
Circuits Syst Signal Process (2017) 36:4593–4614
DOI 10.1007/s00034-017-0530-9

Design of Reverse Converters for a New Flexible RNS
Five-Moduli Set {2k, 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1}
(n Even)

Piotr Patronik1 · Stanisław J. Piestrak2

Received: 14 April 2016 / Revised: 19 February 2017 / Accepted: 21 February 2017 /
Published online: 27 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract This paper presents the design methods of residue-to-binary (reverse)
converters for the new flexible balanced five-moduli set {2k, 2n − 1, 2n + 1,
2n+1 − 1, 2n−1 − 1} for the pairs of positive integers n ≥ 4 (even) and any
k > 0, which can provide the exact required dynamic range of the residue num-
ber system. This modulus set is the generalisation of the five-moduli set {2n, 2n −
1, 2n + 1, 2n+1 − 1, 2n−1 − 1} (n even) with only a single parameter, n. The
reverse converter for the new modulus set is the first ever proposed. Synthesis
results obtained for the 65nm technology for all dynamic ranges from 19 to 88bits
have shown that the state-of-the-art converters available for the five-modulus sets
with a single parameter n {2n, 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1} (n even) and
{2n − 1, 2n, 2n + 1, 2n+1 + 1, 2n−1 + 1} (n odd) not only introduce from 28 to 40%
larger delay but also still consume more area and power than the converters proposed
here.

Keywords Reverse converter ·Residue number system (RNS) ·Computer arithmetic ·
Digital signal processing (DSP)

B Piotr Patronik
piotr.patronik@pwr.wroc.pl

Stanisław J. Piestrak
stanislaw.piestrak@univ-lorraine.fr

1 Department of Computer Engineering (W-4/K-9), Wrocław University of Technology,
50-370 Wrocław, Poland

2 Res. Team MAE, Institut Jean Lamour (UMR 7198 CNRS), Université de Lorraine,
54506 Vandœuvre-Les-Nancy, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00034-017-0530-9&domain=pdf
http://orcid.org/0000-0002-8647-1705
http://orcid.org/0000-0003-1248-106X

4594 Circuits Syst Signal Process (2017) 36:4593–4614

1 Introduction

There has been growing demand for digital signal processing (DSP) to be performed
at greater real-time bandwidths, with higher precision and lower complexity. Sev-
eral DSP computations like digital filtering and various transforms can be formulated
as a sum of products (vector inner products) [15]. Such arithmetic expressions have
particularly efficient implementations using a residue number system (RNS) [1], an
unweighted arithmetic system in which calculations are performed in parallel, inde-
pendent channels. Because most digital systems operate on data using a positional
representation, using the RNS representation requires conversions of numbers back
and forth to RNS, performed respectively by reverse and forward converters. While
forward conversion is basically an extraction of residue from a positional number using
residue generators, the reverse conversion requires application of special methods like
the Chinese remainder theorem (CRT) and the mixed radix conversion (MRC) [1], as
well as the new CRT [31].

To guarantee that the advantages of datapaths implemented in an RNS offset the
extra cost of converters, it is desirable that the moduli mi selected to form an RNS
have efficient implementations of basic modulo arithmetic operations. Three low-cost
classes of moduli (in their order of appearance) are an even modulus mi = 2b, an
odd modulus mi = 2b − 1, and mi = 2b + 1, for which hardware implementations
of the basic arithmetic circuits can be found: two-operand adders [8,11–13,17,35],
multi-operand modular adders (MOMAs) and residue generators (used to build for-
ward converters) [21,23], multipliers [16,34,35], multiplier-accumulators (MACs)
and complete residue datapaths [9,14,24,25].

Because the performance of the reverse converter is usually the major bottle-
neck of RNS-based systems, several special moduli sets with not only particularly
efficient implementations of the datapaths but also highly regular structures of
reverse converters have been proposed. Here, we are interested in low-cost moduli
sets which also enjoy well-balanced performance of all residue datapath chan-
nels (i.e. the area/time characteristics of all channels are as close as possible).
The best-known three-moduli sets are: {2n − 1, 2n, 2n + 1} – for which reverse
converters have been proposed, for example in [10,22,32] – and its generalisa-
tion {2n − 1, 2k, 2n + 1} with flexible even modulus 2k , for which the reverse
converter for n ≤ k ≤ 2n was proposed in [7]. The four-moduli sets include
those with a single parameter n: {2n − 1, 2n, 2n−1 − 1, 2n−1 + 1} (n odd) [28],
{2n −1, 2n, 2n +1, 2n+1−1} (n even) [2,3,5,28,30], {2n, 2n −1, 2n +1, 2n−1−1} (n
even) [5], {2n−1, 2n, 2n+1, 2n+1+1} (n odd) [2,29], and {2n+1, 2n−1, 2n, 2n−1+1}
(n odd) [20], as well as some of their recently proposed generalisations with a flex-
ible even modulus 2k : {2k, 2n − 1, 2n + 1, 2n+1 − 1} (n even and arbitrary k such
that n ≤ k ≤ 2n) [6], {2n−1 − 1, 2n+1 − 1, 2k, 2n − 1} (n even and k > 2) [33] and
{2k, 2n−1, 2n+1, 2n+1−1, 2n±1−1} [19] (n even and k > 2). Further reduction of the
widths of residue channels for a given dynamic range allow for two special five-moduli
sets composed only of low-costmoduli: {2n−1, 2n, 2n+1, 2n+1−1, 2n−1−1} (n even)
[4] and {2n − 1, 2n, 2n + 1, 2n+1 + 1, 2n−1 + 1} (n odd) [18]. The dynamic ranges of
these two RNSs make it possible to represent all integers up to 5n−1 bits (n even) and
5n bits (n odd), respectively. Either moduli set offers a resolution of 10bits only: the

Circuits Syst Signal Process (2017) 36:4593–4614 4595

dynamic ranges for n = 4, 6, 8, . . . are 19, 29, 39, . . . bits for the former, and those for
n = 5, 7, 9, . . . are 25, 35, 45, . . . bits for the latter. These twomoduli sets are comple-
mentary in the sense that altogether they allow periodically for a 4- or 6-bit resolution
of the dynamic range. The major limitation of these two moduli sets is that, should a
dynamic range other than those listed above be needed, a designer must use a moduli
set whose dynamic range is larger than actually needed, with the closest sufficiently
large n. If the dynamic range of 20bits is needed, the moduli set of [18] for n = 5, i.e.
{31, 32, 33, 65, 17}, is the best choice currently available, although its 25-bit dynamic
range is unnecessarily large and results in too-large residue datapaths. Finally, note
that the dynamic range of the moduli set of [4] for n = 4 (i.e. {15, 16, 17, 31, 7}) is too
small by only 1bit and that replacing the even modulus 24 = 16 with 25 = 32 would
suffice. To date, no reverse converter for any five-moduli set composed of low-cost
moduli including a flexible even modulus 2k has been proposed.

In this paper, we introduce a new balanced RNS composed of five moduli {2k, 2n −
1, 2n+1, 2n+1−1, 2n−1−1} (for n even), which can be seen both as the generalisation
of the five-moduli set {2n, 2n −1, 2n +1, 2n+1 −1, 2n−1 −1} with a single parameter
n of [4] (also for n even) and as an extension of the four-moduli flexible set {2k, 2n −
1, 2n + 1, 2n+1 − 1} (proposed by us in [19]) by including the fifth modulus 2n−1 − 1.
For this new five-moduli set, we will propose the design method of reverse converters,
which will be built on the basis of the reverse converters for the four-moduli flexible
set {2k, 2n − 1, 2n + 1, 2n+1 − 1} from [19]. The architecture proposed is essentially
based on using the general concept of the two-channel MRC converter that combines
the result of the four-moduli converter with the remaining fifth modulus. However,
its actual hardware structure does not rely on a direct MRC implementation because
several modifications leading to significant delay reduction with no area penalty are
introduced.

This paper is organised as follows. In Sect. 2, some useful properties of residue
arithmetic are presented. In Sect. 3, the general method for designing two optimised
versions of the reverse converters for the new five-moduli set is detailed. In Sects. 4
and 5, the complexity evaluation of the reverse converters proposed here and their
existing counterparts is presented: it includes both the gate-level evaluations of delay
and area and more accurate evaluations of the delay, area and power consumption of
all circuits, synthesised in 65nm technology. Section 6 presents some conclusions and
suggestions for future research.

2 RNS Background

In this section, we will present the basic concepts of RNS, the properties of arithmetic
mod 2n − 1 and closed formulas for some multiplicative inverses, all of which will be
used directly in the reverse conversion methods proposed here.

2.1 Basic Concepts

An RNS is defined by the set of r ≥ 2 mutually prime positive integers {m1, . . . ,mr }
called moduli, whose product M = ∏r

i=1 mi determines the dynamic range and, as

4596 Circuits Syst Signal Process (2017) 36:4593–4614

in two’s complement positional system, the RNS arithmetic is exact as long as the
final result is bounded within its dynamic range. Throughout this paper we assume
that the equivalent bit range of the RNS is a = �log2 M�. Any number X ∈ ZM =
{0, 1, . . . , M − 1} has a unique RNS representation X ↔ {x1, . . . , xr }, where xi =
X mod mi , 1 ≤ i ≤ r , is the result of the integer division of X by mi , written
xi = |X |mi and 0 ≤ |X |mi ≤ mi − 1. Arithmetic in an RNS is defined by pair-
wise modular operations, and because for any arithmetic operation ◦ ∈ {+,−,×}, it
follows that if 0 ≤ Z < M , then Z = |X ◦ Y |M is isomorphic to Z = {z1, . . . , zr },
where zi = |xi ◦ yi |mi , 1 ≤ i ≤ r . RNS arithmetic is thus performed within r channels
whose word width is bounded by ai = 	log2 mi
, which is significantly smaller than
a bits of its 2’s complement positional integer counterpart.

Throughout this paper wewill need explicitly the reverse conversion for twomoduli
only, to do which the MRC is more practical, which is defined for the two-moduli set
{m1,m2} and two respective residues {x1, x2} as

X = x1 + m1

∣
∣
∣
∣(x2 − x1)

1

m 1

∣
∣
∣
∣
m2

. (1)

2.2 Properties of Arithmetic Modulo 2n − 1 [19]

Let n, s and d be arbitrary positive integers and z and y be positive integers such
that 0 ≤ z ≤ 2n − 1 and 0 ≤ y ≤ 2sn − 1. The binary representations of z and
y are respectively (zn−1 . . . z0) and (ysn−1 . . . y0). If y is more than an (s − 1)n-
bit and less than an sn-bit number, then it is preceded by leading zeros and then
partitioned into sn-bit wide slices Bi beginning with the least significant bits (LSBs),
i.e. y = (Bn−1‖ · · · ‖B1‖B0), where B0 = (yn−1 . . . y0), B1 = (y2n−1 . . . yn), etc.
(the symbol ‖ denotes the concatenation of binary vectors). Some residue mod 2n − 1
operations are executed as follows:

– The sign change of z modulo 2n −1 (additive inverse of z) is obtained by bit-by-bit
complementing, i.e. | − z|2n−1 = |z̄|2n−1 = |(z̄n−1 . . . z̄0)|2n−1.

– The multiplication of z by 2d mod 2n − 1 (d is an integer) is obtained by the left
cyclic shift of z by e = |d|n positions (equivalent to the right cyclic shift of z by
n − e positions), i.e. |2d z|2n−1 = |(zn−e−1 . . . z0zn−1 . . . zn−e)|2n−1. We assume
that this operation comes at no additional hardware cost.

– The residue generation of y mod 2n − 1 is computed as

|y|2n−1 =
∣
∣
∣
∣
∣

s−1∑

i=0

2in Bi

∣
∣
∣
∣
∣
2n−1

=
∣
∣
∣
∣
∣

s−1∑

i=0

Bi

∣
∣
∣
∣
∣
2n−1

. (2)

2.3 Multiplicative Inverses

A multiplicative inverse of g mod m (0 < g < m) is such an integer h (0 < h < m)
that |hg|m = 1, written h = |1/g|m or h = |g−1|m . A multiplicative inverse exists
provided that g and m are co-prime. In the reverse conversion methods proposed

Circuits Syst Signal Process (2017) 36:4593–4614 4597

here, for positive integers even n ≥ 4 and an arbitrary k, the following multiplicative
inverses will be used:

∣
∣
∣
∣
1

2k

∣
∣
∣
∣
2n−1

=
∣
∣
∣
∣
1

2e

∣
∣
∣
∣
2n−1

= ∣
∣2n−e

∣
∣
2n−1 ,

where e = |k|n and 0 ≤ e ≤ n − 1, (3)
∣
∣
∣
∣
∣

1
(
2n+1 − 1

) (
22n − 1

)

∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣

1
(
22 − 1

) (
22 − 1

)

∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
1

9

∣
∣
∣
∣
2n−1−1

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n−2 if n = 4

7
∑(n−6)/6

i=0 26i if n = 6, 12, 18, . . .

1 + 7
∑(n−8)/6

i=0 26i+4 if n = 8, 14, 20, . . .

2n−2 + 7
∑(n−10)/6

i=0 26i+2 if n = 10, 16, 22, . . .

(4)

Equation (3) holds because |1/2k |2n−1 = |1 · 2−k |2n−1 = |2n · 2−k |2n−1 =
|2n−k |2n−1. As for Eq. (4), first notice that |1/[(2n+1 − 1)(22n − 1)]|2n−1−1 =
|1/9|2n−1−1 because |2n+1|2n−1−1 = |22 · 2n−1|2n−1−1 = 4 and |22n|2n−1−1 =
|(2 · 2n−1)2|2n−1−1 = 4. Then the proof of correctness of the four expressions of
Eq. (4) is given below by showing that the multiplication mod 2n−1 − 1 of each of
them by its multiplicative inverse equal to 9 results in a product equal to 1.

For n = 4, we have |9 · 22|7 = 1.
For n = 6, 12 . . ., we have

∣
∣
∣
∣
∣
∣
9 · 7

(n−6)/6∑

i=0

26i

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣

(
26 − 1

) (n−6)/6∑

i=0

26i

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣

n/6∑

i=1

26i −
(n−6)/6∑

i=0

26i

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣2n − 20

∣
∣
∣
2n−1−1

= 2 − 1 = 1.

For n = 8, 14 . . ., we have

∣
∣
∣
∣
∣
∣
9 ·

⎛

⎝1 + 7
(n−8)/6∑

i=0

26i+4

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣

(
23 + 1

)
·
⎛

⎝1 +
(
23 − 1

) (n−8)/6∑

i=0

26i+4

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣
9 +

(
26 − 1

) (n−8)/6∑

i=0

26i+4

∣
∣
∣
∣
∣
∣
2n−1−1

4598 Circuits Syst Signal Process (2017) 36:4593–4614

=
∣
∣
∣
∣
∣
∣
9 + 24

⎛

⎝
(n−2)/6∑

i=1

26i −
(n−8)/6∑

i=0

26i

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣23 + 1 + 24

(
2n−2 − 1

)∣
∣
∣
2n−1−1

=
∣
∣
∣23 + 1 + 23 · 2n−1 − 24

∣
∣
∣
2n−1−1

= 1.

For n = 10, 16 . . ., we have

∣
∣
∣
∣
∣
∣
9 ·

⎛

⎝2n−2 + 7
(n−10)/6∑

i=0

26i+2

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣
(23 + 1) ·

⎛

⎝2n−2 + 22
(
23 − 1

) (n−10)/6∑

i=0

26i

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣
9 · 2n−2 + 22

(
26 − 1

) (n−10)/6∑

i=0

26i

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣
9 · 2n−2 + 22

⎛

⎝
(n−4)/6∑

i=1

26i −
(n−10)/6∑

i=0

26i

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣9 · 2n−2 + 22

(
2n−4 − 1

)∣
∣
∣
2n−1−1

=
∣
∣
∣10 · 2n−2 − 4

∣
∣
∣
2n−1−1

=
∣
∣
∣5 · 2n−1 − 4

∣
∣
∣
2n−1−1

= 1.

3 Design of Reverse Converters

In this section, we will present the method for designing reverse converters for the new
RNS defined by the following ordered set of five moduli: {m1,m2,m3,m4,m5} =
{2k, 2n−1, 2n+1, 2n+1−1, 2n−1−1}, n even. An input to the converter is an integer X
represented in theRNSby the ordered set of five residues {x1, x2, x3, x4, x5}. Basically,
the conversion can be reduced to executing two steps:

1. We assume that the subset of four residues {x1, x2, x3, x4} defines 0 ≤ X4 <

m1m2m3m4, which can be computed using the converter for the four-moduli set
{2k, 2n − 1, 2n + 1, 2n+1 − 1} of [19]. Thus, we obtain a new representation of
X = {X4, x5} in a two-moduli RNS {m1m2m3m4,m5}.

2. To obtain X , we apply MRC to the two-moduli set {m1m2m3m4,m5} as X =
{X4,m5}. (The design approach based on theMRC applied to twomoduli obtained
like the preceding moduli has already been used to build some other converters,
e.g. [4,26,27].)

Although a direct simple implementation of the converter is possible, it is inefficient,
and hence it will not be presented here. Instead, we will propose a more sophisticated

Circuits Syst Signal Process (2017) 36:4593–4614 4599

(a) (b)

(c)

Fig. 1 Block diagram of new converter: a general schema, b calculation of L5 and V for version 1 and c
calculation of L5 and V for version 2

implementation which maximally reduces delay and area. In particular, we will not
use directly the value of X4, which could be generated by the four-moduli converter
of [19], but only the intermediate variables Xh and R4, which appear in the latter
converter.

We propose two versions of the converter which differ in the decomposition of
the calculations, whose block diagrams are shown in Fig. 1. The first version benefits
of sophisticated transformations leading to multi-operand addition mod 2n−1 − 1,
whereas the next faster version is obtained by also taking into account the possibility
of shifting out of the critical path some non-critical components of addition.

We will use the following two variables, which represent some intermediate results
in the converter of [19] [given there by Eqs. (11) and (29), respectively]

Xh =
∣
∣
∣
∣
∣

(

m3x2

∣
∣
∣
∣
1

m3

∣
∣
∣
∣
m2

+ m2x3

∣
∣
∣
∣
1

m2

∣
∣
∣
∣
m3

− x1

) ∣
∣
∣
∣
1

m1

∣
∣
∣
∣
m2m3

∣
∣
∣
∣
∣
m2m3

(5)

and

R4 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1

m1m2m3

∣
∣
∣
∣
∣
∣
∣
∣

x4 − (x1︸ ︷︷ ︸
L ′
4=|x4−x1|m4

X1
︷ ︸︸ ︷

+ m1Xh)

∣
∣
∣
∣
∣
∣
∣
∣
m4︸ ︷︷ ︸

L4=|L ′
4−m1Xh|m4

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
m4

(6)

[here, we rewrite from [19] R of (29) as R4 and X1 = x1 + m1Xh of (10)]. (Note:
The preceding equation also defines the new variables L4 and L ′

4, which will facilitate
hardware complexity evaluation in Table 1.)

4600 Circuits Syst Signal Process (2017) 36:4593–4614

Table 1 Hardware complexity comparison

Element Version 1 Version 2 [4] [18]

CPA mod 22n − 1 (Xh) 1 1 1 1

CPA mod 2n+1 ± 1a 1 (R4) 2 (L ′
4, R4) 2 2

CPA mod 2n−1 ± 1a 1 (R5) 2 (L ′
5, R5) 2 2

CPA (4n + c)-bita 1 (V) 2 (V ′, V) 2 2

CSA mod 22n − 1 (Xh) 	 k
2n
 1 1

CSA mod 2n+1 ± 1a (L4) 	 2n+k
n+1
 − 1 1 2 1

CSA mod 2n+1 ± 1a (L ′
4) – 	 k

n+1
 − 1 – 1

CSA mod 2n+1 ± 1a (R4) Ω(2 log(n2 − 1)) n
2 − 2 n

2

CSA mod 2n−1 ± 1a (L5) 	 k
n−1
 + 5 2 6 4

CSA mod 2n−1 ± 1a (L ′
5) – 	 2n+k

n−1
 + 2 – 2

CSA mod 2n−1 ± 1a (R5) Ω(2 log n
3) n

3 − 2 n
3

CSA (4n + c)-bita (V) 2 1 1 –

a CSA/CPA mod 2n±1 − 1 and c = 0 for Versions 1 and 2 and [4]; CSA/CPA mod 2n±1 + 1 and c = 1 for
[18]

The implementation details of the four-moduli converter (including detailed bit-
level manipulations and multiplication by multiplicative inverse) may be found in [19]
or, alternatively, [2] (but only for the special case of k = n, with other notation and a
more complex design). Then the final result generated by the four-moduli converter
is written as

X4 = x1 + m1Xh + m1m2m3R4. (7)

We adapt the MRC equation (1) to the special case of the two-moduli set
{m1m2m3m4,m5} with residues {X4, x5} using two additional variables L5 = |x5 −
X4|m5 and R5 = |L5/(m1m2m3m4)|m5 in the following form:

X = X4 + m1m2m3m4

∣
∣
∣
∣
∣
∣
∣

1

m1m2m3m4
|x5 − X4|m5︸ ︷︷ ︸

L5

∣
∣
∣
∣
∣
∣
∣
m5︸ ︷︷ ︸

R5

. (8)

Obviously, themultiplicative inverse |1/m1m2m3m4|m5 exists because the assumption
that all moduli mi are pairwise relatively prime implies that m1m2m3m4 and m5 are
also relatively prime. By substituting X4 according to Eq. (7) and introducing

V = Xh + m2m3R4 + m2m3m4R5 (9)

Circuits Syst Signal Process (2017) 36:4593–4614 4601

we obtain

X = X4 + m1m2m3m4R5

= x1 + m1Xh + m1m2m3R4 + m1m2m3m4R5

= x1 + m1 (Xh + m2m3R4 + m2m3m4R5)︸ ︷︷ ︸
V

= x1 + m1V = x1 + 2kV = (x1‖V). (10)

Because R4 and Xh are provided by the four-moduli converter, we only need to cal-
culate L5 and R5. Depending on the actual implementation of Eq. (10), two different
versions will be designed.

3.1 Version 1

The expression for L5 of (8) can be rewritten as follows:

L5 = |x5 − X4|m5
= |x5 − (x1 + m1Xh + m1m2m3R4)|m5

=
∣
∣
∣x5 −

(
x1 + 2k Xh + 2k

(
22n − 1

)
R4

)∣
∣
∣
2n−1−1

=
∣
∣
∣x5 − x1 + 2k (−Xh + (1 − 4)R4)

∣
∣
∣
2n−1−1

. (11)

First, we simplify the term (−Xh + (1 − 4)R4). Because both the 2n-bit variable Xh

and the (n + 1)-bit variable R4 are involved in the calculations mod 2n−1 − 1 [i.e. on
(n−1)-bit vectors], wewill present them in the following forms, which are adapted for
further transformations: (0 . . . 0︸ ︷︷ ︸

n−3

‖Xh) and (0 . . . 0︸ ︷︷ ︸
n−3

‖R4) are the 3(n−1)- and 2(n−1)-

bit vectors respectively. Consequently, | − Xh |2n−1−1 = |(1 . . . 1︸ ︷︷ ︸
n−3

‖X̄h)|2n−1−1 and | −

4R4|2n−1−1 = |(1 . . . 1︸ ︷︷ ︸
n−5

‖R̄4‖11)|2n−1−1 [since | − R4|2n−1−1 = |(1 . . . 1︸ ︷︷ ︸
n−3

‖R̄4)|2n−1−1].

We also observe that two least significant 1s from a first term and (n − 3) most sig-
nificant 1s from a second term in the addition |(1 . . . 1︸ ︷︷ ︸

n−5

‖R̄4‖11) +(1 . . . 1︸ ︷︷ ︸
n−3

‖X̄h)|2n−1−1

form an (n − 1)-bit long string of 1s which is equal to 0 mod 2n−1 − 1. Thus, by
rewriting the term (−Xh + (1 − 4)R4), collapsing that (n − 1)-bit string of 1s and
concatenating (1 . . . 1︸ ︷︷ ︸

n−5

‖R̄4‖00) with R4 as (1 . . . 1︸ ︷︷ ︸
n−5

‖R̄4‖R4) we obtain

4602 Circuits Syst Signal Process (2017) 36:4593–4614

|−Xh − 4R4 + R4|2n−1−1

=
∣
∣
∣
∣
∣
∣

⎛

⎝1 . . . 1︸ ︷︷ ︸
n−3

‖X̄h

⎞

⎠ +
⎛

⎝1 . . . 1︸ ︷︷ ︸
n−5

‖R̄4‖11
⎞

⎠ + R4

∣
∣
∣
∣
∣
∣
2n−1−1

=
∣
∣
∣
∣
∣
∣

⎛

⎝0 . . . 0︸ ︷︷ ︸
n−3

‖X̄h

⎞

⎠ +
⎛

⎝1 . . . 1︸ ︷︷ ︸
n−5

‖R̄4‖R4

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

. (12)

We will benefit from the properties that multiplication by 2k modulo 2n−1 − 1 is the
left cyclic shift by k bits over n− 1 bits and that |− x1|2n−1−1 = |(1 . . . 1︸ ︷︷ ︸

|−k|n−1

‖x̄1)|2n−1−1.

Now, L5 is calculated using the (k/(n − 1)
 + 7)-operand carry-save adder (CSA)
tree mod 2n−1 − 1, producing the carry-save pair (L5,c, L5,s) as

L5 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x5 +
⎛

⎝1 . . . 1︸ ︷︷ ︸
|−k|n−1

‖x̄1
⎞

⎠ + 2k

⎛

⎝0 . . . 0︸ ︷︷ ︸
n−3

‖X̄h

⎞

⎠

+2k

⎛

⎝1 . . . 1︸ ︷︷ ︸
n−5

‖R̄4‖R4

⎞

⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
2n−1−1

(13)

CSA= ∣
∣L5,c + L5,s

∣
∣
2n−1−1 . (14)

For a special case where n < 5 (n = 4), we add (n − 1) 1s to pad the vector
(1 . . . 1︸ ︷︷ ︸

n−5

‖R̄4‖R4) to a multiple of n − 1 bits, i.e.

L5 =
∣
∣
∣
∣
∣
∣
x5 +

⎛

⎝1 . . . 1︸ ︷︷ ︸
|−k|3

‖x̄1
⎞

⎠ + 2k
(
0‖X̄h

) + 2k
(
11‖R̄4‖R4

)
∣
∣
∣
∣
∣
∣
7

CSA= ∣
∣L5,c + L5,s

∣
∣
7 .

(15)

All the preceding operations involving the vectors Xh , R4 and x1 are collectively
shown in the left-hand part of Fig. 1b as a single block called Bit-level manipulations.

According to (8), R5 is calculated as the multiplication of L5 by a constant as R5 =
|L5/(m1m2m3m4)|m5 . Similarly to [19], this can be done using a constant multiplier
block which takes a pair of inputs (L5,c, L5,s), multiplies it by |1/(9 · 2k)|2n−1−1 and
returns the output (R5,c, R5,s), which, again, denotes the temporary value of R in
the form of a pair of carry-save vectors to be added by the two-operand adder mod
2n−1 − 1. All this is formally written

R5 =
∣
∣
∣
∣
∣
L5

1

2k
(
2n+1 − 1

) (
22n − 1

)

∣
∣
∣
∣
∣
2n−1−1

(16a)

Circuits Syst Signal Process (2017) 36:4593–4614 4603

=
∣
∣
∣
∣

1

9 · 2k
(
L5,c + L5,s

)
∣
∣
∣
∣
2n−1−1

(16b)

CM= ∣
∣R5,c + R5,s

∣
∣
2n−1−1 , (16c)

where
CM= denotes the multiplication in a constant multiplier.

Next, we rewrite the 4n-bit vector V from (10) to get

V = Xh + m2m3R4 + m2m3m4R5

= Xh +
(
22n − 1

)
R4 +

(
22n − 1

) (
2n+1 − 1

)
R5. (17)

By observing that, due to the width of the final value of V , Xh + (22n −1)R4 is 4n bits
wide and Xh is a 2n-bit vector, and we can replace (i) the addition with concatenation,
i.e. 22n R4 + Xh = R4‖Xh , and (ii) the subtraction with two’s complement 4n-bit
addition, i.e. −R4 = (1 . . . 1︸ ︷︷ ︸

3n−1

‖R̄4) + 1, which leads to

Xh +
(
22n − 1

)
R4

= Xh + 22n R4 − R4 = 22n R4 + Xh +
⎛

⎝1 . . . 1︸ ︷︷ ︸
3n−1

R̄4

⎞

⎠ + 1

= 22n R4 + Xh︸ ︷︷ ︸
(R4‖Xh)

+R̄4 +
⎛

⎝1 . . . 1︸ ︷︷ ︸
3n−1

‖ 0 . . . 0︸ ︷︷ ︸
n

‖1
⎞

⎠ + 1

= (R4‖Xh) + R̄4 + 24n − 2n+1 + 1. (18)

To enable further bit-level manipulations in the remaining part of Eq. (17), i.e.
(22n − 1)(2n+1 − 1)R5, we note that 2n−1R5 + R5 = R5‖R5 and −2n+1(R5‖R5) =
2n+1(R̄5‖R̄5) + 24n − 23n−1 + 2n+1, which leads to

(
22n − 1

) (
2n+1 − 1

)
R5

= 23n+1R5 − 2n+1
(
2n−1R5 + R5

)
+ R5

= 23n+1R5 − 2n+1(R5‖R5) + R5

= 23n+1R5 + 2n+1 (
R̄5‖R̄5

) + 24n − 23n−1 + 2n+1 + R5

= (
R5‖00‖R̄5‖R̄5‖00‖R5

) + 24n − 23n−1 + 2n+1. (19)

By substituting in Eq. (17) all the terms detailed by Eqs. (18) and (19), we get

V = (R4‖Xh) + R̄4 + 24n − 2n+1 + 1

+ (
R5‖00‖R̄5‖R̄5‖00‖R5

) + 24n − 23n−1 + 2n+1 (20a)

= (R4‖Xh) + R̄4 + (
R5‖00‖R̄5‖R̄5‖00‖R5

) + 24n+1 − 23n−1 + 1︸ ︷︷ ︸
C ′
1

. (20b)

4604 Circuits Syst Signal Process (2017) 36:4593–4614

All three input variable components of the summation in Eq. (20a) (i.e. R4, Xh and
R5) are prepared earlier separately by the bit-level manipulations block shown in the
right part of Fig. 1b. Then V can be computed according to Eq. (20b) using the four-
operand 4n-bit adder, whose inputs are three variables and the accumulated constant
term C ′

1. Notice, however, that the addition in (20) is 4n bits wide, whereas C ′
1 is a

(4n+1)-bit number. Therefore, the most significant bit of C ′
1 can be discarded, which

is equivalent to replacing C ′
1 = 24n + (24n − 23n−1 + 1) with C1 = 24n − 23n−1 + 1,

so that Eq. (20b) can be written

V = (R4‖Xh) + R̄4 + (
R5‖00‖R̄5‖R̄5‖00‖R5

) + 24n − 23n−1 + 1︸ ︷︷ ︸
C1

. (21)

Now, according to Eq. (10), the final result X is obtained by concatenating V with x1.

3.2 Version 2

Version 2 can be obtained from Eq. (10) by first observing that

|−X4|2n−1−1 =

∣
∣
∣
∣
∣
∣
∣
∣

⎛

⎝1 . . . 1︸ ︷︷ ︸
|−k|n−1

‖x̄1
⎞

⎠ + 2k

⎛

⎝0 . . . 0︸ ︷︷ ︸
n−3

‖X̄h

⎞

⎠

+2k
(
1 . . . 1‖R̄4‖R4

)

∣
∣
∣
∣
∣
∣
∣
∣
2n−1−1

. (22)

By letting L ′
5 = |x5 + (1 . . . 1︸ ︷︷ ︸

|−k|n−1

‖x̄1) + 2k(0 . . . 0︸ ︷︷ ︸
n−3

‖X̄h)|2n−1−1 we obtain

L5 =
∣
∣
∣
∣
∣
∣
L ′
5 + 2k

⎛

⎝1 . . . 1︸ ︷︷ ︸
n−5

‖R̄4‖R4

⎞

⎠

∣
∣
∣
∣
∣
∣
2n−1−1

, (23)

where, similarly to Eq. (13), the operations involving the vectors Xh , R4 and x1 are
collectively shown in the left part of Fig. 1c as two separate bit-level manipulations
blocks.

The calculation of V in Eq. (20) is the four-operand addition (R4, Xh , R5 and
the constant), which could be implemented using two CSAs and one carry-propagate
adder (CPA). However, of these four operands, only R5 is on the critical path. We thus
propose to precalculate the sum of non-critical components as one variable V ′ by a
three-operand adder and then add the critical component to V ′. Let

V ′ = (R4‖Xh) + R̄4 + 24n − 23n−1 + 1. (24)

Circuits Syst Signal Process (2017) 36:4593–4614 4605

Now Eq. (20) can be rewritten

V = (R4‖Xh) + R̄4 + 24n − 23n−1 + 1
︸ ︷︷ ︸

V ′
+ (

R5‖00‖R̄5‖R̄5‖00‖R5
)

= V ′ + (
R5‖00‖R̄5‖R̄5‖00‖R5

)
, (25)

which can be implemented using one 4n-bit two-operand CPA.All operands that occur
in the summations in Eqs. (24) and (25) are prepared by two independent bit-level
manipulations blocks, shown in the right part of Fig. 1c.

3.3 Example

Consider the five-moduli set with n = 4 and k = 5, i.e. {m1,m2,m3,m4,m5} =
{32, 15, 17, 31, 7}, and a sample set of five residues {x1, x2, x3, x4, x5}={1, 2, 3, 4, 5}.
We will show how Version 1 of our converter calculates X , which corresponds to
{x1, x2, x3, x4, x5}. First, to obtain X4, which corresponds to {x1, x2, x3, x4}, we cal-
culate Xh and R4 from Eqs. (5) and (6) respectively (to avoid ambiguities, the binary
numbers are marked by the subscript ‘b’):

Xh =
∣
∣
∣
∣
∣

17
∣
∣ 2
17

∣
∣
15 + 15

∣
∣ 3
15

∣
∣
17 − 1

32

∣
∣
∣
∣
∣
15·17

= 203 = 11001011b,

R4 =
∣
∣
∣
∣
4 − (1 + 32 · 203)

32 · 15 · 17
∣
∣
∣
∣
31

= 29 = 11101b.

Now X4 is calculated according to (7) as

X4 = 1 + 32 · 203 + 32 · 15 · 17 · 29 = 243137.

Next, Xh , R4, m5 = 7 and x5 = 5 are used to calculate L5 from Eq. (15):

L5 =
∣
∣
∣
∣
101b + (

1‖00001)b + 32 · (0‖11‖001‖011)b+32 · (
11‖11101‖11101)b

∣
∣
∣
∣
7

=
∣
∣
∣
∣
101b + (1‖11110)b + 32 · (0‖00‖110‖100)b

+32 · (11‖00010‖11101)b
∣
∣
∣
∣
7

=

∣
∣
∣
∣
∣
∣
∣
∣

101b +
(

1‖11
︸︷︷︸

110︸︷︷︸

)

b
+

(

0‖11
︸︷︷︸

‖ 010︸︷︷︸ ‖ 000︸︷︷︸

)

b

+
(

000︸︷︷︸ ‖ 101︸︷︷︸ 11‖0︸︷︷︸
111︸︷︷︸

)

b

∣
∣
∣
∣
∣
∣
∣
∣
7

CSA= |001b + 101b|7 = 6.

Once L5 is available in the form of the carry-save pair, R5 can be calculated. For n = 4
and k = 5, the multiplicative inverse given by Eq. (4) is |1/9|24−1−1 = |1/9|7 = 22 =
4 and | 1

9·25 |7 = |4/32|7 = 1. From (16b) we then have

4606 Circuits Syst Signal Process (2017) 36:4593–4614

R5 =
∣
∣
∣
∣

1

9 · 25 (001b + 101b)

∣
∣
∣
∣
7

CM= |1 · (001b + 101b)|7 CPA= 6.

Now V can be calculated from Eq. (20) as

V =
∣
∣
∣
∣
∣
∣

(11101‖11001011)b + (
11101

)
b+216 − 211 + 1

+ (
011‖00‖011‖011‖00‖011)b

∣
∣
∣
∣
∣
∣
216

=

∣
∣
∣
∣
∣
∣
∣
∣

11101 11001011b︸ ︷︷ ︸
7627

+ 00010b︸ ︷︷ ︸
2

+ 011 00 100 100 00 011b︸ ︷︷ ︸
49446

+ 216 − 211 + 1︸ ︷︷ ︸
63489

∣
∣
∣
∣
∣
∣
∣
∣
216

= 55028.

Finally, we obtain X = 1 + 32 · 55028 = 1760897. One can easily verify that
|1760897|{32,15,17,31,7} = {1, 2, 3, 4, 5}.

4 Gate-Level Complexity Evaluation

In this section, we will evaluate and compare the gate-level complexity of our con-
verters and their closest counterparts: {2n, 2n − 1, 2n + 1, 2n+1 − 1, 2n−1 − 1}
(n even), proposed in [4] (special case of our moduli set with k = n), and
{2n − 1, 2n, 2n + 1, 2n+1 + 1, 2n−1 + 1} (n odd), proposed in [18]. The gate-level
complexity evaluations of hardware and delay appear in Tables 1, 2 and 3. Big-omega
(Ω) notation is used for the lower bound of the area complexity of multiplication by
the multiplicative inverse [19].

We consider reverse converters as datapaths whose basic components are mainly
adders in the forms of CSAs and CPAs rather than complex combinational circuits
composed of primitive gates. The gate-level complexity of CSA is O(n) and its delay is
O(1), and the complexity ofCPAs inmost evaluations is given asO(n),while the actual
synthesis results are then provided with the use of parallel-prefix adders (PPAs) [17]
exhibiting O(n log n) gate complexity and O(log n) delay. Bit-level manipulations are
mainly shifts and inversions, with only a very small fraction of them involving other
logic operations. Thus, we first provide an analysis of higher-level representations like
CSAs and CPAs, whereas detailed complexity characteristics expressed in terms of
primitive gates will be presented subsequently in Table 3.

Table 1 details all adders used in our converters and their counterparts of [4] and
[18]. As for the number of CPAs, Version 1 of our converter allows us to spare one
CPA mod 2n+1 − 1, one CPA mod 2n−1 − 1 and one 4n-bit ordinary CPA, whereas
Version 2 of our converter requires the same number of CPAs as its counterpart of [4]
(or CPAs mod 2n±1 + 1 as its counterpart of [18]). The comparison of the number
of CSAs is slightly more complicated because (i) this number depends on k and (ii)
different circuitry is used to carry out the multiplication by multiplicative inverses in

Circuits Syst Signal Process (2017) 36:4593–4614 4607

Table 2 Delay estimations of various converters

Version 1 Version 2 [4] [18]

dCSA(k
2n
 + 2)+

dCPAm(2n)+
dCSA(2n+k

n+1
 + 1)+

O(log√
2(

n
2 − 1))+

dCPAm(n + 1)+
dCSA(k

n−1
 + 7)+

O(log√
2
n
3)+

dCPAm(n − 1)+
dCSA(3)+
dADD(4n)

dCSA(k
2n
 + 2)+

dCPAm(2n)+
dCSA(3)+

O(log√
2(

n
2 − 1))+

dCPAm(n + 1)+
dCSA(4)+

O(log√
2
n
3)+

dCPAm(n − 1)+

dADD(4n)

dCSA(3)+
dCPAm(2n)+
dCSA(4)+
dCPAm(n + 1)+
dCSA(n2)+
dCPAm(n + 1)+
dCSA(8)+
dCPAm(n − 1)+
dCSA(n3)+
dCPAm(n − 1)+
dCSA(3)+
dADD(4n)

dCSA(3)+
dCPAm(2n)+
dCSA(3)+
dCPAp(n + 1)+
dCSA(n2)+
dCPAp(n + 1)+
dCSA(4)+
dCPAp(n − 1)+
dCSA(n3)+
dCPAp(n − 1)+

dADD(4n + 1)

the calculations of R4 and R5.While comparing Versions 1 and 2 of our converters, we
notice that the number of CSAs in Version 2 in the calculation of L4 and L5 is constant
because the main part of the calculations is performed for L ′

4 and L ′
5 respectively. As

we compare Version 1 of our converter with the converters from [4,18] for the special
case of k = n, we notice that the number of CSAs in the calculation of L4 is the same
as in [4,18], whereas we use one more CSA in the calculation of L5 (recall, however,
that we have already spared two CPAs). Our implementation of the multiplication by
multiplicative inverses in the calculations of R4 and R5 is less complex than in [4,18],
because the latter use a traditional single CSA tree structure in which the number of
CSAs grows linearly with n, while we use the constant multiplier block of [19] with
the logarithmically growing number of CSAs.

Table 2 compares the delays of our converters and their counterparts from [4,18],
where dCSA(a) denotes the delay of an a-operand CSA, dCPAm(a) [dCPAp(a)] denotes
the delay of an a-bit [(a + 1)-bit] adder mod 2a − 1 (2a + 1), whereas dADD(a) is
the delay of an ordinary a-bit CPA. As k has little impact on the delay, we consider
the special case of k = n. The critical path leads from any of the inputs x1, x2 and x3
through Xh , L4/R4, L5/R5 and V to the output X (see Fig. 1a, Eqs. (5) and (6) and the
description of the four-moduli converter in [19]). The delay of constant multiplication
blocks can be expressed as O(log√

2 a), which is very close to the delay of equivalent
CSA trees given by dCSA(a) ≈ O(log1.5 a) [19]. The constant multiplication block
of [19] allows for a carry-save representation of its input, which is not the case in
[4,18], where the multiplication by multiplicative inverse must be implemented as
a regular CSA tree requiring a preceding CPA. Because the delay of the constant
multiplication block is comparable to the delay of the regular CSA tree, our designs
gain a considerable speed advantage since they spare two CPAs from the critical path.

Finally, to facilitate any initial complexity estimation for chosen parameters n and
k, gate-level details of the basic blocks of the proposed converters as well as their
overall gate-level complexity characteristics can be found in Table 3. Similarly to
previous estimations, for example in [2], the delay and complexity of CPAs is carried
out for ripple-carry adders.

4608 Circuits Syst Signal Process (2017) 36:4593–4614

Ta
bl

e
3

G
at
e-
le
ve
lh

ar
dw

ar
e
co
m
pl
ex
ity

es
tim

at
io
ns

of
ne
w
co
nv
er
te
rs

E
le
m
en
t

FA
s

N
O
T

A
N
D
a

D
el
ay

Ve
rs
io
n
1

Fo
ur
-m

od
ul
ic
on
ve
rt
er

⌈
2n

+k
n+

1

⌉
·(n

+
1)

+
⌈

k 2n

⌉
·2

n

+
(n

+
1)

·Ω
(2

lo
g 2

(
n 2

−
1)

)
+

5n
+

1
4n

+
2k

n

(

O
(
lo
g 1

.5

(
⌈
2n

+k
n+

1

⌉
−

1)
)

+
O

(
lo
g√

2
(
n 2

−
1)

)

+
O

(
lo
g 1

.5

⌈
k 2n

⌉
)

+
4n

+
2)

t F
A

+
t A

N
D

+
2t
N
O
T

L
5

+
R
5

⌈
k

n−
1

⌉
·(n

−
1)

+
(n

−
1)

·Ω
(2

lo
g 2

n 3
)
+

7(
n

−
1)

3n
+

k
+

1

(

O
(
lo
g 1

.5

(
⌈

k
n−

1

⌉
+

5)
)

+
O

(
lo
g√

2
n 3

)

+
2(
n

−
1)

)

t F
A

+
t N

O
T

V
12

n
3n

−
1

(4
n

+
2)
t F
A

+
t N

O
T

To
ta
l

⌈
2n

+k
n+

1

⌉
·(n

+
1)

+
⌈

k 2n

⌉
·2

n

+
(n

+
1)

·Ω
(2

lo
g 2

(
n 2

−
1))

+
⌈

k
n−

1

⌉
·(n

−
1)

+
(n

−
1)

·Ω
(2

lo
g 2

n 3
)
+

24
n

−
6

10
n

+
3k

n

(

O
(
lo
g 1

.5

(
⌈
2n

+k
n+

1

⌉
−

1)
)

+
O

(
lo
g√

2

(
n 2

−
1))

+
O

(
lo
g 1

.5

(
⌈

k
n−

1

⌉
+

5)
)

+
O

(
lo
g√

2
n 3

)

+
O

(
lo
g 1

.5

⌈
k 2n

⌉
)

+
10

n
+

2)

t F
A

+
t A

N
D

+
4t
N
O
T

Ve
rs
io
n
2

Fo
ur
-m

od
ul
ic
on
ve
rt
er

⌈
k

n+
1

⌉
·(n

+
1)

+
⌈

k 2n

⌉
·2

n

+
(n

+
1)

·Ω
(2

lo
g 2

(
n 2

−
1))

+
10

n
+

6
4n

+
2k

n

(
O

(
lo
g√

2

(
n 2

−
1))

+
O

(
lo
g 1

.5

⌈
k 2n

⌉
)

+
4n

+
3)

t F
A

+
t A

N
D

+
2t
N
O
T

L
′ 5

+
L
5

+
R
5

⌈
2n

+k
n−

1

⌉
·(n

−
1)

+(
n

−
1)

·Ω
(2

lo
g 2

n 3
)
+

8(
n

−
1)

3n
+

k
+

1
(
O

(
lo
g√

2
n 3

)
+

2n
)
t F
A

+
t N

O
T

V
′ +

V
12

n
3n

−
1

(4
n

+
1)
t F
A

+
t N

O
T

To
ta
l

⌈
k

n+
1

⌉
·(n

+
1)

+
⌈

k 2n

⌉
·2

n

+
(n

+
1)

·Ω
(2

lo
g 2

(
n 2

−
1))

+
⌈
2n

+k
n−

1

⌉
·(n

−
1)

+
(n

−
1)

·Ω
(2

lo
g 2

n 3
)
+

30
n

−
2

10
n

+
3k

n

(

O
(
lo
g√

2

(
n 2

−
1))

+
O

(
lo
g√

2
n 3

)

+
O

(
lo
g 1

.5

⌈
k 2n

⌉
)

+
10

n
+

4)

t F
A

+
t A

N
D

+
4t
N
O
T

a
U
pp

er
-b
ou

nd

Circuits Syst Signal Process (2017) 36:4593–4614 4609

5 Experimental Evaluation and Comparison

All the considered converters were synthesised using Cadence RC Compiler v.8.1
over the commercial CMOS065LP low-power library from STMicroelectronics, with
the results shown in Figs. 2, 3 and 4. All descriptions were coded using parametrised
structural Verilog, following identical coding guidelines, with the same datapath com-
ponents (CSAs, CPAs andMOMAs) and input and output registers. TheMOMAsmod
2a − 1 (mod 2a + 1) were implemented according to [21] using the a-bit CSA with
end-around-carry (EAC) (inverted EAC) followed by the a-bit parallel-prefix CPAs
from [17,35]).

While the selection of even or odd n imposed on the converters from [4,18],
respectively, allows one to cover partially complementary dynamic ranges, each
with a resolution of 10 bits, our converter makes it possible to cover precisely any
required dynamic range DR with a few alternative combinations of n and k such that
DR = 4n + k − 1, n ≥ 4 even, and k > 0. To consider the datapaths as being
well balanced, the width of the even channel 2k should be no smaller than that of the
odd channels, yielding in – for a given n – the recommended values of k such that
n ≤ k ≤ n + 9 cover the entire set of consecutive dynamic ranges with one pair of
n and k for every dynamic range. Consequently, we have synthesised our convert-
ers for the selection of n and k covering all consecutive dynamic ranges from 19 to
88bits, whereas the converters from [4,18] were synthesised for the dynamic ranges
corresponding to even n ∈ {4, . . . , 16} and odd n ∈ {7, . . . , 17}, respectively.

The delay of all components like CSA trees, CPAs implemented as parallel-prefix
adders and constant multipliers, is O(log n) and grows mainly with n, with only a

Fig. 2 Minimum delay as a function of dynamic range

4610 Circuits Syst Signal Process (2017) 36:4593–4614

Fig. 3 Power at minimum delay

Fig. 4 Area at minimum delay

Circuits Syst Signal Process (2017) 36:4593–4614 4611

minor contribution of k (Table 2), and is revealed as discrete logarithmic growth in
Fig. 2. A slightly inconsistent minor growth between steps on the stair-like curve result
from the heuristics used by the synthesiser, with Version 1 slightly smoother than for
Version 2, as a result of a higher and faster-growing number of CSA stages on its
critical path. Differences in delays between both versions of our converter and their
counterparts – average 10% of Version 1 over Version 2 and 20% over the converters
from [4,18] – result from the number of CPAs on the critical path being smaller by
two (from using the carry-save input to the constant multiplier – both L4 and L5 have
carry-save forms), and the number of CSAs on the critical path involving calculation
of L4 and L5 is smaller and invariable (thanks to the precalculation of non-critical
components as L ′

4 and L ′
5).

Figure 3 shows the power consumption of all converters, which is obtained from
synthesis tool estimation depending on the set of library gates used in the synthe-
sised circuit, the operating frequency (which is the target delay in our case) and
the architecture of the circuit. The curves for both our converters are stair-like with
steps at changes of n, exactly at the same points as on the delay curves of Fig. 2,
and Version 1 generally consumes more power, which is particularly evident for
DR ∈ {49, . . . , 58, 69, . . . , 88} bits. Version 2 of our converter not only is signif-
icantly faster but also consumes less power, which is particularly interesting because
the area of Version 2 is larger than that of Version 1 (note, however, that extra adders
are located outside of the critical path). We find power advantage of Version 2 of our
converter as a result of a greater dispersion of data across signal paths and less strain
on the critical path, which in turn results in gates being selected by the synthesis tools
which are smaller and consume less power. Either version of our converter consumes
less power than their counterparts from [4,18], except two isolated cases of DR = 19
and 49bits for [4].

Figure 4 shows the sums of areas occupied by logic cells and interconnections. The
faster Version 2 occupies a larger area than Version 1 as a result of the need for the
extra hardware (CPAs) required to precalculate L ′

4 and L ′
5 along with accompanying

CSAs and larger cells selected by the synthesis tools for faster designs. Our designs
are smaller than those of [4,18]; this is a direct outcome of using two fewer CPAs
(especially on the critical path) and significantly smaller blocks used to perform mul-
tiplications bymultiplicative inverses [viz.Ω(log n

3) vs. O(n3)]; the area growth due to
the smaller delay is offset by gains resulting from architectural advantages. For either
version of our converters, the growth of the area depends mainly on n, which is seen on
a highly regular stair-like curve of Fig. 4: every increase in n by two is accompanied
by a noticeable growth of the area. Linear growth of the area along with k occurs only
for smaller dynamic ranges from 19 to 58 (corresponding to n from 4 to 7).

6 Conclusion

In this paper, a new RNS composed of five flexible balanced moduli {2k, 2n − 1, 2n +
1, 2n+1−1, 2n−1−1} for the pairs of positive integers n ≥ 4 (even) and any k > 0 was
introduced; it can provide the required dynamic range with one-bit resolution. From
the set of basic functions, two versions of a reverse (residue-to-binary) converter with

4612 Circuits Syst Signal Process (2017) 36:4593–4614

varying performance characteristics were designed for this new RNS. The converters
for the new RNS as well as those for two other known five-moduli sets also composed
of low-cost balanced moduli but with a single parameter n only, were synthesised
using industrial tools, and the experimental results obtained suggest that our converters
have 28–40% smaller delay while still consuming less area and power. The widths of
all residue datapaths in our moduli equalled about one-fifth the width of their two’s
complement counterpart, and their delay can be balanced thanks to the possibility of
adapting the size of the evenmodulus 2k . Thanks to the use of low-costmoduli, forward
converters and channels may be implemented in a regular and efficient way, which
makes themwell suited not only for traditional DSP systems but also for cryptographic
applications. Some dynamic ranges are require k to be significantly larger than n, such
that they may negatively impact the balance of the even residue datapath channel.
Thus, some other new flexible five-moduli sets which are better adapted to cover new
dynamic ranges may be the subject of further research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. P.V.AnandaMohan,ResidueNumber Systems: Algorithms andArchitectures (Birkhäuser, Basel, 2016)
2. P.V. AnandaMohan, A.B. Premkumar, RNS-to-binary converters for two four-moduli sets {2n −1, 2n ,

2n + 1, 2n+1 − 1} and {2n − 1, 2n , 2n + 1, 2n+1 + 1}. IEEE Trans. Circuits Syst. I 54(6), 1245–1254
(2007)

3. M. Bhardwaj, T. Srikanthan, C.T. Clarke, in Reverse Converter for the 4-Moduli Superset {2n −
1, 2n , 2n + 1, 2n+1 − 1}. Proceedings of the 14th IEEE Symposium on Comput. Arithm., pp. 168–
175, Adelaide, Australia, 14–16 April 1999

4. B. Cao, C.-H. Chang, T. Srikanthan, A residue-to-binary converter for a new five-moduli set. IEEE
Trans. Circuits Syst. I 54(5), 1041–1049 (2007)

5. B. Cao, T. Srikanthan, C.H. Chang, Efficient reverse converters for the four-moduli sets {2n , 2n −
1, 2n + 1, 2n+1 − 1} and {2n , 2n − 1, 2n + 1, 2n−1 − 1}. IEE Proc. Comput. Digit. Tech. 152(5),
687–696 (2005)

6. G. Chalivendra, V. Hanumaiah, S. Vrudhula, in A New Balanced 4-Moduli Set {2k , 2n − 1, 2n +
1, 2n+1 − 1} and Its Reverse Converter Design for Efficient FIR Filter Implementation. Proceedings
of the ACMGreat Lakes Symposium on VLSI (GLSVLSI), pp. 139–144, Lausanne, Switzerland, 2–4
May 2011

7. R. Chaves, L. Sousa, Improving residue number systemmultiplication with more balanced moduli sets
and enhanced modular arithmetic structures. IET Proc. Comput. Digit. Tech. 1(5), 472–480 (2007)

8. J. Chen, J.E. Stine, in Parallel Prefix Ling Structures for Modulo 2n − 1 Addition. Proceedings of the
IEEE International Conference on Application Specific Systems, Architectures and Processors, pp.
16–23, Boston, MA, USA, 7–9, 2009

9. R. Conway, J. Nelson, Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. II 51(1),
26–28 (2004)

10. A.Dhurkadas, Comments on “Ahigh speed realization of a residue to binary number system converter”.
IEEE Trans. Circuits Syst. II 45(3), 446–447 (1998)

11. C. Efstathiou, H.T. Vergos, D. Nikolos, Fast parallel-prefixmodulo 2n+1 adders. IEEETrans. Comput.
53(9), 1211–1216 (2004)

http://creativecommons.org/licenses/by/4.0/

Circuits Syst Signal Process (2017) 36:4593–4614 4613

12. G. Jaberipur, B. Parhami, in Unified Approach to the Design of Modulo-(2n ± 1) Adders Based on
Signed-LSB Representation of Residues. Proceedings of the IEEE Symposium on Comput. Arithm.,
pp. 57–64, Portland, OR, USA, 8–10 June 2009

13. T.-B. Juang, C.-C. Chiu, M.-Y. Tsai, Improved area-efficient weighted modulo 2n + 1 adder design
with simple correction schemes. IEEE Trans. Circuits Syst. II 57(3), 198–202 (2010)

14. Y. Liu, E.M.-K. Lai, Moduli set selection and cost estimation for RNS-based FIR filter and filter bank
design. Des. Autom. Embed. Syst. 9(2), 123–139 (2004)

15. U. Meyer-Baese,Digital Signal Processing with Field Programmable Gate Arrays, 4th edn. (Springer,
Berlin, 2014)

16. R. Muralidharan, C.H. Chang, Area-power efficient modulo 2n − 1 and modulo 2n + 1 multipliers for
{2n − 1, 2n , 2n + 1} based RNS. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2263–2274 (2012)

17. R.A. Patel, S. Boussakta, Fast parallel-prefix architectures for modulo 2n − 1 addition with a single
representation of zero. IEEE Trans. Comput. 56(11), 1484–1492 (2007)

18. P. Patronik, K. Berezowski, J. Biernat, S.J. Piestrak, A. Shrivastava, in Design of an RNS Reverse
Converter for a New Five-Moduli Special Set. Proceedings of the ACM Great Lakes Symp. VLSI
(GLSVLSI), pp. 67–70, Salt Lake City, UT, USA, 3–4 May 2012

19. P. Patronik, S.J. Piestrak, Design of reverse converters for general RNS moduli sets {2k , 2n − 1, 2n +
1, 2n−1 −1} and {2k , 2n −1, 2n +1, 2n+1 −1} (n even). IEEE Trans. Circuits Syst. I Reg. Pap. 61(6),
1687–1700 (2014)

20. P. Patronik, S.J. Piestrak, Design of reverse converters for the new RNS moduli set {2n + 1, 2n −
1, 2n , 2n−1 + 1} (n odd). IEEE Trans. Circuits Syst. I Reg. Pap. 61(12), 3436–3449 (2014)

21. S.J. Piestrak, Design of residue generators and multioperand modular adders using carry-save adders.
IEEE Trans. Comput. 43(1), 68–77 (1994)

22. S.J. Piestrak, A high-speed realization of a residue to binary number system converter. IEEE Trans.
Circuits Syst. II 42(10), 661–663 (1995)

23. S.J. Piestrak, in Design of Multi-residue Generators Using Shared Logic. Proceedings of the IEEE
International Symposium on Circuits & Systems (ISCAS), pp. 1435–1438, Rio de Janeiro, Brazil,
15–18 May 2011

24. S.J. Piestrak, K.S. Berezowski, in Architecture of Efficient RNS-Based Digital Signal Processor with
Very Low-Level Pipelining. Proceedings of the IET Irish Sign. & Syst. Conference, pp. 127–132,
Galway, Ireland, 18–19 June 2008

25. S.J. Piestrak, K.S. Berezowski, in Design of Residue Multipliers-Accumulators Using Periodicity.
Proceedings of the IET Irish Sign. & Syst. Conference, pp. 380–385, Galway, Ireland, 18–19 June
2008

26. A. Skavantzos, M. Abdallah, Implementation issues of the two-level residue number system with pairs
of conjugate moduli. IEEE Trans. Signal Process. 47(3), 826–838 (1999)

27. A. Skavantzos, in Efficient Residue to Weighted Converter for a New Residue Number System. Pro-
ceedings of the IEEE Great Lakes Symposium on VLSI (GLSVLSI), pp. 185–191, Lafayette, LA,
USA, 19–21 February 1998

28. A. Skavantzos, in Grouped-Moduli Residue Number Systems for Fast Signal Processing. Proceedings
of the IEEE International Symposium on Circuits & Systems (ISCAS), vol. 3, pp. III-478–III-483,
Orlando, FL, USA, 30 May–2 June 1999

29. L. Sousa, S. Antão, R. Chaves, On the design of RNS reverse converters for the four-moduli set
{2n +1, 2n −1, 2n , 2n+1 +1}. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(10), 1945–1949
(2013)

30. A.P. Vinod, A.B. Premkumar, A memoryless reverse converter for the 4-moduli superset {2n −
1, 2n , 2n + 1, 2n+1 − 1}. J. Circuits Syst. Comput. 10(1–2), 85–99 (2000)

31. Y.Wang, Residue-to-binary converters based on newChinese remainder theorem. IEEETrans. Circuits
Syst. II 47(3), 197–205 (2000)

32. Z. Wang, G.A. Jullien, W.C. Miller, An improved residue-to-binary converter. IEEE Trans. Circuits
Syst. I 47(9), 1437–1440 (2000)

33. M. Wesołowski, P. Patronik, K. Berezowski, J. Biernat, in Design of a Novel Flexible 4-Moduli RNS
and Reverse Converter. Proceedings of the 23nd IET Irish Sign. & Syst. Conference (ISSC), pp. 1–6,
Maynooth, Ireland, 28–29 June 2012

4614 Circuits Syst Signal Process (2017) 36:4593–4614

34. A. Wrzyszcz, D. Milford, in A New Modulo 2a + 1 Multiplier. Proceedings of the International
Conference on Comput. Des., pp. 614–617, Boston, MA, USA, 3–6 October 1993

35. R. Zimmerman, in Efficient VLSI Implementation of Modulo 2n ± 1 Addition and Multiplication.
Proceedings of the IEEE Symp. Comput. Arithm., pp. 158–167, Adelaide, Australia, 14–16 April
1999

	Design of Reverse Converters for a New Flexible RNS Five-Moduli Set { 2k, 2n-1, 2n+1, 2n+1-1, 2n-1-1 } (n Even)
	Abstract
	1 Introduction
	2 RNS Background
	2.1 Basic Concepts
	2.2 Properties of Arithmetic Modulo 2n-1 [19]
	2.3 Multiplicative Inverses

	3 Design of Reverse Converters
	3.1 Version 1
	3.2 Version 2
	3.3 Example

	4 Gate-Level Complexity Evaluation
	5 Experimental Evaluation and Comparison
	6 Conclusion
	References

