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Abstract The paper is devoted to variable order estimation process when measure-
ments are obtained in two different ways: directly and by lossy network. Since the
problem of fractional order estimation is highly nonlinear, dual estimation algorithm
based on Unscented Fractional Order Kalman filter has been used. In dual estimation
process, state variable and order estimation have been divided into two sub-processes.
For estimation state variables and variable fractional order, the Fractional Kalman
filter and the Unscented Fractional Kalman filter have been used, respectively. The
order estimation algorithms were applied to numerical examples and to real fractional
variable order inertial system realized as an analog circuit.
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1 Introduction

Recently, estimation problem in dynamical systems and control is widely considered.
What is crucial, the order of estimated system is usually unknown and can be even
fractional.

Fractional calculus is a generalization of traditional integer order integration and
differentiation actions onto non-integer order. The idea of such a generalization has
been mentioned in 1695 by Leibniz and L’Hospital. At the end of nineteenth century,
Liouville and Riemann introduced first definition of fractional derivative. However,
only just in late 60’ of the twentieth century, this idea drew attention of the engineers.
Fractional calculuswas found a very useful tool formodeling behavior ofmanymateri-
als and systems, especially those based on the diffusion processes. The description and
experimental results of modeling heat transfer processes were presented in [25,30].
Theoretical background of fractional calculus can be found in [9,11–13,15,18].

When the fractional order of derivative is not constant but depends on time, the
various types of fractional variable order derivatives can be distinguished. In [14],
nine different variable order derivative definitions have been given, and in [8,36],
three general types of variable order definitions have been able to find, but without
clear interpretation. In papers [27,28], the explanation of two main types and two
recursive types of derivatives in the form of switching schemes are given. The equiva-
lence between particular types of definitions and appropriate switching strategies are
proven by authors. Moreover, based on these strategies, analog models of proper types
derivatives were build and validated according to their numerical implementations.
Based on these papers, it is possible to categorize fractional order derivatives into
three switching strategies. The experimental results shown high accuracy for model-
ing the appropriate types of variable order definitions. In [29], analog realization of
variable order derivative for multiple-switching order has been introduced; however,
presented model gives non-stationary (variable parameter) system. Numerical rou-
tines for simulation of variable order derivatives based on different type definitions
are given in [19].

When the state vector is not available directly frommeasurements, theKalman filter
algorithm can be used for estimate unknown states based onmeasurements and system
dynamics [5,6,17]. More practical problem occurs when the physical data of a system
aremeasured and analyzed through a network. Therefore, one of the practical areas are
communication networks, where effort in analyzing the effect of packet losses has been
highly considerable. To this kind of systems, generalization of Kalman filter algorithm
can be applied [10,16,39]. For estimation of nonlinear systems, a set of generalized
algorithms like Extended Kalman filter and Unscented Kalman filter are given in the
literature [4,5,35]; especially, interesting algorithm is theUnscentedKalmanfilter that,
in opposition to the Extended Kalman filter, not required differentiation of nonlinear
function. In [5,17], UKF algorithm was used to teaching process of neural networks.
In [1], the estimation results for fractional nonlinear systems based on Extended and
Unscented Fractional Kalman filter (UFKF) were presented.

When mathematical model of dynamical systems is described by fractional order
difference or derivative equations, the modified Fractional Kalman filter (FKF) algo-
rithm should be used [23]. This algorithm has been used, for example, for estimation
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of state variables in the dynamical system with ultracapacitor [3], as well in a chaotic
secure communication scheme [7]. In the case of systemswith fractional order dynam-
ics with data sending over lossy networks, where network-induced packet losses can
become a source of degradation in estimation performance, the improved FKF has
been investigated [31]. Fractional order estimation schemes for fractional and integer
order systems with constant and variable fractional order colored noise are presented
in [33]. Improved FKF for variable order systems is investigated in [40].

In practical application of fractional order systems, an identification of the system
order plays a very important role, especially in the case of variable order systems.
Usually, the parameters of the system were obtained during off-line numerical min-
imization routines [25,30]. In this paper, online dual estimation algorithms for state
variable and order estimation, when measurements are obtained directly and by lossy
network, are presented. For estimation state variables and variable fractional order, a
FKF and UFKF have been used, respectively. Moreover, the verification of the devel-
oped estimation algorithm has been performed by testing it on a real electrical circuit
analog model.

The paper is organized as follows. In Sect. 2, particular types of fractional variable
order derivatives are introduced. In Sect. 3, basic properties of discrete fractional
variable order state-space model are recalled. In Sect. 4, analog model of fractional
variable order system is presented. In Sect. 5, dual estimation schemes based on UFKF
for direct and networked measurements cases are presented. In Sect. 6, numerical
results of modeling are presented. Finally, in Sect. 7, order estimation for analog
model is presented.

2 Fractional Variable Order Grünwald–Letnikov Type Derivatives

As a base of generalization of the constant fractional order α ∈ R difference onto
variable order case, the following definition is taken into consideration:

0�
α
k fk = 1

hα

k∑

r=0

(−1)r
(

α

r

)
fk−r , (1)

where h > 0 is a step time.
For the case of order changing with time (variable order case), variety of definitions

can be found in the literature [8,36]. Among them all, we present only two. The first
one is obtained by replacing in (1) a constant order α by variable order α(t). In this
approach, all coefficients for past samples are obtained for present value of the order
and are given as follows:

Definition 1 TheA-type of fractional variable order difference is defined as follows:

A
0 �

αk
k fk = 1

hαk

k∑

r=0

(−1)r
(

αk

r

)
fk−r . (2)
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The definition of dual type of variable order derivative, that is consider in this paper,
is given as follows:

Definition 2 [28] The D-type of fractional variable order difference is defined as
follows:

D
0 �

αk
k fk =

⎛

⎝ fk
hαk

−
k∑

j=1

(−1) j
(−αk

j

)
D
0 �

αk− j
k− j fk− j

⎞

⎠ . (3)

Remark 1 For a fractional constant orderα = const, the fractional differences givenby
Definitions 1 and 2 are numerically identical with constant order fractional difference
given by (1).

3 Discrete Variable Fractional Order State-Space System

Let us consider a linear discrete fractional variable order state-space (DFVOSS) A-
type system

A
0 �

ϒk+1
k+1 xk+1 = Axk + Buk, (4)

xk+1 = hϒk+1A
0 �

αk+1
k+1 xk+1

−
k+1∑

j=1

(−1) jϒ j,k+1xk− j+1, (5)

yk = Cxk, (6)

where

ϒ j,k = diag
[ (α1,k

j

)
. . .

(αN ,k
j

) ]
,

AΔϒk+1xk+1 =
⎡

⎢⎣

AΔα1,k+1x1,k+1
...

AΔαN ,k+1xN ,k+1

⎤

⎥⎦ ,

hϒk+1 = diag
[
hα1,k+1 · · · hαN ,k+1

]

and αi,k ∈ R is the i th fractional variable order of the system, uk ∈ R
d is a system

input, yk ∈ R
p is a system output, A ∈ R

N×N , B ∈ R
N×d and C ∈ R

p×N are the
state system, input, and output matrices, respectively, xk ∈ R

N is a state vector, N is
a number of state equations, and h is a time sampling. Basic properties of constant
order discrete fractional variable state-space system (DFOSS) can be found in [2,21].

Let us consider the following DFVOSS system for commensurate case of order αk

A
0 �

αk+1
k+1 xk+1 = uk . (7)
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This can be expanded into (assuming h = 1)

k+1∑

j=0

(−1) j
(

αk+1

j

)
xk− j+1 = uk (8)

and rewritten as

xk+1 = uk −
k+1∑

j=1

(−1) j
(

αk+1

j

)
xk− j+1. (9)

The solution of the system given by the A-type definition has the structure of D-type
definition [32], namely

D
0 �

βk
k+1wk = wk −

k∑

j=1

(−1) j
(−βk

j

)
D
0 �

βk− j
k+1 uk− j . (10)

Comparison of these two relations, along with substitutions

wk+1 = uk, −αk+1 = βk+1,

and

xk+1 = D
0 �

αk+1
k+1 wk+1

yields

xk+1 = D
0 �

−αk+1
k+1 uk .

Remark 2 (Duality of variable order difference operators) In general case, order com-
position for variable order difference operators does not hold, e.g.,A0 �

αk+1
k+1

A
0 �

−αk+1
k+1 uk

�= uk . However, for dual operators [32], we have

A
0 �

αk+1
k+1

D
0 �

−αk+1
k+1 uk = uk,

D
0 �

αk+1
k+1

A
0 �

−αk+1
k+1 uk = uk .

This leads to the conclusion (as it was presented in [32]), that in order to model
system, that is built using D-type integrals (discrete equivalence), a DFVOSS based
on A-type definition is needed, i.e.,

yk+1 = D
0 �

−αk+1
k+1 (uk − ayk),

A
0 �

αk+1
k+1 yk+1 = uk − ayk .
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4 Analog Model of Fractional Variable Order Integral System

An analog model ofD-type fractional variable order integral system can be realized in
two ways: directly based on switching order scheme which is equivalent to such defin-
ition or through analogy between switching scheme and its parallel model introduced
in [29]. The second method gives the possibility to build the n-switching model fully
equivalent to the first one but in less complex way and that was the reason to take such
model for further analysis. To realized D-type fractional variable order definition, an
multi-switching analog model presented in Fig. 1 was used. This model was widely
described in [26].

The circuit branches with resistors R1, R2 and capacitors C1, C2 represent an
approximation of half-order (α = 0.5) impedance when electronic switches S1 and
S2 are connected to terminals denotes as 2. The half-order impedance can be built
according to algorithm described in [24] (R1 = 2.4 k�, R2 = 8.2 k�, C1 = 330 nF
and C2 = 220 nF). The quantity of resistors and capacitors determines the accuracy
of whole impedance. This model approximation contains 200 passive elements. The
frequency response of real half-order impedance and its model are overlapping in wide
range frequency. Otherwise, when switch S1 is connected to the terminal 1 and S2 is
grounded, then the voltage follower A3 is charging the domino-ladder branches to
the value of output signal. It is a necessary condition to keep the behavior of D-type
variable order definition. Finally, the branch with R1 and C1 elements connected to
the negative input of amplifier A1 represents a first-order impedance.

In fact, the order of system can be changed between −0.5 (half-order integral)
and −1 (first-order integral) in any time and depends on position of switches (S1, S2

−

+
A1

R2

R1

R2

+

−
A3

−

+
A2

u(t)

C1

C2

C1

C2

R
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2
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Fig. 1 Multi-switching analog realization of the D-type fractional variable order integral
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and S3). Resistors Ra and Rb allow to sustain the constant value of integrator gain.
Operational amplifier A2 in configuration with resistors R gives voltage amplifier of a
gain equal to−1 providing re-inversion of output signal (already inverted by integrator
circuit).

5 Dual Estimation Based on UFKF Filter

Generally, dual estimation refers to the issue of simultaneously estimating the state of
a dynamic system and its parameters. In our case, we will deal with estimation of a
parameter changing in time, i.e., with estimation of the variable order. Dual estimation
algorithms were already considered, e.g., in [37,38].

5.1 Variable Order Estimation Problem

Let us assume the simple autonomous scalar discrete variable order system

xk+1 = hϒk+1axk −
k+1∑

j=1

(−1) jϒ j,k+1xk− j+1,

that can be rewritten in the matrix form as follows:

xk+1 = [
hϒk+1axk + ϒ1,k+1 −ϒ2,k+1 . . . ϒk+1,k+1

] [
xk xk−1 . . . x0

]
.

Next, by expanding binomials as a polynomials of orders we obtain:

xk+1 = [
αk+1 α2

k+1 α3
k+1 . . . αk+1

k+1

]
W
[
xk xk−1 xk−2 . . . x0

]
,

whereW is amatrixwith appropriate coefficients originated frombinomial coefficients
expansion and system parameters. As it can be noticed, the problem of order extraction
from the measurements data is highly nonlinear. That is the reason, the estimation
algorithm based on UFKF has been taken into consideration in this paper.

Moreover, in constant order (integer or fractional) systems the influence of the step
time h can be easily incorporated into system matrices A and B. In variable order
case, such incorporation leads to non-stationary system with variable in time system
matrices. That is why incorporation of the step time has to be performed into the
model itself, which provides the necessity for generalization of appropriate Kalman
filter algorithm for this modification.

5.2 Dual Estimation Scheme

In dual estimation process of state variables and parameters, estimation is divided into
two filters: The first filter estimates state variables vector x̂k , and the second parameters
vector ŵk of the system. The scheme of this type of estimation is given in Fig. 2, where
KFx and KFw is a filter for state vector estimation and for parameters estimation,
respectively. The Filter KFx is based on the past estimated value of parameter vector
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Fig. 2 Dual estimation scheme

KF x

KF w

yk, uk−1

ŵk−1

x̂k−1

ŵk

x̂k

estimates ŵk−1 and data uk−1, yk in order to evaluate state estimate x̂k . On the other
hand, Filter FKw uses past estimates obtained by KFx filter and data uk−1, yk to obtain
its own state vector and output prediction χ̃w

k , Yw
k to extract next parameters vector

estimate ŵk .
Because the state vector estimation problem (KFx filter) is linear, the fractional

variable order Kalman filter, given below, has been used.

Proposition 1 For thediscrete fractional variable order systemstate vector estimation
in dual estimation algorithm, the Kalman filter (KFx) is given by the following set of
equations

A
0 �

ϒk+1
k+1 x̃k+1 = Ax̂k + Buk, (11)

x̃k+1 = hϒk+1A
0 �

ϒk+1
k+1 x̃k+1 −

k+1∑

j=1

(−1) jϒ j,k+1 x̂k+1− j , (12)

P̃k = (
hϒk A + ϒ1,k

)
Pk−1

(
hϒk A + ϒ1,k

)T
(13)

+ hϒk Qk−1h
ϒk +

k∑

j=2

ϒ j,k Pk− jϒ
T
j,k, (14)

Kk = P̃kC
T (C P̃kC

T + Rk)
−1, (15)

x̂k = x̃k + Kk(yk − Cx̃k), (16)

Pk = (I − KkC)P̃k, (17)

where initial conditions are

x0 ∈ R
N , P0 = E[(x̃0 − x0)(x̃0 − x0)

T ],

and νk and ωk are assumed to be independent with zero expected value. ��
Proof The proof is similar to this presented in [22] with including step time h. The
main differences are in equations for state and covariance matrix prediction defined
by the following relation

x̃k = E[xk |z∗k−1], (18)
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which is a random variable xk conditioned on the measurements stream z∗k−1 that con-
tains values of themeasurements output y0, y1, . . . , yk and input signal u0, u1, . . . , uk .

The prediction of the state vector can be obtained as follows:

x̃k+1 = E

⎡

⎣hϒk+1(Axk + Buk + ωk) −
k+1∑

j=1

(−1) jϒ j,k+1xk+1− j |z∗k
⎤

⎦

= hϒk+1(AE
[
xk |z∗k

]+ Buk) −
k+1∑

j=1

(−1) jϒ j,k+1E
[
xk+1− j |z∗k

]
.

Under assumption E[xk+1− j |z∗k ] ≈ E[xk+1− j |z∗k+1− j ], which means the past esti-
mates not be updated using newer measurements, the relation for state prediction is
obtained.

The prediction of an estimation error covariance matrix is defined as follows

P̃k = E
[
(x̃k − xk)(x̃k − xk)

T
]
. (19)

The term (x̃k − xk), used in prediction of the covariance error matrix, is evaluated
as follows:

(x̃k − xk) = hϒk (Ax̂k−1 + Buk−1) −
k∑

j=1

(
(−1) jϒ j,k x̂k− j

)

− hϒk (Axk−1 − Buk−1 − ωk−1) +
k∑

j=1

(
(−1) jϒ j,k xk− j

)

= (hϒk A − ϒ1,k)(x̂k−1 − xk−1) − hϒkωk−1

−
k∑

j=2

[
(−1) jϒ j,k(x̂k− j − xk− j )

]
.

In order to obtain this relation, similar assumption like in FKF derivation has been
used. It is assumed that the expected values of terms (x̂l − xl)(x̂m − xm)T are equal
to zero when l �= m, which finally gives the following equation

P̃k = E
[
(x̃k − xk)(x̃k − xk)

T
]

= (hϒk A − ϒ1,k)E[(x̂k−1 − xk−1)(x̂k−1 − xk−1)
T ](hϒk A − ϒ1,k)

T

+ hϒk E[ωk−1ω
T
k−1](hϒk )T +

k∑

j=2

ϒ j,k E[(x̂k− j − xk− j )(x̂k− j − xk− j )
T ]ϒT

j,k

= (
hϒk A+ϒ1,k

)
Pk−1

(
hϒk A+ϒ1,k

)T +hϒk Qk−1(h
ϒk )T +

k∑

j=2

ϒ j,k Pk− jϒ
T
j,k .
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The rest of the proof is analogical to the proof of variable order fractional Kalman
filter (VOFKF) presented in [22]. ��

Due to high nonlinearity of the order estimation problem, the Unscented Fractional
Order Kalman filter is used (as the KFw filter in dual estimation scheme presented in
Fig. 2).

Proposition 2 For the discrete fractional variable order system order estimation in
dual estimation algorithm, the Unscented Kalman filter (called KFw) is given by the
following set of equations

α̃k = α̂k−1,

P̃w
k = P̂w

k−1 + hQw
k−1h,

W̃k =
[

α̃k α̃k ±
(√

(L + λ)P̃w
k

)

i

]
,

ΔW̃k,i χ̃w
k,i = Ax̂k−1 + Buk−1,

χ̃w
k,i = hW̃k,i ΔW̃k,i χ̃w

k,i −
k∑

j=1

(−1) j
(W̃k,i

j

)
x̂k− j ,

Ỹw
k,i = C(W̃k)χ̃

w
k,i ,

ỹw
k =

2L∑

i=0

W (m)Ỹk,i ,

Pw
yk yk =

2L∑

i=1

W (c)
i [Ỹi,k − ỹk][Ỹi,k − ỹk]T + Rw,

Pw
wk yk =

2L∑

i=1

W (c)
i [W̃i,k − w̃k][Ỹi,k − ỹk]T ,

Kw
k = Pw

wk yk (P
w
yk yk )

−1,

α̂k = α̃k + Kw
k (yk − ỹw

k ),

Pw
k = P̂w

k − Kw
k Pw

yk ykKw
k ,

Qw
k = (1 − δ)Qw

k−1 + hδ(Kw
k )(yk − ỹw

k )(yk − ỹw
k )T (Kw

k )T h,

where

χ̂w
k = [

x̂k x̂k ± (
√

(L + λ)Pk)
]
,

what means that

χ̂w
i,k =

⎧
⎪⎨

⎪⎩

x̂k, i = 0

[x̂k + (
√

(L + λ)Pk)i ], i = 1 . . . L

[x̂k − (
√

(L + λ)Pk)2L−i ], i = L + 1 . . . 2L
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and where (
√

(L + λ)Pk)i is i th column of matrix square root (e.g., Cholesky factor-
ization), and coefficients of Unscented transformation W are equal to

W (m)
0 = λ/(L + λ),

W (c)
0 = λ/(L + λ) + (1 − A2 + B),

W (m)
i = W (c)

i = 1/(2(L + λ)),

where λ = A2(L + κ) − L, A is a coefficient describing width of point expansion
during the transformation (in literature is chosen from the range 1 ≤ A ≤ 1e − 4,
usually denoted as α, but in this article, because of using order α this notation has
been changed), κ is an additional scaling coefficient usually chosen as 3-L, B is a
coefficient that corresponds with our knowledge about type of noise, for Gaussian
noise is chosen asB = 2 (in the literature usually denoted as β). The δ coefficient is a
“forgetting factor” according to RobbinsMonro stochastic approximation scheme for
estimating the innovations (see [5], p. 240). For more intuitive choosing of parameters
Qw

k−1, let us define
∗Qw

k−1 = hQw
k−1h, which represents covariance of order noise in

each sample time.

Proof The algorithm is a generalization of the Fractional Unscented Kalman filter
given in [20], while the step time h and A-type variable order difference definition is
taken into consideration.

Because order dynamics of estimated system is unknown (for estimation of arbitrary
order function), the following equation of the estimated order dynamics is used

αk = αk−1 + hωw
k−1,

where ωw
k−1 is a zero mean noise that represents possible order changes. The order

prediction is given by the following relation

α̂k = E[αk |z∗k−1] = E[αk−1 + hωw
k−1|z∗k−1] = α̂k−1.

Due to linearity of the dynamics of the order, the Unscented transformation is not
needed to obtain prediction order covariance matrix P̃w

k , and this covariance matrix
will be evaluated as follows:

P̃w
k = E

[
(α̃k − αk)(α̃k − αk)

T
]

= E
[
(α̃k−1 − αk−1 − hωw

k−1)(α̃k−1 − αk−1 − hωw
k−1)

T
]

= P̃w
k−1 + hQw

k−1h.

The rest of equations are the same as for Fractional Unscented Kalman filter given
in [20]. ��
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Fractional order
Plant

AΔΥk+1xk+1 = Axk + ωk

yk = Cxk + νk

Net
Dual

Estimator

ȳk yk

γk

x̂k

Fig. 3 Estimation process over a network

5.3 Dual Estimation for Networked Measurements

For the case of measurements over lossy network (see Fig. 3), some parts of packets
are lost during transmission, which has negative influence on the efficiency of the
estimation process. In order to improve estimation algorithms, not only measurement
values but also information about packets losing γk are needed. The γk ∈ {1, 0} has
value 1 when packet yk is obtained, and 0 when yk is lost.

Analogously as in direct measurement case, for state vector estimation (KFx filter),
the fractional variable order Kalman filter for the networked systems case has been
used.

Proposition 3 For the discrete fractional variable order networked systemstate vector
estimation in dual estimation algorithm the Kalman filter (called KFx) given by the
following set of equations has been used

A
0 �

ϒk+1
k+1 x̃k+1 = Ax̂k + Buk, (20)

x̃k+1 = hϒk+1A
0 �

ϒk+1
k+1 x̃k+1 −

k+1∑

j=1

(−1) jϒ j,k+1 x̂k+1− j , (21)

P̃k = (
hϒk A + ϒ1,k

)
Pk−1

(
hϒk A + ϒ1,k

)T
(22)

+ hϒk Qk−1h
ϒk +

k∑

j=2

ϒ j,k Pk− jϒ
T
j,k, (23)

Kk = P̃kC
T (C P̃kC

T + Rk)
−1, (24)

x̂k = x̃k + γk Kk(yk − Cx̃k), (25)

Pk = (I − γk KkC)P̃k, (26)

where γk represents the knowledge of packet losses and initial conditions are

x0 ∈ R
N , P0 = E[(x̃0 − x0)(x̃0 − x0)

T ]

and νk and ωk are assumed to be independent with zero expected value. ��

Proof The algorithm is a modification of the algorithm given in Proposition 1, includ-
ing information about packages losing γk in last two equations and is similar to this
presented in [34] with additionally including step time h. ��
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For order estimation in network systems as a KFw filter the Unscented Variable
Fractional Order Kalman filter has been used. For simplicity is presented the algorithm
for estimation simple one order; however, it can be easily extended for multiple orders
estimation. The algorithm is given in the form of following theorem:

Proposition 4 For the order estimation in discrete fractional variable order net-
worked system in dual estimation algorithm, the Unscented Kalman filter (called
KFw) is given by the following set of equations

α̃k = α̂k−1,

P̃w
k = P̂w

k−1 + hQw
k−1h,

W̃k =
[

α̃k α̃k ±
(√

(L + λ)P̃w
k

)

i

]
,

ΔW̃k,i χ̃w
k,i = Ax̂k−1 + Buk−1,

χ̃w
k,i = hW̃k,iΔW̃k,i χ̃w

k,i −
k∑

j=1

(−1) j
(W̃k,i

j

)
x̂k− j ,

Ỹw
k,i = C(W̃k)χ̃

w
k,i ,

ỹw
k =

2L∑

i=0

W (m)Ỹk,i ,

Pw
yk yk =

2L∑

i=1

W (c)
i [Ỹi,k − ỹk][Ỹi,k − ỹk]T + Rw,

Pw
wk yk =

2L∑

i=1

W (c)
i [W̃i,k − w̃k][Ỹi,k − ỹk]T ,

Kw
k = Pw

wk yk (P
w
yk yk )

−1,

α̂k = α̃k + γkKw
k (yk − ỹw

k ),

Pw
k = P̂w

k − γkKw
k Pw

yk ykKw
k ,

Qw
k = (1 − δ)Qw

k−1 + γkhδ(Kw
k )(yk − ỹw

k )(yk − ỹw
k )T (Kw

k )T h,

where the meaning of occurring above terms is the same as in Proposition 2. ��

Proof The algorithm is a modification of the algorithm given in Proposition 2, with
including information about packages losing γk in last three equations. ��

6 Numerical Results

Numerical results, presented in following section, have been obtained in MAT-
LAB/Simulink environment.
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6.1 Order Estimation for Direct Measurements

Example 1 (Order estimation for directmeasurements and single systemorder switch)
Let us consider the following discrete variable order state-space system:

A = −3.04, B = 3.03, C = 1, (27)

the variable order is a single switch between two values and is defined as

αk =
{
0.8 for t ≤ 1,

0.4 for t > 1,

and noise has the following parameters:

E[ωωT ] = 8.82 · 10−8,

E[ννT ] = 1.47 · 10−7.

Parameters of KFx filter are:

P0 = [
10
]
, Q0 = [

8.82 · 10−8
]
,

x0 = [0], R = [1.47 · 10−7].

Parameters of KFw filter are:

Pw
0 = [

5.79 · 10−7
]
, ∗Qw

0 = [
3.71 · 10−11

]
,

α̂0 = [0.5], Rw = [0.1], A = 0.0001, δ = 0.5.

Figure 4 presents input and output of the analog system—the data for estimation
process, and results of applying dual estimation algorithms to these data. As it can be
seen, the order is estimated with very high accuracy, and algorithm needed very short
time to adjust for order changing.

Example 2 (Order estimation for direct measurements and higher noise) In this case,
the noise has the following parameters:

E[ωωT ] = 9.01 · 10−8,

E[ννT ] = 1.58 · 10−5

and initial values for the filter are

P0 = [
10
]
, Q0 = [

9.01 · 10−8
]
,

x0 = [0], R = [1.58 · 10−5].



Circuits Syst Signal Process (2016) 35:2055–2082 2069

time [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

[V
]

0

0.1

0.2

0.3

0.4

0.5

0.6
System output
System input

time [s]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
estimated order
original order

Fig. 4 Results for dual estimation of variable order αk , input and output of the system—upper figure,
estimated order—bottom figure

Figure 5 presents input and output of the analog system with higher output noise
than in example before. It also presents results of applying dual estimation algorithm to
these data. As it can be seen, the order is estimated with quite high accuracy; however,
accuracy is lower than for a case of lower noise.

Example 3 (Order estimation for direct measurements and different output noise vari-
ances) Let us consider the system from Example 1 with the same parameters, except
for the variable order, which takes in the form of sinusoidal function. Below the results
of series of experiments for estimation of variable order, performed for different output
noise variances R, are presented. What is expected, with increasing variance noise,
the accuracy of estimation error decreases (see Table 1; Fig. 6).

Example 4 (Order estimation for different values of ∗Qw
k ) To investigate influence

of parameter ∗Qw
k , which is expected variability of estimated order, into estimation

accuracy, let us consider the same system as in Example 1 with different values of
matrix ∗Qw

k .
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Fig. 5 Results for dual estimation of variable order αk , input and output of the system—upper figure,
estimated order—bottom figure

Table 1 Comparison of order
estimation error norms (where
ek = αk − α̃k ,
k = 200, . . . , T/h), during time
T for different output noise
variances R

Output noise variance R Estimation error h
∑T/h

i=200 e
2
i

0.00000016 0.0001

0.00001504 0.0003

0.00152402 0.0039

The comparison of order estimation results is presented in Fig. 7. As it can be
noticed, the smaller value of ∗Qw

k the faster estimated order approach to the original
one, however differences between results are not so significant. In order to thoroughly

explain the differences, let us analyze the value of
√

(L + λ)P̃w
k , which define a spread

of sigma points obtained in UFKF algorithm (Fig. 8).

Example 5 (Order estimation for direct measurements and rapidly changed system
order) Let us consider the DFVOSS system (4)–(6) with the following matrices:

A =
[

0 1

−5 −6

]
, B =

[
3

3

]
, C = [

1 1
]
. (28)
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Fig. 6 Estimated order for different variance noises

Fig. 7 Results for dual
estimation of variable order αk
for different parameters Qw

k ,
input and output of the
system—upper figure, estimated
order—bottom figure
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To verify the effectiveness of the estimation algorithm in terms of the rate of change of
the order, the variable orders for both state variables are assumed to be the following
chirp functions
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Fig. 8 Spread of sigma points
during estimation of variable
order αk process for different
parameters ∗Qw
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αi,k = 0.4 + 0.15 cos

(
2π

(
f0tk + βt2k

2

))
, β = f1 − f0

tN
, i = 1, 2,

for f0 = 1, f1 = 30, tN = 2. The noise has the following parameters:

E[ωωT ] =
[
0.90 · 10−7 0

0 0.90 · 10−7

]
,

E[ννT ] = 1.5810−7.

Parameters of KFx filter are:

P0 =
[
10 0

0 10

]
, Q0 =

[
0.90 · 10−7 0

0 0.90 · 10−7

]
,

x0 =
[
0

0

]
, R = [1.58 · 10−7].

Parameters of KFw filter are:

Pw
0 = [

5.79 · 10−7
]
, ∗Qw

0 = [
3.71 · 10−11

]
,

α̂0 = [0.5], Rw = [1.58 · 10−7], A = 0.001, δ = 0.5.

Figure 9 presents input and output of the DFVOSS system (28)—the data for
estimation process, and results of applying dual estimation algorithms to these data.
As it can be seen, despite the high rate of changing the order of the system, its estimation
is performed with very high accuracy, and algorithm needed very short time to adjust
for order changing.

6.2 Order Estimation for Networked Measurements

Example 6 (Order estimation for direct measurements and low noise) Parameters of
the system and filters are the same as in Example 1, and the transmission rate for
measurements is 30%.

As it can be seen in Fig. 10, accuracy of order estimation is lower than it was obtained
in direct measurements case, but still it shows high accuracy of the dual estimation
algorithm. The losing of accuracy is caused by losing information during transmission
by the communication network.

Example 7 (Order estimation for direct measurements and high noise) Parameters of
the system and filters are the same as in Example 2, and the transmission rate for
measurements is 30%.

Figure 11 presents estimation results for higher noise than in the previous example.
As it can be notice, higher noise caused lower accuracy of order estimation, but it is
still on the reasonable level.
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Fig. 10 Results for dual estimation of variable order αk for networked measurements, input and output of
the system—upper figure, estimated order—bottom figure

7 Order Estimation for Analog Model

In order to validate proposed algorithm in real application, experimental data obtained
from variable order inertial system will be used. Such a system is realized by putting
fractional variable order integrator in unity feedback system, as shown in Fig. 12.

All measurement data have been gathered with time sample equals to 0.001 sec and
input signal equal to 0.5 · H(t), where H(t) is a Heaviside step function.

7.1 Analog Model of Variable Order System

The analog model of the fractional variable order inertial system has been realized
based on fractional variable order integral, given in Fig. 1, in unity feedback system
presented in Fig. 12, and consists of the following parts:

– data acquisition card dSPACE 1104;
– operational amplifiers TL071;
– electronic switches DG303;
– passive elements such as: resistors R1 = 2.4 k�, R2 = 8.2 k�, R = 100 k�,

Ra = 43 k� and Rb = 33 k�, capacitors C1 = 330 nF and C2 = 220 nF.
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Fig. 11 Results for dual estimation of variable order αk for networked measurements, input and output of
the system—upper figure, estimated order—bottom figure

Fig. 12 Realization of the
fractional variable order inertial
system based on fractional
variable order system (FOS)
presented in Fig. 1

FOS−
+

y(t)u(t)

The variable order integral system has been denoted as FOS block in Fig. 12. To build
the electronic circuit board corresponding to fractional variable order inertial system
has been used a universal electronic board specially prepared for testing a variable
order systems. The overview of the real circuit board with fractional variable order
inertial system has been shown in Fig. 13.

The order of such variable inertial system depends only on switches positions and
can be changedmany times during experimental process.When all switches (S1, S2 and
S3) in Fig. 1 are connected to terminals 1, the first-order inertial system is considering.
Otherwise, when switches are connected to terminals 2, the half-order inertial system
has been achieved.

7.2 Order Estimation for Analog Model and Direct Measurements

The identification process of analog model parameters was conducted according to
the algorithm presented in [32]. The parameters to be identified were obtained for
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Fig. 13 A circuit board of fractional variable order inertial system

constant value of order. It was done due to the fact that the system was designed to
keep the constant value of parameters for each order. Finally, identified parameters for
discrete variable order state-space system are as following:

A = −3.1937, B = 3.2129, C = 1. (29)

Parameters of KFx filter are:

P0 = [
10
]
, Q0 = [

8.82 · 10−8
]
,

x0 = [0], R = [1.6 · 10−5].

Parameters of KFw filter are:

Pw
0 = [

0.5
]
, ∗Qw

0 = [
0.01

]
,

α̂0 = [0.5], Rw = [1.6 · 10−5], A = 0.0001, δ = 0.5.

Figure 14 presents input and output of the analog system—the data for estimation
process. Figure 15 shows results of applying dual estimation algorithm to these data.
As it can be seen, the order is estimated with a high accuracy.

Example 8 In Table 2 and Fig. 16, the results of series of experiments for estimation
of variable order, performed for different step times h, have been presented. What was
expected, the larger is the step time, the accuracy of estimation error decreases.

7.3 Order Estimation for Analog Model and Networked Measurements

Parameters of the system and filters are the same as in Sect. 7.2, and the transmission
rate for measurements is 30%.

Figure 17 shows results of applying dual estimation algorithms for data obtained
by lossy network. As it can be seen, the order is estimated with quite high accuracy,
however with lower accuracy than for direct measurements case.
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Fig. 15 Results for dual estimation of variable order αk for analog model—estimated order

Table 2 Comparison of order
estimation error norms (where
ek = αk − α̃k , k = 1, . . . , T/h),
during time T for different step
times h

Step time h (s) Estimation error h
∑T/h

i=1 e2i

0.0010 0.0113

0.0020 0.0277

0.0050 0.0572

0.0080 0.0665

0.0100 0.0505

0.0200 0.0904
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Fig. 16 Estimated order for step time h = 0.02 s
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Fig. 17 Results for dual estimation of variable order αk for analog model and networked measurements—
estimated order

7.4 Order Estimation for Analog Model and Networked Measurements
Transmitted by Real Network

In this section, the measurements obtained by specially build separate computer net-
work contained two computers and two D-Link DGS-1100-16 routers Fig. 18. In
Fig. 19, the schema of lossy network has been presented.

In experiment, the package of 2000 samples was sent through the network with
the sampling time 0.001s. The transmission was realized in use of the UDP protocol.
This protocol uses a simply connectionless transmission model without transmission
tracking which means that it does not have any mechanism for flow or transmission
control. In effect of overloaded network, the package can be lost or received out
of order. This kind of issues has been simulated. For this purpose, the bandwidth
for transmission channel was limited. The signal from the source was transmission
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Fig. 18 D-Link routers

Fig. 19 Schema of lossy
network

samples
0 50 100 150 200 250 300

γ

0

1

Fig. 20 Samples lost during transmission

with exceeded available bandwidth. As a result, the transmission rate about 90% was
achieved. In Fig. 20, information about packages losing γk for the first 300 samples
is shown. The value equal to 0 means that this sample was missing or it had come in
out of order. In this experiment, the parameters used for estimation are the same as in
Sect. 7.2. Results of estimation are presented in Fig. 21.

8 Conclusions

In this paper, the variable order estimation algorithms for a case when measurements
are obtained directly and by lossy network have been presented. The order estimation
algorithms were applied to numerical examples and to real fractional variable order
inertial system. Since the problem of fractional order estimation is highly nonlinear,
the dual estimation algorithm has been used. For state variables and variable fractional
order estimation, the Fractional Kalman filter and the Unscented Fractional Kalman
filter have been used, respectively. Numerical results shown efficiency of proposed
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Fig. 21 Results for dual estimation of variable order αk for analog model and networked measurements
obtained from real network—estimated order

algorithms for direct and networked measurements as well. The estimation algorithm
has been also tested on a real object being electrical circuit analogmodel. The proposed
algorithms have confirmed the possibility of further use in case of order estimation of
real objects of unknown order both constant or variable.
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