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Abstract. This study deals with the convergence properties of Struve matrix func-

tions within complex analysis. Certain new classes of matrix differential recurrence

relations, matrix differential equations, the various families of integral represen-

tations and integrals obtained here are believed to be new in the theory of Struve

matrix functions, and the several properties of the modified Struve matrix func-

tions are also included. Finally, we investigate the operational rules which yield

a different view of the expansion formulae for Struve and modified Struve matrix

functions.
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1. Introduction and preliminaries

Struve functions are mainly investigated because of their intrinsic mathematical im-
portance in various problems in many parts of mathematical physics, physics and
applied mathematics, and because of the fact that these functions are shown to be
natural solutions of a particular set of ordinary and partial differential equations
in various directions; they have a wide variety of applications in different branches
of science and technology. The importance of studying special matrix functions and
polynomials is with their applications in certain areas of applied mathematics, math-
ematical physics, physics, number theory, statistics, and engineering. In these fields,
many properties, extensions, and generalizations of them have been published during
the last years by many authors [1, 2, 7, 8, 9, 10, 11, 12, 13, 14]. In particular, Struve
matrix functions are also potentially useful related to the more familiar Bessel matrix
functions. In fact, Mahmoud [15] has earlier introduced the Struve matrix function.
Subsequently, motivated by the above-mentioned works, the importance of some
interesting unified matrices associated with a variety of versions of Struve matrix
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functions in various problems in many places of mathematical physics, physics, ap-
plied mathematics, and engineering, have been clearly demonstrated in the language
of matrices.

Motivated mainly by investigation of the Struve matrix function which is a
matrix extension of the Struve scalar function, this study is organized as follows. The
convergence, order, and type of Struve matrix function are investigated. Differential
recurrence relations and Struve’s matrix differential equation of HA(z) are given.
Integral representations and some integrals of HA(z) are obtained in Section 2.
Numerous properties of the modified Struve matrix function are studied in Section
3. Various families of the expansion formulae with Struve matrix functions of the
results presented by operational techniques as well as new and known generalizations
are indicated in Section 4.

Throughout this study, for a matrix A ∈ CN×N , σ(A) denotes the set of all
eigenvalues of A and is called its spectrum. Furthermore, the identity matrix and
the null matrix in CN×N will be denoted by I and 0, respectively. We say that the
matrix A in CN×N is a positive stable matrix if Re(z) > 0 for all z ∈ σ(A).

Definition 1.1. Jódar and Cortés defined the Gamma matrix function as follows (see
[5])

Γ(A) =

∫ ∞

0
e−ttA−Idt; tA−I = exp

(
(A− I) ln t

)
, (1.1)

where A is a positive stable matrix in CN×N .

If σ(A) does not contain a zero or a negative integer, the matrix form of the
Pochhammer symbol is defined by

(A)n =

{
A(A+ I) . . . (A+ (n− 1)I) = Γ(A+ nI)Γ−1(A), n ∈ N,
I, n = 0,

(1.2)

where Γ(A) is an invertible matrix in CN×N and Γ−1(A) is its inverse Gamma matrix
function.

Definition 1.2. Jódar and Cortés defined the hypergeometric matrix function in the
form (see [6])

2F1(A,B;C; z) =

∞∑
k=0

zk

k!
(A)k(B)k[(C)k]

−1, (1.3)

where A, B, and C are matrices of CN×N satisfying the condition that C +nI is an
invertible matrix for all integers n ≥ 0 and for |z| < 1.

Theorem 1.1. Let A, B and C be matrices in CN×N where the matrix C satisfies
the condition that C + nI is an invertible matrix for all integers n ≥ 0, and C,
C − A, C − B and C − A − B are positive stable matrices where all matrices are
commutative. Then the relation

2F1

(
A,B;C; 1

)
= Γ(C −A−B)Γ(C)Γ−1(C −A)Γ−1(C −B). (1.4)

holds.
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Definition 1.3. Let A be a matrix in CN×N satisfying (see [7])

σ(A) ∩ Z− = ∅. (1.5)

Sastre and Jódar defined the Bessel matrix function JA(z) as follows:

JA(z) =

∞∑
k=0

(−1)k

k!
Γ−1(A+ (k + 1)I)

(
1

2
z

)A+2kI

, 0 < z < ∞. (1.6)

Theorem 1.2. [5] If A is a matrix in CN×N satisfying Re(z) > 0 for all eigenvalues
z ∈ σ(A) and for n ≥ 1 an integer, then

Γ(A) = lim
n→∞

(n− 1)![(A)n]
−1nA. (1.7)

Fact 1.1. For an arbitrary matrix A ∈ CN×N , the relation is (see [3])

Dk
[
tA+mI

]
= (A+ I)m(A+ I)m−kt

A+(m−k)I , k = 0, 1, 2, . . . (1.8)

For A ∈ CN×N , Legendre’s duplication formula for the Gamma matrix function
is as follows:

Γ(2A) =
1√
π
22A−IΓ(A)Γ

(
A+

1

2
I

)
. (1.9)

If Re(µ) ∈ σ(A) is not an integer and using (1.2), we have the relation

Γ(I −A− nI)Γ−1(I −A) = (−1)n[(A)n]
−1, (1.10)

where Γ(I −A) is an invertible matrix.

2. Definition and some new properties for Struve’s matrix
functions

Definition 2.1. Let us suppose that A is a matrix in CN×N satisfying the condition

Re(µ) > −3

2
for every eigenvalue µ ∈ σ(A). (2.1)

Then, we define Struve’s matrix function by the series as follows

HA(z) =
∞∑
k=0

(−1)k

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)(
z

2

)A+(2k+1)I

. (2.2)

Theorem 2.1. For a matrix A in CN×N satisfying (2.1), the Struve matrix function
is an entire function and has order ρ = 1

2 and type τ = 0.

Proof. The convergence properties of Struve’s matrix function are given by the ratio
test, and using (1.7) and (2.2), we have

lim
k−→∞

∣∣∣∣
∥∥∥∥
(−1)k+1Γ

(
k + 3

2

)
Γ−1

(
A+

(
k + 5

2

)
I
)(

z
2

)A+(2k+3)I

(−1)kΓ
(
k + 5

2

)
Γ−1

(
A+

(
k + 3

2

)
I
)(

z
2

)A+(2k+1)I

∥∥∥∥
∣∣∣∣

= lim
k−→∞

∥∥∥∥
(
A+

(
k + 3

2

)
I
)−1

∥∥∥∥
(
k + 3

2

)
∣∣∣∣
(
z

2

)2∣∣∣∣ ≤ lim
k−→∞

∥∥∥(2A+ (2k + 3)I
)−1

∥∥∥
2k + 3

∣∣z2∣∣ = 0,
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taking into consideration the well-known limits

lim
k→∞

∥∥∥∥
ln Γ(A+ kI)

k ln(k)

∥∥∥∥ = 1 (2.3)

and

lim
k→∞

∥∥∥∥
[Γ(A+ kI)]

1
k

k

∥∥∥∥ =
1

e
. (2.4)

Now, the order and type of the Struve matrix function are calculated in the following:

ρ = lim sup
k→∞

k ln(k)

ln( 1
‖Uk‖)

= lim sup
n→∞

k ln(k)

ln
∥∥∥(−1)kΓ

(
k + 3

2

)
Γ
(
A+

(
k + 3

2

)
I
)
2A+(2k+1)I

∥∥∥

≤ lim sup
k→∞

1∥∥∥∥
ln Γ(k+ 3

2
)

k ln(k) +
ln Γ(A+(k+ 3

2
)I)

k ln(k) + (A+(2k+1)I) ln(2)
k ln(k)

∥∥∥∥
=

1

2
,

and

τ =
1

eρ
lim sup
k→∞

k
(
‖Uk‖

) ρ
k

=
2

e
lim sup
k→∞

k

(∥∥∥∥
(−1)k

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)
2−(A+(2k+1)I)

∥∥∥∥
) 1

2k

=
1

e
lim sup
k→∞

k

(
1

Γ(k + 3
2)‖Γ(A+ (k + 3

2)I)‖

) 1
2k

=
1

e
lim sup
k→∞

(
1

Γ(k + 3
2)

) 1
2k

lim sup
k→∞

k

(‖Γ(A+ (k + 3
2)I)‖)

1
2k

= 0.

�

The matrix differential recurrence relations presented in the following theorem
are also interesting:

Theorem 2.2. For matrices A and A − I in CN×N satisfying (2.1), the derivative
of the Struve matrix functions can be obtained by the following matrix differential
recurrence relations:

d

dz

[
z−AHA(z)

]
=

2−A

√
π
Γ−1

(
A+

3

2
I

)
− z−AHA+I(z), (2.5)

d

dz

[
zAHA(z)

]
= zAHA−I(z), (2.6)

and

HA−I(z)−HA+I(z) = 2 DHA(z)−
1√
π
Γ−1

(
A+

3

2
I

)(
z

2

)A

. (2.7)
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Proof. Multiplying both sides of (2.2) by z−A and then differentiating each side with
respect to z, we get

d

dz
[z−AHA(z)] =

d

dz

∞∑
k=0

(−1)kz(2k+1)I

2A+(2k+1)IΓ(k + 3
2)
Γ−1

(
A+

(
k +

3

2

)
I

)

= z−A
∞∑
k=0

(−1)kzA+2kI

2A+2kIΓ(k + 1
2)
Γ−1

(
A+

(
k +

3

2

)
I

)
.

Replacing k by k + 1 in the above equation, we get

d

dz
[z−AHA(z)] = z−A

∞∑
k=−1

(−1)k+1zA+I+(2k+1)I

2A+I+(2k+1)IΓ(k + 3
2)
Γ−1

(
A+

(
k +

5

2

)
I

)

= z−AΓ−1(A+ 3
2I)z

A

Γ(12)
2−A

− z−A
∞∑
k=0

(−1)k

Γ(k + 3
2)

(
z

2

)A+I+(2k+1)I

Γ−1

(
A+

(
k +

5

2

)
I

)

=
Γ−1(A+ 3

2I)√
π

2−A − z−AHA+I(z).

Thus, for the Struve matrix functions, we have the first property

d

dz

[
z−AHA(z)

]
=

2−A

√
π
Γ−1

(
A+

3

2
I

)
− z−AHA+I(z).

Moreover, by (2.5), we can write

zH′
A(z) = AHA(z) +

zA+IΓ−1(A+ 3
2I)√

π
2−A − zHA+I(z). (2.8)

Multiplying both sides of (2.2) by zA and then differentiating each side with respect
to z, we get

d

dz
[zAHA(z)] = 2

∞∑
k=0

(−1)kΓ−1
(
A+

(
k + 3

2

)
I
)(
A+

(
k + 1

2

)
I
)
z2A+2kI

2A+(2k+1)IΓ(k + 3
2)

= zA
∞∑
k=0

(−1)kΓ−1
(
A+

(
k + 1

2

)
I
)
zA+2kI

2A+2kIΓ(k + 3
2)

= zAHA−I(z).

Thus, we obtain the second property (2.6). Developing the left-hand side of (2.6)
can also be put as

zH′
A(z) = zHA−I(z)−AHA(z). (2.9)

From (2.8) and (2.9), we obtain (2.7). �

Theorem 2.3. For matrices A and A−I in CN×N satisfying (2.1), the Struve matrix
functions satisfy the interesting pure recurrence relation

zHA−I(z) + zHA+I(z) = 2A HA(z) +
z√
π
Γ−1

(
A+

3

2
I

)(
z

2

)A

. (2.10)
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Proof. Eliminate H′
A(z) from (2.8) and (2.9) to obtain (2.10). �

Corollary 2.1. A Struve matrix functions is a solutions of the second-order Struve
matrix differential equation

(
z2D2I + zDI + z2I −A2

)
HA(z) =

4√
π
Γ−1

(
A+

1

2
I

)(
z

2

)A+I

. (2.11)

Proof. Starting by (2.8) and (2.9), we obtain the following rising and lowering op-
erators:

Ê+HA(z) = HA+I(z)−
1√
π
Γ−1

(
A+

3

2
I

)(
z

2

)A

, (2.12)

and

Ê−HA(z) = HA−I(z). (2.13)

From (2.12) and (2.13), Struve matrix functions can be rewritten as

Ê+Ê−HA(z) = HA(z)−
1√
π
Γ−1

(
A+

1

2
I

)(
z

2

)A−I

. (2.14)

By applying in differential terms the last equation can be rewritten as
(
1

z
(A− I)−DI

)(
1

z
A+DI

)
HA(z) = HA(z)−

1√
π
Γ−1

(
A+

1

2
I

)(
z

2

)A−I

. (2.15)

Thus, we obtain the Struve matrix differential equation (2.11). �

Corollary 2.2. The hypergeometric matrix function of a Struve matrix function HA(z)
is of the form

HA(z) =
2√
π

(
z

2

)A+I

Γ−1

(
A+

3

2
I

)
1F2

(
I;A+

3

2
I,

3

2
I;−1

4
z2
)
. (2.16)

Proof. It is enough to use (2.2) and (1.2), then we obtain (2.16). �

In order to obtain some matrix recurrence relations, we need the following
lemma. If the hypergeometric matrix function given by (1.3) is rearranged, we have
the next lemma.

Lemma 2.1. For the hypergeometric matrix function 1F2 we have the equalities

dn

dzn

[
zC−I

1F2

(
A;B,C; z

)]
= (C − nI)nz

C−(n+1)I
1F2

(
A;B,C − nI; z

)
, (2.17)

where B, C and C − nI are invertible matrices for every integer n ≥ 0,

dn

dzn

[
zB−I

1F2

(
A;B,C; z

)]
= (B − nI)nz

B−(n+1)I
1F2

(
A;B − nI, C; z

)
, (2.18)

where B, C and B − nI are invertible matrices for every integer n ≥ 0, and

dn

dzn

[
1F2

(
A;B,C; z

)]
=(A)n[(B)n]

−1[(C)n]
−1

× 1F2

(
A+ nI;B + nI,C + nI; z

)
,

(2.19)

where C, B, B + nI and C + nI are invertible matrices for all integers n ≥ 0.
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Proof. From (1.2) and (1.8), we get

dn

dzn

[
zC+(k−1)I

]
= (C)k(C − nI)n[(C − nI)k]

−1zC+(k−n−1)I .

Substituting the above relation into the series expression of the hypergeometric
matrix function 1F2, we obtain (2.17).

The proof of Eq. (2.18) is very similar to the proof of Eq. (2.17). Similarly, we
get

d

dz
1F2(A;B,C; z) =

∞∑
k=1

kzk−1

k!
(A)k[(B)k]

−1[(C)k]
−1

=

∞∑
k=0

zk

k!
(A)k+1[(B)k+1]

−1[(C)k+1]
−1

= AB−1C−1
∞∑
k=0

zk

k!
(A+ I)k[(B + I)k]

−1[(C + I)k]
−1

= AB−1C−1
2F1(A+ I;B + I, C + I; z).

(2.20)

By iteration of (2.20), one gets (2.19). �

Theorem 2.4. Let A and A − nI be matrices in CN×N for n ∈ N ∪ {0} satisfying
(2.1) whose eigenvalues µ all satisfy Re(µ) > −3

2 . The derivative formulas for Struve
matrix functions satisfy the following:

(i)

(
1

z

d

dz

)n[
zAHA(z)

]
= zA−nIHA−nI(z). (2.21)

(ii)

(
1

z

d

dz

)n[(
z−AHA(z)

]
=

2nI−A

√
π

Γ−1

(
A+

3

2
I

)((
3

2
− n

)
I

)

n

z(1−2n)I

× 1F2

(
I; (

3

2
− n)I, A+

3

2
I;−z2

4

)
,

(2.22)

where (32 − n)I and A+ 3
2I are invertible matrices in CN×N .

(iii)

(
1

z

d

dz

)n[
z−A−IHA(z)

]
= n!2A+IΓ−1

(
n+

3

2

)
Γ−1

(
A+

(
n+

3

2

)
I

)

× 1F2

(
(n+ 1)I;

(
n+

3

2

)
I, A+

(
n+

3

2

)
I;−1

4
z2
)
,

(2.23)

where A+ (n+ 3
2)I and (n+ 3

2)I are invertible matrices in CN×N .

Proof. (i) To prove (i), take A → I, B → 3
2I, C → A+ 3

2I and z → − z2

4 in Equation
(2.17).

(ii) Take z → −1
4z

2, A → I, B → 3
2I and C → A+ 3

2I in equation (2.18).

(iii) Take z → −1
4z

2, A → I, B → 3
2I and C → A+ 3

2I in equation (2.19). �
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Now, we derive the integral representations for Struve matrix functions as given
in (2.2).

Theorem 2.5. If A is a matrix in CN×N satisfying Re(µ) > −1
2 for all eigenvalues

µ ∈ σ(A), then we have the integral representations for the Struve matrix function

HA(z) = 2

(
z

2

)AΓ−1(A+ 1
2I)√

π

∫ 1

0
(1− t2)A− 1

2
I sin(zt)dt. (2.24)

Proof. If we substitute the series for sin(zt) on the right-hand side of (2.24), we
obtain

2

(
z

2

)AΓ−1(A+ 1
2I)√

π

∫ 1

0
(1− t2)A− 1

2
I sin(zt)dt

= 2

(
z

2

)AΓ−1(A+ 1
2I)√

π

∞∑
k=0

(−1)kz(2k+1)I

(2k + 1)!

∫ 1

0
(1− t2)A− 1

2
It(2k+1)Idt.

Taking u → t2 and using the well-known formula relating the Beta matrix function
with the Gamma matrix function, we get

2

(
z

2

)AΓ−1(A+ 1
2I)√

π

∞∑
k=0

(−1)kz(2k+1)I

2(2k + 1)!

∫ 1

0
(1− u)A− 1

2
IukIdu

=

(
z

2

)AΓ−1(A+ 1
2I)√

π

∞∑
k=0

(−1)kz(2k+1)I

(2k + 1)!
B(A+

1

2
I, (k + 1)I)

=

∞∑
k=0

(−1)k22k+1k!

(2k + 1)!
Γ−1

(
A+ (k +

3

2
)I

)(
z

2

)A+(2k+1)I

=

∞∑
k=0

(−1)k

Γ

(
k + 3

2

)Γ−1

(
A+ (k +

3

2
)I

)(
z

2

)A+(2k+1)I

= HA(z). �

Theorem 2.6. For matrices A and A− I in CN×N satisfying Condition (2.1) whose
eigenvalues µ all satisfy Re(µ) > −3

2 , the integral representations for Struve matrix
functions of interest are

(i)

∫ z

0
tAHA−I(t)dt = zAHA(z). (2.25)

(ii)

∫ z

0
t−AHA+I(t)dt =

z√
π
2−AΓ−1

(
A+

3

2
I

)
− z−AHA(z). (2.26)
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Proof. Substituting (2.2) in (2.25), we have

∫ z

0
tA HA−I(t) dt =

∞∑
k=0

(−1)k

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

1

2

)
I

)(
1

2

)A+2kI ∫ z

0
t2A+2kIdt

=
∞∑
k=0

(−1)k

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

1

2

)
I

)(
1

2

)A+2kI

(2A+ (2k + 1)I)−1z2A+(2k+1)I

= zA
∞∑
k=0

(−1)k

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)(
z

2

)A+(2k+1)I

= zAHA(z).

Similarly, the proof of the equation (2.26) is very similar to the proof of equation
(2.25), thus we get the desired results. �

Theorem 2.7. If A and B are matrices in CN×N , the integral representation for
Struve matrix functions in (2.2) holds true:

∫ z

0
tBHA(t)dt =

1√
π
2−AzA+B+2I(A+B + 2I)−1Γ−1

(
A+

3

2
I

)

× 2F3

(
I,

1

2

(
B +A

)
+ I;

3

2
I, A+

3

2
I,

1

2
(B +A) + 2I;−1

4
z2
) (2.27)

where A is a matrix in CN×N satisfying Conditions (2.1), and 1
2(B +A) + 2I is an

invertible matrix in CN×N satisfying the condition Re(µ) > −2 for all eigenvalues
µ ∈ σ(A+B).

Proof. From (2.2), the left-hand side of (2.27) can be written as

∫ ∞

0
tB HA(t) dt =

∞∑
k=0

(−1)k

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)

×
(
1

2

)A+(2k+1)I ∫ z

0
tA+B+(2k+1)Idt.

Taking

(A+B + 2(k + 1)I)−1 =
1

2

(
1

2
(A+B) + I

)−1[(1

2
(A+B) + 2I

)

k

]−1

×
(
1

2
(A+B) + I

)

k

and using the hypergeometric matrix function with the help of matrix functional
calculus, we have
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∞∑
k=0

(−1)k

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)(
1

2

)A+(2k+1)I

(A+B + 2(k + 1)I)−1

× zA+B+(2k+2)I = Γ−1

(
3

2

)
2−A−IzA+B+2IΓ−1

(
A+

3

2
I

)

×
∞∑
k=0

(−1)k(I)k
k!

[(
3

2
I

)

k

]−1[(
A+

3

2
I

)

k

]−1

× 1

2

(
1

2
(A+B) + I

)−1[(1

2
(A+B) + 2I

)

k

]−1(1

2
(A+B) + I

)

k

(
z

2

)2kI

=
1√
π
2−AzA+B+2I(A+B + 2I)−1Γ−1

(
A+

3

2
I

)

× 2F3

(
I,

1

2
(B +A) + I;

3

2
I, A+

3

2
I,

1

2
(B +A) + 2I;−1

4
z2
)
. �

Theorem 2.8. If A and B are matrices in CN×N satisfying (2.1) and A − B is a
positive stable matrix, we have the formula

HA(z) = 2Γ−1(A−B)

(
z

2

)A−B ∫ 1

0
(1− t2)A−B−ItB+IHB(zt)dt. (2.28)

Proof. Let us consider the integral

I =
∫ 1

0
(1− t2)A−B−ItB+IHB(zt)dt,

and substitute the series (2.2) for Struve’s matrix function to obtain

I =
∞∑
k=0

(−1)k

Γ
(
k + 3

2

)Γ−1

(
B +

(
k +

3

2

)
I

)(
z

2

)B+(2k+1)I

×
∫ 1

0
(1− t2)A−B−It2B+(2k+2)Idt.

Substituting u → t2 and using the wellknown formula relating the Beta matrix
function with the Gamma matrix function, we get

I =
∞∑
k=0

(−1)k

2Γ
(
k + 3

2

)Γ−1

(
B +

(
k +

3

2

)
I

)(
z

2

)B+(2k+1)I∫ 1

0
(1− u)A−B−IuB+(k+ 1

2
)Idu

=

∞∑
k=0

(−1)k

2Γ
(
k + 3

2

)Γ−1

(
B +

(
k +

3

2

)
I

)(
z

2

)B+(2k+1)I

B

(
A−B,B +

(
k +

3

2

)
I

)

=
1

2
Γ(A−B)

(
z

2

)B−A ∞∑
k=0

(−1)k

Γ
(
k + 3

2

)
(
z

2

)A+(2k+1)I

Γ−1

(
A+

(
k +

3

2

)
I

)

=
1

2
Γ(A−B)

(
z

2

)B−A

HA(z).

�
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3. Modified Struve matrix functions: Definition and some new
relations

Definition 3.1. Let A be a matrix in CN×N satisfying (2.1). We define the modified
Struve matrix function

LA(z) =
∞∑
k=0

1

Γ(k + 3
2)
Γ−1

(
A+

(
k +

3

2

)
I

)(
z

2

)A+(2k+1)I

. (3.1)

In a similar manner as in the proof of Theorems 2.2 and 2.6 one gets the fol-
lowing results for the modified Struve matrix function LA(z) by taking the matrix A
satisfying Condition (2.1) which bears the same relations to Struve’s matrix function,
respectively.

Theorem 3.1. For matrices A, A− I and A−mI in CN×N satisfying (2.1) and for
m ∈ N, the modified Struve matrix functions satisfy the matrix recurrence relations

LA−I(z) + LA+I(z) = 2 DLA(z)−
1√
π
Γ−1

(
A+

3

2
I

)(
z

2

)A

, (3.2)

LA−I(z)−
1

z
A LA(z) = DLA(z), (3.3)

d

dz

[
z−ALA(z)

]
=

2−A

√
π
Γ−1

(
A+

3

2
I

)
+ z−ALA+I(z), (3.4)

d

dz

[
zALA(z)

]
= zALA−I(z) (3.5)

and (
1

z

d

dz

)m(
zALA(z)

)
= zA−mILA−mI(z). (3.6)

Now by (3.1), we note without proof the following result for modified Struve
matrix functions via Theorem 2.3:

Theorem 3.2. For matrices A and A − I in CN×N satisfying (2.1), the modified
Struve matrix functions satisfy the interesting relation

LA−I(z)− LA+I(z) =
2

z
A LA(z) +

1√
π
Γ−1

(
A+

3

2
I

)(
z

2

)A

. (3.7)

In a similar manner as in the proof of Theorem 2.8, one can easily get the next
results.

Theorem 3.3. If A and A − I are matrices in CN×N satisfying (2.1), the integrals
for the modified Struve matrix function of interest are

(i)

∫ z

0
tALA−I(t)dt = zALA(z). (3.8)

(ii)

∫ z

0
t−ALA+I(t)dt = z−ALA(z)−

z√
π
2−AΓ−1

(
A+

3

2
I

)
. (3.9)
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Theorem 3.4. If A is a matrix in CN×N satisfying (2.1), the following integral rep-
resentations of interest are valid:

(i)

∫ ∞

0
e−ttALA(t)dt = −2A+I

π
(2A+ 1)−1Γ(A+ I), (3.10)

where −1 < Re(µ) < −1
2 for all eigenvalues µ ∈ σ(A).

(ii)

∫ ∞

0
e−tt−ALA(t)dt =

2I−A

√
π

(2A− 1)−1Γ−1

(
A+

1

2
I

)
, (3.11)

where Re(µ) > 1
2 for all eigenvalues µ ∈ σ(A).

Proof. From (3.1), the left-hand side of (3.11), and using Gamma matrix function
with the help of the equations in (1.4), (1.9) and (1.10), we get

∫ ∞

0
e−ttA LA(t) dt

=
∞∑
k=0

1

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)(
1

2

)A+(2k+1)I ∫ ∞

0
e−tt2A+(2k+1)Idt

=

∞∑
k=0

1

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)(
1

2

)A+(2k+1)I

Γ(2A+ (2k + 2)I)

=
2A√
π

∞∑
k=0

1

Γ
(
k + 3

2

)Γ(A+ (k + 1)I)

=
2A

√
πΓ

(
3
2

)Γ(A+ I)
∞∑
k=0

(
A+ I

)

k

[(
3

2
I

)

k

]−1

=
2A+I

π
Γ(A+ I) 2F1

(
I, A+ I;

3

2
I; 1

)
= −2A+I

π
Γ(A+ I)(2A+ I)−1.

From (3.1), the left-hand side of (3.11) and using Gamma matrix function and
Theorem 1.1, we get

∫ ∞

0
e−tt−A LA(t) dt

=
∞∑
k=0

1

Γ
(
k + 3

2

)Γ−1

(
A+

(
k +

3

2

)
I

)(
1

2

)A+(2k+1)I ∫ ∞

0
e−tt(2k+1)Idt

=
2−A

√
π

∞∑
k=0

Γ
(
(k + 1)I

)
Γ−1

(
A+

(
k +

3

2

)
I

)

=
2−A

√
π
Γ−1

(
A+

3

2
I

) ∞∑
k=0

(I)k

[(
A+

3

2
I

)

k

]−1

=
2−A

√
π
Γ−1

(
A+

3

2
I

)
2F1

(
I, I;A+

3

2
I; 1

)
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=
2I−A

√
π

(2A− I)−1Γ−1

(
A+

1

2
I

)
. �

In a similar manner, using (3.1), (1.4), (1.9) and (1.10), one can get the next
result.

Theorem 3.5. The infinite integral representation for modified Struve matrix func-
tions in (3.1) holds:

∫ ∞

0
e−tt−A−ILA(t)dt =

2−A

√
π
A−1Γ−1

(
A+

1

2
I

)
. (3.12)

4. New results for Struve and modified Struve matrix
functions

In this section, several new identities and the implicit summation formulae for Struve
and modified Struve matrix functions are constructed by using operational tech-
niques for a method and new results for members of the families of these matrix
functions.

Theorem 4.1. For matrices A and A−nI in CN×N satisfying (2.1) for n ∈ N∪{0},
the summation formula for Struve matrix functions holds:

(z + 2a)
1
2
AHA(

√
z + 2a) =

∞∑
n=0

an

n!
z

1
2
(A−nI)HA−nI(

√
z). (4.1)

Proof. The action of the shift operator on a function of x produces a shift of the
variable by α and thus it considered as follows:

exp

(
α

d

dx

)
f(x) = f(x+ α).

We consider the operator A [16] in the following form:

A = 2
d

dz
. (4.2)

Operating on the Struve matrix functions HA(
√
z) and using the shift operator, we

have the formula

eaA
[
z

1
2
AHA(

√
z)

]
= e2a

∂
∂z

[
z

1
2
AHA(

√
z)

]
= (z + 2a)

1
2
AHA(

√
z + 2a). (4.3)

On the other hand, we get

eaA
[
z

1
2
AHA(

√
z)

]
=

∞∑
k=0

ak

k!
Ak

[
z

1
2
AHA(

√
z)

]
. (4.4)

Combining these equations (4.3) and (4.4), we get

(z + 2a)
1
2
AHA(

√
z + 2a) =

∞∑
k=0

ak

k!
Ak

[
z

1
2
AHA(

√
z)

]
. (4.5)
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From (2.21) and taking z →
√
z, we rewrite the expansion formula in the form

dn

dzn

[
z

1
2
AHA(

√
z)

]
=

1

2n
z

1
2
(A−nI)HA−nI(

√
z), (4.6)

and

An

[
z

1
2
AHA(

√
z)

]
= z

1
2
(A−nI)HA−nI(

√
z). (4.7)

Performing the operation (4.4) and using operational definition (4.7), we find

∞∑
n=0

an

n!
An

[
z

1
2
AHA(

√
z)

]
=

∞∑
n=0

an

n!
z

1
2
(A−nI)HA−nI(

√
z). (4.8)

From (4.5) and (4.8), we obtain (4.1). �

Theorem 4.2. The Struve and modified Struve matrix functions satisfy the following
differential relations:

dn

dzn

[
z

1
2
ALA(

√
z)

]
=

1

2n
z

1
2
(A−nI)LA−nI(

√
z), (4.9)

where A and A− nI are matrices in CN×N satisfying (2.1) for n ∈ N ∪ {0},

dn

dzn

[
z−

1
2
AHA(

√
z)

]
=

2nI−A

√
π

Γ−1

(
A+

3

2
I

)((
3

2
− n

)
I

)

n

z
1−2n

2
I

× 1F2

(
I;

(
3

2
− n

)
I, A+

3

2
I;−z

4

)
,

(4.10)

where A+ 3
2I and (32 − n)I are invertible matrices in CN×N , and

dn

dzn

[
z−

1
2
(A+I)HA(

√
z)

]
= n!2A+IΓ−1

(
n+

3

2

)
Γ−1

(
A+

(
n+

3

2

)
I

)

× 1F2

(
(n+ 1)I;

(
n+

3

2

)
I, A+

(
n+

3

2

)
I;−1

4
z

)
,

(4.11)

where A+ (n+ 3
2)I and (n+ 3

2)I are invertible matrices in CN×N .

Proof. Again, replacing z by
√
z in Eqs. (2.22), (2.23) and (3.6), and taking into

account that the matrices A and A− nI satisfy Condition (2.1) for n ∈ N∪ {0}, we
get the relations (4.9), (4.10) and (4.11). �

Theorem 4.3. The summation formulae for Struve and modified Struve matrix func-
tions hold:

(z + 2a)
1
2
ALA(

√
z + 2a) =

∞∑
n=0

an

n!
z

1
2
(A−nI)LA−nI(

√
z), (4.12)
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where A− nI and A are matrices in CN×N satisfying (2.1) for n ∈ N ∪ {0},

(z + 2a)−
1
2
AHA(

√
z + 2a) =

∞∑
n=0

an

n!

2nI−A

√
π

Γ−1

(
A+

3

2
I

)

×
((

3

2
− n

)
I

)

n

z
1−2n

2
I
1F2

(
I;

(
3

2
− n

)
I, A+

3

2
I;−z

4

)
,

(4.13)

where (32 − n)I and A+ 3
2I are invertible matrices in CN×N , and

(z + 2a)−
1
2
(A+I)HA(

√
z + 2a) =

∞∑
n=0

an

n!
n!2A+IΓ−1

(
n+

3

2

)

× Γ−1

(
A+

(
n+

3

2

)
I

)
1F2

(
(n+ 1)I;

(
n+

3

2

)
I, A+

(
n+

3

2

)
I;−1

4
z

)
,

(4.14)

where A+ (n+ 3
2)I and (n+ 3

2)I are invertible matrices in CN×N .

Proof. In a similar manner by the same lines as in the proof of Theorem 4.1, using
the analogous procedure as above by operator A (4.2) for the Struve and modified
Struve matrix functions, we obtain the results (4.12), (4.13) and (4.14). �

Concluding Remarks and observations

The results thus derived in this study are generally extended, and generalized in
character. Further research will aim at finding certain applications in the theory of
special matrix functions for other new families of Struve and modified Struve matrix
functions.
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