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Abstract. We develop a theory of two-parameter quantum polynomial functors. Similar
to how (strict) polynomial functors give a new interpretation of polynomial representa-
tions of the general linear groups GLn, the two-parameter polynomial functors give
a new interpretation of (polynomial) representations of the quantum symmetric pair
(UBQ,q(gln), Uq(gln)) which specializes to type AIII/AIV quantum symmetric pairs. The

coideal subalgebra UBQ,q(gln) appears in a Schur–Weyl duality with the type B Hecke

algebra HBQ,q(d). We endow two-parameter polynomial functors with a cylinder braided
structure which we use to construct the two-parameter Schur functors. Our polynomial
functors can be precomposed with the quantum polynomial functors of type A producing
new examples of action pairs.
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1. Introduction

Strict polynomial functors are endofunctors on the category of vector spaces that
are polynomial on the space of morphisms. They are related to the polynomial
representations of GLn in the sense that the degree d polynomial functors are
equivalent to the degree d representation of GLn when n ≥ d (this correspondence
passes through the Schur algebra). Two quantizations of polynomial functors were
developed by Hong and Yacobi [HY17] (first) and by the authors [BK19b]. The
first category is related to the polynomial representation theory of the quantum
group Uq(gln). The second category is related to a “higher degree” quantization of
GLn [BK19b, Cor. 6.16]; it is more complicated than the category from [HY17] and
was constructed in order to define composition of quantum polynomial functors.
Composition is a natural operation on functors, which is useful in performing
cohomological computations. For example, it enables Friedlander and Suslin [FS97]
to prove the cohomological finite generation of finite group schemes.

In the present paper we define and study two-parameter quantum polynomial
functors. These polynomial functors are related to the representation theory of a
certain coideal subalgebra UBQ,q (to be defined in Section 2.2) in the same way that
classical polynomial functors are related to the representation theory of GLn. Many
of the properties of classical or quantum polynomial functors (see [HY17, BK19b])
have (sometimes surprising) analogues for two-parameter polynomial functors, as
we show in this paper.

A quantum symmetric pair is a pair of algebras B ⊂ Uq(g) where g is a reductive
Lie algebra and B is constructed from an involution θ of g. The subalgebra B
has the following property: by restricting the comultiplication ∆ of Uq(g) to B,
one obtains a map ∆ : B → B ⊗ Uq(g). The subalgebra B is also called a
coideal subalgebra for this reason. Such coideal subalgebras have been studied
in special cases using solutions of the reflection equation by Noumi, Sugitani, and
Dijkhuizen [Nou96], [NS95], [NDS97] and in general by Letzter [Let99], [Let02],
[Let03]. For more details about quantum symmetric pairs and their applications
see the introduction to the paper of Kolb [Kol14], where an affine version of the
theory of quantum symmetric pairs is developed.

In this work, we restrict our attention to a specific type of coideal subalgebra
UBQ,q. The motivation for studying this coideal subalgebra is manifold. It is part
of a quantum symmetric pair that comes with solutions of the reflection equation
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and is in (Schur–Weyl) duality with the unequal parameter Hecke algebra of type
B. It also plays a major role in many recent works in representation theory, as we
now describe.

We first mention two important independent works where the coideal UBQ,q and
its specializations play a key role. In Bao and Wang [BW18b], a theory of canonical
bases for the coideal subalgebra UBq,q (denoted by Uι and U in Sections 2.1 and
6.1) is initiated and used to obtain decomposition numbers for the BGG category
O of the Lie superalgebra osp(2m + 1|2n). The coideal at q = 1 appears as an
algebra generated by certain translation functors.

In [ES18], Ehrig and Stroppel study a 2-categorical action of the coideal UB1,q
on a parabolic BGG category O of type D, which categorifies an exterior power
of the natural representation of the coideal. This process produces canonical bases
for the aforementioned coideal modules. A Howe duality for the coideal subalgebra
surprisingly emerges.

These works started a new wave of interest in quantum symmetric pairs and
their applications to representation theory. Bao and Wang started a program of
studying canonical bases for quantum symmetric pairs [BW18b], [BW16], [BK15],
[Bao17], [BW18a], [BW19] which generalizes Lusztig’s theory of canonical basis for
Uq(gln) [Lus90a]. In a related work of Balagovic and Kolb [BK19a], the universal
K-matrix is constructed for a large class of quantum symmetric pairs including the
ones appearing in this work (the universal K-matrix for UBq,q was first written down
in [BW18b, §2.5]). The universal K-matrix produces solutions to the reflection
equation similar to how the universal R-matrix produces solutions to the Yang–
Baxter equation. The search for such solutions of the reflection equation is moti-
vated by the theory of solvable lattice models with U-turn boundary conditions
and the study of invariants for braids in a cylinder (according to the work of tom
Dieck and Häring-Oldenburg [tD98], [tDHO98], [HO01]).

A natural continuation of the work [BW18b] is the work of Bao [Bao17], where
canonical bases for the specialization UB1,q are studied, and decomposition numbers
for the BGG category O of osp(2m|2n) are obtained. The two papers [BW18b,
Bao17] establish a Schur–Weyl duality between the coideal subalgebras UBq,q and

UB1,q, and the Hecke algebra HBq,q(d) and HB1,q(d), respectively (see also [ES18]
for the Q = 1 Schur–Weyl duality and [Gre97] for a general Schur–Weyl duality
without the quantum symmetric pair). The two Schur–Weyl dualities are genera-
lized to a duality between UBQ,q and HBQ,q(d) in [BWW18]. The Schur–Weyl duality

tells us that a large part of the representation theory of UBQ,q is encoded in the

centralizers of HBQ,q(d) acting on V ⊗dn . This is the starting point of our definition
of two-parameter quantum polynomial functors.

Let k be a field and Q, q ∈ k× and let CBd be the full subcategory of HBQ,q(d)-

modules (over k) of the form V ⊗dn where the Hecke algebra HBQ,q(d) acts on a space

V ⊗dn as in Equation (3). We define two-parameter quantum polynomial functors of
degree d as linear functors from the category CBd to the category of vector spaces,
that is, we let

PdQ,q = modCBd .

We prove the category PdQ,q is equivalent to the category of finite dimensional
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representations of the two-parameter Schur algebra

SBQ,q(n; d) := EndHBQ,q(d)(V
⊗d
n )

when n ≥ 2d is odd. If Q, q are generic, we do not need to require n to be odd (see
Setup at the end of this section for what generic means). The algebra SBQ,q(n; d)
generalizes the q-Schur algebra of Dipper and James and is the main subject of
study of the papers [BKLW18], [LL19], [LNX20]. In particular, [LNX20, Thm.
3.1.1] shows that SBQ,q(n; d) is isomorphic to a direct sum of tensor products of
type A q-Schur algebras under a small (necessary) restriction on Q, q.

Our construction of polynomial functors and the proof of representability from
Section 3 is based on a Schur–Weyl duality and does not use any other property of
the coideal UBQ,q. We know our construction and proof work in the setting of [FL15,
ES18] where a Schur–Weyl duality involving the Hecke algebra of type D appears.
We expect it to work in many other settings, possibly including [ATY95, HS06,
SS99, Sho00, MS16] where Schur–Weyl dualities appear. The super polynomial
functors of Axtell [Axt13] are also based on the Schur–Weyl dualities of Ser-
geev [Ser84].

The theory of polynomial functors we develop interacts with type A quantum
polynomial functors in two ways. The first interaction is via composition.

Composition between type A quantum polynomial functors APdq (see Examp-
le 3.5 for the definition) for q 6= 1 is not possible. See the Introduction to [BK19b]
for a comprehensive discussion explaining this fact. In [BK19b], the authors define
“higher degree” quantum polynomial functors APd,eq (the category APd,eq is deno-

ted in [BK19b] by Pdq,e) and define a composition functor ◦A : APd1,d2eq ×APd2,eq →
APd1d2,eq . The categories APd,eq are quantizations of the category of classical poly-

nomial functor Pd (in the sense of APd,eq=1 ' Pd) but are more complicated: for

example, we do not know the number of nonisomorphic simple objects in APd,eq .
In our setting, one cannot hope to define composition of quantum polynomial

functors because we cannot take the tensor power of general UBQ,q-modules. In
Section 5, we define higher degree two-parameter quantum polynomial functors
Pd,eQ,q and prove that there is a composition ◦ : Pd1,d2eQ,q × APd2,eq → Pd1d2,eQ,q that
makes the type B higher degree polynomial functors together with type A higher
degree polynomials into an action pair. This structure is natural in the setting of
polynomial functors while not in the setting of Schur algebra modules. Composition
for classical polynomial functors is related to an operation on symmetric polyno-
mials known as plethysm. It would be interesting to understand the analog of
plethysm related to our composition between type A and type B quantum poly-
nomial functors (for an introduction to classical plethysm see Macdonald [Mac95,
Sect. I.8]).

We emphasize that the composition between type A and type B quantum
polynomial functors produces what we believe are new, nontrivial examples of
action pairs. These examples are different from the examples of the (cylinder
braided) action pairs we produce in Section 4. The latter examples have appeared
in a different setting in the work of Kolb and Balagovic and reflect the fact that
UBQ,q is a coideal of Uq(gln).
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Higher degree polynomial functors are related to certain generalizations of
the Schur algebra which we call e-Schur algebras and denote by SAq (n; d, e) and

SBQ,q(n; d, e) (the former was initially defined in [BK19b]). They are defined via

e-Hecke algebras HAq (d; e) and HBQ,q(d; e) which live inside the ordinary Hecke

algebras HAq (de) and HBQ,q(de), respectively; they are higher quantizations of the

Weyl groups WA
d and WB

d , respectively. See Figure 1 for the relation between such
Schur and Hecke algebras.

The second interaction of type A and type B quantum polynomial functors is
presented in Section 4, where we show that the restriction of APq =

⊕
dAP

d
q to

PQ,q =
⊕

d PdQ,q forms a cylinder braided action pair with APq. We explain how to
generalize this result to higher degree polynomial functors in Remark 5.5. There
also exists a higher degree action of the category

⊕
dAP

d,e
q on

⊕
d P

d,e
Q,q which

leads to a new cylinder braided action pair. The notion of a cylinder braided action
pair due to tom Dieck and Häring-Oldenburg [tD98, tDHO98, HO01] generalizes
the notion of a braided monoidal category to a setting where one has categorical
solutions of the Yang–Baxter equation and the reflection equation. The quantum
symmetric pair (UBQ,q, Uq(gln)) produces a main example of such a pair. The
cylinder braided action pair has an interesting generalization. In [BK19a, Sect.
4] the notion of a braided tensor category with a cylinder twist is developed
(Balagovic and Kolb use the term ‘braided tensor category with a cylinder twist’
for what we call cylinder braided action pair); in this generalization, all finite
quantum symmetric pairs produce examples of such categories. A slightly stronger
notion than a cylinder braided action pair is that of a braided module category
defined in [Enr07, §4.3] (see also [Bro13, § 5.1]). Kolb [Kol20] showed all quantum
symmetric pairs for Q, q generic produce such module categories up to twist. Our
category of polynomial functors can also be shown to produce braided module
categories (see Remark 4.9).

In type A, the tensor power has two distinguished quotients, namely the sym-
metric power and the exterior power. In our setting, the two-parameter symmetric
power and the exterior power both have two distinguished quotients. We define
them in Section 6 and call them the ±-symmetric power, denoted by Sd±, and the ±-

exterior power, denoted by ∧d±. They depend on positive and negative eigenvalues
of the K-matrix, similar to how type A symmetric and exterior power depend
on positive and negative eigenvalues of the R-matrix. These are the most basic
examples of the Schur functors and are the building blocks for other Schur functors.

In § 6.1, we define higher degree ± symmetric and exterior powers. The definition
makes crucial use of Corollary 2.6 where we essentially show that action of the UBQ,q-

universal K-matrix on any Uq(gln) module has eigenvalues of the form ±Qiqj for
i, j ∈ Z. These examples of higher degree two-parameter quantum polynomial
functors should be thought of as the generalization of the type A quantum sym-
metric and exterior powers due to Berenstein and Zwicknagl [BZ08].

In Section 7, we construct the Schur functors in PQ,q analogous to the classical
construction of Akin–Buchsbaum–Weyman [ABW82]. A classical Schur functor is
defined as the image of the conjugation

∧λ′ = ∧λ′1 ⊗ · · · ⊗∧λ′r → Sλ = Sλ1 ⊗ · · · ⊗ Sλl ,
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where λ = (λ1, . . . , λr) is a partition and λ′ = (λ′1, . . . , λ
′
l) is its transpose. In our

setting, the ±-symmetric/exterior powers defined in Section 6 play the role of the
symmetric/exterior powers. However, we are unable to define the tensor product
of ±-symmetric/exterior powers since they are coideal modules and not bialgebra
modules. Therefore, the obvious generalization fails and we need a new idea. Our
idea is to define a “deformed tensor product” of UBQ,q-modules by using the cylinder
braided action from Section 4 (an example of deformed tensor products is presented
in Definition 7.10) and use it to define the Schur functor. We then write the Schur
functor in Equation (46) generalizing the type A definition of the Schur functor.
It is defined as the image of a(n induced) conjugation

∧(λ′,µ′) → S(λ,µ),

where ∧(λ′,µ′) is a deformed tensor product of ∧λ
′
1

+ , . . . ,∧λ
′
r

+ ,∧µ
′
1
− , . . . ,∧µ

′
l.
− and

S(λ,µ) is similarly a deformed tensor product. See Definition 7.13 and Equation (46)
for details.

If Q, q are generic, the Schur functors form a complete set of simple objects in
the category PQ,q. In the nongeneric case, we expect that the Schur functors form
a complete set of costandard objects whenever PQ,q is a highest weight category.
The latter is true under a small restriction on Q, q.

Our definition of Schur functors can be ‘lifted’ to the setting of higher degree
polynomial functors as we explain in § 7.3. The result is a class of interesting
objects in Pd,e and APd,e and is a first step toward understanding the categories
Pd,e and APd,e.

Setup. We assume that k is a field, Q, q ∈ k× and Q2 6= −1 6= q2.
In a few places, we use the stronger assumption that k = C and Q, q ∈ k are

such that Qiqj 6= 1 for all i, j ∈ Z (in particular Q, q are not roots of unity). For
convenience, we refer to this assumption by saying Q, q are generic or by using the
term ‘generic case’.

Acknowledgements.We thank Huanchen Bao, Chun-Ju Lai and Catharina Strop-
pel for useful discussions. We thank Catharina Stroppel for valuable comments on
an earlier version of the paper. We thank the referees for many helpful comments.
Part of the work in this paper was done while the first author visited the Max
Planck Institute for Mathematics in Bonn; both authors would like to thank the
Institute for hospitality and good working conditions.

2. Quantum symmetric pairs and Schur–Weyl dualities

We introduce the basic objects that are used throughout the paper: the quantum
group Uq(gln), the coideal subalgebra UBQ,q and the two-parameter Hecke algebra

of Coxeter type BC, which we denote by HBQ,q(d). We review a Schur–Weyl duality

between HBQ,q(d) and UBQ,q which is crucial for our definition of two parameter.

2.1. Hecke algebras

Definition. Denote the Weyl group of type BC of rank d by WB(d). It is the
Coxeter group with generators si, 0 ≤ i ≤ d− 1 and relations
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s2
i = 1

sisi+1si = si+1sisi+1

s0s1s0s1 = s1s0s1s0,

sisj = sjsi

for i ≥ 0,

for i > 0,

for |i− j| > 1.

The elements si ∈WB(d) for i > 0 generate a subgroup isomorphic to WA(d), the
Weyl group of type A (otherwise known as the symmetric group Sd).

Let HBQ,q(d) be the two-parameter Hecke algebra of type BC [Lus03]. It is
presented by generators T0, T1, . . . , Td−1 satisfying the relations

(T0 +Q)(T0 −Q−1) = 0,

(Ti + q)(Ti − q−1) = 0

TiTi+1Ti = Ti+1TiTi+1

T0T1T0T1 = T1T0T1T0,

TiTj = TjTi

for i > 0,

for i > 0,

for |i− j| > 1.

(1)

Note that the generators T1, . . . , Td−1 generate a subalgebra of HBQ,q(d) isomorphic

to the Hecke algebra HAq (d) of type A.

Given an element w ∈ WB(d), we write Tw = Ti1 · · ·Til where si1 · · · sil is
a reduced expression of w. The element Tw ∈ HBQ,q(d) does not depend on the

reduced expression. The elements Tw for w ∈WB(d) form a basis of HBQ,q(d).

Action on the tensor space. Define

I2r := {−(2r − 1)/2, . . . ,−1/2, 1/2, . . . , (2r − 1)/2},
I2r+1 := {−r, . . . ,−1, 0, 1, . . . , r}.

Fix n ≥ 1 and set I := In.
Let a := (a1, . . . , ad) ∈ Id. The group WB(d) acts on the set Id as follows

[BW18b], [ES18]:

si : (. . . , ai, ai+1, . . .) 7→ (. . . , ai+1, ai, . . .) for i > 0,

s0 : (a1, . . .) 7→ (−a1, · · · ).
(2)

Let Vn be a vector space with basis {vi, i ∈ In}. Write v(a) := va1 ⊗ · · · ⊗ vad ∈
V ⊗dn . Then the set {v(a),a ∈ Id} is a basis for V ⊗dn .

There is a right action of HBQ,q(d) on V ⊗dn given by

Ti 7→ (Rq)i,i+1 for i > 0,

T0 7→ (KQ)1,
(3)

where Rq : Vn ⊗ Vn → Vn ⊗ Vn is the map

Rq : vi ⊗ vj 7→


q−1vi ⊗ vj if i = j,

vj ⊗ vi if i < j,

vj ⊗ vi + (q−1 − q)vi ⊗ vj if i > j,

(4)
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and KQ : Vn → Vn is the map

KQ : vi 7→


Q−1vi if i = 0,

v−i if i > 0,

v−i + (Q−1 −Q)vi if i < 0.

(5)

The map (Rq)i,i+1 acts as Rq on the (i, i + 1) entries of the tensor product V ⊗dn

and as the identity on the rest of the entries. Similarly, (KQ)1 = KQ⊗ id⊗d−1
Vn

. The

action of HBQ,q(d) is classical. See, for example, Green [Gre97]. The Schur algebra

SBQ,q(n; d) is then defined as the centralizer algebra of the right action of HBQ,q(d)

on the tensor space V ⊗dn .

Remark 2.1. The map Rq is the action of the inverse of the universal R-matrix of
Uq(gln) on Vn⊗Vn as explained in [BW18b, Prop. 5.1] in the Q = q case. Similarly,
the map Kq is the action of the inverse of the universal K-matrix (due to [BK19a])
of the coideal UBQ,q on Vn (see [BW18b, Thms. 5.4, 6.27], again for the Q = q case).

The elements Ki. For each 1 ≤ i ≤ d, we consider the elements

Ki = Ti−1 · · ·T1T0T1 · · ·Ti−1

in HBQ,q(d). These are the Jucy–Murphy elements of HBQ,q(d) (see [DJM98, Sect.
2]). The following lemma is well known: see, for example, [DJM98, Prop. 2.1] for
a proof.

Lemma 2.2. For each 1 ≤ i, j ≤ d, Ki and Kj commute.

Let cK ∈ HBQ,q(d) be the element

cK :=

d∏
i=1

Ki. (6)

The product is well defined due to Lemma 2.2.

Lemma 2.3. The element cK ∈ HBQ,q(d) is central.

Proof. We show that cK commutes with all the generators Ti of HBQ,q(d).
First let us look at T0. It obviously commutes with itself. It commutes with

T1T0T1, this is just the equation T1T0T1T0 = T0T1T0T1. It also commutes with
Ti, i > 1. This means it commutes with Tj · · ·T2(T1T0T1)T2 · · ·Tj . Therefore it
commutes with cK .

Let us look at Ti for i > 0. The following facts are parts ii) and iii) of [DJM98,
Prop. 2.1]:

(1) Ti commutes with Kj for i 6= j, j − 1.
(2) Ti commutes with Ki+1Ki.

We conclude that Ti commutes with cK . �

Consider the action of HBQ,q(d) on V ⊗dn defined in §2.1. We close the section by
determining the eigenvalues of Ki. The following lemma [MS18, Lem. 5.2] becomes
useful.
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Lemma 2.4. Suppose Ki, Ki+1 have a simultaneous eigenvector with eigenvalues
a and b, respectively. Then either Ki,Ki+1 also have a simultaneous eigenvector
with eigenvalues b and a, respectively, or b = q±2a.

Proof. Let v ∈ V ⊗dn be a simultaneous eigenvector for Ki, Ki+1 with eigenvalues
a, b (respectively). Then the vector w = (q−1 − q)bv + (a − b)Tiv is checked to
satisfy Kiw = bw and Ki+1 = aw. If w 6= 0, then w is a desired eigenvector. If
w = 0 then v is an eigenvector for Ti. This implies Ki+1v = TiKiTiv = ac2v where
c is an eigenvalue for Ti, which is either of −q or q−1. �

Proposition 2.5. The eigenvalues of Ki on V ⊗dn are of the form −Qq2j and
Q−1q2j where |j| < i.

Proof. The i = 1 case follows from the definition (and also follows from the relation
(T0 −Q−1)(T0 +Q) = 0 in the Hecke algebra).

Now suppose that the eigenvalues of Ki are of the form −Qq2j and Q−1q2j

where |j| < i, and let b be an eigenvalue of Ki+1 which lives in the algebraic
closure of k. The actions of Ki and Ki+1 are simultaneously triangularizable (over
the algebraic closure of k), so we can find a simultaneous eigenvector v for Ki,Ki+1

where Ki+1v = bv. Then by Lemma 2.4, either b = q±2a where a is an eigenvalue
of Ki (the second case of the lemma) or b is an eigenvalue of Ki (the first case of
the lemma). Therefore b should be of the desired form (which also implies that all
Ki are triangularizable over k). �

Corollary 2.6. The eigenvalues of cK are of the form ±Qiqj for i, j ∈ Z.

Proof. Since Ki are simultaneously triangularizable, each eigenvalue of cK is a
product of eigenvalues of Ki’s. The claim thus follows from Proposition 2.5. �

2.2. Coideal subalgebras and Schur algebras

Schur algebras. Considering the action of HBQ,q(d) on V ⊗dn in Equation (3), define

SBQ,q(m,n; d) := HomHBQ,q (V
⊗d
m , V ⊗dn ). (7)

Then the Schur algebra SBQ,q(n; d) is the specialization of SBQ,q(m,n; d) at m = n;
it is an algebra with multiplication given by composition and the identity given by
the identity homomorphism.

There is an obvious action SBQ,q(n; d)

�

V ⊗dn .

Quantum groups and coideal subalgebras. In this subsection, we assume that k = C
and Q, q are generic.

The quantum group Uq(gln) is the unital associative algebra over C generated
by elements Ei, Fi for i ∈ In−1 and D±1

i for i ∈ In subject to the relations (set
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j′ = j − 1/2):

DiDj = DjDi, DiD
−1
i = 1 = D−1

i Di,

DiEjD
−1
i = qδi,j′−δi−1,j′Ej , DiFjD

−1
i = q−δi,j′+δi−1,j′Fj ,

EiEj = EjEi, FiFj = FjFi if i 6= j ± 1,

EiFj − FjEi = δi,j
Dj′D

−1
j′+1 −Dj′+1D

−1
j′

q − q−1
,

E2
i Ei±1 − (q + q−1)EiEi±1Ei + Ei±1E

2
i = 0,

F 2
i Fi±1 − (q + q−1)FiFi±1Fi + Fi±1F

2
i = 0.

(8)

Let Hj = Dj′D
−1
j′+1. The subalgebra of Uq(gln) generated by Ei, Fi, H

±1
i for i ∈

In−1 is the quantum group Uq(sln). We do not define the quantum group at a root
of unity, but whenever we mention it we are referring to Lusztig’s version of the
quantum group at a root of unity [Lus90b].

The quantum group Uq(gln) is a Hopf algebra with comultiplication ∆ and
antipode S given on generators by the following formulas:

∆(Di) = Di ⊗Di,

∆(Ei) = 1⊗ Ei + Ei ⊗H−1
i ,

∆(Fi) = Fi ⊗ 1 +Hi ⊗ Fi,
S(Di) = D−1

i , S(Ei) = −EiHi, S(Fi) = −H−1
i Fi.

(9)

The vector space Vn described in §2.1.2 can be thought of as the defining represen-
tation of Uq(gln); it has basis {vi, i ∈ In} and the quantum group Uq(gln) acts on
Vn as follows:

Divj = qδi,jvj ,

Eivj = δi,j′vj−1,

Fivj = δi,j′+1vj+1.

(10)

We now introduce the (right) coideal subalgebra UBQ,q(gln) as in [BWW18],

where it is denoted by Ui or Uj , depending on the parity of n. For i ∈ In−1, define
the following elements of Uq(gln):

di = DiD−i, ei = Ei + F−iH
−1
i , fi = E−i +H−1

−i Fi,

e1/2 = E1/2 +Q−1F−1/2H
−1
1/2, f1/2 = E−1/2 +QH−1

−1/2F1/2,

t = E0 + qF0H
−1
0 +

Q−Q−1

q − q−1
H−1

0 .

(11)

The subalgebra UBQ,q(gln) of Uq(gln) is generated by the elements ei, fi for i ∈
In−1, i > 0 , d±1

i for i ∈ In, i > 0, and the element t when n is odd. We denote
UBQ,q(gln) by UBQ,q throughout the text. The name coideal subalgebra is due to the

fact that the restriction of the comultiplication from Uq(gln) to UBQ,q has image in

UBQ,q ⊗ Uq(gln). The Uq(gln)-module V ⊗dn restricts to an UBQ,q-module. Then the

left action of UBQ,q and the right action of HBQ,q(d) on V ⊗dn commute. Moreover, we
have the following.
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Theorem 2.7 ([BWW18, Thms. 2.6, 4.4]). The actions of UBQ,q and HBQ,q(d) on

V ⊗dn form double centralizers, i.e., the left (resp., right) action surjects onto the
centralizer of the right (resp., left) action.

Remark 2.8. By Theorem 2.7 one realizes the Schur algebra SBQ,q(n; d) as a quo-

tient of the coideal subalgebra UBQ,q. This gives an equivalence of categories between

the category of degree d modules of UBQ,q (i.e., summands of V ⊗dn ) and the category
of SQ,q(n; d)-modules. Our main results in Section 3 identify degree d polynomial
functors with representations of the Schur algebra SBQ,q(n; d) for n ≥ d. The fact

that the category of finite dimensional representations of SBQ,q(n; d) is equivalent
to the same category as long as n ≥ d can be interpreted as a stability result in the
limit n→∞ for UBQ,q when Q and q are generic. This is different from the d→∞
stabilization studied in [BKLW18] (see also [BLM90] for the type A theory).

For a partition λ, let |λ| be the sum of its parts and `(λ) the number of nonzero
entries in λ. Under our assumption, the algebra HBQ,q(d) is semisimple and has
irreducible representations Mλ,µ indexed by pairs of partitions (λ, µ) with |λ| +
|µ| = d (this follows from the work of [DJ92]). Furthermore, there is a SBQ,q(n; d)⊗
HBQ,q(d)-bimodule decomposition of V ⊗dn (note that using Theorem 2.7 we can

view it as a decomposition as a UBQ,q ⊗HBQ,q(d)-bimodule):

V ⊗dn
∼=

⊕
(λ,µ)`nd

Lλ,µ(n)⊗Mλ,µ. (12)

The subscript (λ, µ) `n d means that λ, µ are partitions such that |λ| + |µ| = d
and `(λ) ≤ r, `(µ) ≤ r when n = 2r or `(λ) ≤ r + 1, `(µ) ≤ r when n = 2r + 1. In
the above, Lλ,µ(n) is either an irreducible representation of UBQ,q or 0. If n ≥ 2d,
Lλ,µ(n) is never 0. These irreducibles are indexed by bipartitions (λ, µ) `n d.

A useful consequence of (12) is the following fact.

Proposition 2.9. The Ki action on V ⊗d is diagonalizable.

Proof. We first show that the element cK =
∏d
i=1Ki is diagonalizable. The element

cK is central in HBQ,q(d) by Lemma 2.3. It further commutes with the action

of SBQ,q(n; d), so it is a central (SBQ,q(n; d),HBQ,q(d))-bimodule action of V ⊗d (if

we view (SBQ,q(n; d),HBQ,q(d))-bimodule as a left SBQ,q(n; d) ⊗ HBQ,q(d)op-module,

then cK is in the center of SBQ,q(n; d) ⊗ HBQ,q(d)op). Since the decomposition is
multiplicity free, cK acts by a scalar on each irreducible bimodule summand of
V ⊗d, hence diagonal on V ⊗d.

Now we proceed by induction on d. We know that K1 is diagonalizable, which
takes care of the d = 1 case. Let d > 1. By induction hypoethesis, for each
i < d, Ki is diagonalizable. (In fact, the induction hypothesis says that Ki is
diagonalizable on V ⊗i, but then Ki|V ⊗d = Ki|V ⊗i ⊗ id⊗d−i is also diagonalizable.)
Writing Kd = cKK

−1
d−1 · · ·K

−1
1 , we see that Kd is a product of diagonalizable

elements. By Lemma 2.2 and Lemma 2.3, the elements all commute and hence are
simultaneously diagonalizable. This implies that Kd is diagonalizable. �

Remark 2.10. The Schur algebra defined above is a generalization of the type A
q-Schur algebra of Dipper and James [DJ89]. It first appeared in [Gre97] and it
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is the same Schur algebra appearing in [BWW18] or in [LNX20]. It is different
from EndB(n,d)(W

⊗d
n ), where Wn is the defining representation of the quantum

symplectic group and B(n, d) is the BMW algebra.

2.3. Young symmetrizers for HB
Q,q(d)

In this subsection, we assume k = C and Q, q are generic. We explain the construc-
tion of certain Young symmetrizers for the Hecke algebra HBQ,q(d) following Dipper

and James [DJ92]. We then describe irreducible representations of UBQ,q as images

of these Young symmetrizers acting on V ⊗dn by Schur–Weyl duality in Theorem 2.7.
Consider the following elements u±i ∈ HBQ,q(d):

u+
i =

i∏
j=1

(Kj +Q), u−i =

i∏
j=1

(Kj −Q−1). (13)

Given a and b non-negative integers such that a+b = d, define wa,b ∈WA(d) ⊂
WB(d) to be the element given in two line notation by

wa,b =
(

1 ··· b b+1 ··· a+b
a+1 ··· a+b 1 ··· a

)
. (14)

Let Ta,b := Twa,b be the corresponding element in HBQ,q(d). Let z̃b,a be the
element defined in [DJ92, Def. 3.24]. Note that by definition z̃b,a is a central element
of Hq(Sa × Sb) ⊂ HAq (a + b) ⊂ HBQ,q(a + b), where we define Hq(Sa × Sb) as the

subalgebra of HAq (a+ b) with generators Ti, i 6= a. The element z̃b,a satisfies

u+
a Ta,bu

−
b Tb,au

+
a Ta,bu

−
b = z̃b,au

+
a Ta,bu

−
b

and it is invertible by [DJ92, §4.12]. Finally define the following element as in
[DJ92, Def. 3.27]:

ea,b = Ta,bu
−1
b Tb,au

+
a z̃
−1
b,a = z̃−1

b,aTb,au
−1
b Tb,au

+
a . (15)

Then ea,b commutes with all elements in Hq(Sa × Sb). The following theorem is
proved in [DJ92] under the assumption that the element

fd(Q, q) =

d−1∏
i=1−d

(Q−2 + q2i) (16)

is nonzero, which is covered under our assumption.

Theorem 2.11. Let a, b be non-negative integers such that a+ b = d. Then

(1) ea,bHBQ,q(d)ea,b = ea,bHq(Sa × Sb) ' Hq(Sa × Sb).
(2) There is a Morita equivalence

HBQ,q(d) ' ⊕di=0ei,d−iHBQ,q(d)ei,d−i.

Let eaλ ∈ HAq (a) be the (type A) quantum Young symmetrizers (see Gyoja
[Gyo86] for a definition). Since q is generic, the algebra Hq(Sa × Sb) = Hq(Sa) ×
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Hq(Sb) = HAq (a)×HAq (b) is semisimple, and the set {Hq(Sa×Sb)eaλebµ | λ ` a, µ ` b}
gives a complete list of isomorphism classes for irreducible Hq(Sa × Sb)-modules.
Now let

eλ,µ := ea,be
a
λe
b
µ = eaλe

b
µea,b.

It then follows from Theorem 2.11 that {HBQ,q(d)eλ,µ | (λ, µ) ` d} forms a complete

list of nonisomorphic irreducible modules for HBQ,q(d).
Now we apply the Schur–Weyl duality to construct all the irreducible polynomial

UBQ,q-modules up to isomorphism.

Proposition 2.12. The image in V ⊗dn of the action of eλ,µ ∈ HBQ,q(d) is isomor-
phic to Lλ,µ(n).

Proof. This follows from the bimodule decomposition (12) of V ⊗dn . That is,

V ⊗dn eλ,µ ∼= V ⊗dn ⊗HBQ,q(d) HBQ,q(d)eλ,µ

∼=
⊕
λ′,µ′

Lλ′,µ′(n)⊗Mλ′,µ′ ⊗HBQ,q(d) HBQ,q(d)eλ,µ

∼=
⊕
λ′,µ′

Lλ′,µ′(n)⊗Mλ′,µ′ ⊗HBQ,q(d) Mλ,µ

∼=
⊕
λ′,µ′

Lλ′,µ′(n)⊗ δ(λ,µ),(λ′, u′)k

∼= Lλ,µ(n).

In the second from the last isomorphism, we use that HBQ,q(d) is a symmetric
algebra (see [CIK71, Sect. 5]). �

There is no explicit formula for z̃b,a and therefore the element ea,b is not useful
when performing explicit computations. We can bypass this difficulty by working
with the following element:

e′λ,µ := Ta,bu
−1
b Tb,au

+
a e

a
λe
b
µ = eλ,µz̃b,a. (17)

Proposition 2.13. The image in V ⊗dn of the action of e′λ,µ ∈ HBQ,q(d) is isomor-
phic to Lλ,µ(n).

Proof. By Proposition 2.12, it is enough to show that V ⊗dn eλ,µ is isomorphic to
V ⊗dn e′λ,µ. Consider the map

m : V ⊗dn eλ,µ → V ⊗dn e′λ,µ = V ⊗dn eλ,µz̃b,a

given by the (right) action of z̃b,a ∈ HBQ,q(d) on V ⊗dn eλ,µ. Since the UBQ,q action

on V ⊗dn eλ,µ commutes with the HBQ,q(d) action, the map m is an UBQ,q-morphism.

Since z̃b,a is invertible, the map m is an UBQ,q-isomorphism. �

The elements e′λ,µ are not (quasi-)idempotents, but we still call them Young
symmetrizers.
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2.4. Permutation modules for Hecke algebras

Given a ∈ Idn, the subspace V (a) of V ⊗dn spanned by {v(σa) | σ ∈ WB(d)} is
invariant under the action of HBQ,q(d). Sometimes we write V (a, n) to clarify where
a belongs. Thus, we have a decomposition

V ⊗dn =
⊕

a∈Idn/WB(d)

V (a, n) (18)

as HBQ,q(d)-modules.
Alternatively, we can index the permutation modules by compositions. Let θ =(

θ(−n+1)/2, . . . , θ(n−1)/2

)
be a composition of d. Define a(θ) ∈ Idn via the following

equation:

v(a(θ)) :=

(n−1)/2⊗
j=−(n−1)/2

v
⊗θj
j . (19)

Let Vθ := V (a(θ)) be the subspace of V ⊗dn spanned by v(s(a(θ))), s ∈ WB(d).
Throughout this subsection we shall work with both Vθ and V (a(θ)), depending
on which point of view is more beneficial.

Adding 0’s in pairs at a place j>0 to a composition θ=
(
θ(−n+1)/2, . . . , θ(n−1)/2

)
means defining a new composition θ′ =

(
θ′(−n−1)/2, . . . , θ

′
(n+1)/2

)
such that:

θ′l :=


θl if − j < l < j,

0 if l = ±j,
θl±1 if l ≷ ±j.

For example, adding 0’s at j = 1 to θ = (2, 1, 2) produces θ′ = (2, 0, 1, 0, 2). If
Vθ ⊂ V ⊗dn , then clearly Vθ′ ⊂ V ⊗dn+2.

Adding a 0 at j = 0 to a composition θ as above for n even means defining a

new composition θ′ =
(
θ′′−n/2, . . . , θ

′′
n/2

)
such that:

θ′′l :=

{
0 if l = 0,

θl∓1/2 if l ≷ 0.

For example adding a 0 at j = 0 to θ = (1, 2, 3, 4) produces θ′′ = (1, 2, 0, 3, 4). If
Vθ ⊂ V ⊗dn , then Vθ′′ ⊂ V ⊗dn+1.

There is an obvious inverse procedure to adding 0’s in pairs at a place j > 0 if
θ±j = 0 (and similarly there is an inverse procedure for adding a 0 at j = 0 when
θ0 = 0).

Lemma 2.14. The HBQ,q(d)-modules Vθ, Vθ′ and Vθ′′ are isomorphic.

Proof. Let us explain the isomorphism between Vθ and Vθ′ since the case Vθ′′ is
similar.

The space Vθ is spanned as an HBQ,q(d)-module by the vector v(a), for a given in
terms of θ by Equation (19), while the space Vθ′ is spanned by vector v(a′) for a′
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given in terms of θ′ by Equation (19). There is a unique vector space isomorphism
between Vθ and Vθ′ that maps vsa 7→ vsa′ for all s ∈ WB(d). Because of the
way the vector space isomorphism is defined (i.e., it is essentially defined on pure
tensors by replacing vi/v−i by vi+1/v−i−1 for all i > j), this map commutes with
the action of Ti defined in (3) and therefore is an isomorphism of HBQ,q(d)-modules.

For example, if θ = (2, 1, 3) and θ′ = (2, 0, 1, 0, 3), then v(a) = v−1⊗ v−1⊗ v0⊗
v1⊗v1⊗v1 and v(a′) = v−2⊗v−2⊗v0⊗v2⊗v2⊗v2. The isomorphism between Vθ and
Vθ′ maps, for example, v−1⊗v0⊗v−1⊗v−1⊗v1⊗v1 7→ v−2⊗v0⊗v−2⊗v−2⊗v2⊗v2.
�

In terms of a ∈ Idn, we get the following stability lemma.

Lemma 2.15. Let r ≥ d. Then for any n and a ∈ Idn, the HBQ,q(d)-module V (a, n)

is isomorphic to V (b, 2r + 1) for some b ∈ Id2r+1.

Proof. The result follows by use of Lemma 2.14. Let θ(a) be the composition
associated to a and let θ(b) be the composition associated to b. If n is odd and
less than or equal to 2r + 1, we can add 0’s in pairs to θ(a) to obtain a θ(b)
such that V (a, n) ' Vθ(a) ' Vθ(b) ' V (b, 2r + 1). If n is larger than 2r + 1 then
n is larger than 2d + 1 and the composition θ(a) has at most d nonzero entries.
Therefore we can subtract 0’s in pairs from θ(a) to obtain a θ(b) with the required
properties.

If n is even, we first add a 0 at j = 0 to the composition associated to a and
then follow the same procedure as in the odd n case. �

2.5. Generalized Schur algebras and e-Hecke algebras

The category of polynomial representations of Uq(gln) is a braided monoidal cate-
gory, that is, given polynomial Uq(gln)-modules V and W , there is a Uq(gln)-
module isomorphism RV,W : V ⊗ W → W ⊗ V that satisfies the Yang–Baxter
equation:

(RW,U ⊗ idV )(idW ⊗RV,U )(RV,W ⊗ idU )

= (idU ⊗RV,W )(RV,U ⊗ idW )(idV ⊗RW,U ).
(20)

One can build such a map inductively, by starting with RVn,Vn = Rq in (4), defining
RV ⊗dn ,V ⊗en

by use of the formulas

RX⊗Y,Z = (RX,Z ⊗ idY )(idX ⊗RY,Z),

RX,Y⊗Z = (idY ⊗RX,Z)(RX,Y ⊗ idZ),
(21)

and then realizing any indecomposable degree d representation of Uq(gln) as a
subquotient of V ⊗dn . This is a standard exercise; for details one can look at Parshall
and Wang [PW91]. A similar idea works for the K-matrix which we now sketch.

Denote RV,V by RV . Given V a polynomial Uq(gln)-module of degree d viewed
as a representation of the coideal subalgebra UBQ,q, then there exists a K-matrix

KV that is an UBQ,q-isomorphism and satisfies the reflection equation:

(KV ⊗ idW )RW,V (KW ⊗ idV )RV,W = RW,V (KW ⊗ idV )RV,W (KV ⊗ idW ). (22)
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Again, one can obtain the K-matrix on polynomial representations inductively, by
starting with KVn := KQ and using the formula:

KV⊗W = (KV ⊗ idW )RW,V (KW ⊗ idV )RV,W . (23)

In particular, this implies that KV ⊗dn
is given by the action of KdKd−1 · · ·K1 on

V ⊗dn , and it induces the K-matrix KV for every subquotient V of V ⊗dn .
In the Weyl group WA(de) with simple reflections si, 1 ≤ i ≤ de − 1, consider

the elements wi, 1 ≤ i ≤ d− 1 given in two line notation by

wi =
( 1 ··· e(i−1) ei−e+1 ··· ei ei+1 ··· ei+e−1 ei+e ··· de

1 ··· e(i−1) ei+1 ··· ei+e−1 ei−e+1 ··· ei ei+e ··· de
)
. (24)

Note that wi is the longest element in the parabolic subgroup (isomorphic to
WA(e)) in WA(de) generated by sei+1, . . . , se(i+1)−1.

Following [BK19b], we define HAq (d, e) as the subalgebra of HAq (de) generated

by Twi , 1 ≤ i ≤ d− 1. We call HAq (d, e) the e-Hecke algebra (of Coxeter type A).
Let V be a Uq(gln)-module of degree e and RV be its R-matrix. Then one can

show (see the discussion after Definition 2.9 in [BK19b]) that there is a right action
of HAq (d; e) on V ⊗d, where Twi acts as (RV )i,i+1.

In the Weyl group WB(de) with simple reflections si, 0 ≤ i ≤ de − 1, consider
the elements wi ∈WA(de) ⊂WB(de), 1 ≤ i ≤ d− 1 defined in Equation (24) and
the element w0 given by

w0 = s0(s1s0s1) · · · (se−1 · · · s1s0s1 · · · se−1). (25)

Note that w0 is the longest element in the parabolic subgroup (isomorphic to
WB(e)) in WB(de) generated by s0, . . . , se−1.

Definition 2.16. Define HBQ,q(d, e) as the subalgebra of HBQ,q(de) generated by

Twi , 0 ≤ i ≤ d−1. We call HBQ,q(d, e) the two-parameter e-Hecke algebra of Coxeter
type B.

Remark 2.17. The e-Hecke algebras are simple to define but not well understood.
For example, the dimension of HBQ,q(1, 2) is 4 for Q, q generic (and therefore larger

than HB1,1(1, 2) ∼= kS2). This follows from the fact that the K-matrix KV ⊗2
n
∈

EndUBQ,q (V
⊗2
4 ) generates a subalgebra in EndUBQ,q (V

⊗2
4 ) isomorphic to HBQ,q(1, 2)

(this is because the action of HBQ,q(1, 2) on (V ⊗2
n )⊗1 is faithful for n ≥ 2) and

the K-matrix has five different eigenvalues for n ≥ 4. Similarly, the dimension of
HBQ,q(1, e) is equal to the number of different eigenvalues of KV ⊗e2e

. But computing

the dimension of HBQ,q(d, e), for general d, seems like a hard problem. This is also
the case for e-Hecke algebras of type A.

Definition 2.18. Let V be a Uq(gln)-module of degree e and let KV be its asso-
ciated K-matrix. We call V = (V,RV,V ,KV ) a type B e-Hecke triple.

Lemma 2.19. There is a right action of HBQ,q(d, e) on V ⊗d where Twi acts by
(RV )i,i+1 for i > 0 and Tw0 acts by (KV )1.
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SAq (n; d, e) (V ⊗en )⊗d HAq (d, e)

SBQ,q(n; d, e) (V ⊗en )⊗d HBQ,q(d, e)

SAq (n; de) V ⊗den HAq (de)

SBQ,q(n; de) V ⊗den HBQ,q(de)

Figure 1: On each row of the diagram above we have a commuting double action on
the space V ⊗den . A double centralizer property is satisfied for the double action on the
bottom two rows for Q, q generic. A question is whether the double action on the top two
rows also satisfies a double centralizer property.

Proof. First we prove this for V = V ⊗en . Then the elements Twi ∈ HBQ,q(d, e), i >
0 act on (V ⊗en )⊗d = V ⊗den by Twi = Tsie+e−1 · · ·Tsie+1 = (RVn)ie+e−1,ie+e · · ·
(RVn)ie+1,ie+2 = (RV ⊗en

)i,i+1 where the last equality involves the use of equa-
tion (21). One can write down a similar formula for Tw0

= T0(T1T0T1) · · · and
show that Tw0

= (KV ⊗dn
)1 by using Equation (23) repeatedly.

This means that (KV ⊗en
)1, (RV ⊗en

)i,i+1 ∈ End(V ⊗en )⊗d satisfy all the relations

the generators Twi satisfy. A degree emodule of Uq(gln) is a subquotient of V ⊗en and
therefore (KV )1, (RV )i,i+1 ∈ End(V ⊗d) also satisfy the relations the generators
Twi satisfy, giving rise to an e-Hecke algebra representation. �

Let us now turn our attention to defining generalized Schur algebras. We have
already defined the Schur algebra of type B in Equation (7). Let V,W be degree e
representations of Uq(gln). For every non-negative integer d we define

SBQ,q(V,W ; d, e) := HomHBQ,q(d,e)(V
⊗d,W⊗d). (26)

In particular, we denote by SBQ,q(n,m; d, e) the space

SBQ,q(n,m; d, e) := HomHBQ,q(d,e)((V
⊗e
n )⊗d, (V ⊗em )⊗d)

and let SBQ,q(n; d, e) = SBQ,q(n, n; d, e). A relation between different Schur algebras
and Hecke algebras is displayed in Figure 1. The inclusions on the Hecke algebra
side follow by definition, while the surjections on the Schur algebra side follow
from the inclusions on the Hecke algebra side.
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3. Two-parameter quantum polynomial functors

3.1. Representations of categories

Fix a field k. Let Λ be a k-linear category. A representation of Λ is a k-linear
functor Λ→ V, where V is the category of finite dimensional k-vector spaces.

Let modΛ be the category of representations of Λ, where the morphism spaces
are given by the natural transformations.

The following lemma and proposition are standard in homological algebra.

Lemma 3.1. If Λ consists of a single object ∗, then we have modΛ
∼= EndΛ(∗)-

mod.

Therefore, we can think of modΛ as a generalization of the module category of
an algebra.

Definition 3.2. A full subcategory Γ of an additive category Λ is said to generate
Λ if every object in Λ is isomorphic to a direct summand of a direct sum of objects
in Γ. If Γ consists of a single object V , we also say V generates Λ.

Proposition 3.3. If Γ generates Λ, then the restriction functor modΛ → modΓ

is an equivalence.

For any inclusion of full subcategories Γ ⊆ Γ′ ⊆ Λ, if Γ generates Λ, then
Γ′ generates Λ. As a consequence, the categories modΓ, modΓ′ , modΛ are all
equivalent.

In particular, if V generates Λ, then modΛ is equivalent to EndΛ(V )-mod — the
category of finite dimensional modules over the algebra EndΛ(V ).

Example 3.4. The category of degree d polynomial functors Pd can be defined
as modΓdV where ΓdV is the category with objects vector spaces Vn of dimension
n for any n ≥ 1 and morphisms HomΓdV(Vn, Vm) := HomSd(V ⊗dn , V ⊗dm ). If n ≥ d,
the object Vn generates ΓdV. Note that the algebra EndΓdV(Vn) = EndSd(V ⊗dn )
is the Schur algebra S(n; d). It follows that Pd is equivalent to modS(n; d) for
all n ≥ d. In this example, we are dealing with the three categories Λ = Sd-
mod ⊃ Γ′ = ΓdV ⊃ Γ = {Vn}, viewing ΓdV as a full subcategory of Sd-mod
consisting of the objects of the form V ⊗dn for all n.

In fact, all variations of the category of polynomial functors, including what we
present in this work, can be identified with module categories of some interesting
algebras by use of Lemma 3.1 and Proposition 3.3. Example 3.4 is a classical result
of Friedlander and Suslin [FS97]. The next example is the quantum polynomial
functors of Hong and Yacobi [HY17], which provide a quantization of Example 3.4.

Example 3.5. Let us denote by APdq the category defined as modΓdqV , where

ΓdqV is the category with objects vector spaces Vn of dimension n for any n ≥ 1

and morphisms HomΓdqV(Vn, Vm) := HomHAq (d)(V
⊗d
n , V ⊗dm ) where HAq (d) acts on

V ⊗dn via R-matrices as in Equation (4). As in the nonquantum case, we have that
EndΓdqV(Vn) = EndHAq (d)(V

⊗d
n ) = SAq (n; d) and APdq is equivalent to modSAq (n; d)

for all n ≥ d. We rename ΓdV to CAd .
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3.2. Polynomial functors and type B Hecke algebras

Definition 3.6. The category CBd has objects Vn for n ≥ 1. The morphisms in
this category are

HomCBd (Vn, Vm) := HomHBQ,q(d)(V
⊗d
n , V ⊗dm ).

Equivalently, we can define CBd as the full subcategory ofHBQ,q(d)-mod consisting

of the objects V ⊗dn for all n.

Definition 3.7. We define the category of type BC polynomial functors as

PdQ,q := modCBd .

Note that by definition, every F ∈ PdQ,q induces a linear map

F : HomCBd (Vn, Vm)→ Homk(F (Vn), F (Vm)).

Proposition 3.8. Let F ∈PdQ,q. The space F (Vn) has the structure of a SBQ,q(n; d)-
module.

Proof. Given an element x ∈ SBQ,q(n; d) = HomHBQ,q(d)(V
⊗d
n , V ⊗dn ), there is a cor-

responding element F (x) ∈ End(F (Vn)). Since the functor F is linear, the space
F (Vn) has the structure of an SBQ,q(n; d)-module with x ∈ SBQ,q(n; d) acting on
F (Vn) via F (x). �

From Remark 2.8, the Schur algebra SBQ,q(n; d) is a quotient of the coideal UBQ,q
in the generic case. It follows that F (Vn) is endowed with the structure of a UBQ,q-
module of degree d.

3.3. Representability

We now show that the category PdQ,q is equivalent, under certain conditions, to the

module category over the finite dimensional algebra SBQ,q(n; d) = EndHBQ,q(d)(V
⊗d
n ).

This follows from Lemma 3.1 and Proposition 3.3 if we prove that the domain
category CBd is generated by the object Vn in the sense of Definition 3.2.

We split this section into two parts depending on the parity of n. In §3.3 we show
the equivalence between PdQ,q and SBQ,q(n; d)-mod for n odd. In §3.3 we impose the
condition that Q, q are generic and prove the equivalence for all n. We explain in
Remark 3.16 what can go wrong if n is even.

As a convenient convention for the proof, we say for two objects V,W ∈ Λ = CBd
that V generates W if W is a direct summand of a direct sum of V . We say that
V generates Λ if V generates every object in Λ. This definition is consistent with
Definition 3.2.

Representability for n odd. Let r be a non-negative integer.

Proposition 3.9. The object Vn generates CBd if n = 2r + 1 ≥ 2d.
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Proof. Let n = 2r+1 ≥ 2d. We want to show that Vn generates Vm for all m. Note
that V ⊗dn is a direct sum of HBQ,q(d)-modules V (a, n) and V ⊗dm is a direct sum of
modules V (b,m). By Lemma 2.15, for every V (b,m) there is a V (a, n) such that
the two spaces are isomorphic as HBQ,q(d)-modules. It follows by definition that Vn
generates Vm for all m which implies that Vn generates CBd . �

The following result relates the category of two-parameter polynomial functors
with the category of modules of the type B Schur algebra.

Theorem 3.10. The category PdQ,q is equivalent to the category of finite dimen-

sional modules of the endomorphism algebra SBQ,q(n; d) where n = 2r + 1 for any
r ≥ d.

Proof. Use Proposition 3.9 to apply Proposition 3.3 and Lemma 3.1 with Γ =
{V2r+1} and recall that SBQ,q(2r + 1; d) = EndΓ(V2r+1). �

Corollary 3.11. The Schur algebras SBQ,q(m; d) and SBQ,q(n; d) are Morita equi-
valent if m,n ≥ 2d are odd.

Representability for n even. We now assume Q, q are generic, which implies the
Hecke algebra HBQ,q(d) is semisimple.

Lemma 3.12. Suppose HBQ,q(d) is semisimple. Then V2m generates V2m−1.

Proof. It is enough to find a summand in V ⊗d2m which is isomorphic to V (a) =
V (a, 2m − 1) for an arbitrary a ∈ Id2m−1. In fact, since HBQ,q(d)-modules are
completely reducible, it is enough to construct an injective map from V (a) into
V ⊗d2m . Since V (a) = V (wa) for w ∈WB(d), we may assume that 0 ≤ a1 ≤ · · · ≤ ad.
Let ai+1 be the first entry greater than zero.

Let a′j = aj + 1/2. We define

`0(w) = the multiplicity of s0 in a reduced expression of w;

`1(w) = `(w)− `0(w),
(27)

where `(w) is the Coxeter length for WB(d). Then we define the element

va :=
∑

w∈WB(i)/ StabWB(i)(1/2,...,1/2)

Q−`0(w)q−`1(w)vw(1/2,...,1/2) ⊗ va′i+1
⊗ · · · ⊗ va′d

in V ⊗d2m . Here v(1/2,...,1/2) := v1/2⊗· · ·⊗ v1/2, where there are i terms in the tensor
product and in (1/2, . . . , 1/2). The group WB(d) acts as in Equation (2).

The vector va is an eigenvector with eigenvalue q−1 for Tj ∈ HBQ,q(d), 0 < j ≤ i
and eigenvalue Q−1 for T0, just like va = v(0,...,0)⊗vai+1 ⊗· · ·⊗vad . Therefore, the
element va has the same stabilizer in HBQ,q(d) as va and the assignment va 7→ va

induces a well-defined HBQ,q(d)-map V (a)→ V ⊗d2m , which is injective. �

Lemma 3.13. Suppose HBQ,q(d) is semisimple. Then V2d generates V2d+1.

Proof. The proof uses the same arguments as in the proof of Lemma 3.12. We note
it does not hold in general that V2m generates V2m+1. �
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Theorem 3.14. Let Q, q be generic. The category PdQ,q is equivalent to the cate-

gory of finite dimensional modules of the endomorphism algebra SBQ,q(n; d) where
n ≥ 2d.

Proof. Recall that Q, q generic implies k = C. The Hecke algebra HBQ,q(d) is
semisimple because we work with generic Q, q. The case when n is odd has been
proved in greater generality, so we focus on n = 2m + 2. Using Lemma 3.12,
V2m+2 generates V2m+1, which by Proposition 3.9 and transitivity implies that
V2m+2 generates CBd . This argument proves the statement for n ≥ 2d + 1 and
Lemma 3.13 improves the bound to n ≥ 2d. The rest of the proof is the same as
for Theorem 3.10. �

Corollary 3.15. Let Q, q be generic. The Schur algebras SBQ,q(m; d) and SBQ,q(n; d)
are Morita equivalent if m,n ≥ 2d.

Remark 3.16. When Q or q is a root of unity (or when char(k) = 2) Lemma 3.12
fails. To exemplify this, take Q2 = −1 and d = 1 in Lemma 3.12. Then V1 is an
HBQ,q(1)-submodule of V2, but it is not a quotient. This is because KQ : V2 → V2

is not diagonalizable when Q2 = −1. When q2 = −1, similar phenomena happen
with Rq for d ≥ 2.

3.4. Stability for quantum symmetric pairs and Schur algebras

Corollary 3.15 is interpreted as a stability property for the Schur algebra SBQ,q(n; d)

as n→∞. This extends to a property of the coideal subalgebra UBQ,q.

Let us consider UBQ,q in the n = 2r case. The degree d irreducibles of UBQ,q(gl(2r))
are indexed by pairs of partitions (λ, µ) such that |λ| + |µ| = d, `(λ) ≤ r, `(λ) ≤
r. There is a notion of compatibility for degree d polynomial representations of
UBQ,q(gl(2r)) for different r, which allows us to take the limit r → ∞. Corollary
3.15 implies that the limit of the polynomial representation theory of degree d as
r → ∞ is well defined and that it is equivalent to the representation theory of
SBQ,q(n; d) for any n ≥ 2d.

Let us be more precise. Let I2∞ = Z+1/2 and let I2∞+1 = Z and V2∞ and V2∞+1

be vector spaces with basis indexed by elements in I2∞ and I2∞+1, respectively.
Define the quantum groups Uq(gl(2∞)) and Uq(gl(2∞ + 1)) via generators and
relations as in equation (8) with V2∞ and V2∞+1 as defining representations,
respectively (see for example [ES18, Sect. 7]). Then we define the coideal subal-
gebras UBQ,q(2∞), UBQ,q(2∞ + 1) by extending the definition in the finite case to

the infinite case. There is an obvious extension of the right action of HBQ,q(d) on

V ⊗dn in equation (3) to when n gets replaced by 2∞ or 2∞+ 1, therefore allowing
us to define the following Schur algebras:

SBQ,q(2∞; d) := EndHBQ,q(d)(V
⊗d
2∞ ),

SBQ,q(2∞+ 1; d) := EndHBQ,q(d)(V
⊗d
2∞+1).

(28)

Remark 3.17. The coideal subalgebras UBQ,q(2∞), UBQ,q(2∞+1) have specialization
Q→ 1 and Q→ q as in the finite case. These infinite versions are compatible with
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combinatorics of translation functors and have categorical actions on representa-
tion categories of type BD (see [ES18, Sect. 7]).

We define the polynomial representations of SBQ,q(2∞; d) and SBQ,q(2∞ + 1; d)

as the representations appearing as subquotients of the representations V ⊗d2∞ and
V ⊗d2∞+1, respectively. We can show via essentially the same technique as above that
Theorem 3.10 and Corollary 3.15 extend to the 2∞/2∞+ 1 case.

Proposition 3.18. The category of polynomial representations of the Schur algeb-
ras SBQ,q(2∞; d) and that of SBQ,q(2∞+1; d) are both equivalent to the category PdQ,q.

Define the polynomial representation theory of UBQ,q(2∞) and UBQ,q(2∞ + 1) as
a direct sum of the categories

PQ,q(2∞) :=
⊕
d≥1

PdQ,q(2∞) =
⊕
d≥1

SBQ,q(2∞; d) -mod,

PQ,q(2∞+ 1) :=
⊕
d≥1

PdQ,q(2∞+ 1) =
⊕
d≥1

SBQ,q(2∞+ 1; d) -mod .
(29)

The following theorem follows immediately from Proposition 3.18.

Theorem 3.19. The categories PQ,q(2∞) and PQ,q(2∞+ 1) are equivalent.

The theorem implies that the polynomial representation theory of the coideal
subalgebras in the n→∞ limit does not depend on the parity of n. Therefore one
can replace PQ,q(2∞) and PQ,q(2∞+ 1) by PQ,q(∞).

Remark 3.20. Note the difference between the definition of UBQ,q(gl(n)) for odd n
and for even n. On the level of generators (11), when n − 1 is odd, the coideal
has a special generator t, while when n − 1 is even, the generators e1/2, f1/2 are
special. When n = 2r, the coideal subalgebra UBQ,q ⊂ Uq(gln) is a quantization
of the subalgebra U(gl(r)) ⊕ U(gl(r)) ⊂ U(gl(2r)). When n = 2r + 1, the coideal
subalgebra UBQ,q ⊂ Uq(gln) is a quantization of the subalgebra U(gl(r))⊕U(gl(r+
1)) ⊂ U(gl(2r + 1)). This difference persists even in the n = 2∞ vs n = 2∞ + 1
case. Therefore, it is unclear how to relate the coideals UBQ,q(2∞) and UBQ,q(2∞+1)
as algebras.

4. Polynomial functors and braided categories with a cylinder twist

4.1. Actions of monoidal categories

Let B be a category and let (A,⊗, 1A) be a monoidal category. Denote by lX :
1A⊗X → X the left unitor. Denote by aX1,X2,X3 : (X1⊗X2)⊗X3 → X1⊗(X2⊗X3)
the associativity morphism of A.

Definition 4.1. We say A acts on B (from the right) if there is a functor ∗ :
B ×A → B such that

(1) for morphisms f1, f2 in B and morphisms g1, g2 in A the equation

(f1 ∗ g1)(f2 ∗ g2) = (f1f2) ∗ (g1g2)
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holds whenever both sides are defined.
(2) There is a natural morphism λ : ∗(id×⊗) → ∗(∗ × id), i.e., λY,X1,X2 :

Y ∗ (X1⊗X2)→ (Y ∗X1) ∗X2 such that the following diagram commutes:

Y ∗ ((X1 ⊗X2)⊗X3) Y ∗ (X1 ⊗ (X2 ⊗X3))

(Y ∗X1) ∗ (X2 ⊗X3)

(Y ∗ (X1 ⊗X2)) ∗X3 ((Y ∗X1) ∗X2) ∗X3

λY,X1⊗X2,X3

idY ∗aX1,X2,X3

λY,X1,X2⊗X3

λY ∗X1,X2,X3

λY,X1,X2
∗ idX3

.

(3) There is a natural isomorphism ρY : Y ∗ 1A → Y such that the following
diagram commutes:

Y ∗ (1A ⊗X) (Y ∗ 1A) ∗X

Y ∗X Y ∗X

λY,1,X

idY ∗lX ρY ∗ idX

idY ∗X

.

Following [HO01], we call the triple (B,A, ∗) an action pair. We write (B,A)
for (B,A, ∗) if it is clear what the action ∗ is.

Consider the category of type A quantum polynomial functors APq =
⊕

dAP
d
q

defined in Example 3.5. The category APq has a monoidal structure. Given F ∈
APdq and G ∈ APeq, define F ⊗G ∈ APd+e

q as F ⊗G(Vn) := F (Vn) ⊗G(Vn) and
on the morphisms, F ⊗G is given as the composition

HomHAq (d+e)(V
⊗d+e
n ,V ⊗d+e

m )

→ HomHAq (d)⊗HAq (e)(V
⊗d
n ⊗ V ⊗en , V ⊗dm ⊗ V ⊗em )

→ HomHAq (d)(V
⊗d
n , V ⊗dm )⊗HomHAq (e)(V

⊗e
n , V ⊗em )

→ Hom(F (Vn), F (Vm))⊗Hom(G(Vn), G(Vm))

→ Hom(F ⊗G(Vn), F ⊗G(Vm)).

(30)

There is also a unit with respect to this monoidal structure. The unit is a degree
0 polynomial functor, which we denote by 1APq and is defined 1APq (Vn) := k
and on morphisms it maps f ∈ HomHAq (d)(V

⊗0
n , V ⊗0

m ) ' Hom(k, k) identically to

Hom(k, k).
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Given F ∈ APdq , G ∈ AP
e
q, the functoriality of F,G endows the spaces F (Vn)

and G(Vn) with actions of the q-Schur algebras Sq(n; d) and Sq(n; e), respectively,
or equivalently, degree d (respectively, degree e) Uq(gln)-module structures.

The category APq is a braided monoidal category with the braiding:

RF,G : F ⊗G→ G⊗ F, (31)

where RF,G(Vn) := RF (Vn),G(Vn) is the R-matrix defined in § 2.5. This is proved
in [HY17, Thm. 5.2].

Recall the category PQ,q defined in Definition 3.7.

Theorem 4.2. The pair (PQ,q,APq) is an action pair.

Proof. Let us first define the action of APq on PQ,q. Let F ∈ APdq and G ∈ PeQ,q.
Define G∗F ∈ Pd+e

Q,q on objects as G∗F (Vn) := G(Vn)⊗F (Vn) and on morphisms
as the composition:

HomHBq (d+e)(V
⊗d+e
n ,V ⊗d+e

m )

→ HomHBq (d)⊗HAq (e)(V
⊗d
n ⊗ V ⊗en , V ⊗dm ⊗ V ⊗em )

→ HomHBq (d)(V
⊗d
n , V ⊗dm )⊗HomHAq (e)(V

⊗e
n , V ⊗em )

→ Hom(G(Vn), G(Vm))⊗Hom(F (Vn), F (Vm))

→ Hom(G ∗ F (Vn), G ∗ F (Vm)).

(32)

Since we have defined G ∗ F (Vn) := G(Vn) ⊗ F (Vn), the natural morphisms
λY,X1,X2 : Y ∗ (X1 ⊗X2) → (Y ∗X1) ∗X2 and ρY : Y ∗ 1A → Y are the identity
maps on objects.

Using the action defined above, the proof consists only of routine verification of
the axioms.

For example, let us prove the first property in Definition 4.1. Given f : F1 → F2

and g : G1 → G2, denote by fVn : F1(Vn) → F2(Vn) and gVn : G1(Vn) → G2(Vn)
their values on objects, respectively. Then f ∗ g : F1 ∗ G1 → F2 ∗ G2 is given on
objects by f ∗ gVn = fVn ⊗ gVn . The first property then becomes equivalent to the
equation ((f1)Vn⊗ (g1)Vn)((f2)Vn⊗ (g2)Vn) = ((f1)Vn(f2)Vn⊗ (g1)Vn(g2)Vn), which
is a standard property of tensor product.

We omit the rest of the proofs since they are routine. �

Remark 4.3. The action in Theorem 4.2 is a right action. This fact is related to the
coideal UBQ,q being a right coideal — i.e., ∆(UBQ,q) ⊂ UBQ,q ⊗ Uq(gln) — and to the

fact that T0 ∈ HBQ,q(d) acts on the first (left) component of V ⊗dn . There is a version
of the Schur–Weyl duality in Theorem 2.7 where the Hecke algebra generator T0

acts on the last component of V ⊗dn (and T1 acts on the last two components of V ⊗dn ,
etc.) and the corresponding coideal is a left coideal. The action pair in Theorem 4.2
is defined similarly, but it is now a left action pair.

Remark 4.4. The action in Theorem 4.2 is bilinear. We can therefore say that PQ,q
is a (right) module for APq.
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4.2. Cylinder braided action pairs

The goal of this subsection is to show that the APq action on PQ,q produces a
cylinder braided action pair. The module category B here consists of the (one-
parameter) quantum polynomial functors viewed as two-parameter quantum poly-
nomial functors. Let us now make this more precise.

Definition 4.5. An action pair (B,A) is said to be cylinder braided if:

(1) There exists an object 1 ∈ B that gives a bijection Ob(A) → Ob(B) via
X 7→ 1 ∗X.

(2) A is a braided monoidal category with braiding c.
(3) There exists a natural isomorphism t : idB → idB such that the following

equalities hold:

cY,X(tY ⊗ idX)cX,Y (tX ⊗ idY ) = (tX ⊗ idY )cY,X(tY ⊗ idX)cX,Y = tX⊗Y .

Recall that APdq = modCAd and PdQ,q = modCBd and that Ob(CBd ) = Ob(CAd ).

The Hecke algebra inclusion HAq (d) ↪−→ HBQ,q(d) implies the inclusion

HomHBQ,q(d)(V
⊗d
n , V ⊗dm ) ↪−→ HomHAq (d)(V

⊗d
n , V ⊗dm ),

which is the same as the inclusion MorCBd (Vn, Vm) ↪−→ MorCAd (Vn, Vm). We thus
have the restriction functor

Res : APq → PQ,q.
The functor Res is equivalent to the restriction of SAq (n; d)-modules to SBQ,q(n; d)-
modules in view of Theorem 3.10.

Let Res(APq) be the full subcategory of PQ,q whose objects are Res Ob(APQ,q).
We define an action of APq on Res(APq) similar to the action defined in § 4.1.

Let F ∈ Res(APq) and G ∈ APeq. There is a unique F ′ ∈ APdq such that F =

Res(F ′). Define F ∗ G ∈ ResAPd+e
q as Res(F ∗ G)′, where (F ∗ G)′ ∈ APd+e

q is
(F ∗G)′ := F ′ ⊗G.

Recall the element cK = cdK =
∏
iKi ∈ HBQ,q(d). Lemma 2.3 implies cK ∈

HomHBQ,q(d)(V
⊗d
n , V ⊗dm ).

Given an element F ∈ ResAPq, define KF : F → F by

KF (Vn) := F (cK) : F (Vn)→ F (Vn).

Lemma 4.6. The map KF is a morphism in the category ResAPq.
Proof. Assume F is of degree d. To see that KF is a morphism, we need to show
that the following diagram commutes

F (Vn) F (Vn)

F (Vm) F (Vm)

F (cK)

F (x) F (x)

F (cK)

for all x ∈ HomHBQ,q(d)(V
⊗d
n , V ⊗dm ). Since cK ∈ HBQ,q(d), it commutes with x. Thus

we have F (x)F (cK) = F (xcK) = F (cKx) = F (cK)F (x). The statement of the
lemma follows. �
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Theorem 4.7. The action pair (Res(APq),APq) is a cylinder braided action pair.

Proof. The action in Theorem 4.2 preserves Res(APq). Thus (Res(APq),APq) is
an action pair by restriction.

To show that the action pair is cylinder braided, we let 1 := Res k ∈ Res(APq),
where k ∈ APq is the tensor identity (the constant functor) and identify F ∈
Ob(APq) with ResF ∈ Ob(ResAPq). Take cF,G to be the braiding of APq in
(31) and set tF = KF . To prove that t is a natural transformation, let f ∈
MorAPq (F,G). This means that

fVnF (x) = G(x)fVn

for any x ∈ MorCAd (Vn, Vn). Since KF (Vn) = F (cK), taking x = cK gives what we
need.

To show the relation

RG,F (KG ⊗ idF )RF,G(KF ⊗ idG) = (KF ⊗ idG)RG,F (KG ⊗ idF )RF,G = KF⊗G,

it is enough to consider the case F = ⊗d and G = ⊗e since the morphisms R,K
restrict to subobjects. Since R⊗d,⊗e is given by the action of Td,e (which was
defined in (14)), the above relation is equivalent to the equation

cd+e
K = Te,d(c

e
K ⊗ 1)Td,e(c

d
K ⊗ 1) = (cdK ⊗ 1)Te,d(c

e
K ⊗ 1)Td,e

in HBQ,q(d+ e), where cdK ⊗ 1 ∈ HBQ,q(d)⊗HAq (e) and ceK ⊗ 1 ∈ HBQ,q(e)⊗HBQ,q(d)

are viewed as elements in HBQ,q(d + e) via HBQ,q(d) ⊗ HAq (e) ⊆ HBQ,q(d + e) and

via HBQ,q(e) ⊗ HAq (d) ⊆ HBQ,q(e + d) = HBQ,q(e + d). But this is checked by a

straightforward computation in the Hecke algebra HBQ,q(d+ e). �

Remark 4.8. Let KF (Vn) be the K-matrix defined in § 2.5. Then we have

KF (Vn) = F (cK).

Remark 4.9. Strengthening the idea of a cylinder braided action pair is the notion
of a braided module category (see [Enr07, §4.3] and [Bro13, § 5.1]). A cylinder
braided action pair (B,A) is equipped with a cylinder twist which can be thought
of as a natural map tX : 1 ∗X → 1 ∗X (via X = 1 ∗X). A braided module comes
equipped with a twist bM,X : M ∗X →M ∗X natural on both M ∈ B, X ∈ A with
axioms that ensure the twist is compatible with the braiding on A. Therefore, for
a braided module (B, b) over A and each M ∈ B, the action pair (M ∗ A,A) is
cylinder braided with tM∗X = bM,X .

Our category PQ,q is a braided module category over APq. In the setting of
UBQ,q-modules with Q = q generic, Kolb [Kol20] shows that the category of finite

dimensional UBQ,q-modules is a braided module category over the category of finite
dimensional Uq(gln)-modules. If we restrict to Res(APq) ⊆ PQ,q, we can obtain
the twist by letting bY,X = cX,Y (tX ⊗ idY )cY,X for Y ∈ Res(APq), X ∈ APq.
When Q, q are generic, every object in PQ,q is a direct summand of an object in
Res(APq), so this is enough. In the nongeneric case, we need to further show that
bY,X restricts to submodules. For this, we can work with duals of Schur algebras
and essentially build a couniversal K-matrix (see [HY17, Sect. 5] where they use the
couniversal R-matrix to show that AP is braided monoidal). In order to streamline
the contents of the paper, we skip the proof of this fact.
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5. Composition for two-parameter polynomial functors

Let d be a non-negative integer and e be a positive integer.

5.1. The category APd,e
q

We now define a category of (type A) quantum polynomial functors APd,eq where
composition is possible. This category is studied in [BK19b].

Recall the e-Schur algebra and the e-Hecke algebra defined in Section 2.5.
Let CAd,e be the category defined as follows: its objects are finite dimensional

SAq (n; e)-modules (or the degree e representation of Uq(gln)) for all positive n.
The morphisms are given by

Mor(V,W ) := HomHAq (d,e)(V
⊗d,W⊗d),

where the e-Hecke algebra acts on V ⊗d as in §2.5. Define APd,eq := modCAd,e .

Then [BK19b, Thm. 5.2] shows that there is a composition ◦A on AP∗,∗q . More

precisely this means that given F ∈ APd2,d1eq , G ∈ APd1,eq , then we have F ◦AG ∈
APd1d2,eq . One can also check that ◦A is associative.

5.2. The category Pd,e
Q,q

Define the category CBd,e as follows: its objects are finite dimensional SBQ,q(n; e)-
modules, for all positive n. The morphisms are given by

Mor(V,W ) := HomHBQ,q(d,e)(V
⊗d,W⊗d),

where the action of HBQ,q(d, e) on V ⊗d is given in Section 2.5. Define Pd,eQ,q :=
modCBd,e .

It is proved in [BK19b], assuming q is generic, that the category APd,eq is

equivalent to the category mod EndHAq (d,e)((
⊕d

i=1 V
⊗e
n )⊗d) when n ≥ de. One can

prove a similar theorem in the type B setting:

Theorem 5.1. Let k = C and Q, q ∈ C× be generic. If n ≥ 2de, the category
Pd,eQ,q is equivalent to the category of finite dimensional modules of the generalized
Schur algebra

SBQ,q

( d⊕
i=1

V ⊗en ; d

)
:= EndHBQ,q(d,e)

(( d⊕
i=1

V ⊗en

)⊗d)
.

We do not prove the theorem because the proof is long and tedious, and the
techniques are the same as in the type A setting. See [BK19b, Cor. 6.14] for the
type A argument that is similar. Note that the theorem requires semisimplicity,
i.e. Q, q have to be generic and k has to be a field of characteristic 0.

Let F ∈ Pd2,d1eQ,q and G ∈ APd1,eq . It is shown in [BK19b, Thm. 5.1] that G(V )

has the structure of an SAq (n; d1e)-module.
Recall that F,G produce maps on morphism sets

G : HomHAq (d1,e)(V
⊗d1 ,W⊗d1)→ Hom(G(V ), G(W ))
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for V,W direct sums of subquotients of V ⊗en as modules over the e-Schur algebra,
for some n (or e-Hecke pairs as they are called in [BK19b]), and

F : HomHBQ,q(d2,d1e)(V
⊗d2

,W
⊗d2

)→ Hom(F (V ), F (W ))

for V ,W direct sums of subquotients of V ⊗ed1n over the ed1-Schur algebra. It seems
(type B) d1e-Hecke triples would be an appropriate name for such V ,W . The reason
for the use of “triple” is as follows: we are using the vector space structure of V ,W ,
as well as their R-matrices and K-matrices to define the action of HBQ,q(d2, d1e)
(for an e-Hecke pair we only needed the vector space structure and its R-matrix).

Define F ◦ G ∈ Pd2d1,eQ,q as follows: for V an SAq (n; e)-module set F ◦ G(V ) :=

F (G(V )). This is well defined since G(V ) has the structure of an SAq (n; d1e)-
module. Define F ◦G(x) ∈ Hom(F ◦G(V ), F ◦G(W )) as the composition:

HomHBQ,q(d1d2,e)(V
⊗d1d2 ,W⊗d1d2)

Ψ−→ HomHBQ,q(d2,d1e)(G(V )⊗d2 , G(W )⊗d2)

F−→ Hom(FG(V ), FG(W )),
(33)

where Ψ is defined as follows: write x ∈ HomHBQ,q(d1d2,e)(V
⊗d1d2 ,W⊗d1d2) as

x = x1 ⊗ x2 ⊗ · · · ⊗ xd2 ,

with xi ∈ HomHAq (d1,e)(V
⊗d1 ,W⊗d1) and set Ψ(x1⊗· · ·⊗xd2) := G(x1)⊗· · ·G(xd2).

Lemma 5.2. The map Ψ is well defined.

Proof. Since x ∈ HomHBQ,q(d1d2,e)(V
⊗d1d2 ,W⊗d1d2), it follows that x commutes

with the generators of HBQ,q(d2, d1e) ⊂ HBQ,q(d2d1, e) and therefore

G(x1)⊗ · · · ⊗G(xd2) ∈ HomHBQ,q(d2,d1e)(G(V )⊗d2 , G(W )⊗d2). �

The following theorem is a consequence of the fact that both maps in equa-
tion (33) are k-linear:

Theorem 5.3. The composition F ◦ G is a well-defined polynomial functor that
belongs to Pd2d1,eQ,q .

The composition defined above is restated as follows in the language of Section 4.
Define AEPq :=

⊕
d,eAP

d,e
q . The composition ◦A is extended to AEPq×AEPq →

AEPq by setting

◦A(APa,bq ×AP
d,e
q ) = 0 if b 6= de.
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There is an element idAPq ∈ AEPq given by

idAEPq :=
∑
e

idAP1,e
q
,

where idAP1,e
q

is the identity functor mapping an e-Hecke pair to itself. The

category AEPq with the operation ◦A and the element idAEPq form a monoidal
category.

In the same way, we extend the map ◦ : Pd2,d1eQ,q ×APd1,eq → Pd2d1,eQ,q to

◦ : EPQ,q ×AEPq → EPQ,q,

where
EPQ,q :=

⊕
d,e

Pd,eQ,q. (34)

The following proposition becomes a routine check.

Proposition 5.4. The pair (EPQ,q,AEPq) with action given by composition ◦ is
an action pair.

Remark 5.5. It is shown in [BK19b] that EAPq has a k-(bi)linear tensor product
⊗ that is braided. Thus, one can extend the result of Section 4 to the setting of
this section. That is, the tensor product ⊗ on EAPq extends to a k-linear action
of EAPq on EPQ,q; the objects in EAPq restrict to the category EPQ,q; the action
pair (Res(EAPq), EAPq) thus obtained is cylinder braided. The cylinder twist in
this setting arises from the action of the elements

cdK(e) =

d∏
i=1

Ki(e) ∈ HBQ,q(d, e).

Above we used the notation Ki+1(e) = Twi · · ·Tw1
Tw0

Tw1
· · ·Twi , where wi, w0 are

as in equations (24) and (25).

6. Quantum symmetric powers and quantum exterior powers

The easiest example of a polynomial functor is ⊗d ∈ ResPdq ⊆ PdQ,q, which

maps Vn to V ⊗dn . In this section, we define important basic objects in PdQ,q, namely
the quantum ±-symmetric powers and quantum ±-exterior powers, which supply
examples of two-parameter polynomial functors outside ResPdq . Consider V ⊗dn as

a representation of HBQ,q(d) on which the action of Ti is given by (3). Note that the

action of each generator Ti ∈ HBQ,q(d) on V ⊗dn is diagonalizable with eigenvalues

q−1 and −q for Ti, i > 0 and Q−1 and −Q for T0.
In Pdq , we have the exterior power and symmetric power defined as

∧dVn = V ⊗dn /{(Ti + q)w | w ∈ V ⊗dn , i > 0};
SdVn = V ⊗dn /{(Ti − q−1)w | w ∈ V ⊗dn , i > 0}.

(35)

We generalize Equation (35) using the HBQ,q(d) action.
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Definition 6.1. The quantum ±-exterior and ±-symmetric powers ∧d± and Sd±
are defined on each Vn as

∧d−Vn = V ⊗dn /{(T0 +Q)w, (Ti + q)w | w ∈ V ⊗dn , i > 0};
Sd+Vn = V ⊗dn /{(T0 −Q−1)w, (Ti − q−1)w | w ∈ V ⊗dn , i > 0};
∧d+Vn = V ⊗dn /{(T0 −Q−1)w, (Ti + q)w | w ∈ V ⊗dn , i > 0};
Sd−Vn = V ⊗dn /{(T0 +Q)w, (Ti − q−1)w | w ∈ V ⊗dn , i > 0}.

(36)

Given a map f ∈ HomHBQ,q (V
⊗d
n , V ⊗dm ), it follows by definition that f(Ti + q) =

(Ti + q)f and f(Ti − q−1) = (Ti − q−1)f . The function f can then be restricted
to a map fS± : Sd±Vn → Sd±Vm, or to a map f∧± : ∧d±Vn → ∧d±Vm by Definition
6.1. The assignment f 7→ fS± (or f∧±) is a linear map HomHBQ,q(d)(V

⊗d
n , V ⊗dm ) →

Hom(Sd±Vn, S
d
±Vm) (or Hom(∧d±Vn,∧d±Vm)) on the morphism spaces. Therefore,

we have the following result.

Proposition 6.2. The quantum ±-exterior and ±-symmetric powers ∧d± and Sd±
are polynomial functors.

Remark 6.3. We define the four functors as quotients of Sd or Γd, but they all split
(since Q−1 6= −Q), and we may also view them as subfunctors. We additionally
introduce the following polynomial functors, the ±-divided powers, by dualizing
the definition of the ±-symmetric powers. They are isomorphic to ±-symmetric
powers when Q, q are generic but not in general.

Γd+Vn = {w ∈ V ⊗dn | (T0 −Q−1)w = 0, (Ti − q−1)w = 0, i > 0};
Γd−Vn = {w ∈ V ⊗dn | (T0 +Q)w = 0, (Ti − q−1)w = 0, i > 0}.

(37)

We describe a basis of each quantum exterior and symmetric power (evaluated
at Vn).

Given a = (a1, . . . , ad) with ai ∈ In, we denote by v(a) the standard vector
va1 ⊗ · · · ⊗ vad in V ⊗dn . We introduce the classes of vectors (depending on a pair
of signs α, β ∈ {±})

v(a)αβ :=
∑

w∈WB
d / Stab

WB
d

(a)

(αQ)−α`0(w)(βq)−β`1(w)v(wa),

where the length functions `0, `1 are as in (27).

Proposition 6.4. The following hold:

(1) The image of the set {v(a)++ | 0≤a1≤· · ·≤ad, ai∈In} is a basis of Sd+Vn.
(2) The image of the set {v(a)+− | 0<a1≤· · ·≤ad, ai∈In} is a basis of Sd−Vn.

(3) The image of the set {v(a)−+ | 0≤a1< · · ·<ad, ai∈In} is a basis of ∧d+Vn.

(4) The image of the set {v(a)−− | 0<a1< · · ·<ad, ai∈In} is a basis of ∧d−Vn.
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Proof. We give an argument for Sd+; the rest is similar and left to the reader.
We first check that the (image of the) set {v(a)}, with a such that 0 ≤ a1 ≤

· · · ≤ ad, ai ∈ In, spans Sd+Vn. In fact, for any standard vector v(b) with b ∈ Id we
can write b = wa with a as above. For any reduced expression st · · ·u of w ∈WB

d ,
we have v(b) = TsTt · · ·Tuv(a) = Twv(a) because each Tsi action falls into the
second case in (4), (5). So in Sd+Vn, the image of v(b) is a multiple of the image of
v(a).

Inside V ⊗d, the set {v(a)++ | 0 ≤ a1 ≤ · · · ≤ ad, ai ∈ In} is linearly independent
and consists of eigenvectors for Ti (for all i at the same time). All Ti’s with
i > 0 have eigenvalue q−1 and T0 has eigenvalue Q−1. Since Sd+Vn has the same
dimension as Γd+Vn, which is the submodule of V ⊗dn spanned by q−1 eigenvectors
for Ti, i > 0 and Q−1 eigenvectors for T0, this implies that the order of the set is
smaller than the dimension of Sd+Vn.

Combining the two paragraphs, we confirm that the images of v(a) in Sd+Vn
form a basis. �

Remark 6.5. Proposition 6.4 implies, for each n, the dimension of ∧d±Vn, Sd±Vn
does not depend on q and Q. The dimension in each case has an easy formula
depending on the parity of n:

dim∧d±V2r =

(
r

d

)
, dimSd±V2r =

(
r + d− 1

d

)
,

dim∧d+V2r+1 =

(
r + 1

d

)
, dim∧d−V2r+1 =

(
r

d

)
, (38)

dimSd+V2r+1 =

(
r + d

d

)
, dimSd−V2r+1 =

(
r + d− 1

d

)
.

6.1. Higher degree quantum ±-symmetric and exterior powers

We now define higher version of the ±-symmetric and ±-exterior powers that live
in the category EPQ,q defined in Equation (34). The construction follows the idea
in Berenstein and Zwicknagl [BZ08] and makes crucial use of Proposition 2.5.

The eigenvalues of cK ∈ HBQ,q(e) ⊆ HBQ,q(d, e) are of the form Qiqj and −Qiqj
for i, j ∈ Z,−e ≤ i ≤ e,−(e − 1)e ≤ j ≤ (e − 1)e; this follows immediately from
Proposition 2.5. In order to be able to define positive and negative eigenvalues of
cK , we need to assume

Qiqj 6= −1 for any i, j ∈ Z such that − 2e ≤ i ≤ 2e,−2(e− 1)e ≤ j ≤ 2(e− 1)e.

This assumption is covered under our Q, q generic assumption, which will be en-
forced for the rest of the section.

Then the two sets {Qiqj} and {−Qiqj} are disjoint; we call elements of the
former set positive eigenvalues of cK and elements of the latter set negative eigen-
values of cK . It is known that the eigenvalues of Twi ∈ HBQ,q(d, e) are of the

form ±qi; this follows for example from [BZ08, Lem. 1.2]. This allows us to also
partition the eigenvalues of Twi into positive eigenvalues (of the form +qi) and
negative eigenvalues (of the form −qi), again with no overlap between the two sets
when Q, q are generic.
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Definition 6.6. Given V ∈ CBd,e an e-Hecke triple as defined in § 5.2, then

(1) let Sd,e+ V be the largest quotient of ⊗dV where each Twi and cK have
positive eigenvalues;

(2) let Sd,e− V be the largest quotient of ⊗dV where each Twi has negative
eigenvalues and cK has positive eigenvalues;

(3) let ∧d,e+ V be the largest quotient of ⊗dV where each Twi has positive
eigenvalues and cK has negative eigenvalues;

(4) let ∧d,e− V be the largest quotient of ⊗dV where each Twi and cK have
negative eigenvalues.

In other words, the space Sd,e+ V , for example, is the cokernel of the action of∏
i,j,k,l(Twi + qj)N (cK + qkQl)N for N >> 0.

Since the definition is natural on V , our Sd,e± and ∧d,e± are quotient functors of
⊗ and therefore the following proposition holds.

Proposition 6.7. The functors Sd,e± and ∧d,e± belong to Pd,eQ,q.

Note that Twi and cK are not diagonalizable in general; the higher degree ±-
powers are generalized eigenspaces, not eigenspaces.

Remark 6.8. We do not know the dimension of the higher degree quantum ±
symmetric and exterior powers. Even in the type A setting developed by Berenstein
and Zwicknagl, the dimensions are not known in general. It is known that the
dimension is less than or equal to the classical (q = 1) dimension and, in fact, it is
mostly the case that SdqV or ∧dqV have (strictly) smaller dimension than Sdq=1V

or ∧dq=1V . Thus we expect that the dimensions of Sd,e± V and ∧d,e± V also depend
on the values of Q, q.

7. Schur polynomial functors

The category PdQ,q is semisimple, and the classification of simple objects is
given by the Schur–Weyl duality. In this section, we construct the simple objects
explicitly in ⊗d.

We first recall the type A quantum Schur functors from [HH92], [HY17]. Given
a partition λ = (λ1, . . . , λr), let

∧λ := ∧λ1 ⊗∧λ2 ⊗ · · · ⊗∧λr ,

Sλ := Sλ1 ⊗ Sλ2 ⊗ · · · ⊗ Sλr ,

where Sd,Λd are defined in Equation (35).
We also write

⊗λ = ⊗λ1 ⊗ · · · ⊗ ⊗λr

even if ⊗λ ∼= ⊗d for any λ ` d. For a partition λ of d, the Schur functor Sλ is
defined as the image of the composition

sAλ : ∧λ′ ιλ′−−→ ⊗d
Tc(λ)−−−→ ⊗d → Sλ, (39)
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where λ′ denotes the transpose of λ. The first map is given, on the evaluation at
Vn by

ιλ′ : va1 ∧ · · · ∧ vad 7→
∑

w∈Sλ1×···×Sλr⊆Sd

(−q)`(w)vwa, (40)

for a = (a1, . . . , ad) with 0 < a1 < · · · < ad. The second map is the conjugation
Tc(λ) : V ⊗λ

′

n → V ⊗λn . (The conjugation c(λ) reads the column of the standard
tableau corresponding to λ; if λ = (4, 2) then c(λ) is the permutation (1, 2, 3, 4, 5, 6)
7→ (1, 5, 2, 6, 3, 4).) Note that since Sλ1

× · · · × Sλr is a parabolic subgroup of Sd,
there is no ambiguity on the Coxeter length `(w).

Then, the following statements are true:

(1) the Schur functors Sλ are irreducible;
(2) any irreducible in APdq (the category of degree d polynomial functors in

type A) is isomorphic to Sλ for some λ ` d;
(3) if n ≥ d, then any irreducible for the quantum Schur algebra SAq (n; d) is

isomorphic to some SλVn.

Remark 7.1. When q is a root of unity, the Sλ are not irreducible. One should
instead understand the Sλ in the following context: the category APq (or the
polynomial representations for Uq(gl∞) in the sense analogous to §3.4) is highest
weight where Sλ are the costandard objects (see [CPS88] for the definition of a
highest weight category). The dual definition

Γλ → ⊗d → ∧λ′

gives the Weyl functors, which are the standard objects.

The quantum definition of Sλ is not immediately generalized to the coideal case
because we cannot define the tensor products ∧a+ ⊗ ∧b+, Sa+ ⊗ Sb−, etc. in our
category. The next three definitions bypass this difficulty.

Recall from Proposition 2.5 that Ki has eigenvalues of the form Q−1q2j , −Qq2j .

Definition 7.2. Let ⊗d+ be the largest quotients of ⊗d on which each Ki has
eigenvalues of the form Q−1q2j . Let ⊗d− be the largest subfunctor of ⊗d on which
each Ki has eigenvalues of the form −Qq2j .

There is a small problem. The “positive” eigenvalues and the “negative” eigen-
values are still not well defined. For example, if q is a primitive 8th root of unity
and Q = 1 then Q−1q4 = −1 = −Qq8. To make this definition valid, we need to
impose a condition on q,Q, which we specify now.

Proposition 7.3. If

fd(Q, q) :=

d−1∏
i=1−d

(Q−2 + q2i) 6= 0,

then Definition 7.2 is well defined.

Proof. If fd(Q, q) 6= 0 then fi(Q, q) 6= 0 for all i ≤ d. The claim follows from the
following lemma whose proof is elementary algebra and omitted. �
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Lemma 7.4. The set {−Qq2j ||j| < i} and the set {Q−1q2j ||j| < i} are disjoint if
and only if fi(Q, q) 6= 0.

This leads us to the following assumption, which is needed to define the Schur
functors and which we impose until the end of the section.

Assumption 7.5. Let k be a field. Let Q, q ∈ k× be such that fd(Q, q) 6= 0.

If Q = q = 1, then Assumption 7.5 is equivalent to char k 6= 2, which is the
classical setting to define the symmetric and exterior power. We think of Assump-
tion 7.5 as a correct two-parameter quantization of the assumption char k 6= 2.

The ⊗d± provide the easiest examples of quantum polynomial functors that do
not have an analogue in type A (take d = 1, for example).

Proposition 7.6. The functor ⊗d± is a direct summand of ⊗d.

Proof. The (evaluation at Vn of the) functor ⊗d decomposes into generalized
eigenspaces for Ki, in particular, into (generalized) “positive” eigenspaces and
“negative” eigenspaces. Since all Ki commute (see Lemma 2.2), their actions on
⊗d are simultaneously triangularizable. Such a triangularization realizes ⊗d± as a
direct summand of ⊗d. �

Since ⊗d± is a direct summand of ⊗d, we have the projections and inclusions

p± : ⊗d → ⊗d±,
i± : ⊗d± → ⊗d,

(41)

whose names will be repeatedly abused throughout the section: we denote by p±
any projection that is induced by p± by a pushout diagram. We can show the
following.

Lemma 7.7. p±(Vn) = V ⊗dn u±d .

Proof. Recall that V ⊗dn decomposes into simultaneous eigenspaces for Ki, i =
1, . . . , d. Using Assumption 7.5 and Lemma 7.4, we say an eigenvalue (of some
Ki) is positive if it is of the form Q−1q2j and negative if it is of the form −Qq2j .
Then we can say p+V

⊗d
n is the positive eigenspace of V ⊗dn . The image of u+

d =∏d
j=1(Kj +Q) acting on V ⊗dn by definition annihilates all −Q-eigenvectors of Ki,

for any i. Therefore we have p±(Vn) ⊆ V ⊗dn u±d .
For the opposite inclusion, we argue by contradiction. Recall the Kis commute

with each other. Suppose there is v ∈ V ⊗dn u+
d , an eigenvector for all Ki, which

has a negative eigenvalue for some Ki. Let j be the smallest such i, and (by
Proposition 2.5) let m be an integer such that vKj = −Qq2mv. Let a be the
eigenvalue of Kj−1 for v. By assumption, a is positive, in particular is not of the

form −Qq2m′ . Thus the vector wj−1 = (q−1−q)(−Qq2m)v+(a+Qq2m)Tj−1v (see
Lemma 2.4 and its proof) is in the −Qq2m-eigenspace for Kj−1. The vector wj−1

is not necessarily in V ⊗dn u±d ; we do not require it to be. Note that wj−1 is again a
simultaneous eigenvector for all Ki. Now construct for j−2 ≥ i ≥ 1 the vector wi =
(q−1 − q)(−Qq2m)wi+1 + (ai +Qq2m)Tiwi+1, where aiwi+1 = wi+1Ki inductively.
Then each wi is an −Qq2m-eigenvector for Ki. Since the only eigenvalues of K1

140



POLYNOMIAL FUNCTORS AND QUANTUM SYMMETRIC PAIRS

are −Q and Q−1, its eigenvalue at w1 needs to be −Q = −Qq2m, that is m = 0.
But this means vKj = −Qq2mv = −Qv, which contradicts v ∈ V ⊗dn u+

d .
A similar argument works for p−. �

Now we relate the ⊗d± with the ±-symmetric/exterior powers.

Proposition 7.8. We have pushout diagrams in PdQ,q:

⊗d ⊗d±

Sd Sd±
p±

⊗d ⊗d±

∧d ∧d±
p±

(42)

Proof. We prove this for Sd+. Since each Ti with i > 0 acts on Sd+Vn as q−1, if K0

acts as Q−1 then Ki acts as q−2i+1Q−1. So each (Ki −Q) is invertible on Sd+Vn.
�

Proposition 7.8 suggests the following definition.

Definition 7.9. We define Sλ±, ∧λ± by the pushout diagrams:

⊗d ⊗d±

Sλ Sλ±
p±

⊗d ⊗d±

∧λ ∧λ±
p±

(43)

Let us construct an analogue of the tensor product ⊗a+ with ⊗b− that is a
polynomial functor in PdQ,q. Since PQ,q is a right module category over APq, we

can form ⊗b− ⊗⊗a and ⊗a+ ⊗⊗b in PQ,q.

Definition 7.10. The signed tensor power a
+⊗b− is the image of the map

⊗b− ⊗⊗a
Tb,a−−→ ⊗a+ ⊗⊗b.

By the previous definition and Lemma 7.7 we have

a
+ ⊗b− (Vn) = V ⊗dn u−b Tb,au

+
a .

With the help of Definition 7.10, we define S(λ,µ) and ∧(λ,µ).

Definition 7.11. Let S(λ,µ) be the image of the map

Sµ− ⊗ Sλ
Tb,a◦(i−⊗id)−−−−−−−−→ Sλ ⊗ Sµ p+⊗id−−−−→ Sλ+ ⊗ Sµ,

and let ∧(λ,µ) be the image of the map

∧µ− ⊗∧λ
Tb,a◦(i−⊗id)−−−−−−−−→ ∧λ ⊗∧µ p+⊗id−−−−→ ∧λ+ ⊗∧µ.
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Note that the tensor products of the objects and maps are well defined because
PQ,q is a module category over the monoidal category APq as shown in Section 4.1.

In other words, we have the following commutative diagrams where the left
faces are the definition of a+⊗b−, and the right faces are the definitions of S(λ,µ)

and ∧(λ,µ), respectively:

⊗b− ⊗⊗a Sµ− ⊗ Sλ

a
+⊗b− S(λ,µ)

⊗a+b Sλ ⊗ Sµ

⊗a+ ⊗⊗b Sλ+ ⊗ Sµ

Tb,a Tb,a

, (44)

⊗b− ⊗⊗a ∧µ− ⊗∧λ

a
+⊗b− ∧(λ,µ)

⊗a+b ∧λ ⊗∧µ

⊗a+ ⊗⊗b ∧λ+ ⊗∧µ

Tb,a Tb,a

. (45)

We have ∧(λ,µ) ∈ PQ,q and S(λ,µ) ∈ PQ,q. Note that if Q = q = 1, we have

∧(λ,µ) ∼= ∧λ1
+ ⊗ · · · ⊗∧λr+ ⊗∧µ1

− ⊗ · · · ⊗∧µr−
and

S(λ,µ) ∼= Sλ1
+ ⊗ · · · ⊗ S

λr
+ ⊗ S

µ1

− ⊗ · · · ⊗ S
µr
− .

Thus we may think of ∧(λ,µ) and S(λ,µ) as deformed tensor products, which are
not tensor products in the usual sense, but become the usual tensor product when
Q, q = 1.

Example 7.12 (d = 2). We have

⊗2 = S((1,1),0) ⊕ S((1),(1)) ⊕X ⊕ S(0,(1,1)),

where X is isomorphic to S((1),(1)) and can, for example, be taken to be V ⊗V/(T0+
Q,T1T0T1 −Q−1) (here we want a strict decomposition, not up to isomorphism).
Note that for the bipartitions appearing here, there is no difference between S
and ∧ (so we could have replaced S((1),(1)) by ∧((1),(1)) in the equation above).
Furthermore, there is a decomposition

S(0,(1,1)) = ∧(0,(1,1)) = ∧2
− ⊕ S2

−

and
S((1,1),0) = ∧((1,1),0) = ∧2

+ ⊕ S2
+

into direct sum of irreducibles.
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Definition 7.13. Let a + b = d. The Schur functor S(λ,µ) is defined in the
commutative diagram in Figure 2. The two leftmost diagrams form a subdiagram
equivalent to the diagram in (44), while the leftmost and rightmost diamonds
form a subdiagram equivalent to the diagram in (45). The rightward maps are
induced from the definitions of symmetric and exterior power; the diamonds are
induced from the definition of a+⊗b−. See also the diagrams (44) and (45) which
are subdiagrams of the diagram in Figure 2. Then the leftward maps are induced
from the map sAλ ⊗ sAµ where sAλ from (39) defines the type A Schur functors.

In particular, the Schur functor S(λ,µ) can be defined as the image of the map

∧(λ′,µ′)
cB(λ,µ)−−−→ a

+⊗b− −→ S(λ,µ), (46)

where the right map is the projection in the diagram in Figure 2 and the left map
is induced from the map cAλ ⊗ cAµ defined in Equation (47), where cAλ = Tc(λ)ιλ′

(see (40) and after).

∧λ′ ⊗∧µ′ ⊗λ ⊗⊗µ = ⊗d

∧λ′+ ⊗∧µ
′

⊗a+ ⊗⊗b

∧µ′− ⊗∧λ
′

⊗b− ⊗⊗a

∧(λ′,µ′) a
+⊗b−

cAλ⊗c
A
µ

cB(λ,µ)

. (47)

Example 7.14. For $d = (1, . . . , 1, 0, . . . , 0) (there are d × 1’s and d × 0’s in
$d), we have S($d,0) = ∧d+ and S(0,$d) = ∧d−. For d$1 = (d, 0, . . . , 0), we have

S(d$1,0) = Sd+ and S(0,d$1) = Sd−.

7.1. Schur functors in generic case

In this subsection, we relate the Schur functors with the Young symmetrizers in
§ 2.3. For this, it is necessary to assume that k = C and Q, q are generic.

Proposition 7.15. We have for each n, λ, µ

S(λ,µ)(Vn) ∼= (V ⊗dn )e′λ,µ

as SBQ,q(n; d)-modules where e′λ,µ is the Young symmetrizer defined in (17).

Proof. The projection ⊗d → Sλ ⊗ Sµ is isomorphic to (acting with) the Young

symmetrizer eλ ⊗ eµ = (eλ ⊗ id)(id⊗eµ). The projection ⊗d
u−b Tb,au

+
a−−−−−−→ (a+⊗b−)

from Definition 7.10 is isomorphic to multiplication by ea,b from Equation (15).
By Lemma 7.7 we have that ⊕d± = ⊕dud±.

The claim now follows from the Definition in Figure 2 (note specifically the
implicit square containing ⊗d,a+⊗b−, Sλ ⊗ Sµ, S(λ,µ)) and the fact that ea,b and
eλ ⊗ eµ are idempotents and commute. �
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Example 7.16. (d = 2) There are five bipartitions (λ, µ) ` 2, namely ((1, 1), 0),
(0, (1, 1)), ((2), 0), (0, (2)), and ((1), (1)). The only case that is not covered in
Example 7.14 is ((1), (1)). A defining sequence in this case is

∧((1),(1)) → ⊗2 → S((1),(1)).

One sees from the definition that ∧((1),(1)) = 1
+⊗1
− = S((1),(1)) and that the

composition is an isomorphism, hence we have S((1),(1)) = S((1),(1)) ∼= ∧((1),(1)).
Thanks to the Schur–Weyl duality, we know that ⊗2 has four distinct irreducible
summands with multiplicity one and a unique (up to isomorphism) irreducible sum-
mand with multiplicity 2. The former correspond to ((1, 1), 0), (0, (1, 1)), ((2), 0),
(0, (2)) and the latter is necessarily isomorphic to S((1),(1)).

Example 7.16 generalizes to give the following description/classification of the
irreducible polynomial functors in PQ,q.

Theorem 7.17. The Schur functors S(λ,µ) form a complete irredundant list of
isomorphism classes for irreducible objects in PQ,q.

Proof. The claim follows from Proposition 7.15, Proposition 2.13 and Proposi-
tion 3.10. �

Remark 7.18. We have that S(λ,µ)(Vn) = Lλ,µ(n). By [LNX20, Thm. 3.1.1] and
[HH92, Thm. 6.19], the dimension of the SBQ,q(n; d)-module S(λ,µ)Vn does not
depend on q,Q. Thus it has a basis indexed by the set of semistandard bitableaux
of shape λ, µ.

Remark 7.19. It would be interesting to relate our construction of the irreducibles
to the results of Watanabe [Wat20], where the author constructs crystal basis for
irreducible representations of UBQ,q(gln) for n odd.

7.2. Schur functors in nongeneric case

Theorem 7.17 is not true when Q, q are roots of unity or char k > 0. But that is
only because the formulation of the result is not the right one. (See Remark 7.1.)
In this subsection, we place the Schur functors in the right context.

The category PQ,q is semisimple under Assumption 7.5 and therefore can be
viewed as a highest weight category where the irreducible, standard and costandard
objects coincide. Then Theorem 7.17 is equivalent to saying that the Schur functors
S(λ,µ) give a complete list of mutually nonisomorphic costandard objects in PQ,q.

It is proved in [LNX20, Thm. 3.1.1], assuming fd(Q, q) 6= 0, that SBQ,q(n; d)

is quasi-hereditary for all n, d. Then by Theorem 3.10, the categories PdQ,q and
PQ,q are highest weight. In that case, we expect that the S(λ,µ) are the costandard
objects in PQ,q and the Weyl functors, which are defined by dualizing our definition
of Schur functors, are the standard objects in PQ,q. We also expect that a direct
proof of quasi-heredity using the Schur functors and Weyl functors similar to
the approaches in [ABW82, Kra17] exists. We note that without the assumption
fd(Q, q) 6= 0, the algebra SBQ,q(n; d) is not quasi-hereditary in general (see [LNX20,
Example 6.1.2] and the remark thereafter).
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7.3. Higher-degree Schur functors

We now assume Q, q to be generic. Generalizing the functors Sd,e± ,∧d,e± ∈ Pd,eQ,q
defined in § 6.1, we can define Schur functors in Pd,eQ,q. We give an outline of this
construction.

First define Sλ,e+ to be the largest quotient of Sλ (here we denote by Sλ the

restriction of Sλ = Sλ1 ⊗ · · · ⊗ Sλr ∈ APd,eq to Pd,eQ,q) where ceK ∈ HBQ,q(d, e)
has eigenvalues of the form +Qiqj , i, j ∈ Z, and define similarly Sλ,e− ,∧λ,e± . Then
consider the higher-degree analogue of the maps Tc(λ) (see (39)) and Tb,a (see
Definition 7.10), which are obtained by writing Tc(λ), Tb,a as a product of the
standard generators Ti in HBQ,q(d) and replacing the Ti with the higher degree

generator Twi ∈ HBQ,q(d, e) (see (24) and (25)). The rest of the construction is now

identical to that of the Schur functors in PdQ,q using Remark 5.5.
The higher degree Schur functors supply many nontrivial examples of polyno-

mial functors in Pd,eQ,q. Unlike in the case e = 1, however, the Schur functors are
decomposable in general. Their decomposition (even when Q, q are generic) is a
difficult and interesting problem. While we have little understanding on the higher-
degree Schur functors at the moment, we hope that they lead us to a structure
theory of the categories Pd,eQ,q.
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[BK19a] M. Balagović, S. Kolb, Universal K-matrix for quantum symmetric pairs J.
Reine Angew. Math. 747 (2019), 299–353.

[BK19b] V. Buciumas, H. Ko, Quantum polynomial functors from e-Hecke pairs, Math.
Z. 292 (2019), 1–31.

[BKLW18] H. Bao, J. Kujawa, Y. Li, W. Wang, Geometric Schur duality of classical
type, Transform. Groups 23 (2018), 329–389.

[BLM90] A. A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quan-
tum deformation of GLn, Duke Math. J. 61 (1990), 655–677.

[Bro13] A. Brochier, Cyclotomic associators and finite type invariants for tangles in
the solid torus, Algebr. Geom. Topol. 13 (2013), 3365–3409.

[BW16] H. Bao, W. Wang, Canonical bases in tensor products revisited, Amer. J.
Math. 138 (2016), 1731–1738.

[BW18a] H. Bao, W. Wang, Canonical bases arising from quantum symmetric pairs,
Invent. Math. 213 (2018), 1099–1177.

146



POLYNOMIAL FUNCTORS AND QUANTUM SYMMETRIC PAIRS

[BW18b] H. Bao, W. Wang, A new approach to Kazhdan-Lusztig theory of type B via
quantum symmetric pairs, Astérisque 402 (2018), vii+134.
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