
complexity of decision trees for search problems.

Definition 2.16 (Prover–Delayer game). The Prover–Delayer
game is played between two players, called Prover (he), and De-
layer (she), played on an unsatisfiable CNF formula F . The game
is played in rounds. Each round starts with Prover querying the
value of a variable. Delayer can give one of three answers: 0, 1, or ∗.
If 0 or 1 is chosen by Delayer, no points are scored by her and the
queried variable is set to the chosen value. If Delayer answers ∗,
then Prover gets to decide the value of that variable, and Delayer
scores one point. The game finishes when any clause in F has been
falsified (all its literals are set to 0) by the partial assignment con-
structed this way. If this is not the case, the next round begins.
The aim of Delayer is to win as many points as possible, while
Prover aims to minimize this quantity.

Definition 2.17 (Game value of the Prover–Delayer game). Let
F be an unsatisfiable CNF formula. The game value of the Prover–
Delayer game played on F , denoted by PD(F ), is the greatest num-
ber of points Delayer can score on F against an optimal strategy
of Prover.

The Prover–Delayer game exactly characterizes the tree-like
clause space of a formula. The constant term of the original result
in Esteban & Torán (2003, Theorem 2.2) was slightly modified to
match our definitions of clause space and the pebble game without
sliding.

Theorem 2.18 (Esteban & Torán 2003). Let F be an unsatisfi-
able CNF formula. Then

Tree-CS(F ��) = PD(F ) + 2.
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Definition 2.19 (Raz–McKenzie game). The Raz–McKenzie
game is played on a single-sink DAG G by two players, Pebbler
and Colorer. The game is played in rounds. In the first round,
Pebbler places a pebble on the sink and Colorer colors the pebble
red. In all subsequent rounds, Pebbler places a pebble on an arbi-
trary empty vertex of G and Colorer colors this new pebble either
red or blue. The game ends when there is a vertex with a red
pebble that is either a source vertex or all its direct predecessors
in the graph have blue pebbles.

Definition 2.20 (Raz–McKenzie price). The Raz–McKenzie
price R-Mc(G) of a single sink DAG G is the smallest number r
such that Pebbler has a strategy to make the game end in at
most r rounds against an optimal strategy of Colorer.

In Chan (2013), it was shown that the reversible pebbling price
and the Raz–McKenzie price coincide for any single-sink DAG.

Theorem 2.21 (Chan 2013). For any single-sink DAG G, we have

R-Mc(G) = Rev(G).

3. Separations between tree-like and general
resolution clause space for pebbling formulas

It can be observed from existing results about resolution depth
that the tree-resolution clause space for the XORification of any
formula F is within a constant factor of the resolution depth of F .
As a corollary of this result, we will show that the tree-resolution
clause space of the XORification of a pebbling formula is within
a constant factor of the reversible pebbling number of the under-
lying graph. This fact is a useful tool for obtaining clause space
separations between tree-like and general resolution.

Theorem 3.1. For any unsatisfiable CNF formula F , it holds

Depth(F ��) ≤ Tree-CS
(
F [⊕2] ��

) ≤ 2 · Depth(F ��) + 2.



cc Tree-Like and General Resolution Space Page 17 of 37 7

Proof. The first inequality follows from the proof of Theo-
rem 5.4 in Urquhart (2011). There it is proven that 2Depth(F ��) ≤
Tree-Size

(
F [⊕2] ��

)
but the same proof is easily adapted to show

Depth(F ��) ≤ Tree-CS
(
F [⊕2] ��

)
. The second inequality fol-

lows from Proposition 2.9 and the fact that Depth
(
F [⊕2] ��

) ≤
2 · Depth(F ��). �

We obtain the following consequence for the special case of
pebbling formulas:

Corollary 3.2. For any single-sink DAG G it holds

Rev(G) ≤ Tree-CS
(
PebG[⊕2] ��

) ≤ 2 · Rev(G) + 4.

Proof. We use the equivalence Rev(G) = R-Mc(G) between
the Raz–McKenzie game and reversible pebbling. For a single-sink
DAG G, let the augmented graph Ĝ be the graph obtained by
introducing a new vertex v and adding a new directed edge from
the sink of G to v. Then v is the unique sink of Ĝ. It is not hard
to see that R-Mc(G) ≤ R-Mc(Ĝ) ≤ R-Mc(G) + 1. Chan (2013)
showed that R-Mc(Ĝ) = Depth(PebG ��) (see also de Rezende
et al. (2020)).

Let F = PebG. Using Theorem 3.1 and the above mentioned
results, we then have

Rev(G) ≤ R-Mc(Ĝ) = Depth(PebG ��)

≤ Tree-CS
(
PebG[⊕2] ��

)

≤ 2 · Depth(PebG ��) + 2

= 2 · R-Mc(Ĝ) + 2 ≤ 2 · Rev(G) + 4. �

From Corollary 3.2 and Proposition 2.9, it follows that for any
graph G with a gap between its black and reversible pebbling
prices, the same separation can be obtained between the general
and tree-like clause space of the corresponding pebbling formula.
We mention some examples for which such a pebbling separation
is known:

◦ The path graphs. Let Pn be a directed path with n vertices.
Bennett (1989) noticed, that these graphs provide a sepa-
ration between black and reversible pebbling, proving that
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Rev(Pn) = �log n�. It was shown in Järvisalo et al. (2012),
using a direct proof, that CS

(
PebPn [⊕2] ��

)
= O(1) while

Tree-CS
(
PebPn [⊕2] ��

)
= Θ(log n).

◦ The road graphs from Chan et al. (2015) provide a class of
graphs for which the black pebbling price is non-constant
and the reversible pebbling number is larger by a logarithmic
factor. A road graph of length � and width w contains � layers
each having w vertices, and the i-th vertex of a layer has two
incoming edges from the i-th and (i + 1)-st vertices of the
previous layer (modulo w). The graphs narrow towards the
end in a pyramid-like fashion in order to have a unique sink.

Theorem 3.3 (Chan et al. 2015). For any function s(n) =
O

(
n1/2−ε

)
with 0 < ε < 1

2
constant, there is a family of DAGs

(Gn)∞
n=1 of size Θ(n) with a single sink and maximal in-degree 2

such that Black(Gn) = O
(
s(n)

)
and Rev(Gn) = Ω

(
s(n) log n

)
.

Corollary 3.4. For any function s(n) = O
(
n1/2−ε

)
with con-

stant parameter 0 < ε < 1
2
, there is a family of pebbling formulas(

PebGn [⊕2]
)∞

n=1
with Θ(n) variables such that CS

(
PebGn [⊕2] ��

)

= O
(
s(n)

)
and Tree-CS

(
PebGn [⊕2] ��

)
= Ω

(
s(n) log n

)
.

The logarithmic factor in the number of vertices is almost the
largest separation that can be obtained using this method since it
is known that the reversible pebbling price can be upper bounded
in terms of black pebbling space and time:

Theorem 3.5 (Královič 2004). For any DAG G with simultane-
ous black pebbling space s and black pebbling time t it holds

Rev(G) ≤ s�log t�.
By virtue of this result and Corollary 3.2 we obtain:

Corollary 3.6. For any single-sink DAG G it holds

Tree-CS
(
PebG[⊕2] ��

)
= O

(
min

P
(
space(P) · log time(P)

))
,

where the minimum is taken over all black pebblings P of G.
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This shows that the given separations cannot be improved for
graphs for which the minimum black pebbling space is obtained
with a one-shot strategy as it is the case for the path and road
graphs, since the pebbling time for such a strategy is n. We present
the first graph class for which the best black pebbling strategy is
not one-shot with a separation between black and reversible peb-
bling space. We do not obtain, however, any better separation than
the log n factor obtained in the previous examples. We conjec-
ture that this is in fact optimal. Our graphs Ĝ(c, k) are simplified
versions of the original graphs in Carlson & Savage (1982). An-
other adaptation of the original graphs is the family Γ(c, r) studied
in Nordström (2015), for which an upper bound on the reversible
pebble price was recently shown by de Rezende et al. (2021). We
have simplified the graphs, eliminating the original pyramids since
we are not analyzing the black-white pebbling price, but our lower
bound on reversible pebbling can be adapted to the original graphs
or those in the family

(
Γ(c, r)

)∞
c,r=1

.

The graphs of the following definition are depicted in Figure 3.1.

Definition 3.7 (Simplified Carlson–Savage graphs). The class of
DAGs

(
G(c, k)

)∞
c,k=1

with parameters c, k ≥ 1 is inductively de-

fined in k. The base case G(c, 1) is the graph with one source node
s and c sink nodes z1, . . . , zc, as well as directed edges (s, zi) for
i = 1, . . . , c from this source to all sink nodes. The graph G(c, k+1)
is composed of

◦ the graph G(c, k), where we let z1, . . . , zc denote the sinks of
this graph,

◦ and c disjoint so-called spines, where a spine is just a path
of length 2c2k. Each spine is divided into 2ck sections of c
consecutive vertices each. The last node of each of the spines
is a sink for G(c, k + 1).

Apart from all edges of G(c, k) and the path-edges in the spines,
the following edges are added: For each section in each spine and
for each i with 1 ≤ i ≤ c, there is an edge from the i-th sink zi of
G(c, k) to the i-th vertex in the section.

For single-sink graphs, the following definition is needed:
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Figure 3.1: The base case G(3, 1) for the simplified Carlson–Savage
graph with 3 spines and sinks is depicted on the left. The inductive
definition of the simplified Carlson–Savage graph G(3, k + 1) with
3 spines and sinks is depicted on the right.

Definition 3.8 (One sink simplified Carlson–Savage graphs).
For all c ≥ 1, we let the graph Ĝ(c, 1) consists of just one edge (s, z)
between the source node s and the sink node z. For k ≥ 2 we
define Ĝ(c, k) exactly as G(c, k) but with just one spine at the
k-th level (all other levels have c spines). The last vertex of this
spine is the only sink of Ĝ(c, k).

Lemma 3.9. The following claims hold:

(i) Ĝ(c, k) has Θ(c3k2) vertices,

(ii) Black
(
Ĝ(c, k)

) ≤ k + 1 for any c, k ≥ 1,

(iii) for k > 1 and c > k + 1, the best black pebbling strategy of
the graph Ĝ(c, k) is not one-shot, and
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(iv) Rev
(
Ĝ(c, k)

) ≥ min
{
c, (k−1) log c+log(k!)

}
for any c, k ≥ 1.

Proof. The first part follows easily by inductive counting.
For part (ii) of the lemma, we show inductively over k that

any sink of G(c, k) can be pebbled using k + 1 pebbles. The re-
sult follows since Ĝ(c, k) is a subgraph of G(c, k). The claim is
trivial for k = 1. For k > 1 the first vertex in any of the spines
in G(c, k) can be pebbled by placing a pebble on the corresponding
sink of G(c, k − 1), removing all the pebbles except this one, and
then pebbling the first vertex in the spine. The following strat-
egy can be used for any other vertex v in the spine once its direct
predecessor in the spine is pebbled: remove all the pebbles in the
graph except the one on the direct spine predecessor of v, pebble
the sink connected to v in G(c, k−1), remove all the pebbles except
the 2 on the direct predecessors of v, and then place a pebble on v.
For this, by the induction hypothesis, at most k + 1 pebbles are
needed.

For (iii), suppose P is a one-shot strategy for pebbling Ĝ(c, k).
Let z1, . . . , zc be the sinks of Ĝ(c, k−1). Since each of these sinks is
a direct predecessor of a vertex in each of the sections of the unique
spine of Ĝ(c, k), once each of these vertices has a pebble on it, the
pebble cannot be removed until the last section of the spine is
pebbled. This is because we are not allowed to re-pebble the sinks
since the pebbling is one-shot. Therefore space(P) is at least c.
But part (ii) tells us that Black

(
Ĝ(c, k)

) ≤ k + 1. Thus, when

c > k + 1, the best black pebbling strategy for the graphs Ĝ(c, k)
with respect to space cannot be one-shot.

Part (iv) is more involved. We use the equivalence between
reversible pebbling and the Raz–McKenzie game and show, also
by induction over k, that the number of rounds to finish a game
on Ĝ(c, k) starting from a configuration in which less than c ver-
tices have been colored blue, and no vertex (except the sink) in the
unique spine of Ĝ(c, k) is colored, is at least min

{
c, (k − 1) log c +

log(k!)
}
. We give a strategy for Colorer obtaining this bound on

the number of rounds. The base case is trivial. For k ≥ 2, initially
the only vertex colored red is the unique sink of Ĝ(c, k). Let us
denote the unique spine from Ĝ(c, k) as the k-spine. The game is
divided in k stages (starting at stage k and finishing at stage 1).
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Stage k finishes when there is a blue vertex in the k-spine at a dis-
tance less than 2c from a red vertex. In stage k, Colorer only gives
the color red to vertices in the k-spine; if some vertex in G(c, k−1)
is queried by Pebbler, Colorer always answers with the blue color.
Because of this, the game cannot finish before the end of stage k.
For simplicity, we may assume that the first vertex of the k-spine
has been colored blue (for free, this can only make the strategy of
Colorer harder), also for the clarity of exposition let us say that the
k-spine is directed from left to right. The strategy of Colorer on
the k-spine is to keep the gap between the rightmost blue vertex a
(initially the initial node of the spine) and the leftmost red vertex b
(initially the sink) as large as possible. That is, for any queried
vertex v in the k-spine, if v lies at the left of a, it is colored blue,
if it is at the right of b it is colored red; and otherwise (i. e., if v is
between a and b) if the distance from a to v is smaller that or equal
to the distance from v to b, then v is colored blue, otherwise it is
colored red. This strategy is followed by Colorer as long as the gap
between a and b is at least 2c. Once it is smaller than 2c, stage k
ends. If at this moment at least c vertices have been queried, there
have been at least c rounds and the result follows. Otherwise, there
has to be a spine in G(c, k − 1) without any colored vertex on it
(there are c spines). Let us call t the sink of this spine and t′ its
rightmost uncolored successor in the k-spine. We can suppose that
at this moment Colorer colors (for free) t, t′, as well as all uncol-
ored vertices to the right of t′ in the k-spine with color red, and
all the uncolored vertices to the left of t′ in the k-spine with blue.
Again this only makes the strategy of Colorer harder since we are
not counting these rounds. But now the game has been reduced
to the instance of the graph Ĝ(c, k − 1) containing the sink t. The
number of rounds in stage k is at least log(2c

2k
2c

) = log c + log k
(this would happen with a binary search strategy of Pebbler on
the k-spine). If in all the stages less than c vertices are queried, by
induction, the rounds to finish the game on Ĝ(c, k − 1) are at least
(k − 2) log c + log

(
(k − 1)!

)
. Adding these rounds to those from

stage k we get the result. �
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Theorem 3.10. For any function s(n) = Θ
(
n1/5−ε

)
with 0 < ε <

1
5
constant there is a family of pebbling formulas

(
PebGn [⊕2]

)∞
n=1

with O(n) variables such that CS
(
PebGn [⊕2] ��

)
= O

(
s(n)

)
and

Tree-CS
(
PebGn [⊕2] ��

)
= Ω

(
s(n) log n

)
, and the best black peb-

bling strategy for the graphs Gn is not one-shot.

Proof. We show that for any such function s, there is a graph
family

(
Ĝ

(
c(n), �s(n)�))∞

n=1
with the corresponding gap between

its black and reversible pebbling prices. The result follows from
Corollary 3.2.

Given any such function s(n) = Θ
(
n1/5−ε

)
with 0 < ε < 1

5

constant, we define c(n) := �s(n) · log n�. This allows us to con-
sider the graphs Ĝ

(
c(n), �s(n)�). By Lemma 3.9 (i), this graph has

O
(
c(n)3 · �s(n)�2) = O

(
s(n)5 · log3 n

)
= O

(
n1−5ε · log3 n

)
= O(n)

vertices. By Lemma 3.9 (ii), the graph has a black pebbling number
upper bounded by �s(n)� + 1 = O

(
s(n)

)
. It only remains to show

that the reversible pebbling number of the graph is asymptotically
lower bounded by s(n) log n. We consider two cases:

Case 1: min
{

c(n),
(�s(n)�−1

)
log c(n)+log

(�s(n)�!)
}

= c(n).

In this case, Lemma 3.9 (iv) implies that the reversible pebbling
number of the graph is lower bounded by c(n), which, by definition,
is greater than or equal to s(n) log n.

Case 2: min
{

c(n),
(�s(n)�−1

)
log c(n)+log

(�s(n)�!)
}

�= c(n).

In this case, already the first term, i. e.,
(�s(n)� − 1

)
log c(n) is in

Ω
((�s(n)� − 1

)
log

(�s(n)� log n
))

= Ω
((�s(n)� − 1

)
log

(�s(n)�) +
(�s(n)� − 1

)
log log n

)

= Ω
((�s(n)� − 1

)(
1/5 − ε

)
log n +

(�s(n)� − 1
)
log log n

)

= Ω
(
s(n) log n

)
. �

4. Upper bounds for Tree-CS for general
formulas

We provide generalizations of Corollary 3.6 for general formulas.
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Observation 4.1. For any unsatisfiable formula F , it holds

Tree-CS(F ��) ≤ VS∗(F ��) + 2.

Proof. This follows from the fact that

Tree-CS(F ��) ≤ Depth(F ��) + 2 ≤ VS∗(F ��) + 2,

where the first inequality is Proposition 2.9 and the second inequal-
ity is due to Razborov (2018, Theorem 3.1). �

We now want to prove that the upper bound in Observation 4.1
also works for amortized clause space, i. e., for any unsatisfiable
formula F we also have Tree-CS(F ��) ≤ CS∗(F ��) + 2 (see
Corollary 4.3). For this, we first show that the tree-like clause
space of a formula F is always upper bounded by the reversible
pebble game played on a refutation of F . Note that the minimum
in Theorem 4.2 is taken over all possible refutations of F , not only
over the tree-like ones.

Theorem 4.2. For any unsatisfiable formula F with n variables
it holds

Tree-CS(F ��) ≤ min
π:F � �

Rev(Gπ) + 2, and

min
π:F � �

Rev(Gπ) ≤ Tree-CS(F ��)
(�log n�+1

)
.

Proof. Let F be an unsatisfiable formula with n variables.
We simplify the proof by following the intuition behind the Raz–
McKenzie game and identify the color blue with 1 and the color
red with 0.

For proving the first inequality, let π be a resolution refutation
of F with a refutation-graph Gπ and Rev(Gπ) =: k. We will use
Theorem 2.18, as well as Theorem 2.21 applied to Gπ: It suffices
to give a strategy for Prover in the Prover–Delayer game played
on F under which he has to pay at most k points. Prover basi-
cally simulates the strategy of Pebbler in the Raz–McKenzie game
played on Gπ, which coincides with reversible pebbling. By do-
ing so, a partial assignment α falsifying an initial clause of F will
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be produced. The game is divided in stages. Initially, the par-
tial assignment is the empty assignment. In each stage, if Pebbler
chooses a clause C ∈ V (Gπ), Prover queries the variables in C not
yet assigned by α, one by one, extending the partial assignment α
with the answers of Delayer, until either:

1. the clause C is satisfied or falsified by α, or

2. a variable x in C is given value ∗ by Delayer.

In case 1, Prover moves to the next stage, simulating the strategy
of Pebbler assuming Colorer has given clause C the color C �α.
In case 2, Prover extends α by assigning x with the value that
satisfies C and moves to the next stage, simulating the strategy
of Pebbler, assuming Colorer has given clause C the color 1. The
game is played until α falsifies a clause in F . After at most k stages,
the Raz–McKenzie games finishes and therefore Delayer can score
at most k points. It is only left to show that at the end of the game
a clause in F is falsified by α. When the Raz–McKenzie game
finishes, either a source in Gπ is assigned color 0 by Coloreror a
vertex with all its direct predecessors being colored 1 is colored 0.
Since α encodes Delayer’s answers (with ∗ replaced by the uniquely
defined concrete Boolean values given by Prover as described above
in case 2), the first situation corresponds to α falsifying a clause
in F . The second situation is not possible since for any partial
assignment α it cannot be that α satisfies two parent clauses in a
resolution proof, while falsifying their resolvent.

For the proof of the second inequality, let k := Tree-CS(F ��).
By Proposition 2.8 we know that there is a refutation π of F whose
underlying graph Gπ is a tree with black pebbling price k. We
can suppose that the refutation is regular, that is, in every path
from the empty clause to a clause in F in the refutation tree,
each variable is resolved at most once (Esteban & Torán 2001,
Theorem 5.1). Then the depth of the tree is at most n.

We show that for any binary tree T with depth d ≥ 1 and
Black(T ) = κ, Rev(T ) ≤ κ(�log d� + 1). The result follows from
this fact.

The case d = 1 is trivial. Let d > 1. For any node v in T
let Tv be the subtree rooted at v. For the sake of convenience,
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we refer to Black(Tv) as the pebbling number of v. We show by
induction on κ that for any vertex v in T, if Black(Tv) = κ then
there is a strategy for Pebbler in the Raz–McKenzie game on Tv

with most κ(�log d� + 1) rounds. For the base case κ = 1, the
vertex v must be a leaf node and the game needs only one round.
For κ > 1, the game starts, according to the rules, by Pebbler
querying the root v of the subtree and Colorer answering 0. We
consider two cases, depending on whether for both direct prede-
cessors v1 and v2 of v in T, Black(Tv1) = Black(Tv2) = κ − 1 or
not. In the former case, Pebbler queries one of them, say v1. If
the answer is 0, he continues on Tv1 and otherwise he continues
on Tv2 . By induction, the number of rounds in this case is at most
2+(κ−1)(�log d�+1) ≤ κ(�log n�+1). In case, it is not true, that
Black(Tv1) = Black(Tv2) = κ − 1, since Black(Tv) = κ, and Gπ is a
tree, one of the trees Tv1 or Tv2 leading to v must have pebbling
number κ and the other one must have pebbling number smaller
than κ (this is a well-known fact, see e. g. Flajolet et al. (1979)).
Pebbler considers the path of nodes starting at v and going to-
wards the leaves, such that the nodes in the path have pebbling
number κ, until a node u is reached, for which both direct pre-
decessors have pebbling number κ − 1. Such a node u must exist
because of the previously mentioned fact. Let u1 be one of the
direct predecessors of u. The length of the path from v to u1 is at
most d. Pebbler queries the vertices in the path between v and u1

with binary search, until a vertex t is found that is colored with
color 0 by Colorer, while its direct predecessor in the path v � u1

has been colored 1. At this point, Pebbler continues playing the
game on the tree rooted at the uncolored predecessor of t. In all
situations at most 1 + �log d� vertices have been queried and the
game has been reduced to a subgraph with smaller pebbling num-
ber. �

Corollary 4.3. For any unsatisfiable formula F it holds

Tree-CS(F ��) ≤ CS∗(F ��) + 2.

Proof. By Theorem 3.5 we have

min
π:F � �

Rev(Gπ) + 2 ≤ min
P

(
space(P) · log time(P)

)
+ 2,
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where the minimum is taken over all black pebblings P of Gπ.
The result follows with (a slight adaption of) Proposition 2.8 since
every black pebbling P of Gπ defines a configurational refutation
of F with clause space equal to space(P) and length time(P). �

5. Optimal separations for Tseitin formulas

In this section, we prove optimal separations between tree-like
clause space and variable space as well as clause space in the con-
text of Tseitin formulas. This complements the relations between
clause space and variable space of Tseitin formulas recently given
in Galesi et al. (2020).

Theorem 5.1. For any connected graph G with n vertices and
odd marking χ we have

Tree-CS
(
Ts(G,χ) ��

) ≤ CS
(
Ts(G,χ) ��

) · log n + 2, and

Tree-CS
(
Ts(G,χ) ��

) ≤ VS
(
Ts(G,χ) ��

) · log n + 2.

Proof. The proof is based on the one for the lower bound for the
clause space of Tseitin formulas from Torán (1999). Let G = (V,E)
be a connected graph with n := |V | vertices, χ an odd marking,
and π = (M0, . . . , Mt) a refutation of Ts(G,χ) with CS(π) =: k.
We use the refutation π to give a strategy for Prover in the Prover–
Delayer game for which he has to pay at most k log n points. The
additive constant 2 in the Theorem then comes from applying The-
orem 2.18.

We say that a partial assignment α of some of the variables in
Ts(G,χ) is non-splitting if after applying α to the formula, the re-
sulting graph still has a connected component with an odd marking
(odd component) of size at least

⌈ |V |
2

⌉
, and the rest are components

with even markings. Consider the last configuration Ms in π for
which there is a partial assignment α fulfilling:

1. α simultaneously satisfies all clauses in Ms, and

2. α is non-splitting.

This stage must exist since before the initial step the empty truth
assignment is trivially a non-splitting partial assignment satisfying
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the clauses in M0 = ∅. At the end, the last configuration Mt in
the refutation contains the empty clause which cannot be satisfied
by any assignment. Thus, stage s must exist in between.

The step from s to s + 1 cannot be a deletion step or a resolu-
tion step since otherwise a partial assignment α satisfying the two
conditions at step s would also satisfy them at step s + 1. There-
fore Ms+1 contains one clause C more than Ms, and it must be an
axiom of Ts(G,χ). For some vertex v in G, this axiom clause C
belongs to the formula PARITYv,χ(v). Let α be a partial assign-
ment of minimal size satisfying the conditions at stage s. Since Ms

contains at most k − 1 clauses, α assigns at most k − 1 variables.
It is possible to extend α to satisfy the clause C�α since v either
belongs to an even component in (G�α, χ�α) or to the large odd
component in this graph and therefore C�α �= �. Because of this,
vertex v must belong to the unique odd component since other-
wise we could obtain an assignment α′ satisfying the conditions at
step s + 1, by extending α in a non-splitting way to one variable
in C.

Let C �α= (�1 ∨ · · · ∨ �m), m ≥ 1, where the �i’s are literals
corresponding to the edges ei with endpoint v in G �α (see Fig-
ure 5.1). Observe that deleting any of these edges ei in G�α cuts
the connected component of v in two pieces because otherwise as-
signing any value to the corresponding edge ei would not modify
the size of the connected components in G�α and there would be a
non-splitting way to extend α to ei, satisfying C, and obtaining in
this way an assignment α′ fulfilling the conditions at s + 1. Also,
any component remaining after assigning all the literals in C �α

must have size at most
⌊ |V |

2

⌋
since otherwise there would be a way

to extend α satisfying C and producing an odd marking for the
largest such component (Fact 2.15), and this extension α′ would
be non-splitting.

The strategy of Prover is to query the variables assigned in α
(which has size at most k − 1) thus paying at most k − 1 points
and obtaining a partial assignment γ from Delayer. Observe that
the connected components are always the same for any value of
the assigned variables, only the parity of its markings can change.
Therefore the values of the variables in γ are not important. If at
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Figure 5.1: The graph G�α with edges e1, . . . , em corresponding
to the literals in C�α= (�1 ∨ · · · ∨ �m). The gray areas symbolize
connected components of G �α. As argued, there are no further
edges connecting two gray components.

this point one of the connected components of size at most
⌊ |V |

2

⌋
is

odd, then Prover moves to this component and starts playing the
game on it. Otherwise, Prover queries the variables in C�γ one by
one. If for a variable ei Delayer answers with ∗, Prover just has to
assign ei so that the smallest of the two components that appear
in G�γ after assigning ei is odd (not necessarily satisfying C �γ).
This is always possible because of Fact 2.15. If no ∗ is answered,
Prover queries the next variable until no variable in C �γ is left.
Let γ′ be the assignment obtained this way. Since all the variables
in C are assigned, all the components (odd or even) remaining after

applying γ′ have size at most
⌊ |V |

2

⌋
. In any case, after applying γ′,

Prover wins the game or there is an odd connected component of
size at most half as large as the initial graph. The original problem
has been reduced to another one in a graph with at most n

2
many

vertices. Also Prover has to pay at most k for obtaining γ′. The
players continue the game on the new graph creating an extension
of γ′. After repeating this process at most log n times, an initial
clause is falsified.

The second part of the theorem is a little simpler and follows by
considering a configurational proof π of variable space k. Every-
thing in the above proof works in the same way, observing that the
partial assignment α satisfying all clauses in memory at stage s,
when extended to all the variables in the new clause at stage s + 1
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Figure 5.2: The grid graph G2×20.

needs to assign at most k variables (all those included in the con-
figuration) and is either splitting or falsifies the axiom. Observe
that this implies that in every configurational proof there is a point
in which every assignment to the variables in the configuration is
splitting. �

Next, we show that the upper bounds in Theorem 5.1 are tight
by proving that there is a family of Tseitin formulas that provide
matching lower bounds. These are formulas corresponding to grid
graphs with constant width (see Figure 5.2), which can be consid-
ered as the Tseitin version of path graphs.

Definition 5.2 (Grid graphs). For a natural number � ≥ 1, the
grid graph G2×� as depicted in Figure 5.2 is given by the vertex set
V (G2×�) := [2] × [�] and the edge set

E(G2×�) :=

{
{
(i, j), (i′, j′)

}
∣
∣
∣
∣

i, i′ ∈ [2], j, j′ ∈ [�], and
|i − i′| + |j − j′| = 1

}
.

In the following, let χ� be an odd marking of G2×�.

Theorem 5.3. For the Tseitin formula family
(
Ts(G2×�, χ�)

)∞
�=1

with 3� − 2 variables it holds

(i) Tree-CS
(
Ts(G2×�, χ�) ��

)
= Ω(log �),

(ii) CS
(
Ts(G2×�, χ�) ��

)
= O(1), and

(iii) VS
(
Ts(G2×�, χ�) ��

)
= O(1).

Proof. To show the lower bound on tree-like clause space with
Theorem 2.18, we give a strategy for Delayer such that he scores
Ω(log �) points playing on Ts(G2×�, χ�). In the following, for a
subgraph G′ of G2×�, we define

Block(G′) := max

{
b ∈ N

∣
∣
∣
∣

there is a subgraph of G′

that is isomorphic to G2×b

}
.
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Furthermore, letting j ∈ [� − 1], we say that the j-th Block of G′

is intact, if the edges
{
(1, j), (1, j + 1)

}
,
{
(2, j), (2, j + 1)

}
,
{
(1, j),

(2, j)
}

and
{
(1, j + 1), (2, j + 1)

}
are still present.

The strategy of Delayer is then as follows:

1. If a variable corresponding to an edge e in an even compo-
nent is queried, Delayer should answer according to some
assignment satisfying this component.

2. If a variable corresponding to an edge e in an odd component
is queried, Delayer proceed as follows:

(a) If the deletion of e does not increase the number of con-
nected components in G, Delayer should answer ∗.

(b) If the deletion of e cuts the graph and both endpoints
of e are separated in different connected components,
Delayer should answer in a way, that from these two
components, the component G′ with largest Block(G′)
receives the odd marking. This is always possible ac-
cording to Fact 2.15 (b).

At the beginning of the Prover–Delayer game, Block(G2×�) = �.
After each assignment of a variable in the game, we have Block(G′)
≥ �1

2
Block(G)�, where we let G denote the underlying graph be-

fore the assignment and G′ the graph after the assignment. Notice
that rule 2 (b) guarantees that the component with the largest
Block-value always receives an odd marking. If Delayer plays ac-
cording to this strategy, we must have Block(G) = 0 at the be-
ginning of some round. This means that the Block-value, starting
the game with G2×�, has to change at least Ω(log �) times before
the game can end. One can notice that if the Block-value changes
in a step, the number of connected components does not increase
in this step. (Suppose, to reach a contradiction, that the number
of connected components changes due to the deletion of an edge e
and the Block-value also changes. Then e must have been the only
edge connecting the connected components C1 and C2. Further-
more, e must have been an edge of an intact block Bj. But the
intactness of the block Bj implies that after the deletion of e there
is still a path that is connecting the components C1 and C2, which
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contradicts our assumption). According to rule 2 (a), Delayer has
answered ∗ in this round and has scored a point.

For the second part, consider the variables (edges) ordered
(from left to right) with

{
(1, j), (2, j)

} ≺ {
(1, j), (1, j + 1)

} ≺ {
(2, j), (2, j + 1)

}

and edges with lower j defined to be smaller (with respect to ≺)
than those with higher j for 1 ≤ j ≤ � − 1, and consider a regular
resolution refutation completely resolving the variables in decreas-
ing order (from right to left). That is, the clauses containing vari-
able

{
(1, �), (2, �)

}
will be first resolved with all clauses containing

this variable in negated form (in case it is possible to resolve),
and so on. Since the graph has degree at most 3, there is a small
number of clauses containing this variable. Also observe that after
resolving the last three variables in the ordering in this way, the
set of derived clauses plus the initial clauses encode the formula
Ts(G2×(�−1), χ

′) for some odd marking χ′. The set of newly de-
rived clauses needed for the resolution of this formula has constant
size, and the number of clauses in all the resolution configurations
until this point is also constant. Continuing in this order with the
complete resolution of all the variables, we obtain a refutation of
Ts(G2×�, χ) with constant clause and variable space. �

6. Conclusions and open problems

By introducing a new connection between tree-like resolution clause
space and the reversible pebble game, we have studied the relation
between tree-like clause space and the clause space measure for
general resolution, obtaining separations between these measures.
We conjecture that these separations are optimal and that in fact,
the log

(
time(π)

)
factors in the upper bounds of Theorem 3.5 and

Observation 4.1 and Corollaries 3.6 and 4.3 can be improved to a
log n factor (n being the number of graph vertices or formula size,
depending on the setting). We have been able to prove this for the
restricted case of the Tseitin contradictions.

We have seen that a source for obtaining clause space sepa-
rations between tree-like and general resolution are graph classes
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with a gap between their reversible and black pebbling prices and
we have provided a new class of such graphs. An interesting ques-
tion is whether there exists a graph class with such a separation
for a space function larger than n1/2.
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