Design of Reverse Converters for a New Flexible RNS Five-Moduli Set $\left\{2^{k}, 2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}$ (n Even)

Piotr Patronik ${ }^{1}$ (D) ${ }^{(D)}$ Stanisław J. Piestrak ${ }^{2}$ (D)

Received: 14 April 2016 / Revised: 19 February 2017 / Accepted: 21 February 2017 /
Published online: 27 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract

This paper presents the design methods of residue-to-binary (reverse) converters for the new flexible balanced five-moduli set $\left\{2^{k}, 2^{n}-1,2^{n}+1\right.$, $\left.2^{n+1}-1,2^{n-1}-1\right\}$ for the pairs of positive integers $n \geq 4$ (even) and any $k>0$, which can provide the exact required dynamic range of the residue number system. This modulus set is the generalisation of the five-moduli set $\left\{2^{n}, 2^{n}-\right.$ $\left.1,2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}$ (n even) with only a single parameter, n. The reverse converter for the new modulus set is the first ever proposed. Synthesis results obtained for the 65 nm technology for all dynamic ranges from 19 to 88 bits have shown that the state-of-the-art converters available for the five-modulus sets with a single parameter $n\left\{2^{n}, 2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}$ (n even) and $\left\{2^{n}-1,2^{n}, 2^{n}+1,2^{n+1}+1,2^{n-1}+1\right\}$ (n odd) not only introduce from 28 to 40% larger delay but also still consume more area and power than the converters proposed here.

Keywords Reverse converter • Residue number system (RNS) • Computer arithmetic • Digital signal processing (DSP)

[^0]
1 Introduction

There has been growing demand for digital signal processing (DSP) to be performed at greater real-time bandwidths, with higher precision and lower complexity. Several DSP computations like digital filtering and various transforms can be formulated as a sum of products (vector inner products) [15]. Such arithmetic expressions have particularly efficient implementations using a residue number system (RNS) [1], an unweighted arithmetic system in which calculations are performed in parallel, independent channels. Because most digital systems operate on data using a positional representation, using the RNS representation requires conversions of numbers back and forth to RNS, performed respectively by reverse and forward converters. While forward conversion is basically an extraction of residue from a positional number using residue generators, the reverse conversion requires application of special methods like the Chinese remainder theorem (CRT) and the mixed radix conversion (MRC) [1], as well as the new CRT [31].

To guarantee that the advantages of datapaths implemented in an RNS offset the extra cost of converters, it is desirable that the moduli m_{i} selected to form an RNS have efficient implementations of basic modulo arithmetic operations. Three low-cost classes of moduli (in their order of appearance) are an even modulus $m_{i}=2^{\mathrm{b}}$, an odd modulus $m_{i}=2^{\mathrm{b}}-1$, and $m_{i}=2^{\mathrm{b}}+1$, for which hardware implementations of the basic arithmetic circuits can be found: two-operand adders [8,11-13,17,35], multi-operand modular adders (MOMAs) and residue generators (used to build forward converters) [21,23], multipliers [16,34,35], multiplier-accumulators (MACs) and complete residue datapaths [9,14,24,25].

Because the performance of the reverse converter is usually the major bottleneck of RNS-based systems, several special moduli sets with not only particularly efficient implementations of the datapaths but also highly regular structures of reverse converters have been proposed. Here, we are interested in low-cost moduli sets which also enjoy well-balanced performance of all residue datapath channels (i.e. the area/time characteristics of all channels are as close as possible). The best-known three-moduli sets are: $\left\{2^{n}-1,2^{n}, 2^{n}+1\right\}$ - for which reverse converters have been proposed, for example in $[10,22,32]$ - and its generalisation $\left\{2^{n}-1,2^{k}, 2^{n}+1\right\}$ with flexible even modulus 2^{k}, for which the reverse converter for $n \leq k \leq 2 n$ was proposed in [7]. The four-moduli sets include those with a single parameter $n:\left\{2^{n}-1,2^{n}, 2^{n-1}-1,2^{n-1}+1\right\}$ (n odd) [28], $\left\{2^{n}-1,2^{n}, 2^{n}+1,2^{n+1}-1\right\}\left(n\right.$ even) $[2,3,5,28,30],\left\{2^{n}, 2^{n}-1,2^{n}+1,2^{n-1}-1\right\}(n$ even) [5], $\left\{2^{n}-1,2^{n}, 2^{n}+1,2^{n+1}+1\right\}\left(n\right.$ odd) [2,29], and $\left\{2^{n}+1,2^{n}-1,2^{n}, 2^{n-1}+1\right\}$ (n odd) [20], as well as some of their recently proposed generalisations with a flexible even modulus $2^{k}:\left\{2^{k}, 2^{n}-1,2^{n}+1,2^{n+1}-1\right\}$ (n even and arbitrary k such that $n \leq k \leq 2 n$) [6], $\left\{2^{n-1}-1,2^{n+1}-1,2^{k}, 2^{n}-1\right\}(n$ even and $k>2)$ [33] and $\left\{2^{k}, 2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n \pm 1}-1\right\}[19]$ (n even and $k>2$). Further reduction of the widths of residue channels for a given dynamic range allow for two special five-moduli sets composed only of low-cost moduli: $\left\{2^{n}-1,2^{n}, 2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}$ (n even) [4] and $\left\{2^{n}-1,2^{n}, 2^{n}+1,2^{n+1}+1,2^{n-1}+1\right\}$ (n odd) [18]. The dynamic ranges of these two RNSs make it possible to represent all integers up to $5 n-1$ bits (n even) and $5 n$ bits (n odd), respectively. Either moduli set offers a resolution of 10 bits only: the
dynamic ranges for $n=4,6,8, \ldots$ are $19,29,39, \ldots$ bits for the former, and those for $n=5,7,9, \ldots$ are $25,35,45, \ldots$ bits for the latter. These two moduli sets are complementary in the sense that altogether they allow periodically for a 4- or 6-bit resolution of the dynamic range. The major limitation of these two moduli sets is that, should a dynamic range other than those listed above be needed, a designer must use a moduli set whose dynamic range is larger than actually needed, with the closest sufficiently large n. If the dynamic range of 20 bits is needed, the moduli set of [18] for $n=5$, i.e. $\{31,32,33,65,17\}$, is the best choice currently available, although its 25 -bit dynamic range is unnecessarily large and results in too-large residue datapaths. Finally, note that the dynamic range of the moduli set of [4] for $n=4$ (i.e. $\{15,16,17,31,7\}$) is too small by only 1 bit and that replacing the even modulus $2^{4}=16$ with $2^{5}=32$ would suffice. To date, no reverse converter for any five-moduli set composed of low-cost moduli including a flexible even modulus 2^{k} has been proposed.

In this paper, we introduce a new balanced RNS composed of five moduli $\left\{2^{k}, 2^{n}-\right.$ $\left.1,2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}$ (for n even), which can be seen both as the generalisation of the five-moduli set $\left\{2^{n}, 2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}$ with a single parameter n of [4] (also for n even) and as an extension of the four-moduli flexible set $\left\{2^{k}, 2^{n}-\right.$ $\left.1,2^{n}+1,2^{n+1}-1\right\}$ (proposed by us in [19]) by including the fifth modulus $2^{n-1}-1$. For this new five-moduli set, we will propose the design method of reverse converters, which will be built on the basis of the reverse converters for the four-moduli flexible set $\left\{2^{k}, 2^{n}-1,2^{n}+1,2^{n+1}-1\right\}$ from [19]. The architecture proposed is essentially based on using the general concept of the two-channel MRC converter that combines the result of the four-moduli converter with the remaining fifth modulus. However, its actual hardware structure does not rely on a direct MRC implementation because several modifications leading to significant delay reduction with no area penalty are introduced.

This paper is organised as follows. In Sect. 2, some useful properties of residue arithmetic are presented. In Sect. 3, the general method for designing two optimised versions of the reverse converters for the new five-moduli set is detailed. In Sects. 4 and 5, the complexity evaluation of the reverse converters proposed here and their existing counterparts is presented: it includes both the gate-level evaluations of delay and area and more accurate evaluations of the delay, area and power consumption of all circuits, synthesised in 65 nm technology. Section 6 presents some conclusions and suggestions for future research.

2 RNS Background

In this section, we will present the basic concepts of RNS, the properties of arithmetic $\bmod 2^{n}-1$ and closed formulas for some multiplicative inverses, all of which will be used directly in the reverse conversion methods proposed here.

2.1 Basic Concepts

An RNS is defined by the set of $r \geq 2$ mutually prime positive integers $\left\{m_{1}, \ldots, m_{r}\right\}$ called moduli, whose product $M=\prod_{i=1}^{r} m_{i}$ determines the dynamic range and, as
in two's complement positional system, the RNS arithmetic is exact as long as the final result is bounded within its dynamic range. Throughout this paper we assume that the equivalent bit range of the RNS is $a=\left\lfloor\log _{2} M\right\rfloor$. Any number $X \in \mathbb{Z}_{M}=$ $\{0,1, \ldots, M-1\}$ has a unique RNS representation $X \leftrightarrow\left\{x_{1}, \ldots, x_{r}\right\}$, where $x_{i}=$ $X \bmod m_{i}, 1 \leq i \leq r$, is the result of the integer division of X by m_{i}, written $x_{i}=|X|_{m_{i}}$ and $0 \leq|X|_{m_{i}} \leq m_{i}-1$. Arithmetic in an RNS is defined by pairwise modular operations, and because for any arithmetic operation $\circ \in\{+,-, \times\}$, it follows that if $0 \leq Z<M$, then $Z=|X \circ Y|_{M}$ is isomorphic to $Z=\left\{z_{1}, \ldots, z_{r}\right\}$, where $z_{i}=\left|x_{i} \circ y_{i}\right|_{m_{i}}, 1 \leq i \leq r$. RNS arithmetic is thus performed within r channels whose word width is bounded by $a_{i}=\left\lceil\log _{2} m_{i}\right\rceil$, which is significantly smaller than a bits of its 2's complement positional integer counterpart.

Throughout this paper we will need explicitly the reverse conversion for two moduli only, to do which the MRC is more practical, which is defined for the two-moduli set $\left\{m_{1}, m_{2}\right\}$ and two respective residues $\left\{x_{1}, x_{2}\right\}$ as

$$
\begin{equation*}
X=x_{1}+m_{1}\left|\left(x_{2}-x_{1}\right) \frac{1}{m_{1}}\right|_{m_{2}} \tag{1}
\end{equation*}
$$

2.2 Properties of Arithmetic Modulo $\mathbf{2}^{\boldsymbol{n}} \mathbf{- 1}$ [19]

Let n, s and d be arbitrary positive integers and z and y be positive integers such that $0 \leq z \leq 2^{n}-1$ and $0 \leq y \leq 2^{s n}-1$. The binary representations of z and y are respectively $\left(z_{n-1} \ldots z_{0}\right)$ and $\left(y_{s n-1} \ldots y_{0}\right)$. If y is more than an $(s-1) n$ bit and less than an $s n$-bit number, then it is preceded by leading zeros and then partitioned into $s n$-bit wide slices B_{i} beginning with the least significant bits (LSBs), i.e. $y=\left(B_{n-1}\|\cdots\| B_{1} \| B_{0}\right)$, where $B_{0}=\left(y_{n-1} \ldots y_{0}\right)$, $B_{1}=\left(y_{2 n-1} \ldots y_{n}\right)$, etc. (the symbol $\|$ denotes the concatenation of binary vectors). Some residue $\bmod 2^{n}-1$ operations are executed as follows:

- The sign change of z modulo $2^{n}-1$ (additive inverse of z) is obtained by bit-by-bit complementing, i.e. $|-z|_{2^{n}-1}=|\bar{z}|_{2^{n}-1}=\left|\left(\bar{z}_{n-1} \ldots \bar{z}_{0}\right)\right|_{2^{n}-1}$.
- The multiplication of z by $2^{d} \bmod 2^{n}-1(d$ is an integer $)$ is obtained by the left cyclic shift of z by $e=|d|_{n}$ positions (equivalent to the right cyclic shift of z by $n-e$ positions), i.e. $\left|2^{d} z\right|_{2^{n}-1}=\left|\left(z_{n-e-1} \ldots z_{0} z_{n-1} \ldots z_{n-e}\right)\right|_{2^{n}-1}$. We assume that this operation comes at no additional hardware cost.
- The residue generation of $y \bmod 2^{n}-1$ is computed as

$$
\begin{equation*}
|y|_{2^{n}-1}=\left|\sum_{i=0}^{s-1} 2^{i n} B_{i}\right|_{2^{n}-1}=\left|\sum_{i=0}^{s-1} B_{i}\right|_{2^{n}-1} . \tag{2}
\end{equation*}
$$

2.3 Multiplicative Inverses

A multiplicative inverse of $g \bmod m(0<g<m)$ is such an integer $h(0<h<m)$ that $|h g|_{m}=1$, written $h=|1 / g|_{m}$ or $h=\left|g^{-1}\right|_{m}$. A multiplicative inverse exists provided that g and m are co-prime. In the reverse conversion methods proposed
here, for positive integers even $n \geq 4$ and an arbitrary k, the following multiplicative inverses will be used:

$$
\begin{align*}
& \left|\frac{1}{2^{k}}\right|_{2^{n}-1}=\left|\frac{1}{2^{e}}\right|_{2^{n}-1}=\left|2^{n-e}\right|_{2^{n}-1}, \\
& \text { where } e=|k|_{n} \text { and } 0 \leq e \leq n-1, \tag{3}\\
& \left|\frac{1}{\left(2^{n+1}-1\right)\left(2^{2 n}-1\right)}\right|_{2^{n-1}-1} \\
& =\left|\frac{1}{\left(2^{2}-1\right)\left(2^{2}-1\right)}\right|_{2^{n-1}-1}=\left|\frac{1}{9}\right|_{2^{n-1}-1} \\
& = \begin{cases}2^{n-2} & \text { if } n=4 \\
7 \sum_{i=0}^{(n-6) / 6} 2^{6 i} & \text { if } n=6,12,18, \ldots \\
1+7 \sum_{i=0}^{(n-8) / 6} 2^{6 i+4} & \text { if } n=8,14,20, \ldots \\
2^{n-2}+7 \sum_{i=0}^{(n-10) / 6} 2^{6 i+2} & \text { if } n=10,16,22, \ldots\end{cases} \tag{4}
\end{align*}
$$

Equation (3) holds because $\left|1 / 2^{k}\right|_{2^{n}-1}=\left|1 \cdot 2^{-k}\right|_{2^{n}-1}=\left|2^{n} \cdot 2^{-k}\right|_{2^{n}-1}=$ $\left|2^{n-k}\right|_{2^{n}-1}$. As for Eq. (4), first notice that $\left|1 /\left[\left(2^{n+1}-1\right)\left(2^{2 n}-1\right)\right]\right|_{2^{n-1}-1}=$ $|1 / 9|_{2^{n-1}-1}$ because $\left|2^{n+1}\right|_{2^{n-1}-1}=\left|2^{2} \cdot 2^{n-1}\right|_{2^{n-1}-1}=4$ and $\left|2^{2 n}\right|_{2^{n-1}-1}=$ $\left|\left(2 \cdot 2^{n-1}\right)^{2}\right|_{2^{n-1}-1}=4$. Then the proof of correctness of the four expressions of Eq. (4) is given below by showing that the multiplication $\bmod 2^{n-1}-1$ of each of them by its multiplicative inverse equal to 9 results in a product equal to 1 .

For $n=4$, we have $\left|9 \cdot 2^{2}\right|_{7}=1$.
For $n=6,12 \ldots$, we have

$$
\begin{aligned}
& \left.9 \cdot 7 \sum_{i=0}^{(n-6) / 6} 2^{6 i}\right|_{2^{n-1}-1}=\left|\left(2^{6}-1\right) \sum_{i=0}^{(n-6) / 6} 2^{6 i}\right|_{2^{n-1}-1} \\
& =\left|\sum_{i=1}^{n / 6} 2^{6 i}-\sum_{i=0}^{(n-6) / 6} 2^{6 i}\right|_{2^{n-1}-1}=\left|2^{n}-2^{0}\right|_{2^{n-1}-1}=2-1=1 .
\end{aligned}
$$

For $n=8,14 \ldots$, we have

$$
\begin{aligned}
& \left|9 \cdot\left(1+7 \sum_{i=0}^{(n-8) / 6} 2^{6 i+4}\right)\right|_{2^{n-1}-1} \\
& \quad=\left|\left(2^{3}+1\right) \cdot\left(1+\left(2^{3}-1\right) \sum_{i=0}^{(n-8) / 6} 2^{6 i+4}\right)\right|_{2^{n-1}-1} \\
& =\left|9+\left(2^{6}-1\right) \sum_{i=0}^{(n-8) / 6} 2^{6 i+4}\right|_{2^{n-1}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left|9+2^{4}\left(\sum_{i=1}^{(n-2) / 6} 2^{6 i}-\sum_{i=0}^{(n-8) / 6} 2^{6 i}\right)\right|_{2^{n-1}-1} \\
& =\left|2^{3}+1+2^{4}\left(2^{n-2}-1\right)\right|_{2^{n-1}-1} \\
& =\left|2^{3}+1+2^{3} \cdot 2^{n-1}-2^{4}\right|_{2^{n-1}-1}=1 .
\end{aligned}
$$

For $n=10,16 \ldots$, we have

$$
\begin{aligned}
9 & \left.\cdot\left(2^{n-2}+7 \sum_{i=0}^{(n-10) / 6} 2^{6 i+2}\right)\right|_{2^{n-1}-1} \\
& =\left|\left(2^{3}+1\right) \cdot\left(2^{n-2}+2^{2}\left(2^{3}-1\right) \sum_{i=0}^{(n-10) / 6} 2^{6 i}\right)\right|_{2^{n-1}-1} \\
& =\left|9 \cdot 2^{n-2}+2^{2}\left(2^{6}-1\right) \sum_{i=0}^{(n-10) / 6} 2^{6 i}\right|_{2^{n-1}-1} \\
& =\left|9 \cdot 2^{n-2}+2^{2}\left(\sum_{i=1}^{(n-4) / 6} 2^{6 i}-\sum_{i=0}^{(n-10) / 6} 2^{6 i}\right)\right|_{2^{n-1}-1} \\
& =\left|9 \cdot 2^{n-2}+2^{2}\left(2^{n-4}-1\right)\right|_{2^{n-1}-1} \\
& =\left|10 \cdot 2^{n-2}-4\right|_{2^{n-1}-1}=\left|5 \cdot 2^{n-1}-4\right|_{2^{n-1}-1}=1 .
\end{aligned}
$$

3 Design of Reverse Converters

In this section, we will present the method for designing reverse converters for the new RNS defined by the following ordered set of five moduli: $\left\{m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right\}=$ $\left\{2^{k}, 2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}, n$ even. An input to the converter is an integer X represented in the RNS by the ordered set of five residues $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. Basically, the conversion can be reduced to executing two steps:

1. We assume that the subset of four residues $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ defines $0 \leq X_{4}<$ $m_{1} m_{2} m_{3} m_{4}$, which can be computed using the converter for the four-moduli set $\left\{2^{k}, 2^{n}-1,2^{n}+1,2^{n+1}-1\right\}$ of [19]. Thus, we obtain a new representation of $X=\left\{X_{4}, x_{5}\right\}$ in a two-moduli RNS $\left\{m_{1} m_{2} m_{3} m_{4}, m_{5}\right\}$.
2. To obtain X, we apply MRC to the two-moduli set $\left\{m_{1} m_{2} m_{3} m_{4}, m_{5}\right\}$ as $X=$ $\left\{X_{4}, m_{5}\right\}$. (The design approach based on the MRC applied to two moduli obtained like the preceding moduli has already been used to build some other converters, e.g. $[4,26,27]$.)

Although a direct simple implementation of the converter is possible, it is inefficient, and hence it will not be presented here. Instead, we will propose a more sophisticated

Fig. 1 Block diagram of new converter: a general schema, \mathbf{b} calculation of L_{5} and V for version 1 and \mathbf{c} calculation of L_{5} and V for version 2
implementation which maximally reduces delay and area. In particular, we will not use directly the value of X_{4}, which could be generated by the four-moduli converter of [19], but only the intermediate variables X_{h} and R_{4}, which appear in the latter converter.

We propose two versions of the converter which differ in the decomposition of the calculations, whose block diagrams are shown in Fig. 1. The first version benefits of sophisticated transformations leading to multi-operand addition $\bmod 2^{n-1}-1$, whereas the next faster version is obtained by also taking into account the possibility of shifting out of the critical path some non-critical components of addition.

We will use the following two variables, which represent some intermediate results in the converter of [19] [given there by Eqs. (11) and (29), respectively]

$$
\begin{equation*}
X_{h}=\left.\left.\left|\left(m_{3} x_{2}\left|\frac{1}{m_{3}}\right|_{m_{2}}+m_{2} x_{3}\left|\frac{1}{m_{2}}\right|_{m_{3}}-x_{1}\right)\right| \frac{1}{m_{1}}\right|_{m_{2} m_{3}}\right|_{m_{2} m_{3}} \tag{5}
\end{equation*}
$$

and
[here, we rewrite from [19] R of (29) as R_{4} and $X_{1}=x_{1}+m_{1} X_{h}$ of (10)]. (Note: The preceding equation also defines the new variables L_{4} and L_{4}^{\prime}, which will facilitate hardware complexity evaluation in Table 1.)

Table 1 Hardware complexity comparison

Element	Version 1	Version 2	[4]	[18]
CPA mod $2^{2 n}-1\left(X_{h}\right)$	1	1	1	1
CPA $\bmod 2^{n+1} \pm 1^{\text {a }}$	$1\left(R_{4}\right)$	$2\left(L_{4}^{\prime}, R_{4}\right)$	2	2
CPA $\bmod 2^{n-1} \pm 1^{\text {a }}$	$1\left(R_{5}\right)$	$2\left(L_{5}^{\prime}, R_{5}\right)$	2	2
CPA $(4 n+c)-\mathrm{bit}^{\mathrm{a}}$	$1(\mathrm{~V})$	$2\left(V^{\prime}, V\right)$	2	2
CSA mod $2^{2 n}-1\left(X_{h}\right)$	$\left\lceil\frac{k}{2 n}\right\rceil$		1	1
CSA $\bmod 2^{n+1} \pm 1^{\text {a }}\left(L_{4}\right)$	$\left\lceil\frac{2 n+k}{n+1}\right\rceil-1$	1	2	1
CSA $\bmod 2^{n+1} \pm 1^{\mathrm{a}}\left(L_{4}^{\prime}\right)$	-	$\left\lceil\frac{k}{n+1}\right\rceil-1$	-	1
CSA $\bmod 2^{n+1} \pm 1^{\text {a }}\left(R_{4}\right)$	$\Omega\left(2 \log \left(\frac{n}{2}-1\right)\right)$		$\frac{n}{2}-2$	$\frac{n}{2}$
CSA $\bmod 2^{n-1} \pm 1^{\mathrm{a}}\left(L_{5}\right)$	$\left\lceil\frac{k}{n-1}\right\rceil+5$	2	6	4
CSA $\bmod 2^{n-1} \pm 1^{\mathrm{a}}\left(L_{5}^{\prime}\right)$	-	$\left\lceil\frac{2 n+k}{n-1}\right\rceil+2$	-	2
CSA $\bmod 2^{n-1} \pm 1^{\mathrm{a}}\left(R_{5}\right)$	$\Omega\left(2 \log \frac{n}{3}\right)$		$\frac{n}{3}-2$	$\frac{n}{3}$
CSA $(4 n+c)-\mathrm{bit}^{\mathrm{a}}(V)$	2	1	1	-

${ }^{\mathrm{a}}$ CSA/CPA $\bmod 2^{n \pm 1}-1$ and $c=0$ for Versions 1 and 2 and [4]; CSA/CPA $\bmod 2^{n \pm 1}+1$ and $c=1$ for [18]

The implementation details of the four-moduli converter (including detailed bitlevel manipulations and multiplication by multiplicative inverse) may be found in [19] or, alternatively, [2] (but only for the special case of $k=n$, with other notation and a more complex design). Then the final result generated by the four-moduli converter is written as

$$
\begin{equation*}
X_{4}=x_{1}+m_{1} X_{h}+m_{1} m_{2} m_{3} R_{4} . \tag{7}
\end{equation*}
$$

We adapt the MRC equation (1) to the special case of the two-moduli set $\left\{m_{1} m_{2} m_{3} m_{4}, m_{5}\right\}$ with residues $\left\{X_{4}, x_{5}\right\}$ using two additional variables $L_{5}=\mid x_{5}-$ $\left.X_{4}\right|_{m_{5}}$ and $R_{5}=\left|L_{5} /\left(m_{1} m_{2} m_{3} m_{4}\right)\right|_{m_{5}}$ in the following form:

$$
\begin{equation*}
X=X_{4}+m_{1} m_{2} m_{3} m_{4} \underbrace{|\frac{1}{m_{1} m_{2} m_{3} m_{4}} \underbrace{\left|x_{5}-X_{4}\right|_{m_{5}}}_{L_{5}}|_{m_{5}}}_{R_{5}} . \tag{8}
\end{equation*}
$$

Obviously, the multiplicative inverse $\left|1 / m_{1} m_{2} m_{3} m_{4}\right|_{m_{5}}$ exists because the assumption that all moduli m_{i} are pairwise relatively prime implies that $m_{1} m_{2} m_{3} m_{4}$ and m_{5} are also relatively prime. By substituting X_{4} according to Eq. (7) and introducing

$$
\begin{equation*}
V=X_{h}+m_{2} m_{3} R_{4}+m_{2} m_{3} m_{4} R_{5} \tag{9}
\end{equation*}
$$

we obtain

$$
\begin{align*}
X & =X_{4}+m_{1} m_{2} m_{3} m_{4} R_{5} \\
& =x_{1}+m_{1} X_{h}+m_{1} m_{2} m_{3} R_{4}+m_{1} m_{2} m_{3} m_{4} R_{5} \\
& =x_{1}+m_{1} \underbrace{\left(X_{h}+m_{2} m_{3} R_{4}+m_{2} m_{3} m_{4} R_{5}\right)}_{V} \\
& =x_{1}+m_{1} V=x_{1}+2^{k} V=\left(x_{1} \| V\right) . \tag{10}
\end{align*}
$$

Because R_{4} and X_{h} are provided by the four-moduli converter, we only need to calculate L_{5} and R_{5}. Depending on the actual implementation of Eq. (10), two different versions will be designed.

3.1 Version 1

The expression for L_{5} of (8) can be rewritten as follows:

$$
\begin{align*}
L_{5} & =\left|x_{5}-X_{4}\right|_{m_{5}}=\left|x_{5}-\left(x_{1}+m_{1} X_{h}+m_{1} m_{2} m_{3} R_{4}\right)\right|_{m_{5}} \\
& =\left|x_{5}-\left(x_{1}+2^{k} X_{h}+2^{k}\left(2^{2 n}-1\right) R_{4}\right)\right|_{2^{n-1}-1} \\
& =\left|x_{5}-x_{1}+2^{k}\left(-X_{h}+(1-4) R_{4}\right)\right|_{2^{n-1}-1} . \tag{11}
\end{align*}
$$

First, we simplify the term $\left(-X_{h}+(1-4) R_{4}\right)$. Because both the $2 n$-bit variable X_{h} and the $(n+1)$-bit variable R_{4} are involved in the calculations $\bmod 2^{n-1}-1$ [i.e. on ($n-1$)-bit vectors], we will present them in the following forms, which are adapted for further transformations: $(\underbrace{0 \ldots 0}_{n-3} \| X_{h})$ and $(\underbrace{0 \ldots 0}_{n-3} \| R_{4})$ are the $3(n-1)$ - and $2(n-1)$ bit vectors respectively. Consequently, $\left|-X_{h}\right|_{2^{n-1}-1}=|(\underbrace{1 \ldots 1}_{n-3} \| \bar{X}_{h})|_{2^{n-1}-1}$ and $\mid-$
$\left.4 R_{4}\right|_{2^{n-1}-1}=|(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| 11)|_{2^{n-1}-1}[$ since $\left|-R_{4}\right|_{2^{n-1}-1}=|(\underbrace{1 \ldots 1}_{n-3} \| \bar{R}_{4})|_{2^{n-1}-1}]$.
We also observe that two least significant 1 s from a first term and $(n-3)$ most significant 1 s from a second term in the addition $|(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| 11)+(\underbrace{1 \ldots 1}_{n-3} \| \bar{X}_{h})|_{2^{n-1}-1}$ form an $(n-1)$-bit long string of 1 s which is equal to $0 \bmod 2^{n-1}-1$. Thus, by rewriting the term $\left(-X_{h}+(1-4) R_{4}\right)$, collapsing that $(n-1)$-bit string of 1 s and concatenating $(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| 00)$ with R_{4} as $(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| R_{4})$ we obtain

$$
\begin{align*}
& -X_{h}-4 R_{4}+\left.R_{4}\right|_{2^{n-1}-1} \\
& =|(\underbrace{1 \ldots 1}_{n-3} \| \bar{X}_{h})+(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| 11)+R_{4}|_{2^{n-1}-1} \\
& =|(\underbrace{0 \ldots 0}_{n-3} \| \bar{X}_{h})+(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| R_{4})|_{2^{n-1}-1} \tag{12}
\end{align*}
$$

We will benefit from the properties that multiplication by 2^{k} modulo $2^{n-1}-1$ is the left cyclic shift by k bits over $n-1$ bits and that $\left|-x_{1}\right|_{2^{n-1}-1}=|(\underbrace{1 \ldots 1}_{|-k|_{n-1}} \| \bar{x}_{1})|_{2^{n-1}-1}$.
Now, L_{5} is calculated using the $(\lceil k /(n-1)\rceil+7)$-operand carry-save adder (CSA) tree $\bmod 2^{n-1}-1$, producing the carry-save pair $\left(L_{5, \mathrm{c}}, L_{5, \mathrm{~s}}\right)$ as

$$
L_{5}=\left|\begin{array}{l}
x_{5}+(\underbrace{1 \ldots 1}_{|-k|_{n-1}} \| \bar{x}_{1})+2^{k}(\underbrace{0 \ldots 0}_{n-3} \| \bar{X}_{h}) \\
+2^{k}(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| R_{4}) \tag{14}
\end{array}\right|_{2^{n-1}-1}
$$

For a special case where $n<5(n=4)$, we add $(n-1) 1$ s to pad the vector $(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| R_{4})$ to a multiple of $n-1$ bits, i.e.

$$
\begin{equation*}
L_{5}=|x_{5}+(\underbrace{1 \ldots 1}_{|-k|_{3}} \| \bar{x}_{1})+2^{k}\left(0 \| \bar{X}_{h}\right)+2^{k}\left(11\left\|\bar{R}_{4}\right\| R_{4}\right)|_{7} \stackrel{\mathrm{CSA}}{=}\left|L_{5, \mathrm{c}}+L_{5, \mathrm{~s}}\right|_{7} . \tag{15}
\end{equation*}
$$

All the preceding operations involving the vectors X_{h}, R_{4} and x_{1} are collectively shown in the left-hand part of Fig. 1b as a single block called Bit-level manipulations.

According to (8), R_{5} is calculated as the multiplication of L_{5} by a constant as $R_{5}=$ $\left|L_{5} /\left(m_{1} m_{2} m_{3} m_{4}\right)\right|_{m_{5}}$. Similarly to [19], this can be done using a constant multiplier block which takes a pair of inputs $\left(L_{5, \mathrm{c}}, L_{5, \mathrm{~s}}\right)$, multiplies it by $\left|1 /\left(9 \cdot 2^{k}\right)\right|_{2^{n-1}-1}$ and returns the output ($R_{5, \mathrm{c}}, R_{5, \mathrm{~s}}$), which, again, denotes the temporary value of R in the form of a pair of carry-save vectors to be added by the two-operand adder mod $2^{n-1}-1$. All this is formally written

$$
\begin{equation*}
R_{5}=\left|L_{5} \frac{1}{2^{k}\left(2^{n+1}-1\right)\left(2^{2 n}-1\right)}\right|_{2^{n-1}-1} \tag{16a}
\end{equation*}
$$

$$
\begin{align*}
& =\left|\frac{1}{9 \cdot 2^{k}}\left(L_{5, \mathrm{c}}+L_{5, \mathrm{~s}}\right)\right|_{2^{n-1}-1} \tag{16b}\\
& \stackrel{\mathrm{cM}}{=}\left|R_{5, \mathrm{c}}+R_{5, \mathrm{~s}}\right|_{2^{n-1}-1} \tag{16c}
\end{align*}
$$

where $\stackrel{C M}{=}$ denotes the multiplication in a constant multiplier.
Next, we rewrite the $4 n$-bit vector V from (10) to get

$$
\begin{align*}
V & =X_{h}+m_{2} m_{3} R_{4}+m_{2} m_{3} m_{4} R_{5} \\
& =X_{h}+\left(2^{2 n}-1\right) R_{4}+\left(2^{2 n}-1\right)\left(2^{n+1}-1\right) R_{5} \tag{17}
\end{align*}
$$

By observing that, due to the width of the final value of $V, X_{h}+\left(2^{2 n}-1\right) R_{4}$ is $4 n$ bits wide and X_{h} is a $2 n$-bit vector, and we can replace (i) the addition with concatenation, i.e. $2^{2 n} R_{4}+X_{h}=R_{4} \| X_{h}$, and (ii) the subtraction with two's complement $4 n$-bit addition, i.e. $-R_{4}=(\underbrace{1 \ldots 1}_{3 n-1} \| \bar{R}_{4})+1$, which leads to

$$
\begin{align*}
X_{h} & +\left(2^{2 n-1}-1\right) R_{4} \\
& =X_{h}+2^{2 n} R_{4}-R_{4}=2^{2 n} R_{4}+X_{h}+(\underbrace{1 \ldots 1}_{3 n-1} \bar{R}_{4})+1 \\
& =\underbrace{2^{2 n} R_{4}+X_{h}}_{\left(R_{4} \| X_{h}\right)}+\bar{R}_{4}+(\underbrace{1 \ldots 1}_{3 n-1}\|\underbrace{0 \ldots 0}_{n}\| 1)+1 \\
& =\left(R_{4} \| X_{h}\right)+\bar{R}_{4}+2^{4 n}-2^{n+1}+1 . \tag{18}
\end{align*}
$$

To enable further bit-level manipulations in the remaining part of Eq. (17), i.e. $\left(2^{2 n}-1\right)\left(2^{n+1}-1\right) R_{5}$, we note that $2^{n-1} R_{5}+R_{5}=R_{5} \| R_{5}$ and $-2^{n+1}\left(R_{5} \| R_{5}\right)=$ $2^{n+1}\left(\bar{R}_{5} \| \bar{R}_{5}\right)+2^{4 n}-2^{3 n-1}+2^{n+1}$, which leads to

$$
\begin{align*}
& \left(2^{2 n}-1\right)\left(2^{n+1}-1\right) R_{5} \\
& =2^{3 n+1} R_{5}-2^{n+1}\left(2^{n-1} R_{5}+R_{5}\right)+R_{5} \\
& =2^{3 n+1} R_{5}-2^{n+1}\left(R_{5} \| R_{5}\right)+R_{5} \\
& =2^{3 n+1} R_{5}+2^{n+1}\left(\bar{R}_{5} \| \bar{R}_{5}\right)+2^{4 n}-2^{3 n-1}+2^{n+1}+R_{5} \\
& =\left(R_{5}\|00\| \bar{R}_{5}\left\|\bar{R}_{5}\right\| 00 \| R_{5}\right)+2^{4 n}-2^{3 n-1}+2^{n+1} \tag{19}
\end{align*}
$$

By substituting in Eq. (17) all the terms detailed by Eqs. (18) and (19), we get

$$
\begin{align*}
V= & \left(R_{4} \| X_{h}\right)+\bar{R}_{4}+2^{4 n}-2^{n+1}+1 \\
& +\left(R_{5}\|00\| \bar{R}_{5}\left\|\bar{R}_{5}\right\| 00 \| R_{5}\right)+2^{4 n}-2^{3 n-1}+2^{n+1} \tag{20a}\\
= & \left(R_{4} \| X_{h}\right)+\bar{R}_{4}+\left(R_{5}\|00\| \bar{R}_{5}\left\|\bar{R}_{5}\right\| 00 \| R_{5}\right)+\underbrace{2^{4 n+1}-2^{3 n-1}+1}_{C_{1}^{\prime}} . \tag{20b}
\end{align*}
$$

All three input variable components of the summation in Eq. (20a) (i.e. R_{4}, X_{h} and R_{5}) are prepared earlier separately by the bit-level manipulations block shown in the right part of Fig. 1b. Then V can be computed according to Eq. (20b) using the fouroperand $4 n$-bit adder, whose inputs are three variables and the accumulated constant term C_{1}^{\prime}. Notice, however, that the addition in (20) is $4 n$ bits wide, whereas C_{1}^{\prime} is a $(4 n+1)$-bit number. Therefore, the most significant bit of C_{1}^{\prime} can be discarded, which is equivalent to replacing $C_{1}^{\prime}=2^{4 n}+\left(2^{4 n}-2^{3 n-1}+1\right)$ with $C_{1}=2^{4 n}-2^{3 n-1}+1$, so that Eq. (20b) can be written

$$
\begin{equation*}
V=\left(R_{4} \| X_{h}\right)+\bar{R}_{4}+\left(R_{5}\|00\| \bar{R}_{5}\left\|\bar{R}_{5}\right\| 00 \| R_{5}\right)+\underbrace{2^{4 n}-2^{3 n-1}+1}_{C_{1}} . \tag{21}
\end{equation*}
$$

Now, according to Eq. (10), the final result X is obtained by concatenating V with x_{1}.

3.2 Version 2

Version 2 can be obtained from Eq. (10) by first observing that

$$
\left|-X_{4}\right|_{2^{n-1}-1}=\left\lvert\, \begin{align*}
& (\underbrace{1 \ldots 1}_{|-k|_{n-1}} \| \bar{x}_{1})+\left.2^{k}(\underbrace{0 \ldots 0}_{n-3} \| \bar{X}_{h})\right|_{2^{n-1}-1} . \tag{22}\\
& +2^{k}\left(1 \ldots 1\left\|\bar{R}_{4}\right\| R_{4}\right)
\end{align*}\right.
$$

By letting $L_{5}^{\prime}=|x_{5}+(\underbrace{1 \ldots 1}_{|-k|_{n-1}} \| \bar{x}_{1})+2^{k}(\underbrace{0 \ldots 0}_{n-3} \| \bar{X}_{h})|_{2^{n-1}-1}$ we obtain

$$
\begin{equation*}
L_{5}=|L_{5}^{\prime}+2^{k}(\underbrace{1 \ldots 1}_{n-5}\left\|\bar{R}_{4}\right\| R_{4})|_{2^{n-1}-1} \tag{23}
\end{equation*}
$$

where, similarly to Eq. (13), the operations involving the vectors X_{h}, R_{4} and x_{1} are collectively shown in the left part of Fig. 1c as two separate bit-level manipulations blocks.

The calculation of V in Eq. (20) is the four-operand addition $\left(R_{4}, X_{h}, R_{5}\right.$ and the constant), which could be implemented using two CSAs and one carry-propagate adder (CPA). However, of these four operands, only R_{5} is on the critical path. We thus propose to precalculate the sum of non-critical components as one variable V^{\prime} by a three-operand adder and then add the critical component to V^{\prime}. Let

$$
\begin{equation*}
V^{\prime}=\left(R_{4} \| X_{h}\right)+\bar{R}_{4}+2^{4 n}-2^{3 n-1}+1 . \tag{24}
\end{equation*}
$$

Now Eq. (20) can be rewritten

$$
\begin{align*}
V & =\underbrace{\left(R_{4} \| X_{h}\right)+\bar{R}_{4}+2^{4 n}-2^{3 n-1}+1}_{V^{\prime}}+\left(R_{5}\|00\| \bar{R}_{5}\left\|\bar{R}_{5}\right\| 00 \| R_{5}\right) \\
& =V^{\prime}+\left(R_{5}\|00\| \bar{R}_{5}\left\|\bar{R}_{5}\right\| 00 \| R_{5}\right), \tag{25}
\end{align*}
$$

which can be implemented using one $4 n$-bit two-operand CPA. All operands that occur in the summations in Eqs. (24) and (25) are prepared by two independent bit-level manipulations blocks, shown in the right part of Fig. 1c.

3.3 Example

Consider the five-moduli set with $n=4$ and $k=5$, i.e. $\left\{m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right\}=$ $\{32,15,17,31,7\}$, and a sample set of five residues $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}=\{1,2,3,4,5\}$. We will show how Version 1 of our converter calculates X, which corresponds to $\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. First, to obtain X_{4}, which corresponds to $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, we calculate X_{h} and R_{4} from Eqs. (5) and (6) respectively (to avoid ambiguities, the binary numbers are marked by the subscript 'b'):

$$
\begin{aligned}
X_{h} & =\left|\frac{17\left|\frac{2}{17}\right|_{15}+15\left|\frac{3}{15}\right|_{17}-1}{32}\right|_{15 \cdot 17}=203=11001011_{\mathrm{b}} \\
R_{4} & =\left|\frac{4-(1+32 \cdot 203)}{32 \cdot 15 \cdot 17}\right|_{31}=29=11101_{\mathrm{b}}
\end{aligned}
$$

Now X_{4} is calculated according to (7) as

$$
X_{4}=1+32 \cdot 203+32 \cdot 15 \cdot 17 \cdot 29=243137
$$

Next, $X_{h}, R_{4}, m_{5}=7$ and $x_{5}=5$ are used to calculate L_{5} from Eq. (15):

$$
\begin{aligned}
L_{5} & =\left|\begin{array}{c}
101_{\mathrm{b}}+(1 \| \overline{00001})_{b}+32 \cdot(0 \| \overline{11\|001\| 011})_{\mathrm{b}} \\
+32 \cdot(11 \| \overline{11101 \| 11101})_{\mathrm{b}}
\end{array}\right|_{7} \\
& =\left\lvert\, \begin{array}{c}
101_{\mathrm{b}}+(1 \| 1110)_{\mathrm{b}}+32 \cdot(0\|00\| 110 \| 100)_{\mathrm{b}} \\
+32 \cdot(11\|00010\| 11101)_{\mathrm{b}}
\end{array}\right. \\
& =\left\lvert\, \begin{array}{c}
101_{\mathrm{b}}+(\underbrace{1 \| 11}_{7} \underbrace{110})_{\mathrm{b}}+(\underbrace{0 \| 11}\|\underbrace{010}\| \underbrace{000}_{\mathrm{b}})_{\mathrm{b}} \\
+(\underbrace{000} \| \underbrace{101} \underbrace{11 \| 0} \underbrace{111}_{\mathrm{b}})_{\mathrm{b}}
\end{array}\right. \\
& \stackrel{\text { CSA }}{=}\left|001_{\mathrm{b}}+101_{\mathrm{b}}\right|_{7}=6 .
\end{aligned}
$$

Once L_{5} is available in the form of the carry-save pair, R_{5} can be calculated. For $n=4$ and $k=5$, the multiplicative inverse given by Eq. (4) is $|1 / 9|_{2^{4-1}-1}=|1 / 9|_{7}=2^{2}=$ 4 and $\left|\frac{1}{9 \cdot 2^{5}}\right|_{7}=|4 / 32|_{7}=1$. From (16b) we then have

$$
\begin{aligned}
R_{5} & =\left|\frac{1}{9 \cdot 2^{5}}\left(001_{\mathrm{b}}+101_{\mathrm{b}}\right)\right|_{7} \\
& \stackrel{\mathrm{CM}}{=}\left|1 \cdot\left(001_{\mathrm{b}}+101_{\mathrm{b}}\right)\right|_{7} \stackrel{\text { CPA }}{=} 6 .
\end{aligned}
$$

Now V can be calculated from Eq. (20) as

$$
\begin{aligned}
V & =\left|\begin{array}{c}
(11101 \| 11001011)_{\mathrm{b}}+(\overline{11101})_{\mathrm{b}} \\
+2^{16}-2^{11}+1 \\
+(011\|00\| \overline{011}\|\overline{011}\| 00 \| 011)_{b}
\end{array}\right|_{2^{16}} \\
& =|\underbrace{2^{16}}_{\begin{array}{c}
7627 \\
+\underbrace{01100100100000_{0}}_{49446} 011_{b}
\end{array}+\underbrace{2110111001011_{\mathrm{b}}}_{63489}+\underbrace{00010_{\mathrm{b}}}_{2^{16}-2^{11}+1}}|_{2^{16}} \\
& =55028 .
\end{aligned}
$$

Finally, we obtain $X=1+32 \cdot 55028=1760897$. One can easily verify that $|1760897|_{\{32,15,17,31,7\}}=\{1,2,3,4,5\}$.

4 Gate-Level Complexity Evaluation

In this section, we will evaluate and compare the gate-level complexity of our converters and their closest counterparts: $\left\{2^{n}, 2^{n}-1,2^{n}+1,2^{n+1}-1,2^{n-1}-1\right\}$ (n even), proposed in [4] (special case of our moduli set with $k=n$), and $\left\{2^{n}-1,2^{n}, 2^{n}+1,2^{n+1}+1,2^{n-1}+1\right\}$ (n odd), proposed in [18]. The gate-level complexity evaluations of hardware and delay appear in Tables 1, 2 and 3. Big-omega (Ω) notation is used for the lower bound of the area complexity of multiplication by the multiplicative inverse [19].

We consider reverse converters as datapaths whose basic components are mainly adders in the forms of CSAs and CPAs rather than complex combinational circuits composed of primitive gates. The gate-level complexity of CSA is $O(n)$ and its delay is $O(1)$, and the complexity of CPAs in most evaluations is given as $O(n)$, while the actual synthesis results are then provided with the use of parallel-prefix adders (PPAs) [17] exhibiting $O(n \log n)$ gate complexity and $O(\log n)$ delay. Bit-level manipulations are mainly shifts and inversions, with only a very small fraction of them involving other logic operations. Thus, we first provide an analysis of higher-level representations like CSAs and CPAs, whereas detailed complexity characteristics expressed in terms of primitive gates will be presented subsequently in Table 3.

Table 1 details all adders used in our converters and their counterparts of [4] and [18]. As for the number of CPAs, Version 1 of our converter allows us to spare one CPA $\bmod 2^{n+1}-1$, one CPA $\bmod 2^{n-1}-1$ and one $4 n$-bit ordinary CPA, whereas Version 2 of our converter requires the same number of CPAs as its counterpart of [4] (or CPAs mod $2^{n \pm 1}+1$ as its counterpart of [18]). The comparison of the number of CSAs is slightly more complicated because (i) this number depends on k and (ii) different circuitry is used to carry out the multiplication by multiplicative inverses in

Table 2 Delay estimations of various converters

Version 1	Version 2	[4]	[18]
$d_{\mathrm{CSA}}\left(\left\lceil\frac{k}{2 n}\right\rceil+2\right)+$ $d_{\text {CPAm }}(2 n)+$ $d_{\mathrm{CSA}}\left(\left\lceil\frac{2 n+k}{n+1}\right\rceil+1\right)+$	$\begin{aligned} & d_{\mathrm{CSA}}\left(\left\lceil\frac{k}{2 n}\right\rceil+2\right)+ \\ & d_{\mathrm{CPAm}}(2 n)+ \\ & d_{\mathrm{CSA}}(3)+ \end{aligned}$	$d_{\mathrm{CSA}}(3)+$ $d_{\text {CPAm }}(2 n)+$ $d_{\mathrm{CSA}}(4)+$ $d_{\text {CPAm }}(n+1)+$	$\begin{aligned} & d_{\mathrm{CSA}}(3)+ \\ & d_{\mathrm{CPAm}}(2 n)+ \end{aligned}$
			$d_{\text {CSA }}(3)+$
			$d_{\text {CPAp }}(n+1)+$
$O\left(\log _{\sqrt{2}}\left(\frac{n}{2}-1\right)\right)+$	$O\left(\log _{\sqrt{2}}\left(\frac{n}{2}-1\right)\right)+$	$d_{\text {CSA }}\left(\frac{n}{2}\right)+$	$d_{\text {CSA }}\left(\frac{n}{2}\right)+$
$d_{\text {CPAm }}(n+1)+$	$d_{\text {CPAm }}(n+1)+$	$d_{\text {CPAm }}(n+1)+$	$d_{\text {CPAp }}(n+1)+$
$d_{\text {CSA }}\left(\left\lceil\frac{k}{n-1}\right\rceil+7\right)+$	$d_{C S A}(4)+$	$d_{\text {CSA }}(8)+$	$d_{\text {CSA }}(4)+$
		$d_{\text {CPAm }}(n-1)+$	$d_{\text {CPAp }}(n-1)+$
$O\left(\log _{\sqrt{2}} \frac{n}{3}\right)+$	$O\left(\log _{\sqrt{2}} \frac{n}{3}\right)+$	$d_{\text {CSA }}\left(\frac{n}{3}\right)+$	$d_{\text {CSA }}\left(\frac{n}{3}\right)+$
$d_{\text {CPAm }}(n-1)+$	$d_{\text {CPAm }}(n-1)+$	$d_{\mathrm{CPAm}}(n-1)+$	$d_{\text {CPAp }}(n-1)+$
$d_{\text {CSA }}(3)+$			$d_{\text {ADD }}(4 n+1)$
$d_{\text {ADD }}(4 n)$	$d_{\text {ADD }}(4 n)$	$d_{\text {ADD }}(4 n)$	$d_{\text {ADD }}(4 n+1)$

the calculations of R_{4} and R_{5}. While comparing Versions 1 and 2 of our converters, we notice that the number of CSAs in Version 2 in the calculation of L_{4} and L_{5} is constant because the main part of the calculations is performed for L_{4}^{\prime} and L_{5}^{\prime} respectively. As we compare Version 1 of our converter with the converters from [4,18] for the special case of $k=n$, we notice that the number of CSAs in the calculation of L_{4} is the same as in $[4,18]$, whereas we use one more CSA in the calculation of L_{5} (recall, however, that we have already spared two CPAs). Our implementation of the multiplication by multiplicative inverses in the calculations of R_{4} and R_{5} is less complex than in [4,18], because the latter use a traditional single CSA tree structure in which the number of CSAs grows linearly with n, while we use the constant multiplier block of [19] with the logarithmically growing number of CSAs.

Table 2 compares the delays of our converters and their counterparts from [4,18], where $d_{\mathrm{CSA}}(a)$ denotes the delay of an a-operand CSA, $d_{\text {CPAm }}(a)\left[d_{\text {CPAp }}(a)\right]$ denotes the delay of an a-bit $[(a+1)$-bit $]$ adder $\bmod 2^{a}-1\left(2^{a}+1\right)$, whereas $d_{\mathrm{ADD}}(a)$ is the delay of an ordinary a-bit CPA. As k has little impact on the delay, we consider the special case of $k=n$. The critical path leads from any of the inputs x_{1}, x_{2} and x_{3} through $X_{h}, L_{4} / R_{4}, L_{5} / R_{5}$ and V to the output X (see Fig. 1a, Eqs. (5) and (6) and the description of the four-moduli converter in [19]). The delay of constant multiplication blocks can be expressed as $O\left(\log _{\sqrt{2}} a\right)$, which is very close to the delay of equivalent CSA trees given by $d_{\mathrm{CSA}}(a) \approx O\left(\log _{1.5} a\right)$ [19]. The constant multiplication block of [19] allows for a carry-save representation of its input, which is not the case in [4,18], where the multiplication by multiplicative inverse must be implemented as a regular CSA tree requiring a preceding CPA. Because the delay of the constant multiplication block is comparable to the delay of the regular CSA tree, our designs gain a considerable speed advantage since they spare two CPAs from the critical path.

Finally, to facilitate any initial complexity estimation for chosen parameters n and k, gate-level details of the basic blocks of the proposed converters as well as their overall gate-level complexity characteristics can be found in Table 3. Similarly to previous estimations, for example in [2], the delay and complexity of CPAs is carried out for ripple-carry adders.
Table 3 Gate-level hardware complexity estimations of new converters

Element	FAs	NOT	$\mathrm{AND}^{\text {a }}$	Delay
Version 1				
Four-moduli converter	$\begin{aligned} & \left\lceil\frac{2 n+k}{n+1}\right\rceil \cdot(n+1)+\left\lceil\frac{k}{2 n}\right\rceil \cdot 2 n \\ & \quad+(n+1) \cdot \Omega\left(2 \log _{2}\left(\frac{n}{2}-1\right)\right)+5 n+1 \end{aligned}$	$4 n+2 k$	n	$\begin{aligned} & \left(O\left(\log _{1.5}\left(\left\lceil\frac{2 n+k}{n+1}\right\rceil-1\right)\right)+O\left(\log _{\sqrt{2}}\left(\frac{n}{2}-1\right)\right)\right. \\ & \left.\quad+O\left(\log _{1.5}\left\lceil\frac{k}{2 n}\right\rceil\right)+4 n+2\right) t_{\mathrm{FA}}+t_{\mathrm{AND}}+2 t_{\mathrm{NOT}} \end{aligned}$
$L_{5}+R_{5}$	$\begin{aligned} & \left\lceil\frac{k}{n-1}\right\rceil \cdot(n-1) \\ & \quad+(n-1) \cdot \Omega\left(2 \log _{2} \frac{n}{3}\right)+7(n-1) \end{aligned}$	$3 n+k+1$		$\begin{aligned} & \left(O\left(\log _{1.5}\left(\left\lceil\frac{k}{n-1}\right\rceil+5\right)\right)+O\left(\log _{\sqrt{2}} \frac{n}{3}\right)\right. \\ & +2(n-1)) t_{\mathrm{FA}}+t_{\mathrm{NOT}} \end{aligned}$
V	$12 n$	$3 n-1$		$(4 n+2) t_{\mathrm{FA}}+t_{\mathrm{NOT}}$
Total	$\begin{aligned} & \left\lceil\frac{2 n+k}{n+1}\right\rceil \cdot(n+1)+\left\lceil\frac{k}{2 n}\right\rceil \cdot 2 n \\ & \quad+(n+1) \cdot \Omega\left(2 \log _{2}\left(\frac{n}{2}-1\right)\right)+\left\lceil\frac{k}{n-1}\right\rceil \cdot(n-1) \\ & \quad+(n-1) \cdot \Omega\left(2 \log _{2} \frac{n}{3}\right)+24 n-6 \end{aligned}$	$10 n+3 k$	n	$\begin{aligned} & \left(O\left(\log _{1.5}\left(\left\lceil\frac{2 n+k}{n+1}\right\rceil-1\right)\right)+O\left(\log _{\sqrt{2}}\left(\frac{n}{2}-1\right)\right)\right. \\ & +O\left(\log _{1.5}\left(\left\lceil\frac{k}{n-1}\right\rceil+5\right)\right)+O\left(\log _{\sqrt{2}} \frac{n}{3}\right) \\ & \left.+O\left(\log _{1.5}\left\lceil\frac{k}{2 n}\right\rceil\right)+10 n+2\right) t_{\mathrm{FA}}+t_{\mathrm{AND}}+4 t_{\mathrm{NOT}} \end{aligned}$
Version 2				
Four-moduli converter	$\begin{aligned} & \left\lceil\frac{k}{n+1}\right\rceil \cdot(n+1)+\left\lceil\frac{k}{2 n}\right\rceil \cdot 2 n \\ & \quad+(n+1) \cdot \Omega\left(2 \log _{2}\left(\frac{n}{2}-1\right)\right)+10 n+6 \end{aligned}$	$4 n+2 k$	n	$\begin{aligned} & \left(O\left(\log _{\sqrt{2}}\left(\frac{n}{2}-1\right)\right)+O\left(\log _{1.5}\left\lceil\frac{k}{2 n}\right\rceil\right)+4 n+3\right) t_{\mathrm{FA}} \\ & +t_{\mathrm{AND}}+2 t_{\mathrm{NOT}} \end{aligned}$
$L_{5}^{\prime}+L_{5}+R_{5}$	$\begin{aligned} & \left\lceil\frac{2 n+k}{n-1}\right\rceil \cdot(n-1) \\ & \quad+(n-1) \cdot \Omega\left(2 \log _{2} \frac{n}{3}\right)+8(n-1) \end{aligned}$	$3 n+k+1$		$\left(O\left(\log _{\sqrt{2}} \frac{n}{3}\right)+2 n\right) t_{\mathrm{FA}}+t_{\mathrm{NOT}}$
$V^{\prime}+V$	$12 n$	$3 n-1$		$(4 n+1) t_{\mathrm{FA}}+t_{\mathrm{NOT}}$
Total	$\begin{aligned} & \left\lceil\frac{k}{n+1}\right\rceil \cdot(n+1)+\left\lceil\frac{k}{2 n}\right\rceil \cdot 2 n \\ & \quad+(n+1) \cdot \Omega\left(2 \log _{2}\left(\frac{n}{2}-1\right)\right)+\left\lceil\frac{2 n+k}{n-1}\right\rceil \cdot(n-1) \\ & \quad+(n-1) \cdot \Omega\left(2 \log _{2} \frac{n}{3}\right)+30 n-2 \end{aligned}$	$10 n+3 k$	n	$\begin{aligned} & \left(O\left(\log _{\sqrt{2}}\left(\frac{n}{2}-1\right)\right)+O\left(\log _{\sqrt{2}} \frac{n}{3}\right)\right. \\ & \left.\quad+O\left(\log _{1.5}\left\lceil\frac{k}{2 n}\right\rceil\right)+10 n+4\right) t_{\mathrm{FA}}+t_{\mathrm{AND}}+4 t_{\mathrm{NOT}} \end{aligned}$

5 Experimental Evaluation and Comparison

All the considered converters were synthesised using Cadence RC Compiler v.8.1 over the commercial CMOS065LP low-power library from ST Microelectronics, with the results shown in Figs. 2, 3 and 4. All descriptions were coded using parametrised structural Verilog, following identical coding guidelines, with the same datapath components (CSAs, CPAs and MOMAs) and input and output registers. The MOMAs mod $2^{a}-1\left(\bmod 2^{a}+1\right)$ were implemented according to [21] using the a-bit CSA with end-around-carry (EAC) (inverted EAC) followed by the a-bit parallel-prefix CPAs from [17,35]).

While the selection of even or odd n imposed on the converters from [4,18], respectively, allows one to cover partially complementary dynamic ranges, each with a resolution of 10 bits, our converter makes it possible to cover precisely any required dynamic range DR with a few alternative combinations of n and k such that $\mathrm{DR}=4 n+k-1, n \geq 4$ even, and $k>0$. To consider the datapaths as being well balanced, the width of the even channel 2^{k} should be no smaller than that of the odd channels, yielding in - for a given n - the recommended values of k such that $n \leq k \leq n+9$ cover the entire set of consecutive dynamic ranges with one pair of n and k for every dynamic range. Consequently, we have synthesised our converters for the selection of n and k covering all consecutive dynamic ranges from 19 to 88 bits, whereas the converters from $[4,18]$ were synthesised for the dynamic ranges corresponding to even $n \in\{4, \ldots, 16\}$ and odd $n \in\{7, \ldots, 17\}$, respectively.

The delay of all components like CSA trees, CPAs implemented as parallel-prefix adders and constant multipliers, is $O(\log n)$ and grows mainly with n, with only a

Fig. 2 Minimum delay as a function of dynamic range

Fig. 3 Power at minimum delay

Fig. 4 Area at minimum delay
minor contribution of k (Table 2), and is revealed as discrete logarithmic growth in Fig. 2. A slightly inconsistent minor growth between steps on the stair-like curve result from the heuristics used by the synthesiser, with Version 1 slightly smoother than for Version 2, as a result of a higher and faster-growing number of CSA stages on its critical path. Differences in delays between both versions of our converter and their counterparts - average 10% of Version 1 over Version 2 and 20% over the converters from $[4,18]$ - result from the number of CPAs on the critical path being smaller by two (from using the carry-save input to the constant multiplier - both L_{4} and L_{5} have carry-save forms), and the number of CSAs on the critical path involving calculation of L_{4} and L_{5} is smaller and invariable (thanks to the precalculation of non-critical components as L_{4}^{\prime} and L_{5}^{\prime}).

Figure 3 shows the power consumption of all converters, which is obtained from synthesis tool estimation depending on the set of library gates used in the synthesised circuit, the operating frequency (which is the target delay in our case) and the architecture of the circuit. The curves for both our converters are stair-like with steps at changes of n, exactly at the same points as on the delay curves of Fig. 2, and Version 1 generally consumes more power, which is particularly evident for $D R \in\{49, \ldots, 58,69, \ldots, 88\}$ bits. Version 2 of our converter not only is significantly faster but also consumes less power, which is particularly interesting because the area of Version 2 is larger than that of Version 1 (note, however, that extra adders are located outside of the critical path). We find power advantage of Version 2 of our converter as a result of a greater dispersion of data across signal paths and less strain on the critical path, which in turn results in gates being selected by the synthesis tools which are smaller and consume less power. Either version of our converter consumes less power than their counterparts from [4,18], except two isolated cases of $\mathrm{DR}=19$ and 49 bits for [4].

Figure 4 shows the sums of areas occupied by logic cells and interconnections. The faster Version 2 occupies a larger area than Version 1 as a result of the need for the extra hardware (CPAs) required to precalculate L_{4}^{\prime} and L_{5}^{\prime} along with accompanying CSAs and larger cells selected by the synthesis tools for faster designs. Our designs are smaller than those of $[4,18]$; this is a direct outcome of using two fewer CPAs (especially on the critical path) and significantly smaller blocks used to perform multiplications by multiplicative inverses [viz. $\Omega\left(\log \frac{n}{3}\right)$ vs. $O\left(\frac{n}{3}\right)$]; the area growth due to the smaller delay is offset by gains resulting from architectural advantages. For either version of our converters, the growth of the area depends mainly on n, which is seen on a highly regular stair-like curve of Fig. 4: every increase in n by two is accompanied by a noticeable growth of the area. Linear growth of the area along with k occurs only for smaller dynamic ranges from 19 to 58 (corresponding to n from 4 to 7).

6 Conclusion

In this paper, a new RNS composed of five flexible balanced moduli $\left\{2^{k}, 2^{n}-1,2^{n}+\right.$ $\left.1,2^{n+1}-1,2^{n-1}-1\right\}$ for the pairs of positive integers $n \geq 4$ (even) and any $k>0$ was introduced; it can provide the required dynamic range with one-bit resolution. From the set of basic functions, two versions of a reverse (residue-to-binary) converter with
varying performance characteristics were designed for this new RNS. The converters for the new RNS as well as those for two other known five-moduli sets also composed of low-cost balanced moduli but with a single parameter n only, were synthesised using industrial tools, and the experimental results obtained suggest that our converters have $28-40 \%$ smaller delay while still consuming less area and power. The widths of all residue datapaths in our moduli equalled about one-fifth the width of their two's complement counterpart, and their delay can be balanced thanks to the possibility of adapting the size of the even modulus 2^{k}. Thanks to the use of low-cost moduli, forward converters and channels may be implemented in a regular and efficient way, which makes them well suited not only for traditional DSP systems but also for cryptographic applications. Some dynamic ranges are require k to be significantly larger than n, such that they may negatively impact the balance of the even residue datapath channel. Thus, some other new flexible five-moduli sets which are better adapted to cover new dynamic ranges may be the subject of further research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. P.V. Ananda Mohan, Residue Number Systems: Algorithms and Architectures (Birkhäuser, Basel, 2016)
2. P.V. Ananda Mohan, A.B. Premkumar, RNS-to-binary converters for two four-moduli sets $\left\{2^{n}-1,2^{n}\right.$, $\left.2^{n}+1,2^{n+1}-1\right\}$ and $\left\{2^{n}-1,2^{n}, 2^{n}+1,2^{n+1}+1\right\}$. IEEE Trans. Circuits Syst. I 54(6), 1245-1254 (2007)
3. M. Bhardwaj, T. Srikanthan, C.T. Clarke, in Reverse Converter for the 4-Moduli Superset $\left\{2^{n}-\right.$ $\left.1,2^{n}, 2^{n}+1,2^{n+1}-1\right\}$. Proceedings of the 14th IEEE Symposium on Comput. Arithm., pp. 168175, Adelaide, Australia, 14-16 April 1999
4. B. Cao, C.-H. Chang, T. Srikanthan, A residue-to-binary converter for a new five-moduli set. IEEE Trans. Circuits Syst. I 54(5), 1041-1049 (2007)
5. B. Cao, T. Srikanthan, C.H. Chang, Efficient reverse converters for the four-moduli sets $\left\{2^{n}, 2^{n}-\right.$ $\left.1,2^{n}+1,2^{n+1}-1\right\}$ and $\left\{2^{n}, 2^{n}-1,2^{n}+1,2^{n-1}-1\right\}$. IEE Proc. Comput. Digit. Tech. 152(5), 687-696 (2005)
6. G. Chalivendra, V. Hanumaiah, S. Vrudhula, in A New Balanced 4-Moduli Set $\left\{2^{k}, 2^{n}-1,2^{n}+\right.$ $\left.1,2^{n+1}-1\right\}$ and Its Reverse Converter Design for Efficient FIR Filter Implementation. Proceedings of the ACM Great Lakes Symposium on VLSI (GLSVLSI), pp. 139-144, Lausanne, Switzerland, 2-4 May 2011
7. R. Chaves, L. Sousa, Improving residue number system multiplication with more balanced moduli sets and enhanced modular arithmetic structures. IET Proc. Comput. Digit. Tech. 1(5), 472-480 (2007)
8. J. Chen, J.E. Stine, in Parallel Prefix Ling Structures for Modulo $2^{n}-1$ Addition. Proceedings of the IEEE International Conference on Application Specific Systems, Architectures and Processors, pp. 16-23, Boston, MA, USA, 7-9, 2009
9. R. Conway, J. Nelson, Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. II 51(1), 26-28 (2004)
10. A. Dhurkadas, Comments on "A high speed realization of a residue to binary number system converter". IEEE Trans. Circuits Syst. II 45(3), 446-447 (1998)
11. C. Efstathiou, H.T. Vergos, D. Nikolos, Fast parallel-prefix modulo $2^{n}+1$ adders. IEEE Trans. Comput. 53(9), 1211-1216 (2004)
12. G. Jaberipur, B. Parhami, in Unified Approach to the Design of Modulo- $\left(2^{n} \pm 1\right)$ Adders Based on Signed-LSB Representation of Residues. Proceedings of the IEEE Symposium on Comput. Arithm., pp. 57-64, Portland, OR, USA, 8-10 June 2009
13. T.-B. Juang, C.-C. Chiu, M.-Y. Tsai, Improved area-efficient weighted modulo $2^{n}+1$ adder design with simple correction schemes. IEEE Trans. Circuits Syst. II 57(3), 198-202 (2010)
14. Y. Liu, E.M.-K. Lai, Moduli set selection and cost estimation for RNS-based FIR filter and filter bank design. Des. Autom. Embed. Syst. 9(2), 123-139 (2004)
15. U. Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays, 4th edn. (Springer, Berlin, 2014)
16. R. Muralidharan, C.H. Chang, Area-power efficient modulo $2^{n}-1$ and modulo $2^{n}+1$ multipliers for $\left\{2^{n}-1,2^{n}, 2^{n}+1\right\}$ based RNS. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2263-2274 (2012)
17. R.A. Patel, S. Boussakta, Fast parallel-prefix architectures for modulo $2^{n}-1$ addition with a single representation of zero. IEEE Trans. Comput. 56(11), 1484-1492 (2007)
18. P. Patronik, K. Berezowski, J. Biernat, S.J. Piestrak, A. Shrivastava, in Design of an RNS Reverse Converter for a New Five-Moduli Special Set. Proceedings of the ACM Great Lakes Symp. VLSI (GLSVLSI), pp. 67-70, Salt Lake City, UT, USA, 3-4 May 2012
19. P. Patronik, S.J. Piestrak, Design of reverse converters for general RNS moduli sets $\left\{2^{k}, 2^{n}-1,2^{n}+\right.$ $\left.1,2^{n-1}-1\right\}$ and $\left\{2^{k}, 2^{n}-1,2^{n}+1,2^{n+1}-1\right\}$ (n even). IEEE Trans. Circuits Syst. I Reg. Pap. 61(6), 1687-1700 (2014)
20. P. Patronik, S.J. Piestrak, Design of reverse converters for the new RNS moduli set $\left\{2^{n}+1,2^{n}-\right.$ $\left.1,2^{n}, 2^{n-1}+1\right\}(n$ odd $)$. IEEE Trans. Circuits Syst. I Reg. Pap. 61(12), 3436-3449 (2014)
21. S.J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders. IEEE Trans. Comput. 43(1), 68-77 (1994)
22. S.J. Piestrak, A high-speed realization of a residue to binary number system converter. IEEE Trans. Circuits Syst. II 42(10), 661-663 (1995)
23. S.J. Piestrak, in Design of Multi-residue Generators Using Shared Logic. Proceedings of the IEEE International Symposium on Circuits \& Systems (ISCAS), pp. 1435-1438, Rio de Janeiro, Brazil, 15-18 May 2011
24. S.J. Piestrak, K.S. Berezowski, in Architecture of Efficient RNS-Based Digital Signal Processor with Very Low-Level Pipelining. Proceedings of the IET Irish Sign. \& Syst. Conference, pp. 127-132, Galway, Ireland, 18-19 June 2008
25. S.J. Piestrak, K.S. Berezowski, in Design of Residue Multipliers-Accumulators Using Periodicity. Proceedings of the IET Irish Sign. \& Syst. Conference, pp. 380-385, Galway, Ireland, 18-19 June 2008
26. A. Skavantzos, M. Abdallah, Implementation issues of the two-level residue number system with pairs of conjugate moduli. IEEE Trans. Signal Process. 47(3), 826-838 (1999)
27. A. Skavantzos, in Efficient Residue to Weighted Converter for a New Residue Number System. Proceedings of the IEEE Great Lakes Symposium on VLSI (GLSVLSI), pp. 185-191, Lafayette, LA, USA, 19-21 February 1998
28. A. Skavantzos, in Grouped-Moduli Residue Number Systems for Fast Signal Processing. Proceedings of the IEEE International Symposium on Circuits \& Systems (ISCAS), vol. 3, pp. III-478-III-483, Orlando, FL, USA, 30 May-2 June 1999
29. L. Sousa, S. Antão, R. Chaves, On the design of RNS reverse converters for the four-moduli set $\left\{2^{n}+1,2^{n}-1,2^{n}, 2^{n+1}+1\right\}$. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(10), 1945-1949 (2013)
30. A.P. Vinod, A.B. Premkumar, A memoryless reverse converter for the 4-moduli superset $\left\{2^{n}-\right.$ $\left.1,2^{n}, 2^{n}+1,2^{n+1}-1\right\}$. J. Circuits Syst. Comput. 10(1-2), 85-99 (2000)
31. Y. Wang, Residue-to-binary converters based on new Chinese remainder theorem. IEEE Trans. Circuits Syst. II 47(3), 197-205 (2000)
32. Z. Wang, G.A. Jullien, W.C. Miller, An improved residue-to-binary converter. IEEE Trans. Circuits Syst. I 47(9), 1437-1440 (2000)
33. M. Wesołowski, P. Patronik, K. Berezowski, J. Biernat, in Design of a Novel Flexible 4-Moduli RNS and Reverse Converter. Proceedings of the 23nd IET Irish Sign. \& Syst. Conference (ISSC), pp. 1-6, Maynooth, Ireland, 28-29 June 2012
34. A. Wrzyszcz, D. Milford, in A New Modulo $2^{a}+1$ Multiplier. Proceedings of the International Conference on Comput. Des., pp. 614-617, Boston, MA, USA, 3-6 October 1993
35. R. Zimmerman, in Efficient VLSI Implementation of Modulo $2^{n} \pm 1$ Addition and Multiplication. Proceedings of the IEEE Symp. Comput. Arithm., pp. 158-167, Adelaide, Australia, 14-16 April 1999

[^0]: Piotr Patronik
 piotr.patronik@pwr.wroc.pl
 Stanisław J. Piestrak
 stanislaw.piestrak@univ-lorraine.fr
 1 Department of Computer Engineering (W-4/K-9), Wrocław University of Technology, 50-370 Wrocław, Poland

 2 Res. Team MAE, Institut Jean Lamour (UMR 7198 CNRS), Université de Lorraine, 54506 Vandœuvre-Les-Nancy, France

