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Abstract. A continuum model intended to provide predictions for the response of a woven fabric that includes the effects of

friction between fibers is proposed. Specifically, we consider a macroscopic formulation in which the fabric weave is composed

of two orthogonal families of continuously distributed yarns. The elastic behavior of the planar fabric is characterized by

a second-gradient formulation, incorporating the capacity of the fibers to resist a bending deformation. Particular care is

devoted to modeling the action of preventing fiber overlapping through a potential energy barrier. The frictional sliding

effect of warp threads interwoven with the weft yarns is introduced through a Rayleigh dissipative function that can be

appropriately shaped to consider a Coulomb-type law. Spinning friction of yarns belonging to different families also is

conceived when a relative rotation between fibers is present to generalize the dissipation phenomenon involved in the

considered sheet. Numerical simulations of the proposed model are provided and discussed.
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1. Introduction

Recent developments in continuum mechanics are increasingly marked by the need to model the mechan-
ical phenomenology occurring in “complex” metamaterials [21,22]. These are materials designed for
getting a specific << a priori-chosen>> behavior by finding suitable micro-architectures (see, e.g.,
[1,2,32,51,55,58,65–67]). In this context, the synthesis problem of metamaterials governed by a chosen set
of evolution equations plays a crucial role (see, e.g., [4,9,14,24,30,47,48,60]). When trying to synthesize
the “second gradient” continua, the particular micro-architecture that has been called “pantographic”
seems to play an important role. In fact, such micro-architecture allows for, at the macro-level, large
elongations and (with specific micro-constraints) more generally macro-deformations that correspond to
low deformation energies [3,17,19,41,42,50].

In the papers [5,6,8,10], it has been proven that by combining pantographic beams [7,38,61–63] via
suitable mechanical interconnections, a more general second gradient planar plates can be synthesized.
Some endeavors are being done in order to synthesize 3D continua whose deformation energy depends on
all second-order derivatives of displacement [26,59,68].

Pantographic micro-structure was inspired by the study of composite fibers reinforcements, whose
mechanical behavior has been puzzling many scholars because of their peculiarities (see, e.g., [13,29,35,
39,40]).

The concept behind pantographic micro-structures assumes that fibers belonging to different families
are allowed to have relative displacements and relative rotations (at the micro-level) and that these
displacements and rotations are possible with a vanishing or minimal deformation energy. This concept
is not entirely new, as it has been exploited in several technological circumstances, particularly in the
woven fabrics used as reinforcements in composites. The possibility of these relative displacements and
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rotations also in pantographic micro-architectures did motivate the formulation of continuum models in
which enriched kinematics is introduced. For instance, in [56,57], two kinematical fields are introduced
to describe the placement of each of the two families of fibers constituting the micro-architecture.

Instead, in [37], the kinematics is even richer, as two rotation fields are added. These more detailed
kinematical descriptions are strongly motivated by the need to describe experimental evidence and the
request to use a “computationally manageable” reduced-order model. In fact, at least in principle, the
experimental evidence could have been described by introducing a very detailed 3D Cauchy first gradient
continuum modeling the microstructure at the length scale of the constituting fibers’ diameter, but the
computational burden would have been several millions of degrees of freedom. Such a burden, especially
when optimization problems need to be solved [23,33,34], would make any analysis almost unattainable.

In the present paper, we formulate a continuum model designed to give a reduced-order description for
the response of a woven fabric whose mechanical behavior has some similarities with that of pantographic
sheets. The described phenomenology includes the effects of slipping friction and those involved in the
contact among fibers. Refraining, for the moment, from any detailed microscopic analysis, we propose
directly a macroscopic model aiming to account for the deformation of a fabric whose weave is com-
posed of two orthogonal families of homogeneously distributed yarns. The imagined planar fabric has a
complex mechanical behavior: its elasticity properties will be mathematically modeled by introducing a
second gradient deformation energy, which will account for the capacity of the fibers to resist bending
deformations. Moreover, the interaction between fibers in contact is also assumed to be elastic with an
interaction potential that tends quickly to infinity to block possible fibers’ interpenetrations. Additional
dissipative effects are incorporated in the model in order to account for: (1) the frictional sliding effect
of warp threads interwoven with the weft yarns and (2) spinning friction of yarns belonging to different
fibers families. The modeling choice consists in introducing a suitable Rayleigh dissipative function. Such
a function is chosen to produce a Coulomb-type friction law among fibers. Spinning friction is intro-
duced in order to model those dissipative phenomena occurring when a relative rotation between fibers is
present and plays a relevant role in considered deformation phenomena. More generally, modeling internal
dissipation in solids is an age-old problem, and for this reason, a huge amount of literature concerning
this subject is available (see [11,12,54,64] for helpful insight on the topic). In these contributions, the
dissipated energy often participates in damage and plastic phenomena—possibly by producing cracks
or enlarging the existing ones. On the other hand, the dissipated energy could also be associated with
friction related to reversible internal relative motions. This last aspect is often underestimated or taken
into account through some viscous effects that do not fit the experimental responses of the material since
it introduces a rate-dependent behavior not present. Only a few studies are available in this regard in
the literature about internal Coulomb-type dissipation in solids [36,52] and more specifically in woven
fabrics (see, e.g., [31,43]).

The discussed problem is closely related to the adhesion of thin films and fibers [25,44]; therefore, we
believe that the applications of the proposed model can also be extended to these kinds of problems.

The proposed model is validated by performing numerical simulations, which produce interesting
predictions about the mechanical behavior of the considered fabric. It has to be remarked that the
presented methods may be of use also in the design of pantographic metamaterials: in fact, the considered
frictional phenomenology has not been studied yet in this last context apart from one preliminary attempt
done in [15].

2. Modeling

To model a woven fabric, a continuum elastic surface S, lying on a rectangular region Ω belonging to
a bi-dimensional Euclidean space, is regarded as a double family of straight orthogonal fibers, i.e., the
yarns in warp and weft directions, continuously distributed. More precisely, for the plane surface S and
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at a given time, a motion, herein regarded as planar, is defined by two placement vector fields, denoted
by χ1 and χ2, for the two families of fibers.

A practical choice for this kind of engineering fabric is to represent all deformation measures in a
reference frame aligned with the fiber directions. For this purpose, the unit tangent vectors to the two
families of fibers in the reference configuration, denoted by D1 and D2, are introduced. Consequently, to
model the elastic behavior of the textile formed by weaving fibers, all elastic constitutive information is
represented through a strain energy

W (χ2 − χ1,∇χ1,∇χ2,∇∇χ1,∇∇χ2) (1)

that depends on the relative fiber displacement, the first, and second gradients of the placement. A strain-
energy function of this type [18,56], incorporating the orthotropic response conferred by the initial fiber
geometry, is

W =
∫
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in which K α
e , Ks and K α

b are material parameters related to the extensional, shear, and bending stiffness,
respectively, being α = {1, 2} a label that specifies one of the two families of the fibers. The stiffness Kc

concerns the elastic interaction between fibers belonging to different families. Specifically, the measures
of deformation appearing in the stored strain energy are:

1. the stretching of fibers

εα = ‖∇χαDα‖ − 1 ; (3)

2. the shearing distortion:

γ = arcsin
( ∇χ1D1

‖∇χ1D1‖ · ∇χ2D2

‖∇χ2D2‖
)

(4)

namely the change in the angle between fibers belonging to different families;
3. the Lagrangian curvature of fibers:

κα =

√
∇∇χαDα |Dα ⊗ Dα · ∇∇χαDα |Dα ⊗ Dα

‖∇χαDα‖2 −
( ∇χαDα
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‖∇χαDα‖
)2

(5)

that is the rate of change of the current tangent vector to the fiber with respect to arc length along
the same fiber in the reference configuration;

4. the coupling distortion

β = ‖χ2 − χ1‖ (6)

which represents the interaction term between the two families of fibers. This interaction is due to
the geometry of the contact between fibers. The mechanism characterizing such an interaction is
analogous to a leaf spring (see Fig. 1).

It is worth noting that the energy density related to the shear deformation is written in terms of the
tangent of the distortion angle γ [49]; this is a natural way of excluding the overlapping of the fibers since
the trigonometric function tends only asymptotically to the values ±π/2 for which it would be necessary
to provide an infinite amount of energy to the sample.
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Fig. 1. Unit cell of the woven fabric

Table 1. Material parameters used in the numerical simulations

parameter value

K α
e 1.27 × 108 N/m

K s 4.00 × 102 N/m
K α

b 254.1 N m
Kc 6.00 × 107 N/m3

ζ 199.2 kN/m2

η 70 s/m

2.1. Model of dissipation

In the present work, the effects of slipping with friction are considered by means of a macroscopic for-
mulation based on the choice of a suitable dissipation functional which depends on the relative sliding
velocities between the two interacting families of fibers [20]. For this purpose, a Rayleigh dissipative
potential density is introduced as follows:

R =
ζ

η
{log [cosh (η (χ̇11 − χ̇21))] + log [cosh (η (χ̇12 − χ̇22))]} (7)

to model a Coulomb-type friction dissipation and is designed by means of the components of the relative
velocity χ̇1 − χ̇2. Following this approach, the derivative of such a potential density R with respect to
the relative sliding velocities in the directions D1 and D2 yields the friction stress τ mutually exerted by
the fibers during a sliding motion, whose components are:

τi = ζ tanh [η (χ̇1i − χ̇2i)] (8)

In the literature, Coulomb friction actions are usually modeled by the introduction of the signum
function, whose argument is the velocity of the kinematical quantity on which friction forces act. This
function, being not Lipschitz continuous, is a source of strong singularities and numerical or chaotic
instabilities when appearing in differential equations. Therefore, the signum function is regularized with
a hyperbolic tangent modulated with an amplitude ζ—giving the maximum of friction stress which may
be exerted—and with a suitably chosen slope given by η —defining the range of velocities where a viscous
behavior is present, namely the friction force is an increasing function of the velocity.
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Fig. 2. Plots of the applied displacement and velocity in the cyclic tensile tests. Case of constant maximum velocity

0 0.05 0.1 0.15 0.2
imposed displacement, m

-2

0

2

4

6

8

10

12

14

16

18

fo
rc

e,
 k

N

0 0.05 0.1 0.15 0.2

imposed displacement, m
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

fo
rc

e,
 k

N

0 0.05 0.1 0.15 0.2

imposed displacement, m
-0.1

0

0.1

0.2

0.3

0.4

0.5

fo
rc

e,
 k

N

Fig. 3. Hysteretic cycles for different aspect ratios: 1:2 (left); 1:3 (center); 1:4 (right)

Therefore, the virtual work related to the friction has to be calculated as follows:

δW Diss = −
∫

Ω

τ · δ (χ1 − χ2) dΩ (9)

2.2. Spinning friction

Since the nature of the contact is particularly complex in the considered system, in the present paper, we
also explore the possibility of adding a dissipation related to the relative rotation of the fibers that are
into contact. Indeed, it is reasonably expected that a relative rotation of the small regions belonging to
different fibers in touch produces a share of dissipation in the overall motion due to this kind of contact
that is not provided by the model given in (9). For this purpose, a spinning friction term [69] is conceived
through a Rayleigh dissipative potential as a function of the relative rotation rate γ̇:
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Fig. 4. Plots of the applied displacement and velocity in the cyclic tensile tests. Case of constant frequency
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Fig. 5. Comparison between the hysteretic cycles for the sample with ratio 1:3 for the constant maximum velocity case
(left) and the constant frequency case (right)

Rspin =
ζspin

ηspin
log [cosh (ηspinγ̇)] (10)

in which ζspin and ηspin play an analogous role of the previous sliding friction contribution. Therefore,
the virtual work related to the spinning friction becomes

δW Diss
spin = −

∫

Ω

ζspin tanh (ηspinγ̇) δγ dΩ . (11)

Finally, considering the case in which inertial effects can be neglected and to get the equations of
motion, the first variation of the strain-energy functional W has to be equated to the dissipative virtual
works, i.e.,
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Fig. 6. Comparison between the hysteretic cycles for the sample with ratio 1:3 for a soft bending stiffness case (left) and a
hard bending stiffness case (right)
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Fig. 7. Comparison between the hysteretic cycles with spinning friction for the sample with ratio 1:3 for the constant
maximum velocity case (left) and the constant frequency case (right)

δW = δW Diss + δW Diss
spin . (12)

possibly, at first approximation, the last term can be neglected. In what follows, for the sake of simplicity,
we consider only kinematic boundary conditions on a portion of the boundary while other parts are free.
Therefore, no external work is taken into account here.
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Fig. 8. Relative displacement β for different aspect ratios: 1:2 (top); 1:3 (center); 1:4 (bottom)

3. Numerical results

3.1. Cyclic responses

Numerical simulations based on the energy (2) with dissipation effects due to frictional slip in woven
fabrics (9) are performed using a generalized variational principle including Rayleigh dissipative functions
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Fig. 9. Comparison between relative displacements for the sample with ratio 1:3 for a soft bending stiffness case (top) and
a hard bending stiffness case (bottom)

and the finite element software COMSOL Multiphysics. A nonlinear second gradient energy density
characterizes the adopted model. Therefore, particular care is used in the formulation, especially in the
right choice of interpolating functions that must be able to represent a functional space H2 appropriately
(see, e.g., [16,53]). To analyze the effect of dissipation in a woven fabric, cyclic tensile tests have been
carried out for samples having diverse sizes. Specifically, we considered a rectangular specimen with three
aspect ratios, 1:2, 1:3, and 1:4, having a short edge of 30 cm long. The two families of fibers are considered
with the same geometry and material. Table 1 reports the parameters used for the simulations unless
diversely specified. Identification procedures based on digital image correlation can be used to obtain these
parameters experimentally (see, e.g., [27,28,45,46]). We remark that, in the case of dynamic simulations
with Coulomb-friction, stick-slip phenomena can occur and need special numerical treatment as given by
appropriate integrators [70,71].

We executed these tests by clamping one edge of the sample and applying a given displacement in
the longitudinal direction being suppressed the orthogonal component. The cycles are characterized by
increasing amplitude even though the maximum velocity in each of them remains the same (see Fig. 2).
Here, the idea is to appraise the dissipation for different amplitudes keeping the applied maximal velocity
constant to examine the fabric nonlinear response.

Figure 3 shows the force versus displacement plots of the numerical simulations for the different sizes
examined under the same imposed displacement. The nonlinear response is more pronounced for the
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Fig. 10. Curvatures of the sample with the aspect ratio 1:2 under tension: κ1 (top); κ2 (bottom)

samples that undergo a large displacement compared with the specimen’s overall size. As a matter of
fact, for the same displacement, the corresponding value of the force is much larger.

A second test has been conducted with a different axial displacement-controlled loading (see Fig. 4).
Instead of keeping the maximal velocity constant, the cycle frequency is set unvarying to see the role
of an increasing velocity together with the displacement amplitude. Figure 5 exhibits some differences
between the two displacement-controlled loadings because, in the model of dissipation, the regularization
of the signum function through the hyperbolic tangent implies a certain amount of viscous response that
is not provided by the signum, which characterizes a pure Coulomb behavior, namely rate-independent.
This modeling choice is quite general since, simply changing the slope of the hyperbolic tangent (η), one
can vary the share of viscous behavior involved in the motion.

Subsequently, we investigated the role of the stiffnesses on the hysteretic behavior of the fabric. New
tensile tests have been carried out with the constant maximal velocity loading in the case of a sample
with an aspect ratio of 1:3. In these tests, we considered diminished and increased stiffnesses to illustrate
the response of the specimens changing the overall compliance. The stiffnesses used in these tests are: 1)
for the soft case K α

e = 8.55 × 107 N/m and K α
b = 24.05 Nm; 2) for the stiff case K α

e = 1.25 × 108

N/m and K α
b = 560.8 N m.

Figure 6 displays the comparison between a significantly soft sample and a stiff one. The former
having a more considerable deformation shows a remarkable nonlinear behavior, but the dissipation
involved remains low since the internal stress is rather small. The latter, on the contrary, being stiffer,
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Fig. 11. Curvatures of the sample with the aspect ratio 1:3 under tension: κ1 (top); κ2 (bottom)

shows a less pronounced deformation and consequently a more linear response. At the same time, due to
a high-stress level, the dissipation is more significant.

Finally, we explored the case in which the previously used model is augmented with the contribution
(11) related to the spinning friction. Again, for this case, we compared the two axial displacement-
controlled loadings with constant maximal velocity (using the parameters ζspin = 30 N/m, ηspin = 40 s)
and constant frequency (using the parameters ζspin = 80 N/m, ηspin = 50 s) for the rectangular sample
with an aspect ratio of 1:3. Figure 7 reports the force versus displacement plots. The effect of the spinning
friction is evident since the overall dissipation increases compared with the previous cases. The shapes of
the hysteretic cycles also change, especially nearby the points of motion reversal. In a detailed description
of the dissipative behavior of these materials, one cannot neglect a priori the influence of this phenomenon.
Similar comments can be made about the dependence of the imposed displacement history as done before.

3.2. Analysis of the deformation

To have a general picture of the fabric behavior, we showcase the equilibrium shapes of the specimens in
the tensile tests in correspondence to the maximum displacement applied. In particular, in what follows,
we plot through colors the relative displacement (β), the curvatures of the two families of the fibers (κα),
and the shear distortion (γ). The first plot is significant to see where the friction phenomenon occurs
the most; the second plot represents a quantitative assessment of how meaningful the second-gradient
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Fig. 12. Curvatures of the sample with the aspect ratio 1:4 under tension: κ1 (top); κ2 (bottom)

contribution is; the third is mainly related to the spinning friction. The model used in the numerical
simulations is continuous. Still, we display only a few significant material lines in the plots to follow the
deformation pattern of the considered samples better. We remark that the finite element discretization
is unrelated to the shown lines. On that matter, we set the size of the mesh in order to be sufficiently
accurate in obtaining the results, making a convergence analysis.

Figure 8 shows the pattern of the relative displacement involved in the tensile test for different aspect
ratios. The qualitative behavior is almost the same, but naturally, the values of the considered field
depend on the relative amplitude of the imposed displacement compared with the specimen sizes.

Figure 9 exhibits the effect of the stiffnesses of the fibers. The relative displacement between fibers
localizes in the same regions. However, the intensities and the equilibrium shapes of the samples under
tension differ.

Figures 10, 11, and 12 show the curvatures of the fibers in the tensile test. The regions for which the
curvatures are not vanishing are significant with respect to the overall sizes of the specimen; therefore,
the stored energy in the bending deformation cannot be negligible if the related stiffness is sufficiently
high. This aspect allows us to assess the importance of the second-gradient contribution in the considered
energy.

For the sake of completeness, we also plot the distortion angle γ, which is significant for the definition
of the spinning friction, in Fig. 13. This quantity is almost uniform over a large central zone of the sample.
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Fig. 13. Distortion angle γ of the sample with the aspect ratio 1:3 (top) and 1:4 (bottom) under tension

4. Conclusions

In the present paper, we propose a weak formulation based on the principle of virtual work to describe
the behavior of a planar woven fabric in the framework of continuous deformable surfaces. The model is
characterized by an elastic part that takes into account the elongation, and the bending deformations of
two orthogonal families of interwoven fibers thought as continuously distributed over a planar reference
region. A further contribution in the energy allows us to model the impenetrability of the fibers when
they are close to being aligned. The two families of yarns are described by two different independent
placement maps, which interact with each other for the effect of the weave but are allowed to possess
a relative slipping. This last relative slipping together with the relative rotation between fibers could
be a source of dissipation due to friction. In the paper, a suitable Rayleigh functional is introduced to
model these phenomena. The effect of the considered friction dissipation is investigated through numerical
simulations.
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