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Abstract. In this paper we study the category O over the hyperalgebra of a reductive
algebraic group in positive characteristics. For any locally closed subset K of weights,
we define a subquotient O[K] of O. It has the property that its simple objects are
parametrized by elements in K. We then show that O[K] is equivalent to O[K+plγ] for

any dominant weight γ if l > 0 is an integer such that K ∩ (K − plη) = ∅ for all weights
η > 0. Hence it is enough to understand the subquotients inside the dominant (or the
antidominant) chamber.

Introduction

One of the cornerstones of the rational representation theory of a reductive
algebraic group G over a field k of characteristic p > 0 is Steinberg’s tensor product
theorem. For a dominant weight µ we denote by L(µ) the irreducible representation
of G with highest weight µ. For a dominant weight λ there is a p-adic extension
λ = λ0 +pλ1 +p2λ2 + · · ·+plλl with uniquely defined restricted weights λ0, . . . , λl,
and Steinberg’s tensor product theorem states that

L(λ) ∼= L(λ0)⊗ L(λ1)[1] ⊗ · · · ⊗ L(λl)
[l],

where ( · )[n] denotes the n-fold Frobenius twist. In order to prove the theorem,
it is, by induction, sufficient to prove the following. If λ0 is restricted and γ is
dominant, then L(λ0)⊗ L(γ)[l] is a simple G-module (it must then be isomorphic
to L(λ0 +plγ) for weight reasons). The theorem has numerous generalizations (for
nondominant weights, quantum groups, or for representations of the hyperalgebra
of G, see, for example, [A]).

The above serves as a motivation for us to consider the functor ( · ) ⊗ L(γ)[l]

on the category of modules of the hyperalgebra (or algebra of distributions) U
associated with G. This algebra coincides with the universal enveloping algebra of
the Lie algebra of G in the case that the ground field is of characteristic 0, but this is
not the case in positive characteristics. The category of finite dimensional rational
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representations of G can be identified with the category of finite dimensional U -
modules. As U admits a triangular decomposition one can, as in the classical
characteristic 0 case, drop the finite dimensionality condition and instead consider
the highest weight category O1. The category O for U shares many familiar proper-
ties with its characteristic 0 relative, which was studied intensely over multiple
decades (for an overview on the most essential results, see [H2]). But in the modular
case it has an additional property that does not occur in characteristic 0, and which
is closely connected to Steinberg’s theorem: it inhibits a periodicity structure on
subquotients.

In this article we consider subquotient categories O[K] of O associated to locally
closed subsets of the weight lattice X (a locally closed subset of X is a union of
intervals [λ, µ] with respect to the usual partial order). We then prove the following.

Theorem. Suppose that K is a locally closed quasi-bounded subset of X. Suppose
that l > 0 is such that K ∩ (K − plη) = ∅ for all weights η > 0. Then the functor
( · ) ⊗ L(γ)[l] induces an equivalence O[K]

∼−→ O[K−plγ] for all dominant weights
γ ∈ X.

Apart from Steinberg’s tensor product theorem, the periodicity of (p,∆)-filt-
rations (cf. [A, Cor. 4.3]) could also find a conceptual foundation in the above
theorem.

Note that if K is finite, then an integer l as required in the theorem always
exists. Once such an l is fixed, we still can choose an arbitrary dominant weight γ
for the statement to hold. This shows that we can transfer the subquotient O[K]

deep inside the dominant chamber, or, by reversing the statement, deep inside the
antidominant chamber. In both cases, the representation theory has some valuable
additional features. By [A], projective covers exist in O for the simple objects
L(λ) for antidominant weights λ, while the tilting modules T (λ) exist in O for all
dominant λ.

We use this opportunity to also state and prove some basic results on the
modular category O for future reference, such as Krull–Remak–Schmidt decompo-
sitions, the existence of projectives in truncated subcategories, BGGH-reciprocity,
and some additional results on modules admitting a Verma flag. Most of these
results are well known in the characteristic 0 case and the proofs can be found in
[H2]. If the proof in the modular case does not need adjustment, we will simply
refer to the appropriate result in [H2]. We give a more detailed proof if some
adjustments are required.

The modular category O

Let g be a semisimple complex Lie algebra with root system R. For α ∈ R we
denote by α∨ the associated coroot, and by X the weight lattice. We fix a basis
Π ⊂ R and denote by R+ ⊂ R the corresponding system of positive roots. Then
we denote by ≤ the induced partial order on X, i.e., µ ≤ λ if and only if λ − µ
can be written as a sum of elements of R+. We let UC = U(g) be the universal
enveloping algebra of g.

1for simplicity we only consider in this article modules with integral weights.
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1. Kostant’s integral form

Let {eα, fα, hβ | α ∈ R+, β ∈ Π} be a Chevalley basis of g. By UZ ⊂ UC we
denote Kostant’s integral form (cf. [K]). Recall that UZ is the unital subring of

UC that is generated by the elements e
(n)
α := enα/n!, f

(n)
α := fnα/n! and

(
hβ
n

)
:=

hβ(hβ − 1) · · · (hβ − n+ 1)/n! with n > 0, α ∈ R+ and β ∈ Π. We denote by U+
Z

the subring generated by the e
(n)
α ’s, by U−Z the subring generated by the f

(n)
α ’s,

and by U0
Z the subring generated by the

(
hβ
n

)
’s. The following integral version of

the PBW-theorem is [K, Thm. 1].

Theorem 1.

(1) The algebra U+
Z is free over Z, and the elements

∏
α∈R+ e

(nα)
α with nα ≥ 0

form a basis.

(2) The algebra U−Z is free over Z, and the elements
∏
α∈R+ f

(nα)
α with nα ≥ 0

form a basis.
(3) The algebra U0

Z is free over Z, and the elements
∏
β∈Π

(
hβ
nβ

)
with nβ ≥ 0

form a basis.
(4) The multiplication defines an isomorphism

U−Z ⊗Z U
0
Z ⊗Z U

+
Z
∼−→ UZ

of Z-modules.

The products in parts (1) and (2) above should be taken with respect to a fixed
but arbitrary order on R+. The algebra U0

Z is commutative, so no order is needed.
Note that UZ can be considered as the algebra of distributions of the semisimple

and simply connected Z-group scheme GZ associated with R (cf. [J, Sect. II.1.12]).
It inherits a Hopf algebra structure from UC.

2. The modular category O
From now on we fix a field k of characteristic p > 0. We set U := UZ⊗Zk and define
U+, U−, U0 likewise. As before, we can consider U as the algebra of distributions
of the group scheme Gk. It inherits a Hopf algebra structure from U(g) via UZ.
The category of U -modules hence obtains a tensor product structure ( · )⊗ ( · ).

To any λ ∈ X we can associate a character χλ : U0 → k that maps
(
hβ
n

)
to the

image of
(〈λ,β∨〉

n

)
in k. For a U0-module M and λ ∈ X we define

Mλ := {m ∈M | h.m = χλ(h)m for all h ∈ U0}

and call this the λ-weight space of M . We say that M is a weight module if M =⊕
λ∈XMλ, and we say that λ is a weight of M if Mλ 6= 0. We say that a U+-module

M is U+-locally finite if M is the union of its finite dimensional U+-submodules.

Definition 1. The categoryO is the full subcategory of the category of U -modules
that contains all objects that are weight modules and U+-locally finite.

Note that this is a slightly more general definition than the original definition
in [BGG] or [H2], where objects in O are also supposed to be finitely generated.
We do not impose this condition, as already in the affine Kac–Moody case, this
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would not lead to an abelian category (i.e., submodules of Verma modules need
not be finitely generated).

If M is an object in O, then every submodule and every quotient of M is also
contained in O, and O is an abelian category. It is easy to check that O is stable
under the tensor product on U -modules.

3. Verma modules and simple quotients

The algebra U0 normalizes U+, so U≥0 := U0U+ ⊂ U is a subalgebra. For any
λ ∈ X we denote by kλ the one-dimensional U≥0-module on which U0 acts via the
character χλ, and U+ acts via the augmentation U+ → k (that sends all generators

e
(n)
α to 0 for n > 0). The induced U -module

∆(λ) := U ⊗U≥0 kλ

is called the Verma module with highest weight λ. We denote by vλ = 1 ⊗ 1 the
obvious generator of ∆(λ). The following proposition collects the basic facts about
Verma modules. The arguments for the proofs are standard and do not depend on
the characteristic of k. The characteristic 0 version can be found in [H2, Sects. 1.2
& 1.3].

Proposition 2. Let λ ∈ X.

(1) The weight space ∆(λ)λ is one dimensional, and ∆(λ)µ 6= 0 implies µ ≤ λ.
Moreover, each weight space of ∆(λ) is finite dimensional.

(2) The U -module ∆(λ) is contained in O.
(3) For any object M in O, the map HomO(∆(λ),M) → Mλ, f 7→ f(vλ) is

injective with image {m ∈Mλ | e(n)
α .m = 0 for all α ∈ R+, n > 0}.

(4) There exists a unique simple quotient L(λ) of ∆(λ) in O.

Moreover, the set {L(λ)}λ∈X is a full set of representatives for the simple isomor-
phism classes of O.

4. Finite dimensional simple modules

Denote by X+ = {λ ∈ X | 〈λ, α∨〉 ≥ 0 for all α ∈ Π} the set of dominant weights.
For a dominant weight λ we denote by V (λ) the Weyl module with highest weight
λ. It is constructed as follows. We denote by LC(λ) the simple, finite dimensional
UC-module with highest weight λ and choose a nonzero vector v ∈ LC(λ). The
Weyl module for GZ is then defined by VZ(λ) = UZ.v ⊂ LC(λ). It turns out that
this is a free abelian group of finite rank inside LC(λ) and VZ(λ) ⊗Z C = LC(λ).
The Weyl module in the modular case is then V (λ) = VZ(λ) ⊗Z k. It is a finite
dimensional U -module with highest weight λ and it is contained in O.

Lemma 3. The object L(λ) is finite dimensional if and only if λ is a dominant
weight.

Proof. If λ is a dominant weight, then the Weyl module V (λ) is a finite dimensional
U -module with highest weight λ and it contains L(λ) as a quotient. Hence L(λ)
is finite dimensional. If λ is not dominant, then there is a simple root α such
that 〈λ, α∨〉 < 0. We consider the α-string in L(λ) through the highest weight:⊕

n≥0 L(λ)λ−nα. This is a highest weight module for the subalgebra Uα of U
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generated by the e
(n)
α , f

(n)
α ,

(
hα
n

)
and n ≥ 0. The algebra Uα is the algebra of

distributions associated to the Lie algebra sl2(C) and the field k. The structure
of the highest weight modules can be worked out explicitely (for example, see
[A]). The fact that 〈λ, α∨〉 < 0 implies that

⊕
n≥0 L(λ)λ−nα must be infinite

dimensional, and hence so is L(λ). �

5. Characters and multiplicities

Our definition of category O doesn’t assume that the weight spaces of objects are
finite dimensional, so we cannot assign a character to each object in the usual way.
So let us define Ô as the category of all U -modules M that satisfy the following:

• M is a weight module and Mµ is a finite dimensional k-vector space for all
µ ∈ X.

• There exist γ1, . . . , γl ∈ X such that Mµ 6= 0 implies µ ≤ γi for at least one
i ∈ {1, . . . , l}.

Then Ô is a subcategory of O. It is analogous to the category O defined in [DGK,
Sect. 3]. Clearly, the Verma modules ∆(λ) and their simple quotients L(λ) are

contained in Ô.
Let Ẑ[X] be the set of maps f : X → Z that have the property that there exist

γ1, . . . , γl ∈ X such that f(µ) 6= 0 implies µ ≤ γi for at least one i ∈ {1, . . . , l}.
Then for any object M in Ô, the map chM : X → Z, chM(µ) = dimkMµ is an

element in Ẑ[X] that we call the character of M .
Note the following analogue of Proposition 3.2 in [DGK] holds verbatim. The

proof is the same.

Proposition 4. Let M be an object in Ô and λ ∈ X. Then there exists an
increasing filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M of objects in Ô and a
subset J of {1, . . . , t} such that the following holds:

(i) For j ∈ J , the quotient Mj/Mj−1 is isomorphic to L(λj) for some λj ≥ λ.
(ii) For j 6∈ J and any µ ≥ λ we have (Mj/Mj−1)µ = 0.

A filtration as above is called a local composition series for M at λ. Let M ,
λ, 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mt = M and J be as above. It is easy to check

(using the character of M in Ẑ[X]) that for all µ ≥ λ the number [M : L(µ)] :=
|{j ∈ J | Mj/Mj−1

∼= L(µ)}| is independent of choices (as long as µ ≥ λ). This
number is called the multiplicity of L(µ) in M . Moreover, one also checks that∑
µ∈X [M : L(µ)] · chL(µ) is a well-defined element in Ẑ[X] that equals chM . For

more details, see Section 3 in [DGK].

6. A duality on O
Recall that there is an antiautomorphism σ on UC that maps eα to fα and hα to
hα. It hence leaves UZ stable, so we obtain an antiautomorphism on U that we
denote by the same symbol. For a U -module M we denote by Mσ its twist by σ.
Then (Mσ)λ = Mλ as a vector space, so the σ-twist preserves weight modules.
For a U -module M we denote by M∗ =

⊕
λ∈X Homk(Mλ, k) the restricted linear

dual. It acquires the structure of a U -module by setting (x.φ)(m) = φ(σ(x).m) for
all m ∈M , φ ∈M∗ and x ∈ U .
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Lemma 5. Suppose that M is an object in Ô. Then M∗ is an object in O as well
and we have a functorial identification (M∗)∗ = M .

Proof. As observed above, M∗ is a weight module. As the set of weights of M∗

coincides with the set of weights of M , it is bounded from above, hence M∗ must be
U+-locally finite. So it is contained in O as well. It again satisfies the assumptions
of the above lemma, and it is immediate that (M∗)∗ = M canonically. �

Clearly, L∗ is a simple object in O if L is. From the fact that the characters
agree we deduce that L(λ)∗ ∼= L(λ) for all λ ∈ X.

We denote by ∇(λ) = ∆(λ)∗ the dual of the Verma module with highest
weight λ.

Lemma 6. We have dimk HomO(∆(λ),∇(µ)) = δλ,µ and Ext1
O(∆(λ),∇(µ)) = 0

for all λ, µ ∈ X.

(Here, Ext1
O means the Yoneda-extension group.)

Proof. For all λ, µ ∈ X, we have

HomO(∆(λ),∇(µ)) ∼= {v ∈ ∇(µ)λ | e(n)
α v = 0 for all α ∈ R+, n > 0}

by the universal property of Verma modules. This is a one-dimensional space if
λ = µ. If λ 6≤ µ, then ∇(µ)λ = 0 and hence there are no nontrivial homomorphisms
from ∆(λ) to ∇(µ). From any nonzero homomorphism f : ∆(λ)→ ∇(µ) we obtain
by dualizing a nonzero homomorphism f∗ : ∆(µ) → ∇(λ). Hence the existence of
a nonzero homomorphism implies λ ≤ µ and µ ≤ λ, hence λ = µ. We have proven
the first statement.

Let 0 → ∇(µ) → M → ∆(λ) → 0 be an exact sequence. If λ 6< µ, then λ is a
maximal weight of M , so the universal property of ∆(λ) implies that this sequence
splits. By dualizing we obtain another exact sequence 0 → ∇(λ)→M∗ → ∆(µ)→
0, which splits if µ 6< λ. But the conditions λ < µ and µ < λ cannot both hold.
Hence the second statement is also true. �

7. The Frobenius twist

The group scheme Gk is induced from an integral version GZ via base change (cf.
[C]). Hence there exists a Frobenius endomorphism Gk → Gk (an endomorphism of
k-group schemes). This endomorphism induces an endomorphism on its k-algebra
of distributions. We hence obtain an endomorphism Fr: U → U that is given by
the following formulas:

e(n)
α 7→

{
e

(n/p)
α , if p divides n,

0, if p does not divide n,

f (n)
α 7→

{
f

(n/p)
α , if p divides n,

0, if p does not divide n,(
hα
n

)
7→

{(
hα
n/p

)
, if p divides n,

0, if p does not divide n.
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These formulas follow from explicit calculations for the additive and multiplicative
groups Ga and Gm; see [J, Sect. 3.1].

If M is a U -module, then we denote by M [1] the U -module that we obtain from
M by pulling back the action homomorphism along Fr. If M is a weight module,

then so is M [1] and we have M
[1]
λ = 0 unless λ ∈ pX, in which case M

[1]
λ = Mλ/p.

If M is U+-locally finite, then so is M [1] and we obtain a functor ( · )[1] : O → O.
This is called the Frobenius twist. We denote by ( · )[l] the functor obtained by
applying ( · )[1] l-times. As Fr is surjective, L[1] is simple for all simple objects L
in O. A quick check on the highest weights yields the following result.

Lemma 7. We have L(λ)[1] = L(pλ) for all λ ∈ X.

Hence L(pλ)µ = 0 unless µ ∈ pX.

8. Direct decompositions

The goal of this section is to show that we have a Krull–Remak–Schmidt decompo-
sition for all finitely generated objects in O. Once the analogue of the Fitting lemma
is proven, the arguments for this result are standard.

Lemma 8. Suppose that M is an object in O that is finitely generated as a U -
module. Then any endomorphism f of M induces a Fitting-decomposition, i.e.,
there exists some n > 0 such that M = im fn ⊕ ker fn.

Proof. If M is finitely generated, then every weight space of M is finite dimensional
and there exists a finite subset B of X such that MB :=

⊕
λ∈BMλ is finite

dimensional and generates M . We denote by fB the vector space endomorphism on
MB that is induced by f . Then there is some n� 0 such that im fnB = im fn+1

B =
im fn+2

B = . . . . As MB generates M , im f lB generates im f l ⊂ M for all l > 0
and we deduce that the image of f stabilizes: im fn = im fn+1 = im fn+2 = . . . .
Now let µ ∈ X and denote by fµ the endomorphism on Mµ induced by f . Then
im fnµ = im fn+1

µ = . . . . As Mµ is finite dimensional we also deduce ker fnµ =
ker fn+1

µ = . . . . We also obtain the Fitting-decomposition Mµ = ker fnµ ⊕ im fnµ on
each weight space. Hence M = im fn ⊕ ker fn. �

Lemma 9. Suppose that M is a finitely generated, indecomposable object in O.
Then every endomorphism of M is either nilpotent or an automorphisms. In
particular, EndO(M) is a local ring.

Proof. Let f be an endomorphism of M that is not an automorphism. The finite
dimensionality of the weight spaces allows us to deduce that f is not injective.
Hence ker f 6= {0} and we deduce M = ker fn for some n� 0 from the indecompo-
sability of M and Lemma 8. Hence f is nilpotent. So every endomorphism is either
nilpotent or an automorphism.

If f is nilpotent and g is an automorphism, then g − f is invertible, hence an
automorphism. It follows that the sum of two nilpotent endomorphisms of M is
again nilpotent. Moreover, g ◦ f and f ◦ g are not injective, hence nilpotent. So
the nilpotent endomorphisms form an ideal in EndO(M) and each element in its
complement is invertible. Hence EndO(M) is a local ring. �
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Proposition 10. Let M be a finitely generated object in O. Then M can be
written as a finite direct sum of indecomposable objects in O. Moreover, such a
decomposition is unique up to reordering and isomorphisms.

Proof. As in the proof of Lemma 8, we denote by B a subset of X such that
MB =

⊕
λ∈BMλ ⊂ M is finite dimensional and generates M . Then every direct

summand of M must intersect MB nontrivially. In particular, the number of direct
summands in a decomposition of M is bounded by the dimension of MB . So a
decomposition of M into indecomposable objects exists. The uniqueness of this
decomposition can be proven (with Lemma 9) using standard arguments. �

Verma flags and projective objects in O

In this section, we will approximate the category O via truncated subcategories
OJ and show that in these subcategories, every simple object admits a projective
cover. This treatment is analogous to the situation of complex Kac–Moody algebra
(cf. [F, Sect. 2.2]) We will also prove an appropriate version of the BGGH-reci-
procity theorem that was first proven in the context of modular Lie algebras by
Humphreys in [H1] (Theorems 4.4 and 4.5). Later, the characteristic 0 case was
treated in [BGG, Prop. 2]. Many of the ideas used in the following originate in the
article [RCW].

9. Verma flags

Let M be an object in O.

Definition 2. M is said to admit a Verma flag if there is a (finite) filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

and λ1, . . . , λn ∈ X such that Mi/Mi−1
∼= ∆(λi) for all i = 1, . . . , n.

A filtration like the one in the definition above is sometimes, for example in
[H2], called a standard filtration.

In the situation of the definition above we set

(M : ∆(µ)) = #{i ∈ {1, . . . , n} | λi = µ}.

This number is independent of the chosen filtration and is called the multiplicity
of ∆(µ) in M .

Lemma 11. Suppose that M admits a Verma flag. Then there exists a filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

and λ1, . . . , λn ∈ X such that Mi/Mi−1
∼= ∆(λi) for i = 1, . . . , n, and such that

λi > λj implies i < j.

Proof. This follows, by induction, from the fact that a surjective homomorphism
N → ∆(λ) splits if λ is maximal among the weights of N (by Proposition 2). �
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Lemma 12. Let M = A⊕B be a decomposition in O. Then M admits a Verma
flag if and only if A and B admit Verma flags. In this case,

(M : ∆(µ)) = (A : ∆(µ)) + (B : ∆(µ)).

Proof. If A and B admit Verma flags, then it is easily shown that M admits a
Verma flag and that the claim about the multiplicities holds. It is hence enough
to show that if M admits a Verma flag, then A and B do as well. This is proven
using the same arguments as in the characteristic 0 case that can be found, for
example, in [H2, Sect. 3.7]. �

10. Some functors on O
It is now useful to endow the set X with a topology.

Definition 3.

(1) We say that a subset J of X is open if λ ∈ J and µ ≤ λ imply µ ∈ J .
(2) We say that a subset I of X is closed if λ ∈ I and λ ≤ µ imply µ ∈ I.
(3) We say that a subset K of X is locally closed if λ, ν ∈ K and λ ≤ µ ≤ ν

imply µ ∈ K.

This indeed defines a topology. Note that arbitrary unions of closed subsets are
closed again.

Let M be an object in O, and let I ⊂ X be a closed subset with open
complement J . We set

MI :=

〈⊕
λ∈I

Mλ

〉
U

⊂M,

MJ := M/MI ,

i.e., MI ⊂M is the minimal submodule of M that contains the weight spaces Mλ

with λ ∈ I, and MJ the largest quotient of M with all weights contained in J .
Clearly, these definitions yield functors ( · )I , ( · )J : O → O.

Proposition 13. Let M be an object in O. Then the following are equivalent.

(1) M admits a Verma flag.
(2) MJ admits a Verma flag for any open set J .
(3) MI admits a Verma flag for any closed set I.

If either statement above is true, then we have

(MJ : ∆(ν)) =

{
(M : ∆(ν)), if ν ∈ J,
0, otherwise,

(MI : ∆(ν)) =

{
(M : ∆(ν)), if ν ∈ I,
0, otherwise

for all open subset J and all closed subsets I of X.
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Proof. As M = MX = MX , either (2) or (3) imply (1). Suppose M admits a Verma
flag. Let J be an open subset of X with closed complement I. Using Lemma 11
we deduce that there is a submodule M ′ of M , appearing in a Verma flag of M ,
such that M ′ and M/M ′ admit Verma flags and such that

(M ′ : ∆(λ)) =

{
(M : ∆(λ)), if λ ∈ I,
0, if λ ∈ J,

and

(M/M ′ : ∆(λ)) =

{
(M : ∆(λ)), if λ ∈ J,
0, if λ ∈ I.

In particular, it follows that M ′ = MI and M/M ′ = MJ . This shows that (1)
implies (2) and (3), and that the statement about the multiplicities is true if (1)
holds. �

11. Objects admitting a Verma flag as U≤0-modules

Set U≤0 := U−U0. Again this is a subalgebra of U . We denote by U≤0-modwt the
full subcategory of the category of U≤0-modules that contains all objects that are
weight modules, and we denote by Res the restriction functor from the category
O to U≤0-modwt.

Lemma 14. Let λ ∈ X. Then Res ∆(λ) is a projective object in U≤0-modwt.

Proof. As ∆(λ) is free as a U−-module of rank 1 (by Kostant’s version of the PBW-
theorem) and as it is generated by any nonzero element in the one-dimensional
space ∆(λ)λ, we have

HomU≤0(Res ∆(λ),M) = HomU0(Res ∆(λ)λ,Mλ) = HomU0(kλ,Mλ).

The functor M 7→ HomU0(kλ,Mλ) is an exact functor even from the category
of weight modules to vector spaces. Hence Res ∆(λ) is a projective object in
U≤0-modwt. �

Lemma 15.

(1) Let N be an object in O that admits a Verma flag. Then ResN is isomorphic
to a direct sum of objects of the form Res ∆(λ) for various λ.

(2) Let M and N be objects in O and assume that N admits a Verma flag and
let f : M → N be a surjective homomorphism. Then Res f : ResM → ResN
splits.

Proof. Statement (1) follows from the fact that each Res ∆(λ) is projective in
U≤0-modwt. From (1) and Lemma 14 it then also follows that ResN is projective
in U≤0-modwt, which implies statement (2). �

12. Tensor products

Let L be an object in O. Then the functor M 7→M ⊗ L preserves the category of
weight modules and the category of U+-locally finite modules, hence it induces a
functor from O to O.
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Lemma 16. Suppose that L is finite dimensional. If M admits a Verma flag, then
so does M ⊗ L and we have

(M ⊗ L : ∆(µ)) =
∑
λ∈X

(M : ∆(λ)) dimk Lµ−λ.

Proof. Note that the functor ( · ) ⊗ L is exact. It is hence enough to prove the
statement for M = ∆(λ) for some λ ∈ X. In this case, the same arguments can
be used as in the characteristic 0 case, which can be found, for example, in [H2,
Sect. 3.6]. �

13. Projective objects in truncated categories

Let J be an open subset of X.

Definition 4. We denote by OJ the full subcategory of O that contains all objects
M that have the property that Mλ 6= 0 implies λ ∈ J .

Clearly, the functor M 7→MJ is actually a functor from O to OJ , and we have
M ∈ OJ if and only if M = MJ . Note that L(λ) is contained in OJ if and only if
∆(λ) is contained in OJ , which is the case if and only if λ ∈ J .

Definition 5. We say that an open subset J of X is quasi-bounded if for any
λ ∈ X the set {µ ∈ J | λ ≤ µ} is finite.

Recall that in an abelian category A an epimorphism f : A → B is called
essential if the following holds: if g : C → A is a morphism inA such that f◦g : C →
B is an epimorphism, then g is an epimorphism. A morphism f : A→ B is called
a projective cover of B if A is projective and f is an essential epimorphism.

Theorem 17. Suppose that J ⊂ X is open and quasi-bounded. For any λ ∈ J
there exists a projective cover pλ : P J(λ) → L(λ) of L(λ) in OJ , and the object
P J(λ) admits a Verma flag.

Proof. Consider the U≥0-module C(λ) := U≥0 ⊗U0 kλ. Theorem 1 implies that
C(λ) is free of rank 1 as a U+-module. As an U0-module it is a weight module and
its weights are contained in {µ | µ ≥ λ}. As before, define C(λ)J as the largest
quotient U≥0-module with all weights contained in J , i.e.,

C(λ)J = C(λ)/
⊕
µ 6∈J

C(λ)µ.

As J is supposed to be quasi-bounded, C(λ)J is a finite dimensional U≥0-module
and a weight module supported in {µ | µ ∈ J, µ ≥ λ}. It hence has a U≥0-module
filtration with one-dimensional subquotients isomorphic to kµ for various µ ∈ J
(with µ ≥ λ). Moreover, kµ occurs with multiplicity dimk C(λ)Jµ.

Now consider QJ(λ) := U ⊗U≥0 C(λ)J . This is a weight module, and, as
the functor U ⊗U≥0 ( · ) is exact (by Theorem 1), it has a finite filtration with
subquotients isomorphic to ∆(µ) for various µ ∈ J (with µ ≥ λ). Hence it is an
object in OJ that admits a Verma flag and the multiplicities are given by

(QJ(λ) : ∆(µ)) = dimk C(λ)Jµ.
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Now let N be an object in OJ . We then have a natural isomorphisms (that are
functorial in N):

HomOJ (QJ(λ), N) = HomU (U ⊗U≥0 C(λ)J , N)

= HomU≥0(C(λ)J , N)

= HomU≥0(C(λ), N) (as N = NJ)

= HomU≥0(U≥0 ⊗U0 kλ, N)

= HomU0(kλ, N)
∼= Nλ.

The functor N 7→ Nλ is exact on OJ , so the object QJ(λ) is projective in OJ .
By the weight considerations above, ∆(λ) appears in a Verma flag of QJ(λ)

with multiplicity 1 = dimk C(λ)λ and it is minimal among the highest weights of
Verma subquotients. So there exists a surjection QJ(λ)→ ∆(λ) in OJ . As QJ(λ)
is finitely generated (even cyclic) as a U -module we can apply Proposition 10,
so QJ(λ) splits into a finite direct sum of indecomposables. As a homomorphism
M → ∆(λ) is surjective if and only if it is surjective on the λ-weight space, and as
∆(λ)λ is of dimension 1, there must be an indecomposable direct summand P J(λ)
of QJ(λ) that admits a surjection onto ∆(λ). Then P J(λ) is projective and admits
a Verma flag by Lemma 12.

There exists a surjective homomorphism f : P J(λ)→ L(λ) as L(λ) is a quotient
of ∆(λ). It remains to show that this is an essential homomorphism. So let g : M →
P J(λ) be a morphism such that f ◦g : M → L(λ) is an epimorphism. The projecti-
vity of P J(λ) allows us to find a morphism h : P J(λ)→M such that the diagram

P J(λ)
h //

f ##

M
g //

f◦g
��

P J(λ)

f{{
L(λ)

commutes. As f is an epimorphism, the composition g ◦ h cannot be nilpotent,
hence must be an automorphism of P J(λ) by Lemma 9. In particular, g is an
epimorphism. So f is essential and indeed a projective cover. �

14. Verma multiplicities and the BGGH-reciprocity

We are now going to prove an analogue of the reciprocity result that appeared in
[H1] in the context of representations of modular Lie algebras (see Theorems 4.4
and 4.5 and the sentence before the Remark at the end of [H1, Sect. 4]).

Proposition 18. Let M be an object in O that admits a Verma flag. Then

(M : ∆(µ)) = dim HomO(M,∇(µ))

for all µ ∈ X.

Proof. Suppose that M ′ ⊂ M is a submodule such that M ′ admits a Verma flag
and M/M ′ ∼= ∆(ν) for some ν ∈ X. Hence

(M : ∆(µ)) = (M ′ : ∆(µ)) + δµ,ν
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for all µ ∈ X. Since Ext1
O(∆(ν),∇(µ)) = 0 by Lemma 6, we have an exact sequence

0→ Hom(∆(ν),∇(µ))→ Hom(M,∇(µ))→ Hom(M ′,∇(µ))→ 0,

and, again using Lemma 6, we deduce

dimk Hom(M,∇(µ)) = dimk Hom(M ′,∇(µ)) + δν,µ.

The statement follows by induction on the length of a Verma flag. �

Now we are ready to state and prove the mentioned reciprocity result. It appears
as statement (3) in the following.

Proposition 19. Fix an open subset J of X and λ ∈ J .

(1) The only irreducible quotient of P J(λ) is L(λ).

(2) Suppose that M is an object in OJ that is also contained in Ô (cf. Section
5). Then

dimk HomOJ (P J(λ),M) = [M : L(λ)].

(3) Let µ ∈ X. Then

(P J(λ) : ∆(µ)) =

{
[∇(µ) : L(λ)], if µ ∈ J,
0, if µ 6∈ J.

Proof. Let M ⊂ P J(λ) be a submodule with M 6= P J(λ). Let f : P J(λ) → L(λ)
be a projective cover. Then f(M) = 0. In particular, if P J(λ)/M is irreducible,
then f must induce an isomorphism P J(λ)/M ∼= L(λ), hence (1). The projectivity
of P J(λ) and part (1) imply part (2). Using Proposition 18 we calculate

(P J(λ) : ∆(µ)) = dimk HomOJ (P J(λ),∇(µ))

= [∇(µ) : L(λ)] (by (2)).

Hence (3). �

Note that [∇(µ) : L(λ)] = [∆(µ) : L(λ)] as the characters of the Verma and the
dual Verma modules agree.

15. The exactness of ( · )I and ( · )J

Let us denote by V the full subcategory of O that contains all objects that admit
a Verma flag. In general, it does not contain the subobjects and quotients of its
objects, so it is not an abelian subcategory. However, it inherits an exact structure
from the surrounding category O. We call a short sequence 0→ A→ B → C → 0
in V exact if it is exact when considered as a sequence in O.

Let J be an open subset of X with closed complement I. Proposition 13 implies
that ( · )I and ( · )J induce endofunctors on V that we denote by the same symbol.
Then we have the following.
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Proposition 20. Let 0 → A → B → C → 0 be a sequence in V. Then the
following are equivalent.

(1) The sequence 0→ A→ B → C → 0 is exact.
(2) For any open subset J of X, the sequence 0 → AJ → BJ → CJ → 0 is

exact.
(3) For any closed subset I of X, the sequence 0 → AI → BI → CI → 0 is

exact.

Proof. As X is open in X, property (1) is a special case of either one of the
properties (2) or (3). It is hence enough to show that (1) implies (2) and (3). Let M
be an object in O. Then

⊕
λ∈IMλ is stable under the action of the subalgebra U≥0

(as I is closed). Hence MI is generated by
⊕

λ∈IMλ not only as a U -submodule,
but already as a U−-submodule, and, in particular, as a U≤0-submodule. As the
algebra U≤0 detects the weight decomposition, we deduce that the functor ( · )I
factors through the restriction functor Res : O → U≤0-modwt. But in the category
U≤0-modwt the short exact sequence appearing in (1) splits (cf. Lemma 15). As
( · )I is additive, it produces an exact sequence when applied to a split sequence.
Hence (1) implies (3). By the snake lemma, (1) and (3) imply (2). �

16. Subcategories associated to locally closed subsets

Let K be a locally closed subset of X.

Definition 6. We denote by V(K) the full subcategory of category V that contains
all objects M that have the property that (M : ∆(λ)) 6= 0 implies λ ∈ K.

Now let γ ∈ X be a dominant weight. Then L = L(γ) is finite dimensional.
Denote by Γ = Homk(L, k) the dual U -module (without the σ-twist!). It is a finite
dimensional module contained in O and the irreducible U -module of lowest weight
−γ. Let J ′ ⊂ J be open subsets of X. Then J̃ ′ = J ′ + γ ⊂ J̃ = J + γ are open in
X as well. We define the shift functors

U := (( · )⊗ L)X\J̃′ : O → O,

D := (( · )⊗ Γ)J : O → O.

Set K := J \ J ′ and K̃ := J̃ \ J̃ ′. Then K and K̃ are locally closed, and the

map ( · ) + γ yields a bijection K
∼−→ K̃.

Lemma 21. Suppose that there exists some l > 0 such that the above triple
(J, J ′, γ) satisfies the following assumptions:

• γ ∈ plX,
• for all λ ∈ J and ν > 0 we have λ− plν ∈ J ′, i.e., K ∩ (K − plν) = ∅.

Then the following holds.

(1) Let λ ∈ K. Then U(∆(λ)) ∼= ∆(λ+ γ).

(2) Let λ̃ ∈ K̃. Then D(∆(λ̃)) ∼= ∆(λ̃− γ).

(3) After restriction, U and D induce exact functors U : V(K) → V(K̃) and

D : V(K̃)→ V(K).
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Proof. We prove statement (1). Let λ ∈ K and consider the module ∆(λ)⊗L. By
Lemma 16 it admits a Verma flag with multiplicities

(∆(λ)⊗ L : ∆(µ)) = dimk Lµ−λ.

So Proposition 13 implies that U(∆(λ)) = (∆(λ) ⊗ L)X\J̃′ admits a Verma flag

with

(U(∆(λ)) : ∆(µ)) =

{
dimk Lµ−λ, if µ ∈ X \ J̃ ′

0, else.

Now suppose µ is such that (U(∆(λ)) : ∆(µ)) 6= 0. Then µ−λ is a weight of L and

µ 6∈ J̃ ′. As γ = plγ′ for some γ′ ∈ X we have L = L(γ′)[l] by Lemma 7 and hence

there exists a weight η′ of L(γ′) with µ− λ = plη′. In particular, λ+ plη′ 6∈ J̃ ′. As

J̃ ′ = J ′+plγ′, this implies that λ−pl(γ′−η′) 6∈ J ′. As γ′−η′ ≥ 0, our assumption
implies that η′ = γ′. Hence µ = λ + plγ′ = λ + γ, and, as dimk Lγ = 1 we obtain
statement (1). Statement (2) is proven with similar arguments.

Now (3) follows from (1) and (2) and the exactness of the functors ( · )⊗L and
( · )⊗ Γ together with Proposition 20. �

Theorem 22. Suppose that there exists some l > 0 such that the triple (J, J ′, γ)
satisfies the following:

• γ ∈ plX,
• for all λ ∈ J and ν > 0 we have λ− plν ∈ J ′, i.e., K ∩ (K − plν) = ∅.

Then the functors U and D induce mutually inverse equivalences

V(K) ∼= V(K̃)

of exact categories.

Proof. We first construct a transformation τ : D ◦U→ idV(K) and show that this
is an isomorphism, and then we construct a transformation σ : idV(K̃) → U ◦ D

and show that it is an isomorphism. So first let M be an object in V(K). We claim
that there is a commutative diagram of the following form:

(M ⊗ L)X\J̃′ ⊗ Γ

i⊗idΓ

��

b // ((M ⊗ L)X\J̃′ ⊗ Γ)J

τM

��
M ⊗ L⊗ Γ

idM⊗ev // M.

.

Here, ev : L ⊗ Γ → ktriv is the evaluation homomorphism, and i is the inclusion
(M ⊗ L)X\J̃′ ⊂ M ⊗ L. The composition of these two homomorphisms yields a

homomorphism (M ⊗ L)X\J̃′ ⊗ Γ → M , and this must factor over the canonical

quotient b : (M ⊗ L)X\J̃′ ⊗ Γ → ((M ⊗ L)X\J̃′ ⊗ L)J , as the weights of M are

contained in J . The resulting homomorphism τM is functorial in M , and hence we
obtain a natural transformation τ : D ◦U→ idV(K) of endofunctors on V(K).

1095



PETER FIEBIG

We now show that this is an isomorphism of functors. As both functors are
exact it is sufficient to show that τ is an isomorphism when evaluated at a Verma
module ∆(µ) with µ ∈ K. By Lemma 21 we have (D◦U)∆(µ) ∼= ∆(µ), and hence
it suffices to show that the homomorphism τ∆(µ) is nonzero. For this, we consider
again the diagram above, with M = ∆(µ). It suffices to show that the composition
(idM⊗ev)◦(i⊗idΓ) is nonzero. If we denote by v ∈ L a nonzero vector of (maximal)
weight γ and m ∈ ∆(µ) a nonzero vector of weight µ, then m⊗ v is contained in

(∆(µ)⊗L)X\J̃′ , as it is of weight µ+γ which is not contained in J̃ ′. For an element

φ ∈ Γ with φ(v) 6= 0 we then have (id∆(µ) ⊗ ev) ◦ (i ⊗ idΓ)(m ⊗ v ⊗ φ) = φ(v)m,

which is nonzero. So τ∆(µ) is indeed nonzero.
Now let N be an object in V(K̃). We claim that there is a commutative diagram

of the following form:

N
idN⊗coev //

σN

��

N ⊗ Γ⊗ L

b⊗idL
��

((N ⊗ Γ)J ⊗ L)X\J̃′
i // (N ⊗ Γ)J ⊗ L.

.

Here, coev : ktriv → Γ⊗L is the coevaluation homomorphism, and b is the canonical
quotient N ⊗ Γ → (N ⊗ Γ)J . The resulting homomorphism N → (N ⊗ Γ)J ⊗ L
factors over the inclusion i : ((N ⊗ Γ)J ⊗ L)X\J̃′ → (N ⊗ Γ)J ⊗ L, as the highest

weights of the Verma subquotients of N (and hence the weights of some generators

of N) are supposed to be contained in K̃, so are not contained in J̃ ′. The resulting
homomorphism σN : N → ((N ⊗Γ)J ⊗L)X\J̃′ = U ◦D(N) is functorial in N and

yields a transformation σ : idV(K̃) → U ◦ D. As both functors are exact, and as

U ◦D(∆(λ̃)) ∼= ∆(λ̃), it suffices, as before, to show that σ∆(λ̃) is nonzero for all

λ̃ ∈ K̃.
Consider again the diagram above. It suffices to show that the composition

∆(λ̃)
id∆(λ̃)⊗coev
−−−−−−−−→ ∆(λ̃)⊗ Γ⊗ L b⊗idL−−−−→ (∆(λ̃)⊗ Γ)J ⊗ L is nonzero. Fix a basis of

weight vectors {v0, . . . , vd} of L and denote by νi the weight of vi. Suppose that
ν0 = γ, so νi 6= γ for all i 6= 0. Let {v∗0 , . . . , v∗d} be the dual basis of Γ. Then

(b⊗ idL) ◦ (id∆(λ̃) ⊗ coev)(m) is the image of
∑
m⊗ v∗i ⊗ vi in (∆(λ̃)⊗ Γ)J ⊗ L.

Suppose that m ∈ ∆(λ̃)λ̃ is nonzero. Then m ⊗ v∗i is of weight λ̃ − νi. Suppose

that the weight λ̃− νi is contained in J . Then (λ̃− γ) + γ − νi is contained in J .
As λ̃ − γ ∈ J and as γ = plγ′ and νi = plν′i our assumption implies that νi = γ,
i.e., i = 0. Hence (b ⊗ idL) ◦ (id∆(λ̃) ⊗ coev)(m) is the image of m ⊗ v∗0 ⊗ v0 in

(∆(λ̃)⊗Γ)J ⊗L. As in the proof of Lemma 21 we see that (m⊗v∗0)J is a generator
of (∆(λ̃) ⊗ Γ)J ∼= ∆(λ̃ − γ), hence nonzero. So (b ⊗ idL) ◦ (id∆(λ̃) ⊗ coev)(m) is
nonzero. This finishes the proof. �

Subquotient categories

Let us recall the notion of subquotient categories, as developed in [G, Chapitre
III.1]. SupposeA is an abelian category. A full subcategory N that has the property
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that for any short exact sequence 0 → A → B → C → 0 in A we have B ∈ N if
and only if A,C ∈ N , is called a Serre subcategory. If N is a Serre subcategory of
A, then we construct the Serre quotient A/N as follows. The class of objects of
A/N is the class of objects in A, and the set of homomorphisms is constructed as
follows. Suppose that M2 ⊂ M1 ⊂ M are two subobjects of M such that M/M1

and M/M2 are contained in N , and that N1 ⊂ N2 ⊂ N are two subobjects of N
that are both contained in N . We then have canonical homomorphisms

HomA(M,N)→ HomA(M1, N/N1)→ HomA(M2, N/N2).

So we can define

HomA/N (M,N) = lim−→HomA(M ′, N/N ′),

where M ′ ranges over all subobjects of M such that M/M ′ is contained in N , and
N ′ ranges over all subobjects on N that are contained in N . This construction
comes with a canonical map HomA(M,N)→ HomA/N (M,N). There is a composi-
tion law for morphisms in A/N such that we obtain a quotient functor T : A →
A/N . The following statement summarises some of the main results in [G] (see
Proposition III.1.1, Lemme III.1.2, Corollaire III.1.3).

Theorem 23.

(1) The category A/N is abelian and the functor T : A → A/N is exact.
(2) We have T(N) = 0 in A/N if and only if N ∈ N .
(3) For any short exact sequence S in A/N there is a short exact sequence S′

in A such that T(S′) is isomorphic to S.

17. Subquotients for the category O
Let J ′ ⊂ J ⊂ X be open subsets. Then OJ′ is a Serre subcategory of OJ , and we
are interested in the quotient OJ/OJ′ . Here we are in a particularly nice situation:
let M and N be objects of OJ . Then there is a minimal submodule M− of M with
the property that M/M− is contained in OJ′ . It is the submodule MX\J′ defined
earlier, i.e., the submodule of M generated by all weight spaces Mλ with λ 6∈ J ′.
There is also a maximal subobject N+ of N that is contained in OJ′ , it is simply
the union of all submodules of N contained in OJ′ . So the limit in the definition
of the Hom-spaces in OJ/OJ′ stabilizes and we obtain

(∗) HomOJ/OJ′ (TM,TN) = HomOJ (M−, N/N+).

Proposition 24. Suppose that J is quasi-bounded. Let λ be an element in J \ J ′.
(1) The image of the projective cover P J(λ)→ L(λ) of L(λ) under the functor

T is a projective cover of TL(λ) in OJ/OJ′ .
(2) Let N be an object in OJ . Then the induced homomorphism

HomOJ (P J(λ), N)→ HomOJ/OJ′ (TP
J(λ),TN)

is an isomorphism.
(3) The category OJ/OJ′ has enough projectives.
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Proof. First we prove statement (2). We adopt the notation from the paragraph
before the statement of this proposition. As λ is not contained in J ′ and N+ is an
object in OJ′ , we have (N+)λ = 0. Let f : P J(λ)→ N+ be a homomorphism. Then
the weight space P J(λ)λ must be contained in the kernel of f . Let PJ (λ)→ L(λ)
be a projective cover. Then the composition ker f ⊂ P J(λ)→ L(λ) is surjective on
the λ-weight space, hence is surjective. As P J(λ) → L(λ) is essential, we deduce
ker f = P J(λ), so f = 0, i.e., there is no nontrivial homomorphism from P J(λ) to
N+. From this and the projectivity of P J(λ) in OJ we deduce that the canonical
homomorphism HomOJ (P J(λ), N) → HomOJ (P J(λ), N/N+) is an isomorphism.
Now any submodule A of P J(λ) with the property that P J(λ)/A is contained
in OJ′ must contain the λ-weight space of P J(λ). As P J(λ) is generated by this
weight space, we have P J(λ)− = P J(λ). Equation (∗) now yields (2).

As all short exact sequences in OJ/OJ′ can be obtained from short exact
sequences in OJ by applying the quotient functor T, we deduce that TP J(λ)
is projective in OJ/OJ′ from (2). As T is exact, the morphism TP J(λ)→ TL(λ)
is an epimorphism. Now EndOJ/OJ′ (TP

J(λ)) ∼= EndOJ (P J(λ)) by (2), so this is

a local ring, so TP J(λ) is indecomposable. The fact that TP J(λ) → TL(λ) is a
projective cover now can be proven using the arguments in the last paragraph of
the proof of Theorem 17.

Statement (3) follows from (1), since the objects {TL(λ)}λ∈J\J′ represent the

simple isomorphism classes in OJ/OJ′ . �

18. Subquotients and locally closed subsets

Again we suppose that J is quasi-bounded. Set K := J \ J ′ and consider the
composition of functors

V : V(K) ⊂ OJ T−→ OJ/OJ
′
.

Note that the projectives P J(ν) with ν ∈ K are objects in V(K), and that

HomV(K)(P
J(λ), P J(µ)) = HomOJ/OJ′ (TP

J(λ),TP J(µ))

for all λ, µ ∈ K by Proposition 24. As the objects {TL(λ)}λ∈K represent the
simple isomorphism classes in OJ/OJ′ , and as the morphisms T(P J(λ) → L(λ))
are projective covers, we deduce that OJ/OJ′ is the abelianization of the exact
category V(K). In particular, this quotient category does not depend on the choice
of J and J ′, but only on the locally closed subset K. So henceforth we write O[K]

for this category.

19. The shift functor on subquotients

We return to the setup in Section 16: we fix open subsets J ′ ⊂ J of X and suppose
that J is quasi-bounded, we choose a dominant weight γ ∈ X+ and set J̃ := J + γ
and J̃ ′ := J ′ + γ, K := J \ J ′ and K̃ = J̃ \ J̃ ′ = K + γ. We again consider the
functor

( · )⊗ L(γ) : O → O.

It maps the category OJ , resp. OJ′ , into the category OJ̃ , resp. OJ̃′ and hence
induces a functor

Z : O[K] → O[K̃].
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Theorem 25. Suppose that there exists some l > 0 such that the triple (J, J ′, γ)
satisfies the following:

• γ ∈ plX,
• for all ν > 0 we have K ∩ (K − plν) = ∅.

Then the functor Z is an equivalence of categories.

Proof. Consider the following composition of functors:

V : V(K)→ OJ → OJ/OJ
′

= O[K],

Ṽ : V(K̃)→ OJ̃ → OJ̃/OJ̃
′

= O[K̃].

Let Ĩ ′ be the complement of J̃ ′ in X. For all objects M in OJ̃ the inclusion

MĨ′ ⊂ M has a quotient in OJ̃′ , so this inclusion is an isomorphism in OJ̃/OJ̃′ .
Hence the square on the right of the diagram

V(K̃)
Ṽ // OJ̃/OJ̃′ id // OJ̃/OJ̃′

V(K)

U=(( · )⊗L(γ))Ĩ′

OO

V // OJ/OJ′
(( · )⊗L(γ))Ĩ′

OO

id // OJ/OJ′
Z=( · )⊗L(γ)

OO

commutes, making the whole diagram commutative. Now both categories OJ̃/OJ̃′

and OJ/OJ′ are abelian and have enough projectives. In order to show that Z
is an equivalence, it suffices to show that is essentially surjective on projectives
and fully faithful on projectives. Using Proposition 24 and the above commutative
diagram, it suffices to show this statement for the functor U : V(K)→ V(K̃). But
U is an equivalence by Theorem 22. �
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