Transformation Groups (2024) 29:277-360
https://doi.org/10.1007/500031-022-09696-x

®

Check for
updates

The PBW Basis of U, 5(g(,,)

Andrei Negut'-2

Received: 1 March 2021 / Accepted: 11 January 2022 / Published online: 25 March 2022
© The Author(s) 2022

Abstract

We consider the PBW basis of the quantum toroidal algebra of gl,,, which was devel-
oped in Negut (Adv. Math. 372, 2020), and prove commutation relations between
its generators akin to the ones studied in Burban and Schiffmann (Duke Math. J.
161(7):1171-1231, 2012) for n = 1. This gives rise to a new presentation of the
quantum toroidal algebra of type A.
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1 Introduction

Let us fix n > 1, and consider the type A quantum affine algebra:
Uy (aly) = Ug(st) ® Uy (gly)
(dots will replace hats in the present paper) whose generators are of two kinds:

e the simple root generators {x,-i}iez /nz of Uy (é[,,)
® the imaginary root generators {p+yJren of Uy (Q[l)

Our main object of study is the type A quantum toroidal algebra, which was shown
in [10] to factor, as a vector space, in terms of slope subalgebras:

Upg@h) = Q) By (1.1)

neQuoo

where if g is a reduced fraction with » € Z and ¢ € N U 0, we have:

By — Uq(glg)®g (1.2)
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where g = gcd(n, a). The isomorphisms (1.2) imply that the simple and imagi-
nary generators of quantum affine algebras give rise to the following elements of
U q@(g[n):

e  Simple root generators Plg']?;') defined for all:

2

W’ i#% jmodn, keZ st. gedk, j—i)=1 (1.3)
n,n

(i,)) e
e Imaginary root generators PI(Sk;) defined for all:

rez/gZ, K e, leZ (1.4)

We will often extend the notation (1.3) by setting:

(k) ._ pk)
Plisinn = Bis,i (1.5)
whenever ged(k, nl) = 1.
The elements P[E.’?)j) and Plgfr) liein B, C Uq,q(ﬁ[n), where the slope u is defined
as:

/

k
for (1.3) and u = i for (1.4)
n

n=—-—"
J—i

and the subscript of the P’s refers to their grading as elements of Uq,q(g"[n), where:

Lo ¢ .. +gi! ifi <j i _
[i; ) = { Y R ifi> s =0(,..0,1,0,..,0, §=(1, ... 1)
1 on ith position
(1.6)
lie in Z". See Section 3.14 for the definition of the root generators introduced above,
as well as for the precise combinatorics behind their indexing sets. As shown in [10],
ordered products of the root generators described above give rise to a PBW basis
of the quantum toroidal algebra. The main goal of the present paper is to compute
commutation relations between the aforementioned root generators, which will allow
us to give a new presentation of the quantum toroidal algebra:

p® K p®

Theorem 1.1 The map i:h ™ Py Pisr = pl(‘];)r vields an isomorphism:

Uy7@h) ~ | C = (Eu) pequoo [relations (1.9), (1.10)

(1.7)

where for any coprime integers a, b with g = gcd(n, a), we set:

Ep = Uq(glg)®g (1.8)
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and we label the simple and imaginary root generators by:

.\ ®g +b
Uq(gtg) 510.0180x @181 ~ Pl i € E

+ L
x;~ on rth position

bkn
U . g (?)
P g[g 51®.91Qpu®1I®..81 ~ p eé&

Q>

P+k on rth position

The relations among the various p(lk)J) pl(‘];z € C are, for all indices, as follows:

(k) &) _ k), (k)
[P[i;j)’ Pla,r] = Xisj)is.r (1.9)
. kK )
if det(j. _i nl)‘ = ged(k’, nl), and:
(ky (k) &y (k) o __ _(k),(K)
PlicpyPiin " = Pl Piiipd” = Visjiin ) (1.10)
. k K S ey
if det i =i =gcedtk+ k', j—i+ j —1i). Above, the elements:
k), (k") k), (K"
Micjasr € Eare o and Vg € €k

J—i+nl ’ j—itj =i’

as well as the numbers o, @ € {—1,0, 1}, will be defined explicitly in Theorem 4.3.

One can better understand the intuition behind Theorem 1.1 by associating vectors:

(nl,k/).

TGk

(j —1i, k) and (nl, k') to the generators P k 3) and P G ) , respectively. Then (1.7) states
that generators whose associated vectors are parallel obey the relations in the algebras
(1.2), while relations (1.9) and (1.10) state that generators whose associated vectors
are “close to each other” also obey a certain commutation relation.

Although we only consider n > 1, the n = 1 analogue of Theorem 1.1 would
be precisely the main result of [13], where Schiffmann established the isomorphism
between the Ding-lohara-Miki algebra (the n = 1 version of the quantum toroidal
algebra) and the elliptic Hall algebra studied by Burban-Schiffmann in [1]. Indeed,
the n = 1 version of relations (1.9) and (1.10) were shown in loc. cit. to hold in the
Hall algebra of the category &; of coherent sheaves over an elliptic curve over F,.
The dream would be to find an analogue €, of the aforementioned category, whose
double Hall algebra is isomorphic to the quantum toroidal algebra, for all n. While
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280 A.Negut

we do not have a precise proposal for such a category, Theorem 1.1 gives hints as to
what such a €, should be, by positing that the generators:
k) ()] oy
{P[l.;j), Pm} e Uy 7(al,) (1.11)
be related to the classes of indecomposable objects in €, and that relations (1.9),

(1.10) provide information on the extensions between these objects in &,.
The structure of this paper is the following:

In Section 2, we review the quantum affine algebra U, (gi[n).
In Section 3, we review the shuffle algebra A and its isomorphism with U, 7
(gl
In Section 4, we properly state and prove Theorem 1.1.
In Section 5, we state and prove an alternate version of Theorem 1.1, which will
yield a different presentation of Uq,g(g';'[n), that will be used in [11].

e In Section 6, we provide an index of notations.

2 Quantum Algebras

The main purpose of the present section is to review the quantum algebra U, (gi [,).

In Section 2.1, we review bialgebras, pairings and the Drinfeld double
In Section 2.2, we recall the definition of U, (5.[,,) as a bialgebra

® In Section 2.3, we recall the definition of U, (gi[l) as a bialgebra; we also point
out the non-degeneracy of the pairings (2.20) and (2.28) in Remark 2.2
In Section 2.4, we study Uy, (gi[n) =U, (5'[,1) ® Uy (j[l) and its generators e;; j
In Section 2.5, we discuss the PBW basis, the grading, and the classification of
primitive elements of U, (Q[n)

® In Section 2.6, we connect the generators xl.i, p+i of Uy (5'[,,) QU (gi[l) with the
generators e4(;. jy of U, (gl,) (see Definition 2.4)

® In Section 2.7, we define the order n automorphism of U, (Q[n), and prove a
Proposition that will be used later on

® In Section 2.8, we consider elements e ;. j) € Uy (gl,,), which are closely related
to the antipodes of ey;; j

2.1 Bialgebras

All algebras A considered in the present paper are bialgebras over a field IF, meaning
that they are endowed with a product and coproduct:

A®A S A AL A9A

which are associative and coassociative, respectively. All our bialgebras will be
endowed with aunit 1 : F — A and a counit ¢ : A — [F. The most important
property of the data above is compatibility between product and coproduct:

Aa xa) = Aa) x Ad) 2.1
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The PBW Basis of Uy g(gl,) 281

Va,a' € A. We will often use Sweedler notation for the coproduct, namely:
Ala) =a1 Q@ az (2.2)

VYa € A, which implies the existence of a hidden summation sign in front of the
tensor in the right-hand side (so the full notation would be A(a) = Zia 1,i ®ay;
with i running over some indexing set). Then (2.1) can be written as:

(ad')1 ® (ad')y = a1a] @ ard)

Given bialgebras A" and A™, a bialgebra pairing between them:

():AT®A™ > TF (2.3)

is an F-linear pairing which satisfies the properties:
(axad’,b) = (a®ad, AP(b)) 2.4
(a,bxb"y = (Aa),b D) (2.5)

foralla,a’ € A" and b, b’ € A~ (where A° denotes the opposite coproduct) and
(a, 1) = e(a), (1, b) = e(b) for all a and b. We will often abuse notation by writing:

(b,a) = {a, b)
foralla e AT,be A™.

Definition 2.1 [3] Given any two bialgebras AT and A~ with a bialgebra pairing
(2.3) between them, consider the vector space:

A=ATQ®A™

It can be made into a bialgebra by requiring that AT = AT ®@ land A~ = 1® A~
are sub-bialgebras of A, which freely generate A subject to the relations:

aibi{az, bz) = (a1, b1)braz (2.6)
VYa € AT, b € A~, where in (2.6) we use Sweedler notation (2.2) for A(a) and A(b).

2.2 Quantum affine groups|

Throughout the present paper, Kronecker § symbols are considered mod n, i.e., 5i,. =
1ifi = j mod n, and 0 otherwise. Consider the type A quantum group: '

Ug(sty) = Q) yif' Y™ @7
modulo the fact that c is central, as well as the following relations:
Vs = Yy s (2.8)
YoxE = gFOT )y 2.9)
[x,.i,xj.t]zo ifje¢f{i—1,i+1} (2.10)

INote that the algebra below is slightly larger than the usual type A quantum group, as it contains
Y1, ..., ¥, and not just their ratios. We choose this definition for notational convenience.

) Birkhauser



282 A.Negut

[x", x5 71, =0 ifjeli—1,i+1) (2.11)
s/ . ‘
a7 ] = —— (‘”‘“ _ Vi ) (2.12)
g —q Y Yin
2foralli, j € Z/nZ and s, s" € {1, ..., n}, where we write:
la, b]ly = ab — qab (2.13)
We will extend the indexing set of the ¥/’s to all integers by setting:
Ystn = s (2.14)
Vs € Z. The counit given by s(xl.i) =0, e(¥5) = 1 and the coproduct given by:
Ale) = c®c, A(y) = Y5 @ Yy (2.15)
AGT) = %mrﬂf@l 2.16)
i
- . £
Ax)) =1®x; +x; @ — (2.17)
Vit1
make U (sl,) into a bialgebra. It is easy to see that the “half” subalgebras:
. s Z Z .
UZ 6l = Q@) it wE L ENS™ € Ugsh) (2.18)
. _ ' Z Z .
UF Gl = Q@) wEL ENE™ € Ugsh) (2.19)
are bialgebras. There is a bialgebra pairing:
qu(sln) ® Uqf(sln) — Q(q) (2.20)
determined by properties (2.4)—(2.5), the formulas:
8t ;
Wl = and () =q @21)

(all other pairings between the generators are trivial). It is well-known that (2.7) is
a Drinfeld double with respect to the pairing (2.20) (see Subsection 2.10 of [10] for
the precise statement, as in entails identifying the Cartan elements ¥ in the positive
half (2.18) with the same-named elements in the negative half (2.19)). Let:

Uz (sl) C Uy (sly) (2.22)
be the subalgebras generated by {xli}iez InZ-

2.3 The Heisenberg algebra

We also consider the g—deformed Heisenberg algebra:

U, (gl) = Q(q)(p+ks = )ren (2.23)

2As written, the g-Serre relation (2.11) assumes n > 2. For n = 2, one must replace it with a similar
expression which is cubic in xl.i.
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The PBW Basis of Uy g(gl,) 283

where c is central and the py; all commute, except for:
e p il =k &
Dks P—kl =K+ —F/——¢
gk —q*

The counit ¢(px) = 0, e(c) = 1 and the coproduct given by A(c) = ¢ ® c and:
Ap) = @pr+p® 1 (2.24)
Ap-i) = 1@ pi+pi®c* (2.25)
make U, (é[l) into a bialgebra. As in the previous subsection, it is easy to see that the

Heisenberg algebra is the Drinfeld double of its two halves:

U7 (gl) = Q(q){pr. ¢ hren C Ug(aly) (2.26)
UZ@gl) = Q@) (p—k» ™ hken C Uy(gly) (2.27)

with respect to the bialgebra pairing:

> 0 <,° ()
UZ(gl) ® UZ(gl) —> Q(q) (2.28)
which is determined by properties (2.4)—(2.5) and the formula:
k
(Pks P—k) = ——% (2.29)
q9 " —4q

(all other pairings between the generators are trivial). We will write:
Uy (gh) C Uy(gh) (2.30)

for the subalgebras generated by {p4 JxenN.

Remark 2.2 The pairings (2.20) and (2.28) are non-degenerate: for the former this is
proved in [9], while for the latter, non-degeneracy holds because the bases:

P2 = PriPrs - Dr=Guzia=.) C US(gly)
{P—u = P-1 P—i - - Ju=uizp2>...) C U, (gly)

have the property that (p;, p_,) = 8;‘ - non-zero constant. This underscores a slight
imprecision in our terminology: when we call the pairings (2.20) and (2.28) non-
degenerate, what we are actually claiming (and using in the present paper) is the
non-degeneracy of their restrictions to the &+ subalgebras, namely:

US sl @ Uy ) < Qg 2.31)

Uf ) @ Uy (6 <3 Q) (232)

One can still make sense of the non-degeneracy of the pairings (2.20) and (2.28),
but this would require certain modifications, such as working over the ring of power
series in log(q), replacing s by log(v,) in the definition of the quantum group, and
adding more central elements. We will not need this extra layer of complexity.
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284 A.Negut

2.4 Quantum affine groups Il

Let us consider the bialgebra:

Ug(gly) = Ug(sl) @ Ug(gl)/(c ® 1 = 1@ ) (2.33)
By combining the results of [2] and [4], the algebra U, (gi[,,) is generated by:
D M (2.34)
@ <])E (n,n)Z

where the generators e.[;; j) satisfy quadratic relations (the famous RTT = TTR
relations of [7, 12], see [10] for an overview), and their coproduct is given by:

Alegizjy) = Ze[v ,>$ ® efis) (2.35)

s=i

M) = Y emim Be_ wnf (2.36)

s=i

We conclude that U, (gi[,,) is generated by either the set of generators (2.34) or by:

G pa 93 NG @37)
The connection between these two generating sets is given by:
e+ = % (@ —q ) (2.38)
e it =X (g 7= 1) (2.39)
We do not know an explicit formula for piy in terms of the ey ), but we will
explain how to obtain an implicit connection in the following subsections.

2.5 Primitive elements|

The generators e.[;; j) give rise to PBW bases of the subalgebras:

Uz (aly) = Q@) (x;", pxi)iezmzien = Q@) {exi: ) C Uy(gl,)

(2.40)
by which we mean that U j(g[n) is spanned, as a Q(¢g)—vector space, by products of
e+[;; j)’s in a specific order (for example, ascending order of j —i, and then ascending
order of i mod 7 to break ties). We note the triangular decomposition:

Uy(al,) = U (gl,) ® U (al,) ® U, (gl,)
where Uo(g ) = Q@) wil #17 _s<,. The algebra U, (g[ ) is graded by Z", with:
degeyy;;j) = xli; j), deg piy = £ké, degyy =0 2.41)

.. 72
(l<j)€( 7

where [i; j)and § = (1, ..., 1) are defined in (1.6). For all s, consider:

gy = LotL (2.42)

Vs
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The PBW Basis of Uy g(gl,) 285

It is easy to see that the coproduct of any element x € U qi (Q[n) takes the form:

n
AW =[Jef@x+ ... +x®l ifxeUf@,) (243

i=l intermediate terms

n
AW =1@x+ ... +xe[]ef  ifxeU (gl (44
intermediate terms i=1

if deg(x) = (k1,....k,) € Z", where the intermediate terms are all of the form
x’ ® x” with deg x", degx” # 0. An element x € U;E(g[,,) is called primitive if its
coproduct has no intermediate terms. The following is a well-known result.

Lemma 2.3 The only primitive elements of U;E(gi[n) are {xl.i},-ez/nz, {p+i}iken and
their scalar multiples.

Proof The product of the pairings (2.20) and (2.28) yields a bialgebra pairing:

UZ(gh,) ® UZ(3l,) 5 Q(q) (245)

such that its restriction to:

U (8 ® Uy (gl <4 Q) (2.46)
is non-degenerate (see Remark 2.2). Thus, let us consider a primitive element:
a € Ufgl,)
Because A(a) has no intermediate terms, properties (2.4) and (2.5) imply that a pairs
trivially with any product of two or more of the generators {)cl.:F }Yiez/nz and { px }keN.
By subtracting from a appropriate multiples of {xl.i},-ez/nz and {pii}ren, We may

replace the word “two” in the previous sentence by “one”. Thus, a pairs trivially with
U ;F (gl,,), hence a = 0 by the non-degeneracy of (2.46). O

2.6 Primitive elements |
Lemma 2.3 implies that p1 is the unique, up to constant multiple, sum of products

of e+, j’s which is primitive and has degree £k4. To determine the p+; completely,
we need to fix this constant multiple. To this end, consider the pairing:

UZ () ® UZ (gl,) —> Q(q) (2.47)

generated by properties (2.4) and (2.5) and the assignments:
(s, Yy = q %% (2.48)
{etizjyr e—li) =1 - ¢ (2.49)

and all other pairings among the generators e [;; jy and ¥; are 0. On general grounds,
the pairing (2.47) is the tensor product of the pairings (2.20) and (2.28), although one
would need to modify the latter by replacing the right-hand side of (2.29) by some
other non-zero constant which depends on k. This has to do with the ambiguity in
defining p1 up to scalar multiple, which we will now fix.
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286 A.Negut

Definition 2.4 Fix arbitrary parameters 7, 7_ such that 7, 7_ = ¢~ !. Let:

pxk € Uy (gly) (2.50)

be the unique product of ey;. ;)’s of degree =k which is primitive and satisfies:

(Pks exlusutnky) = £ (2.51)
forallu € Z/nZ.

Together with (2.38)—(2.39), the Definition above completely determines the cor-
respondence between the two systems of generators (2.34) and (2.37) of U, (gi [,). The
existence of elements pj defined in terms of e4(;; j’s which satisfy the conditions
of Definition 2.4 was established in [10], where we also proved that:

(Ck _ C—k)(an _ q—nk)
gk —q7)?

[Pk, pi] = kdp,, (2.52)

2.7 Alternate generators |

Let Uy (gi[n)/ c U, (gi[,,) denote the subalgebra generated by all e+[;; ) and all ratios
(2.42) and their inverses. It is easy to see that the assignments:
€L[i;j) P> €L[i+1;j+1)s Ps > @sp1
gives rise to an order n automorphism:
T :U,(gl,) — Uy(gly) (2.53)

Since t also preserves the coproduct and the pairing, the uniqueness part of Defi-
nition 2.4 implies that p4 is invariant under t. In fact, the uniqueness of primitive
elements means that any:

x* e UF(gl,) (2.54)

of degree ¢ {¢!, ..., ¢"} is completely determined by the intermediate terms of its
coproduct and, if deg x* = %k, the extra information of (x¥, Prk)-

Proposition 2.5 Suppose we are given elements:

St € qu(ﬁ[n) (2.55)
of degree £[i; j), forall i < j) € %. Moreover, assume that:

® the elements (2.55) satisfy (2.35)—(2.36) with f instead of e
® we have T(fi[l';j)) = fi[,'+1;j+1)f0r alli < ]
L4 we have f:l:[i;i) = 1land f:l:[i;i+1) = e:l:[i;i+1)f0r alli

Then there exist constants o1, oy, ... € Q(q) such that:
|7

ftip = Z €t(i; j—nk)§+k (2.56)
k=0

where Y 72 0g+kx* = exp (Z,filakpikxk).
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The PBW Basis of Uy g(gl,) 287

Proof Let us prove (2.56) when = = +, and leave the analogous case where + = —
as an exercise to the interested reader. As a consequence of (2.24), we have:

A=Y gac”® g 2.57)
a+b=k

for all £ € N. Since:
8k = ok px + (a sum of products of more than one p;)

one can inductively define the scalars o by the condition that:

k
(ftizitnk)> P—k) <Z€[z itn(k—0) 81 P— k> (2.58)

=0

for all i € Z/nZ (indeed, because the automorphism t permutes the elements ey;; ;)
and f|;; jy and preserves the elements p_; and g; and the pairing, if (2.58) holds for
a single 7, then it holds for all /). Let us now prove (2.56) by induction on j — i.
The base case holds by the third bullet in the statement of the Proposition. As for the
induction step, the first bullet in the statement of the Proposition implies that:

A(LHS of (2.56)) = Z fisijy— LA Fiizs) (2.59)

Vi

s=i

while (2.35) and (2.57) imply:

L%J Jj—nk
ARHS of 2.56) = > | Y fisij nk) =~ © fii) (Z gac”®gb>

k=0 s=i a+b=k
i (7] 5]
= Z Z Jiej- na)ga ® Z Slist—nb) &b (2.60)

t=i a=0

where between the first and second lines of (2.60), we changed variables according
to t = s + nb. By the induction hypothesis of (2.56), the intermediate terms in the
right-hand sides of (2.59) and (2.60) are equal to each other, thus:

a = LHS of (2.56) — RHS of (2.56)

is primitive. Since dega = [i; j), Lemma 2.3 gives us only two situations when the
primitive element a can be non-zero. The first of these is when j = i + 1, and it
cannot happen in the induction step, only in the base case. The second of these is
when j =i + nk, in which case a is a multiple of p;. However, (2.58) implies that:

(a,p-k) =0
from which (2.29) yields a = 0. O
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2.8 The antipode map

It is well-known that the bialgebra U, (gi[n) is in fact a Hopf algebra, and let S be the
antipode map. Recall the arbitrary parameters 7, 7_ such that 7, 7_ = ¢~ that
we fixed in Definition 2.4. The formula:
! 2(j-1)
S ewij) =~ i) TR (2.61)
J
defines elements e, j) € U, ;t (g.[,,). Then formulas (2.35)—(2.36) imply:

j
- 2 i

> espsijesiiz eV =0 2.62)

s=i

for alli < j. Moreover, we have the following coproduct formulas:

J

_ Y _
A(E[i;j)) = Z w—/E[i;s) ® efs; ) (2.63)
T Vs
s=i
J
A@—iisj) = ) e-i5:) ® w—s_éf[i;s) (2.64)
s=i J

Moreover, as a consequence of (2.51) and (2.62), we note that:

(Ptk> €xusutnk)) = :F”:Enk (2.65)

for all u € Z/nZ. The reason for the formulas above is the fact that the pairing of
ex[s: j)exli:s) With pyy is trivial unless s € {7, j}, due to the fact that p1 is primitive.

3 The Shuffle Algebra

The main purpose of the present section is to study the shuffle algebra .A.

e In Section 3.1, we introduce the rational functions ¢ (2—‘;)

In Section 3.2, we use the aforementioned ¢ to define the shuffle algebra A™

In Section 3.3, we define the grading on A+ and A~ = (A1)

In Section 3.4, we extend the algebras A+, A~ to A=, A=

In Section 3.5, we define coproducts on the extended algebras A=, A=

In Section 3.6, we define the Drinfeld double A = A= ® A=

In Section 3.7, we define slope subalgebras Blf C A* forany pu € Q

In Section 3.8, we explain how to visualize slope subalgebras in terms of the

degrees of their coproducts, using the notion of hinges

¢ In Section 3.9, we construct the Drinfeld doubles B,, C A, recall the fact that
they are isomorphic to tensor products of quantum groups in Proposition 3.6, and
construct the important elements (3.59)—(3.62) in B,

e In Section 3.10, we rescale the previously defined elements as in (3.66)—(3.69),
with the goal of matching them with ey;, j and e;, ;) of the previous section
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The PBW Basis of Uy g(gl,) 289

e In Section 3.11, we define the linear maps o(;; ;) on A[;. jy, which will help us
fix elements of the shuffle algebra which are a priori determined up to scalar

¢ In Section 3.12, we show that the restriction of ;. ;) to the slope subalgebras
B,. is given by pairing with the elements (3.66) and (3.68)
In Section 3.13, we compute a part of the coproduct of the elements (3.66)
In Section 3.14, we construct elements of the slope subalgebras 53,, which behave
like the primitive generators of quantum groups (under Proposition 3.6)

e In Section 3.15, we perform the analogous treatment for the subalgebra By,

3.1 Notation

Let g be a formal parameter. Consider the following bilinear form on Z":
n
k1) =) (kili = kilig) (3.1)
i=1

(where we identify [, = [1) for any k = (kq, ..., k,) and 1 = ({1, ..., [;;). Also let:
Kkl =k +...+k, (3.2)

for any k € Z". We will now recall the type :4\,, trigonometric version of the shuffle

algebra studied in [6]. For each i € {1, ..., n}, consider an infinite family of variables

Zil, Zi2, -... We call i the color of the variable z;,, and we call a rational function:
R(.., Zig, )1 ==" (3.3)

1<a<k;

color-symmetric if it is symmetric in the variables z;1, ..., zjx; for each i separately.
Often, we will write explicit formulas for rational functions (3.3) that include z;, for
any i € Z, with the convention that:

_o|i=t
Ziq should be replaced with z;,g ZL n J (3.4)

where i is the residue class of i in the set {1, ...,n}. A particular example of this
convention is the following color-dependent rational function:

J_sl
izj & =81

2 _
g(zlu>_ Ziaqq ["W—Zjbq ‘
Zjb L

3.5
Ziaqz[ " w —Zjb

for any variables z;4, 7, of colors i, j € Z, respectively. Remember that Kronecker
§ symbols are taken mod n in the present paper, unless explicitly stated otherwise.

3.2 The shuffle algebra

1
Let F = Q(g, g ) and consider the set of color-symmetric rational functions:

color symmetric
V= FCszit, oo Zits )i yn (3.6)
keN"
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We make the above vector space into a F—algebra via the shuffle product:

1

R (3.7)

R(..., Zi1, oy Zik; » L) X R/(..., Zils oo Ziks ) =

n  a<k; Z
’ ia
Sym R(..., Zi1, ooy Zik; s )R (..., Ziki+1s oees Zi’kiJrkl{, ) | | | | ¢ < )

L Zi'a
l,l/=1a’>kl{/

for all rational functions R and R’ in k and K’ variables, respectively. In (3.7), Sym
denotes symmetrization with respect to the:

k+K)! = H(ki + k)t (3.8)
i=1

permutations that preserve the color of the variables modulo 7.
Definition 3.1 The shuffle algebra is the subspace A+ C V of rational functions:
r('“» Tils eens Zikl‘ ) )

R(is Zity ooy Zikys o) = T=a <k, 3.9
]_[;;11_[1;2;](;“ (ziaq — Zi+1,bq_1)

where r is a color-symmetric Laurent polynomial that satisfies the wheel conditions,
i.e., the fact that for all i € {1, ..., n} we have:

=0 (3.10)

r(..., Zia, "')|zi11—>w,ziszqi2,Zi;1,1'—>w
3.3 Horizontal and vertical degree

It is straightforward to prove that A™ is an algebra (see, for example, [10]). To a
rational function R(..., 1, ..., Zik; » -..) of homogeneous degree d, we may associate
its “horizontal” and “vertical” degrees, as follows:

hdeg R = (ki, ..., k) € N* 3.11)
vdegR =deZ 3.12)

Thus, the algebra AT is graded by N x Z, and we will denote its graded pieces by:

AT = P Ax (3.13)
keN”
Ak = PAka (3.14)
deZ
Let:
A™ = (AP (3.15)

so a rational function R as in (3.9) may be regarded as either:

RTe At or RTe A
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If R has degree (k, d), then we assign R~ degree (—k, d) and write:

A" = PAx (3.16)
keN"

Ak = PAxa (3.17)
deZ

The naive slope of an element R* € AT is defined as:

vdeg R

—e 3.18
|hdeg R| ( )
3.4 The extended shuffle algebra
Define the extended shuffle algebras as:
A= = (AT Y L E g aa, seqt) (3.19)
AS = <A71 ws:HvCi]sEil’as,—ls dg —2, ---)se{l ..... n} (3.20)
modulo the fact that ¢ and ¢ are central, and the following relations:
(Vs ] =0, las,+a, ¥o1=0, la5,+d, a5 +a1 =0 (3.2
YR = g1 Ry (322)
ksfl kS
lasa. RY1 = RY [ > 20, =>4 (3.23)
t=1 =1
ks
las,—a, R7] = R~ ‘”’sz gt e (3.24)
t=1
forall s, s’ € {l,...n},d,d > 0and RT(..., zi1, wes Zikis ) € A*. In all formulas
above and henceforth, we extend the indexing set of the 1/’s and the a’s by setting:
Vstn = cVy, As+n,d = as,dq_Zd (3.25)

forall s,d € Z.

Remark 3.2 The algebras (3.19) and (3.20) were defined in [10], albeit in different
notation. Explicitly, the generators as, +4 were packaged in loc. cit. as:

o0 0 . g —d —d d
" Osd  Vsyl (q%as,a —q “as+1,4)(q@ ¢ —q%)
@s (2) = = exp |:§ 7 (3.26)
d=0 * Vs d=1 dz
00 —d d
ﬁav s (as,—a — Ag+1 —d)(q —q )
= . . 3.27
os (2) = E = W " exp LE_I do—d (3.27)

The discussion in loc. cit. had set ¢ = 1, but the general case is analogous.
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3.5 The coproduct

One of the main reasons for defining the extended shuffle algebras A= and A= is
that they admit topological coproducts, as defined in [10]:

AWy =¥ ® Y, Al)=c®c, AQ) =¢®¢ (3.28)
Alasg) = ®asq+asa®1 (3.29)
As,—a) =1®as—g+as_a®c? (3.30)

foralls € {1,...,n}andd > 0,aswellas (letc; =c® landc, = 1 ® ¢):

a>l; - _
1=k [l’[lfi’s,lwf(ziaq) ® 1] RT (Zia<i; ® Zi,a>1;C1)

ARY) =) : _ . (3.31)
i S0 ¢ G /2i0)
=K R (Ziaz 02 @ Zias1;) [ 1@ er (Zia52)]
AR =) == (3.32)

a<l; -
leN” I<i'<n l_[a’>lli/ £ (ziaC2/2ira’)

for all R* € A.y. To think of (3.31) as a tensor, we expand the right-hand side in
non-negative powers of z;,/zy,s fora < I; and a’ > I, thus obtaining an infinite
sum of monomials. In each of these monomials, we put the symbols ¢; 4 to the very
left of the expression, then all powers of z;, with a < [;, then the ® sign, and finally
all powers of z;, with a > [;. The powers of the central element ¢; = ¢ ® 1 are
placed in the first tensor factor. The resulting expression will be a power series, and
therefore lies in a completion of A= ® A=. The same argument applies to (3.32).

3.6 The pairing and Drinfeld double

Finally, we showed in [10] that there exists a bialgebra pairing:

Az A= LR (3.33)
given by:
g 8%,84,d
(s, Yg) =q 7, (a5, a¢ —a') = —/——— (3.34)
q” —4q
fors,s’ € {l,..,n}andd,d €N, as well as:
1<i<n dZia

(RT,R™) = (3.35)

(1 —g )k ?g R (ooey Zias - )R™ (s Zias )
) j.b -

K T TS5 € Gial20) 12amy, 27051

for any RT € Ax and R~ € A_x (all other pairings are 0). In formula (3.35), the

contour integral is set up in such a way that the variable z;, goes over a contour which
surrounds only the poles at ziqu, Zi—1,b» Zi+1’bq_2 foralli € {1, ...,n}and all a, b

3Note that only the ¢ = 1 case of the following formulas was defined in loc. cit., but the general definition
below is analogous. In fact, we are simply modifying the coproduct of loc. cit. by the central element ¢
raised to the power equal to the vertical degree in one of the tensor factors, so all properties proved in loc.
cit. (coassociativity, compatibility of product and coproduct etc.) carry over to the present situation.
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(a particular choice of contours which achieves this is explained in Proposition 3.9 of
[10]). The pairing (3.33) allows us to construct the Drinfeld double:

A=A QA [(c®1-1®c,c®1-1®, Y, ®1—1Q 1Y) (3.36)
The main goal of setting up the above double shuffle algebra is the following:

Theorem 3.3 [10] There is an isomorphism of bialgebras Uqﬁ(,@'[n) =~ A4

The construction of an algebra homomorphism Uq,g(é'[,,) — A goes back to
work of Enriquez [5], so the main technical point of Theorem 3.3 is that this homo-
morphism 1is surjective. In other words, we prove that the Feigin-Odesskii wheel
conditions (3.10) are sufficient for describing the quantum toroidal algebra.

Proposition 3.4 We have the following commutation relations in A:

0 Ed _ E_d
[as,ds as’,d’] = 85’5d+d’dﬁ (337)
q9 " —49
ks ks—1
lasa, RTT=R &Y 24 =) 20, (3.38)
=1 =1
kg ks—1
las,—a, RT) = RY& g Y o5 — g7 Y274, (3.39)
t=1 t=1

foralls,s' €{1,..,n},d,d > 0and R*(..., zi1, ..., Zik;s o) € A*E. Moreover:

‘ i k- ifk >k
(DT @) T=60a2 =D giod —gle*  ifk=F (3.40)
—@ik 1t ifk <k

foralli, j € {1, ..., n}, where @5 14 are the series coefficients ofgoszt of (3.26)-(3.27).

Proof Let us apply (2.6) fora = a5, and b = ay _g:

—d' d
)

MNaga,ay —a) + asaay —a(1,6) = (&, Vay, _aas.a + (as.q, ag,—a)e”
Then (3.34) implies (3.37). As for (3.38), note that (3.32) implies:
ART) =1 Q@ R (.., Zily oy Ziky» ) + oo + R7 (0, 2i1C25 vy Zik; €25 -2)

n ki
[[]]¢ i

i=la=1

4The interested reader may find the definition of Uqg(g:[n) in [10, Subsection 2.25], but we will not need
it in the present paper.
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where ... in the middle stand for terms which pair trivially with a, 4 or powers of ¢,
for degree reasons. Therefore, applying (2.6) for a = a5 4 and b = R™ gives us:

n ki
IR (e 200, ) <as,d, [11Ter (z,-,éz)>

i=1a=1

n k,‘
+asaR™ (.., 2ijC2, ) <1, ]’[ ]_[ o7 (zij52)> =, )R asq

i=la=1

Since ¢ is group-like and pairs trivially with anything, the terms denoted by ¢; in the
formula above do not change the values of any of the pairings. Moreover, the pairings
on the second line are both equal to 1. As for the pairing on the first line, a simple
consequence of (3.27) and (3.29) is that

n ki oo n ki —d d
T ~ (a5, i~ — Giv1,—a) (g~ —q%)
aa [[[Ter @) =233 s
i=la=1 d'=1i=1 j=1 d Zij
ks—l

ks
d d

PIEERED P

j=1 j=1

which proves (3.38). Formula (3.39) is proved analogously, so we leave it as an exer-
cise. Relation (3.40) is straightforward, and we leave to the interested reader (a proof
was also given in [10], where this relation was compared to the defining commutation
relation between the two halves of the quantum toroidal algebra). O

3.7 Slope subalgebras

Let us now recall the factorization of A into slope subalgebras from [10]:
A* = R)B; (3.41)
ueQ

where the product is taken in increasing order of p. We will now describe ij.

Definition 3.5 For any shuffle element R* € A1y and any u € Q, if the limit:

RECey EZity ooy EZily s Zili15 ooos Zikis )

lim giulll

£fl 500

(3.42)

exists and is finite for alll = (/y, ..., [,), then we say that R¥ has slope < u.

It is elementary to show that the subspace of A* of elements of slope <  is a
subalgebra (see [10] for a proof), and we will denote it by:

AL, C A* (3.43)
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and its graded pieces by:

Acpzk = Az NAZ, (3.44)
A<pjticd = Aska N Aﬂgﬂ (3.45)

Let us now connect the above slope property with the coproduct. We have:
A(RT) = A, (R™) + (anything) ® (naive slope < ) (3.46)
A(R™) = A (R™) + (naive slope < u) ® (anything) (3.47)

for any R* € Aiu, where the leading terms A, are defined by:

leN" _
RY Zia<t; ® & - Zia>1,C1)
+y — E : i,a<l; i,a>l;
AH(R ) - (‘Pk—l ® l)fli)n;o sﬂlk_”qa(_lsl) (348)
1<k
leN” _ _
_ . R7(§ - Zia<i;C2 ® Zia>1;)
Au(RT) = l§k Jim = e T @) (3.49)
=<

where ¢ = [[/_ I(pf" forallk = (ky, ..., k), and ¢; = % The vector spaces:

nlk|eZ nk|l=d
B = EB Btk = @ A<plik+a C AF (3.50)
keN" keNn

are subalgebras, and their extended versions:

> _ + +1 £1 =*1 >

B = <BM, Y, e, ¢ >X o cA 3.5
< _ — +1 +1 ==£1 <

BM = <BM, Yo, e, ¢ >S€{1 .... . cA (3.52)

are bialgebras with respect to the coproducts (3.48) and (3.49), respectively. There-
fore, the decomposition (3.41) does not preserve the bialgebra structure, but instead
the coproduct of x € Bff is the leading order term of the coproduct of x € A¥.

3.8 Hinges

We may visualize the coproduct A as follows. To a shuffle element RE € Atk a,

we associate the lattice point/vector (&|K|, ). For any shuffle element Rt € AT,
consider its coproduct (in Sweedler notation):

ARY) =R} ® RS (3.53)
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In any tensor Rf ® R;r that appears as a summand in A(R™), the vectors associated
to R1+ and R; are as in the picture below:

The point where the arrows meet will be called the hinge of the tensor RfL ® R; .
Then a shuffle element RT has slope < y if and only if all the summands in A(R™)
have hinge at slope < u measured from the origin.

Similarly, consider any shuffle element R~ € A~ and its coproduct:

ART) =R, ®R; (3.54)

In any tensor R|” ® R, that appears as a summand in A(R™), the vectors associated
to R, and R, are as in the picture below:

The point where the arrows meet will be called the hinge of the tensor R|” ® R, .
Then a shuffle element R~ has slope < p if and only if all the summands in A(R™)
have hinge at slope > u measured from the origin.

3.9 Drinfeld double of slope subalgebras

The bialgebra pairing between A= and A= restricts to a bialgebra pairing:
BeB: (3.55)
and the Drinfeld double:
B, :=B;®B; [(c®1-1®c,c®@1-1Q¢ ¥, ®1— 1@ (3.56)
corresponding to the above data yields a homomorphism:
B.,cCA (3.57)

as algebras.
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Proposition 3.6 For any coprime a € N and b € 7, we have an isomorphism:
. ®8 ~
2 U, (d1) > Bs (3.58)
8 a

where g = gcd(n, a). The isomorphism E preserves the bialgebra structures.

We will now construct explicit elements of Blf which correspond under E to
the generators (2.34) of quantum affine algebras. These elements were initially
constructed in [10] under the names E and F, but we will relabel them as follows:

F i1 2\ RG] T ai)] 1"
U =i <Zaq ) b 3.59
i) — OYM | ad® | _ z2d? _ [1 M 2 -39
i — a — Z/—_] i<a<b<j ]
C o 2 @it D) =i 1"
_ [T.=i (Zaq g ) Z
Ak =Sym I ¢(= (3.60)
[i5)) (1 _ Zz;l) (1 -1 ) . . Za
i ) 52’ i<a<b<j A
[ i1 a @it D] = e N
B! S o <Zaq i ) Za 3.61
A[izj) — XYM (1 z;+1) (1 z_/—l) ) l_[ -§ ; G-oD
- ) Ty i<a<b<j
F i i) Tua)] 1
B s o <Zaq i ) Za 3.62
x[i5) — ym 1 Zi 1 Zj=2 l_[ ¢ g (3.62)
i — m — z,__| i<a<b<j |

forall ( < j) € ZZ/(n,n)Z and u € Q such that k = u(j — i) € Z. The super-
script + or — indicates that the corresponding rational functions will be considered
elements of either A™ or A~. We will often write:
D _ 4w
ALiiy) = Astic) (3.63)

to emphasize the fact that deg Aﬁf;)j) = (£[i; j), £k). Moreover, we set:

Ai[i;j) =0 (3.64)
if w(j — i) ¢ Z. The analogous notations apply to A, B and B instead of A.

Remark 3.7 In order to think of the right-hand sides of the expressions (3.59)—(3.62)
as shuffle elements, we regard each z,, as a variable of color a foralla € {i, ..., j —1}.
By convention (3.4), this entails replacing:

Zag ~ Za[a’ﬁl"a_zv'_’ﬁ (3.65)

. n Al w 0 .
for all a, which puts Ai[l.;j), Ai[i;j), Bi[i;j), Bi[l.;j) in the form (3.9).

Proposition 3.8 [10] For any u € Q, the elements (3.59)—(3.62) lie in Bf.
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3.10 Generators of slope subalgebras

Forany i < j and 1 € Q, consider the following elements of A*:

W
Eiijy = Apijy (3.66)
- “ C2\i7J
Ell = Al <—q”> (3.67)
w _ pH
Elip = Blup (3.68)
_ i C2\{7/
Elipy = Blup (“ﬂ) (3.69)
where:
g.=q and g_=q"g" (3.70)

We will henceforth take the liberty to use the notations (3.63)—(3.64) with E and E
instead of A. We have the following formulas for the coproduct A ;:

(s —i)
( u)) ZEU) ’”’®E,A) (3.71)
Ay E“ v 1(j=s) g1 E 370
[i:) ZWYC [lA)® [s5/) ( )
s=i -
S Vi _uii—s)
" = H H i p(i—s
Ap (E—[i;n) = ZE—[i;s) ® EL. ) I/,SC (3.73)
S=1
4 v
g _ L S —pu(s—7) ol
Au (E—[i;.n) =Y E' ) ® w—jC““ DE".. (3.74)

s=i

Formulas (3.71) and (3.73) were proved in [10] when ¢ = 1, but the general ¢ situ-
ation is analogous. Formulas (3.72) and (3.74) are proved analogously, so we leave
them as exercises (alternatively, they follow from (3.71), (3.73) and (3.75)).

Proposition 3.9 The elements E', “ and E ) are related by:
j 2(i— v)

Y EL i Eigds” =0 (3.75)

s=i

*l

foralli < j, where we write h = W

Proof Since [x] = |x] + 1 — 8¢z, it is elementary to see that:

(3.76)
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: _2 . a\ Ln(a—i+1)]—|u(a—i))
u(s—i)eZ zogn 1j—1 _2a\LH
1_[1'<s<j Zs_—ll_[a:l (chq " )

Sym
ziq? 2j—24>
Therefore, we conclude that when + = +, the LHS of (3.75) is:

i1 _2a\ ln(a—i+1D)]—|u(a—i)]
l_[ﬁl:i (Zaq " ) b
Sym | X - | | g

1 — &k} (1 — &=t . . Za
( Z’.qz Zj_zqz i<a<b<j

where:
e
q-9 Ao
w(t—i)ez , 2 17_,'7_, 2 n(s—i)eZ Zsa%
- > (q q") (1_Zt_1q2) [ T
i<t<j t<s<j

Being a telescoping sum, it is clear that X = 0, thus proving (3.75) when + =

The case when & = — is proved analogously, so we leave it as an exercise.
3.11 Linear maps

The isomorphism E of Proposition 3.6 sends:

®8 (b(t—9))

e +las+r,at+r)

I1®.Qetsn®..Q01 € U;E (g[g)

e [s;r) on rth position

0(: \%¢ E _ps
1®...®1//S®...®1€Uq<g[g> Y

¥ on rth position

. ®8 . a _bn
Therefore, the central element of U, (g[g) issenttocéc s
8

E1®.®pu®..01) €B,

Z_b
(1= 2ty (1 - ) gy N (z)

+.
O

under E. As for:

(3.77)

these are only determined up to constant multiple, as are primitive elements of
quantum groups. To fix these multiples, we will consider the following linear maps:

atfisj) P Axfisj) = F

given by (in what follows, we write £/ for the homogeneous degree of R¥):

_ ged(h,j—i)
gty o By (=77,
O‘[w)( ) = 1_[ P (Lb) | (Lh(a 1+1)J Lh(ﬂ t)J)
i<a<b<j 14 I—Li lc—1+ J J
cd(h,j—i)
RV (A —g i
ap;H(R7) =

ni§a<b<j§ (q ) l—Ij l_n(’Vh(a ,l)—‘ [W—D

(3.78)

(3.79)

(3.80)
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where in the RHS of either expression above, we plug in the number 1 (respectively
¢°%) into a variable of color a of the rational function R, forall a € {i, ..., j —1}. Note
that one needs to cancel the poles of ¢ (¢2*~2P) against the poles of the specialization
R(g?, ..., ¢%~?) in order for the fraction (3.80) to be well-defined. Formulas (3.79),
(3.80) are constant multiples of the linear maps ay;; ), Bj;; j) of [10].

Proposition 3.10 If we let h; = vdeg Rii, then we have:

hy(s—i)—=hp(j—s)

1])(R R )—(x:ts ])(R )azl:ts)(R ) - qj: ! (3.81)

if 35 such that hdeg R RF = =£[i; j), hdeg Rf = £[s; j) and hdeg Ry = %[i; s).
If such an s does not exist, then the RHS of (3.81) is set equal to 0, by convention.

Up to certain powers of g, Proposition 3.10 is equivalent to Lemma 3.20 of [10].

Lemma 3.11 [10] Any element of B,, which is primitive for A, (i.e., all intermediate
terms in its coproduct vanish) and is annihilated by all the o (;, j), vanishes.

3.12 Pairing formulas |

The following result connects the maps ct[;; ;) to the pairing (3.55), and implies the
non-degeneracy of the latter (as expected from the isomorphism (3.58):

Proposition 3.12 [10] For any R* € B;; and any i < j, we have:

1 ged(u(j—i),j—i)
<R JEh /)> i (RE) gy " (3.83)
Moreover, for all j/ —i’' = j —i € N we have:
P ) _2 ged(u(j—i),j—i)
wuiy (Bl ) = 000, (1= g 7 (3.84)
- z]) 5 ged(u(j—i).j—i)
O (Et[i;j)> S —a)qs " (385
As a consequence of (3.83) and (3.84), we conclude that:
(Eff s B i) = 86000 = a7 (3.86)

The Kronecker delta symbol 55 ,]),) is I ifand only if (i, j) = (i’, j) mod (n, n)Z.

In Definition 2.4, we have fixed the primitive elements pi; of quantum groups
by specifying their pairings with e.[;. ;. Proposition 3.12 implies that the primitive

SWe leave the details on establishing the equivalence to the interested reader, and note that it requires one
to use the elementary identity:

Sa(|Hesten || HazD )y buz0hbUboghiz0 g
j—i J—1

a=i
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elements inside B3, can be equivalently determined by specifying their images under
the linear maps a;; j). We will specify these images in Section 3.14.

3.13 Coproduct formulas |

The following statement is our first computation of the coproduct of an element in
the shuffle algebra that goes beyond the leading order term.

Proposition 3.13 Assume gcd(j — i, k) = 1, and consider the lattice triangle T :

=ik

. . . . (0,0 . . . .
— ; or : i T
0,0 T : : 1 (J—1i,k)

uniquely determined as the triangle of maximal area situated completely below the
vector (j — i, k), which does not contain any lattice points inside. Let i denote the
slope of one of the edges of T, as indicated in the pictures above. Then:

A(E(k) ) 1//] &® E(k/) + E(kj) ® 1 + (tensors with hinge strictly below T)

D
Vi) ¥s 4 :
’W/ E[(S)[) 1; ¢k '®Eff ])Eff 5) for the picture on the left
+ 2
i<s<t<j Ef; M ¢t li: 3)_'®E[(;)t) for the picture on the right
(3.87)

where @ =k — (j — i + s — t). Similarly, consider the lattice triangle T :

. . . . . . . . . .

(0,0) - —ik

,ﬂ or m
= =i,k 0,0)

. . . . . . . . . .

of maximal area situated completely below the vector (i — j, —k), which does not
contain any lattice points inside. Then we have:

(=k)
A (£ j))

(- k - k Vi _ - :

=1QE" iyt E* i) ® w—c K+ (tensors with hinge strictly below T)
J
Ve ) Vi-_s_ :
E“ E" i) ® T—E [y =€ k=e " for the picture on the left
+ Z [t.) "~ —lizs) v, —Isi0) 4
i<s<t<j E(°)v n® EM v, 1):/; Ef[l G c* for the picture on the right

(3.88)
where e = —k + (j —i +s — t)u.
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Proof Let us recall that:

i1/ _2\Lula—i+D)]—-lpu@—i)]
Hé:i (Zaq " )

E® — Sym ¢ (Z_b> G5
[i57) (1 — Z’L;) (1 — iji_;qlz) i5a1:£<j Za

Zi

By (3.31), the coproduct A (E [(lk)])) is computed by taking an arbitrary set:
ccii,..j—1}
and expanding the rational function E[(lk)” by sending the variables {z,},cc to 0o,
while keeping the variables {z,},.¢ fixed, where C = {i,..., j — 1}\C. Therefore,
the second tensor factor R in any summand of A (E [(lk)])) has the property that:
hdeg R = #C

Meanwhile, total homogeneous degree of R in the variables C satisfies (see (3.89)):

vdegR < Y v(“j__i:r I)J - V(]fl__l_i)J —#laeCsta—1eC}) (3.90)

aeC
Let us assume that C is a union of blocks of consecutive integers:
C={i1, ., 1 — 1}U..U{iy, ..., jo — 1}

wherei <i| < j| <iz < jo < .. <iy < Jy < j.Therefore, we have:

hdeg R = > (ju — iu) (3.91)

u=1
while (3.90) gives us:

vdeg R < Z <Lk(jll — i)J — Lk(iu _.i)J> —v +551

il J —1 J—1

gcd(k,é—i)=1 Zv: <\‘k(]u - I)J _ IVIM—‘) (3.92)
. _i °

u=1 J =t J

A

We conclude that all tensors appearing in (3.87) will have hinge (x, y), where x is
the RHS of (3.90) and y is less than or equal to the RHS of (3.92). Such a hinge lies
strictly below the triangle T, except in the following situations:

e in the case depicted on the left of the figure, if:
C={i,..s—=1}ufs..,.j—1} (3.93)

for certain i < s < t < j. The reason for this is that each summand on the
second row of the RHS of (3.92) is < (j, — i,) with equality if and only if
u=1,ij =ioru =v, j, = j, by the fact that the triangle T has no lattice points
inside. Failure of equality to hold would force the vector (x, y) to lie below the
line of slope w.

& Birkhauser



The PBW Basis of Uy g(gl,) 303

® in the case depicted on the right of the figure, if:
C={s, .., t—1} (3.94)

for certain i < s <t < j. The reason for this is that we may rewrite (3.92) as:

k — y = k — vertical degree > Z <’Vk(iu+l — i)—‘ - {k(jju__ii)J> (3.95)

u=0 J J

where we write i,+] = j and jo = i. Each summand in the right-hand side of
(3.95) is > (iy+1 — ju) 1, with equality if and only if either u = 0 or u = v, by
the fact that the triangle T has no lattice points inside. Failure of equality to hold
would force the vector (x, y) to lie below the line of slope .

The analysis in the two bullets above shows that the summands on the second line
of (3.87) correspond to the choices (3.93) and (3.94), respectively. More specifically,
the second tensor factors of the summands in question consist of the leading order
terms of E[(l.k;).) when we send the variables {z,, a € C} to co. Explicitly, in the case
depicted on the left, we multiply the variables z;, ..., zs—1, 2, ..., 2j—1 in (3.89) by &
and compute the leading order term as & — oo is (we let v(j — i) = k):

1 _2q\ Wv@a—i+)]—[v(a—i)]
l_[;:s (qu " ) b
Sym | z;—1 l_[ &l —
1— Zs+1 1 — Zr—1 Za
g2 ) Z12q2 s<a<b<t
i<a<s 2 s<a<t %-Zb
slim [1¢ (E ) [T¢ < )
Oos§b<t Za t<b<j Za

24) lv(a—i+1)]—|v(a—i)]

L2 (w7 [T ¢ (Z_b> hE (Z_b)

Zi+1 Ts—1
(l — ﬁ) (1 — Zsi7) i<a<b<s Za t<b<j Za

zl) Ww(a—i+1)]—|v(a—i)]

i—1
(—¢?) jl'[t (zac‘z " M e(2
©

4 Zj—1
1_2r_+1>m(1_f_> 7 \Za
Zt ( e z,-_zqz t<a<b<j

By (3.76) and (3.89), the symmetrizations above are responsible for the elements:

-Sym

(o) oy iz
Efgpy and Ep o Ep

in (3.87), respectively, while the limit on the second line of the expression above is a
power of g which is precisely accounted for by the fact that some of the v’s are on
the other side of E in (3.87) when compared to (3.31). Similarly, in the case depicted
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on the right, we multiply the variables zj, ..., z;—1 in (3.89) by & and send £ — oc.
Then the leading order term in & is (we let v(j — i) = k):

1 20\ Wit D]~ o)
| (zaq")

(1-2) (1= 50)  rmaete o

i1 l(a—i+1)]—[v(a—i)]

l_[a =t (Zaq )

ey )

Sym (_qz)Zs—l

2q? zj-29°

i<a<s s<a<t
. Ezp 4
tim [ ¢ [T ¢ (5
S4)oos<b<t Za t<b<j §2a

2a ) lw(a—i+1)]—|v(a—i)]

1 _2a
nta=s (Zﬂq "

Z_b
ey )

sq 129

Sym

By (3.76) and (3.89), the symmetrizations above are responsible for the elements:

Egp By and B,
in (3.87), respectively, while the limit on the third line of the expression above is a
power of g which is precisely accounted for by the fact that some of the ¥’s are on
the other side of E in (3.87) when compared to (3.31). Formula (3.88) is proved by
an analogous argument to (3.87), and is therefore left as an exercise to the reader. [

3.14 Primitive elements of slope subalgebras

We are ready to define the shuffle elements featured in Section 1. Let:

_1 —1 -
b _ 99" g _ (qq ) = (k)
Pijy = g—q 1 By = - —gq CEy (3.96)
__1 _1
b _ 4" gk _ 4" (—k)
Piipy = - —g ELi = pRup E,[l o (3.97)

forall i < j and k such that gcd(k, j — i) = 1. We have P(ik)) eB s

*) Vigk o p 4 p®
A (P[z J)) Vi ® P[l ]) [t 7 ®1 (3.98)
(—k) ) (—k Vi ok
A%(P[u))—l‘g”’ >+P[z;)®¢— (3.99)
By (3.84), it is easy to see that:
Ft L) (P h’%) +507) (3.100)
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2 .. L . .
Y(u,v) € (H%W' Proposition 3.6 implies that there exist unique elements:

P € By VK €Z IEN, reZ/gL (3.101)

(where g = gcd(n, denominator of ﬁ—;)) completely determined by the condition:

Ay (P§)) = epf)+pf) o1 (3.102)
Ay (P)) =10 PG+ PO @ e (3.103)

and the normalization:
ittty (P ) = %8 moa (3.104)

Yu € {1, ..., n}. To summarize, under the isomorphism (3.58):

° Pf[tlk;) correspond to the simple root generators xsi

° Pj(tl s.r ) correspond to the imaginary root generators p;

We will often write P i,kl)ﬂl) = Pfltskl) if ged(k', nl) = 1.

3.15 Primitive elements of the vertical subalgebra

To complete the definition of the root generators of A, we set:

PG = kappig 7 (3.105)

for all r € Z/nZ and k € N. Moreover, we define:

o E(d) o0 _ —2d B
[r:r) arqd(1 —q =) _20-nd
EX, (@) =) z_d =exp| ) :—dzd g (3.106)

d=0 d=1
oo g _
3 [r:r) ara(l —q*)_
Epin@ =) —q~=cxp ZT (3.107)
d=0 d=1
C E(I;]')r) N dr—q(q? — g™ __20-1a
o —L7, 'y —_—s )¢
EXn@ =D —q =exp| ) == ——aq | (108
d=0 d=1
= - E(Iﬁ)r) o dr—d(q ™ —q*)__ 2
o —L7, s —_La
ENpy@ = ) —q =exp| ) == = (3.109)
d=0 d=1

Comparing the definitions above with (3.26)—(3.27), we see that:

+1
v M) (3.110)

+ +1 —
¢ (@) = wr Ei[r r) (Zq ) Ei [r+1;r+1) (Zq ’

This concludes the description of the generators considered in Theorem 4.3.
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4 The Statement and Proof of Theorem 1.1

In the present section, we will fully state and prove Theorem 1.1 (i.e., Theorem 4.3).

e In Section 4.1, we connect the slope subalgebras B,, with the quantum groups of
Section 2, by establishing an explicit map between their generators
e In Section 4.2, we give the full statement of Theorem 1.1, by giving the explicit
form of relations (1.9) and (1.10), in the guise of (4.12), (4.13), (4.14), and (4.15)
In Section 4.3, we prove relations (4.12) and (4.14)
FK)

In Section 4.4, we work out the pairings between the Pf[tlk)/)s and E' i S

In Section 4.5, we present an analogue of the computation of Section 3.13

In Section 4.6, we prove relations (4.13) and (4.14)

In Section 4.7, we prove our main Theorem

In Section 4.8, we consider a smaller set of generators of Uq,q(g"[n) from the one

of Theorem 4.3, and deduce the relations among these generators

4.1 Theisomorphism between slope subalgebras and quantum affine groups

For any pair of coprime integers (a, b) € N x Z U (0, 1), we let:

. \®g
& = U, (gl @.1)
a 8
. . (£k) (k") L.
where ¢ = ged(n, a). We will write p Sy Pirsy for the primitive generators of
E», where the sets of indices are such that the assignment:

() () (k) (k)
Py 7 Pyl Pls, ™ Pisy (4.2)

for all j% = ’;—; = % and r € Z/gZ yields an algebra isomorphism:

By — &b (4.3)
that is obtained by composing (3.58) with (4.1). We will write:
(k) (k)
Cxiicjy Cxiicj) € €2 S

for the images of the elements Ef[[k)”, Ef[[k)” under the isomorphisms (4.3).

Remark 4.1 For any u € QU oo, we extend the scalars from Q(g) to Q (q, 55), and
identify the central elements of the abstract algebras £, according to the rule:
a bn
(central element of £p ) =csce

a

where g = gcd(n, a), for two henceforth fixed central elements c, c. Moreover, we
identify the Cartan elements of all the abstract algebras £,, according to the rule:

. ®8
<Ws on pth factor of U, (g[g) = 5b> = wp+m5hs
8 a
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where ¥, ..., ¥, are the Cartan elements of & = U, (g[n). This implies the relations:

¢, ¢ central, YWy = Yoy 4.5)
+k J_siy (+k +k +k
%P; [is )J) = qi(a ’ )P( +[i; )])I//S’ I'[fsp;:l(s)r = pfl:lﬁ)rl/jé (4.6)

in the subalgebras &£, for all applicable indices i, j, s, sk, r.

4.2 The full statement of the main Theorem

Recall that we abbreviate g, =g andg_ = g 'q™". We write:

8]

imodg —

{l ifi = jmod g 47

0  otherwise

If g = n, we abbreviate the notation (4.7) to 8{ For any i, j,i’, j' € 7Z, recall that:

ajp _ )1 if@ j)=a,j) mod (n,n)
8. _{0 otherwise (4.8)
Let us consider the linear combination:
—7kx
~(£k +k _
Pt = D P |4+ 8 —g 1) | @

X€Z/nZ
whenever ged(k, j — i) = 1. The following is result is elementary, so we leave its

proof as an exercise to the interested reader:

Lemma 4.2 For any k which is coprime with n, we have:
MM~ =1d
_25ah

where M™ is the n x n matrix whose (a, b)th entry is q_18Z + (g — q_l)qiqz—l.
-

Therefore, we conclude that (4.9) is equivalent to the following:

2 kx

- n

(£k) ~ (LK) —8L 00 i 1
Pyjizjy = Z Pilitxjix) |4 70 +05(q — ) (4.10)
X€Z/nZ :F

We are now ready to give the complete statement of Theorem 1.1:

Theorem 4.3 We have an algebra isomorphism:

Uq’g(g[n) o~ |C = <gll~)ll€@|—|00 /relations (412)—(415)| (411)

where the defining relations in C are of the four types below.
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Type 1: forall®i < j, 1 > 0and k, k' € Z such that:

/
d::det(.k.k)
j—1inl

satisfies |d| = ged(k’, nl), we set (letting g = ged (n %l))for anyr € 2/87:
d d
(£k) (k) (£k+k") —n —"n
[pﬂ:li;j)’ pila,r] =P i) (airmodngl: — 87 mod o9+ > 4.12)
Type 2: under the same assumptions as in Type 1, we set:

) (F)] _ k(KR _4 _-4
I:pi[i;j)’ p:FlB‘r] = (T )M p L (5z'rmodg‘1:p — 85 mod o9+

d

+1 -4k |d|
S (F)] Vi @) (o =% o -8
[pi[i;j)’pq:lﬁ‘r] == wil 1—si p:F[jfnl;i) (61' mod g4 F _8j mod g4+

N q J
1

4.13)

with the first equation in (4.13) holding if j —i > nl (or j —i = nl and k > k') and
the second equation holding if j —i < nl (or j —i =nl andk < k').

Type 3: forall’ i < j, i’ < j and k, k' € Z such that:

!
det( .k . k ):gcd(k—i—k’,j—i—i—j’—i’)

j—ij =i
we set:
(k) (K  8,—8, k) (k) 8,—8) 6037 éi{s,j)ei[i;t)
PiiispPiisjnd” " 7 P jnPeispd T = — i, @19
i<tands<j
where u = rﬁ—f’/ﬂ’

Type 4: forall’ i < j, i’ < j and k, k' € Z such that:

/
det( .k . k ):gcd(k—k/,j—i—j/—l—i/)

] — i j/ _ l'/
we set:
=G 1 gk

_ o

il ) gE iy STz
, 1 i<s<t<j i
T ]
Paiispy Prijn | = g =41

(s,0)=(,)) " Yk
_ e
€F1.j) i//l-i' Cxiny I —i<) i

(4.15)

i'<s<t<j’

k—k'

where Mm = m

OWe only allow i = j in the following if k > O and [ = 0 if k' > 0
7We only allow i = j in the following if k > 0, and i’ = j"if k' > 0
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4.3 Proof of commutation relations |

Let us define the following analogues, in the algebra A, of formulas (4.9)—(4.10):

i 270
5(Ek) (£k) —8L 0 i 1,49+
Pl = Z Plliveijin |4 78 +85(q—q7 )5 7 (4.16)
XeZ/nZ L 9+ i
— B
0 _ 5 (£k) =8 0 | i 1, 9%
Phicy = 2o Plitwjun |4 78+ 8@ —q )= | @D
xX€Z/nZ L CI:F ]

The first of these formulas is a definition, and the second one is a property.

Proposition 4.4 Formula (4.12) holds in A = U, 7(gl,) with p <> P.

Proof Let us first assume j —i > 0 and/ > 0, and let:

_ (Ek) (] _ pEh) pEL) (k) p(£k)
LHS = [Pi[i;j)’ Pila,r] =Pl Pisy — Pusr Piic

Formulas (3.98)/(3.99) and (3.102)/(3.103) imply that:

(o) \ _ (£k) (£k)
A(PER)) =+ @ PGD 4+ PR @ %+ . (4.18)
(k") (k) (&K
A(PG)) =0 PGy + PO @+ . (4.19)
where the *’s stand for various products of wsil, ctl, £l and the ellipses stand for

tensors with hinge strictly below the vectors £=(j — i, k) and £(nl, k'), respectively
(see Section 3.8 for the definition of hinges). The assumption |knl — k'(j — i)| =
gcd(k’, nl) implies that there are no lattice points strictly inside the triangle spanned
by the aforementioned vectors. Therefore, the commutator of (4.18) and (4.19) is:

A(LHS) = * ® LHS + LHS ® * + ... (4.20)

where the ellipsis denotes tensors with hinge situated strictly below +=(j —i +nl, k+
k’). As a consequence of our assumption, we have gcd(j —i +nl, k+k’) = 1, hence:

o k+k
LHS is a primitive element of B, for y = ————
j—i+nl
Since the right-hand side of relation (4.12) is also a primitive element of B,
Lemma 3.11 reduces our problem to proving that the two sides of (4.12) take the
same values under the linear maps &4 [y;u+ j—i+ni), for all u € Z/nZ:

Ot [uu+ j—i+nl) (LHS)

(k) p(£K) (k) 1 (£k)
= O4dfuu+j—i+nl) (P:I:[i;j) Pjﬂgy,) — Qtfusu+j—i+nl) (P:tlé,r P:I:[i;j))

(3.81) (£k) &)\ =
= Utfu+tnl;u+j—i+nl) (P:t[i;j)) Ot [u;u+nl) (P:Hg,r) q+
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(k) +k) -4 @a. 100).(3.104)
— Ot futj—i;utj—i+nl) (P:t16 r) Ot [u;u+j—i) (P +[i; ])>
d d
i _2 —4 (3.100)
= (Sit(szrmod gqi 51151 mod gqi = Ouu+j—i+nl) (RHS)

where d = knl — k'(j — i). This proves (4.12) in the case j —i > O and [ > 0.
When j —i > 0 and / = 0, our assumption requires j = i + 1 and (4.12) reads:

K K
€9 (££") (k=£K") -~ =
[P li:i+1)0 Pxos, r:I TP i) (81'rqﬂ: - 5f+1Qi) (4.21)

which is a simple application of (3.23)—(3.24) and (3.105).
When j—i = 0and ! > 0, our assumption forces k = 1, nl|k’, and we must prove:

(£1) (£k") (:I:l:l:k ) (=1
|:P [i;i)° P:I:IS 0:| :l:P +[i;i+in) (CI Qi ) (422)
We will prove the case &= = 4, and leave the analogous case == = — as an exercise to

the interested reader. Moreover, to keep the notation simple we will assume k' =
as the general case can be obtained by simply multiplying all the rational functlons

below by the monomial []/_ 1Hv 12/7. Let us write:

Pla() - R(lev"v L1y eovs Znly ey an) (4'23)

where the rational function R has total homogeneous degree 0. By assumption, the
hinge of any tensor in the coproduct A(R) lies strictly below the vector (n/, 0).
Therefore, the hinge of any tensor in the coproduct of the element:

/ l
1 0 3.23) ~ _2i—1
[P[(z z))’PlES)O:I = R:=qr (E Zi—1,5 — E zis)-R (4.24)
s=1 s=1

lies strictly below the vector (n/, 1). This implies that the expression (4.24) is some
1

linear combination of the primitive shuffle elements P[(1 Ll P[ﬁl;) n-nl)? hence:
n
_ (1)
LHS of (4.22) = E cr - P[r rnl) (4.25)

To determine the constants ¢,, we apply the linear maps o, ) of (3.79) to the
expression above, for any r € {1, ..., n}. By (3.100), we have:

5 1— —2 nl=—-
7 i ( "~
(r+nl—1)
" nr§a<b<r+nl {(l)

forall r € {1, ..., n}. Recall that the specialization above involves regarding the vari-
ables in (4.23) as having colors r, r + 1, ..., ¥ 4+ nl — 1, and specializing them to the
value 1 in this convention. This implies that ¢, = 0 for r # i, because Risa multiple
of the factor D (zi—1,s — zis), which goes to 0 under this specialization. However,
when r = i, the given specialization corresponds to setting:

. e Cr
=1z 1 g

—25—2 —25—2 —2s —2s
Zis 4 s e ins F> 4 yAUs =g, u2i-1s > ¢4
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for all s € {1, ..., [}, according to convention (3.4). Thus, we obtain:

2i—1

__1
n q n
Hi§a<b<i+nl C(l)

To compute the left-hand side of the expression above, we recall that a[;.; 4, (R) =1
due to (3.104), hence:

(1-g7%)"7

C T 2Gtnl=1)
zit> Lo Zigni—1>1 g

@ -1)-R

=Ci

(—q g _
2> b Zigni—1>1 ni§a<b<i+nl§(1)

By dividing out the previous equalities, we obtain ¢; = g' — g . Plugging this
formula (as well as ¢, = 0 for r % i mod n) into (4.25) precisely establishes
(4.22). O

Proposition 4.5 Formula (4.14) holds in A = U, 7(gl,) with p <> P.

Proof We will only prove the case when & = 4, as the case = = — is analogous.
We will first deal with the case when j > i and j’ > i’, and discuss the situation
when we have equality at the end of the proof. To keep the notation simple, we will
set ¢ = 1 in all formulas for the coproduct (this will have no bearing whatsoever on
the validity of the argument). If we use (4.17), the relation we need to prove reads:

’ i _ s , i

;)7 1557 i7" s J)
(5,0)="+x,j +x) EM  EF y _%-W
\J Hi -8, - . qr
=Y X U esie -
x€Z/nZ i<t and s<j 9 q q> —
(4.26)

We will prove this formula by induction on # = j — i + j' — i’ € N (the base case
# = 1 is vacuous). We may use (3.96) to rewrite the LHS of (4.26) as:

o o h_2
o gk 8,8 Ky ok 8),-8) K
LHS = (E[i;j)E[i’;j/)q I = EpinE e ) G—q 12 4.27)
Our assumption implies that ged(j — i, k) = ged(j’ —i’, k') = 1, as depicted below:
(J—ik) ,

(k) (k")
0,0 (G—i+j =i k+k)

Therefore, Proposition 3.13 implies:

)
A (E[i;j)

Vim0 Vip@ Vs ozn
)=E®E[i;j)+E[i;j)®1+ > 0, Bty OFi ) By T (4.28)

i<s<t<j
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where e is shorthand for k — u(j — i + s — ) and the ellipsis stands for tensors with
hinge strictly below the vector (j — i + j' — i’, k + k). Similarly, (3.46) implies:

@« \_ ¥y ) )
A(EGn) =5l @ By + Efpy © 1+ - (429)

where the ellipsis stands for tensors with hinge strictly below the vector (j' —i’, k').
Taking an appropriate g—commutator of (4.28) and (4.29) yields:

A(LHS) = Vivy QLHS+LHS® 1+ ..
iVi’
_2
%E(k) S g Vi o)) a’qn ®
Wi lir; jn4 [i'5") w (g—q 12 [i;)
(.) % w) 8,5 (k) 1/f] (.) 1//v 6

+ 0 ng E E )
q qﬁ i

Xm ® E[t J)El li:s) (430)

where the ellipsis (above and henceforth) stands for tensors with hinge strictly below
the vector (j —i + j' —i’, k+k’). By (3.22), the second line of the expression above
vanishes and hence LHS € B,,, while the third line equals:

2
Vi (p® ) 8- (k> @ 8,-8\ 4G Us _zu
2 %(Em)E na’ =B Est)‘l )—(q_q—l)2%®E[f,j)E[i;S)

i<s<t<j
By the induction hypothesis of (4.26), the expression above equals:

('Y= +x, j +x)
) ) ) z/Efﬁ z)El;sz’j’k/(x)% Efy jyElisy)
X€Z/nZ  s<t'ands’'<t i<s<t<j ! !
(3.71),(3.72) L= - _
bt > > A CEly VAR (E )i () (431)

x€Z/nZ i<t ands’'<j

where (recall thatg, =g andg_ = g~"g ", the symbol @ denotes the residue class
of a in the set {1, ..., n}, and 8;. is 1 if i = j mod n and O otherwise):

2
+ e i 9%
£ (x) =4 — 5 (4.32)
yl]k xq_l —q lﬁi—l

Plugging formula (4.31) into the third line of (4.30), we conclude that the interme-
diate terms in A, of either side of relation (4.26) are equal. Thus, to establish this
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relation, all that remains to show is that its left- and right-hand sides take the same
values under the maps o[,y for all [i; j) + [i"; j/) = [u; v) € N

a[u;v) (LHS)

, 92
k) ) 8= *) ok -8, q-qr
N [a[“‘”)(E[l B _"‘[u;w(Elz' B’ }(61—61—1)2
. i _si J
(3.81).(3.84) i 5}/§%f16-"’ s, 8,8,,5_,(1 1,-8) 4.33)

where d = gcd(k + k', j —i + j' —i’). Meanwhile, (3.81) and (3.84)—(3.85) imply:

(s,0)=(@"+x, j +x)
I 5 -
2. . (E[s,nE[i;r)) Virjoe )
x€Z/nZ i<tands<j
-2 i__i — . ./ 2 ]_i — . ./
=—-g )é,q yi’j’k’(J_l )+ (1=g")8,q" yi’j’k’(l —i)
i<t,s<j,u(j—s)EZ
+(1—g U =g >
[E;0)+[s; /)=l[u;v)
ged(u(j—s).j—s)—ged(ut—i),t—i)

x5! 8t8Vg 0 Yirje (s —i) (4.34)

u9s9;9

Ol[u;v)(RHS)

Hence the proof of the Proposition is completed by the following identity:

Claim 4.6 The right-hand sides of (4.33) and (4.34) are equal.

Proof Let us assume i’ = j/, u = i, v = j mod n, since otherwise the last line of
(4.34) vanishes termwise, and the problem is trivial. Therefore:

——d
RHS of (434) = (1 = ¢ 7 7y — 1) + (1 = gOG vj i = 1)

_ _d=2e _ .
+(1—g D —g? > a7 V(s —i)

s=j—(d—e)a, t=i+da

where we write v — u = da, k + k' = db with a and b coprime. If we plug formula
(4.32) into the expression above, then the right-hand side of (4.34) equals:

i’ 2K G % _p k1)
(gt T T
7 4 -2 1_g» "N\ T2 1 — g
81'/ qi k' (i+ea—i’)
_ _d=2e i —
+1—g =g > g 1’_*6;2 BT (4.35)
e€ll,...,d—1)
By assumption, we have (k+k")(j'—i")—k'(v—u) = d = b(j’'—i’)—k’a = 1. Since
Jj’ =1{’, this implies that K’a = —1 modulo n, so we have the elementary identity:
2 _2 ¥ (i+ea—i")
81’+ea g_"F,_1—F,, where F, = =
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With this substitution, formula (4.35) for the right-hand side of (4.34) reads:

B N 85'/ ¢ 2 Y
(I—=g g 5 +q_"Fa—1 )+ (1 —g)gr 3
l—g¢g l—g

_ _d q_"q " __ 2D q 2e
+1—gHU-gHgr Y, |-

ee{l,...,d—1}

_2
Using g_" c_f% = ¢2, the formula above is easily seen to be a telescoping sum. After

canceling the various F,’s, we obtain the right-hand side of (4.33), as required. [

The only remaining case is when either i = j or i’ = j’. In this case, our assump-
tions force i = j, k = 1 and j' — i’|k’ + 1. To keep the notation simple we will
assume k' = —1, as the general case can be obtained by simply multiplying all the

. . . =1, _2a KL
rational functions below by the monomial ]_[‘/1 :i} (zqg n )7 ~"". We must prove that:

M 51 5, VO Ef D

- A l 1t
[P,”,ﬁlﬂj-_qf oy e (4.36)
s<i<t

Recall that:

_1 (-1
—ny _ 99" Ey

¥ ) g—q!

Since the shuffle elements P< 1 are connected to the shuffle elements P( by the
linear transformation (4.16), then formulas (5.98) and (5.100) show that:

_1 (=1
=1y 4" F
P[i"J/) —1

qg—9q

where, in notation analogous to that of Section 5, we set:

( _ai/\Oor—1
Y Zifq7>
FOO D _ i g I C(ﬁ)

[l ") Zil 41 i
(1-— J57'>"'<1" Zﬁii) ieabey N7
-1

T 0or
Zj/_lq n 1_[ .
(5)

FOor D _

J=it
(~ag ) Sym 1 — & 1 — =2y . , 4
) 2 i'<a<b<j'
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By (3.23) and (3.105), we therefore have:

a=i—1 z, —2@=i’+D) a=i 2, —2a=i")
j/_i/ Zi’§a<j’ﬁq n — . ' Z_,a/q n
4q S i'<a<j’ Za
N —qg! oym z; Zi_y 1_[ é. -
1-4 1= (1-X a2
Zi! 2y "<a<b<j
a=i
[t DR a1 —2a = 2a=i")
J'=i Sj/ zi! " 81/—"_. Z il
q S i'<a<j’ 1_[ Za
= m
q_q—l y 1 zi’+l Zj’*l y ',é‘ Zb
Zy Zjl_p i'<a<b<j
= ; _81'. . F(O) . 81 . F(O) _ afl: F(O) F(O)
g—q-'\ T (i) [as)")

i'<a<j'
In the notation of (5.21) and (5.24), the expression above equals:
70 S 0
it 620 -, Yo
9 '—q a7 '—q
(see Remark 5.6 for the reason why we are allowed to apply Proposition 5.4 for p =

0). Since the right-hand side of the expression above is identical to the right-hand
side of (4.36), the proof is complete. O

4.4 Pairing formulas i

For all collections of indices for which the two sides of the pairings below have
complementary degrees, formulas (3.83) and (3.100)/(3.104) imply:

.. cd(k,j—i)

N C I W Y R
(Pi[i;jw ch[i’:j')) = £orjn =+ (4.37)

cd(k,nl)

&) g\ _ B
(P:I:lﬁ,r’ E:F[i/;j’)> = £6/ mod g 4+ (4.38)

where g = ged(n, denominator %). Then formula (3.75) implies:

_ ged(k, j—i)

@ AEF | )
(Pi[i;j)’ Ex[i/;j/)> = Fjn qx (4.39)
cd(k,nl)
Eh) mFh | s
(Pil&r’ E:F[i’;j')> = FO modg "I+ (4.40)

where we used the fact that the P’s pair trivially with products of two or more E’s or
E’s of the same slope (because the P’s are primitive). Note that (3.96) implies:

5:)
®  p-b \_ C@
<P[i;j)’ P—[i’;j’)> e (4.41)
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whenever gcd(j — i, k) = 1. A straightforward reformulation of Lemma 4.2 implies:

s@D
< po p=h (@'.j"

lisj) —[i’;j’)> T g l_gq (4.42)

5(Ek) . (£k)
where P:t[i;j) is connected to Pi[i;j) by (4.16).

4.5 Coproduct formulas i

Consider the following analogue of Proposition 3.13:

Proposition 4.7 For any k € Z and | € N, consider the diagram:
(nl, k)

0,0

and let T have minimal area among all lattice triangles contained strictly below the
vector (nl, k) (there are exactly d := gcd(nl, k) such triangles). Then we have:

A (PI(SITD = e Pl(ak,)r + Plgf)r ® 1 + (tensors with hinge strictly below T)

n -

80 -2 (k—y) yic”
+a=(1—¢q )Z P[l';l'-i-nl—x)w._
i=1 =

d d
b () —— —n
®P[i)—x;i) (8;—)( mod g9+" — 61 mod g‘l+> (4.43)

where g = ged (n, "71) Similarly, consider the diagram:

(0, 0)

—(nl, k)
and let T have minimal area as described above. Then we have:

A (PSSk),) =1® PS(;I{’), + PSSIf)r ® ¢~'é7* + (tensors with hinge strictly below T)

n
89 ) p(—k+y)
+g* (=g Y PL
i=1

“y—k
pyn  ¥id

QP .7 ..
[i=x:) Wi—&-nl—x

d _d
(8;—): mod gqi - 8[}' mod ga— ! ) (4.44)

Proof We will prove (4.43), and leave the analogous formula (4.44) as an exercise
to the interested reader. As a consequence of (3.102) and the definition of hinges,
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we conclude that any summand Rl+ ® R;r that appears in the LHS of (4.43) has
hinge below the vector (nl, k). Now fix such a summand with hinge exactly equal to
(x, ) as depicted in the figure above. Since the coproduct is coassociative, the tensor
factors Rfr and R;’ each have the property that any summand in their coproduct has
hinge below the vector (nk, ), and hence below the triangle 7 by the minimality
hypothesis. Therefore, Rf“ and R; must be primitive:

A(P) =ddepg

(k)
16, 1.y T Prsr ®1

18,r

n
oy phk=y)  Yittx oy o 5
+ Z VG ) Pl fut e Q@ Pyt (4.45)
1

i,i'=

for some scalars v(i, i’), where the ellipsis stands for summands with hinge strictly
below T'. It therefore remains to determine these scalars, and by (4.41) we have:

vA. i) L (p®) po—h Y
(q—l_q)2 - 18,r ) —[i;i+nl—x)® —[i’;i’+x)

@35 [ (k) (k) 5(=y)
- <P18,r’ Pf[i;iJrnlfx) P—[i’;i’+x)>

The product of P’s in the right-hand side satisfies the hypotheses of (4.14), hence:

v(i,i") _ <P(k)

R e WO (y=k)
@ 1—q2 \1rd o i P

—[i";i'4+x) " —[i;i+nl—x)

Y
8[/+x

|=

| 3
g

s,
q 1 -
§ : Elitn—oE

A .. >
-1 _ [is0)
4 4 (s,0)=(@",i’"+x)

Note that Plgk)r pairs trivially with all products of more than one P, P, E, E in the
formula above, as a consequence of (3.46) and (3.102). Therefore, we conclude that:

|~

i—x -
18,r’ —[i;i+nl)8i’ +E

;o i X
V(l,l) — qai/_ai’+x <P(k) Enl

o 5!'/+X>
qfl —q [i—x;i4+nl—x)"i

i 89—1 (sr —d r —_d
5i/+xq * (85 mod g4" — 6i—x modgq "

Plugging this formula in (4.45) implies (4.43). O

(4.38),(4.40)

Proposition 4.8 In the second line of either (4.43) or (4.44), one could move the
tilde from the first P to the second P, without changing the values of these formulas.

Proof We will prove the claim which pertains to (4.43), since the case of (4.44) is

analogous. The Proposition is only non-trivial if n|x, which we henceforth assume.
The assumption on the minimal triangle 7" implies that:

xk —ynl =d (4.46)
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and it is an elementary exercise (which we leave to the interested reader) to show
that n|x implies that g = ged(n, "—l) = 1. Also, since n|x then (4.16)—(4.17) read:

a%-(k—y)(s—i)
(k=y) = (k=) i _1.49-
P[z si+nl—x) T Z P[s ;s+nl—x) q 8; + (q —q ) 62 ]
_,, =.y(—=s)
p () ) 71 -1
P[’ —x3i) ZP[V —X;5) 81+(q q ) q+—_1

Therefore, we have:

(k=y) () p (k—y) )
ZP[Z Ji4nl—x) P[l Xl) Z P[s s+nl— x)®P[s’—x;s’)
SS_
" A EVeD
o lai+ @ —aTHh "=
— q- —1
i=1
23G=s)
x | g7 '8% + (g — e —
Q+ 1

As a consequence of Lemma 4.2 (which we may apply because n|x = n|d = nlk),
the second line of the expression above is &}, as we needed to prove. O

4.6 Proof of commutation relations i

We will now use the results proved in the previous subsection in order to complete
the proof of Theorem 4.3.

Proposition 4.9 Formula (4.13) holds in A = Uq@(g.;'ln) with p < P.

Proof We will only prove the case when £ = 4, as the case = = — is completely
analogous. We divide the proof into several cases, depending on the relative sizes of
j —iand nl. In the case j —i > nl > 0, consider the triangles:

(j—ik) (—nl,—k") (0,0)
(—nl,—k)  (0,0) (j—ik)
if d>0 if d <0
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Denote a = P[E,lf;) and b = ( k) fwelet u = ,,then (3.87) implies:
Vi Vi pe ¥s ke .
A@) = WC ®at+a®l+ Z o Feny e ® Ely Eli. )+ .. ifd>0
i<s<t<j !
Vi & . .
Ala) = w’c ®a+a®l+ Y E”)w L@ PO+ ifd <0
i<s<t<j

where @ = k — u(j —i +s —t) and the ellipsis denotes tensors with hinge below the
triangle 7. Meanwhile, (3.47) and the fact that b is primitive imply that:

Ab)=1®@b+b@c e 4 .
where the ellipsis stands for tensors with hinge strictly below the vector (—nl, —k').
Then the only non-trivial pairings in relation (2.6) for our choice of a, b are:

ab+ Y %P“) Vs ke (E“ EX
f

hyt L m,b):ba ifd >0

i<s<t<j

-1 7k (0) 7 —e .
ab = ba + Z c ”)<E’fj)w [H)c,b> ifd <0

The fact that b is primitive implies that it pairs trivially with any non-trivial product
between an E/ and an E*, so the only non-zero pairings above are those for (s, t) =
(i, j —nl) and (i + nl, j) modulo (n, n). Using (4.38) and (4.40), the formula above
yields precisely (4.13).

In the case nl > j —i > 0, consider the triangles:

i<s<t<j

(G —ik e e e e
—(nl, ) 0.0)
or . K
Sl =ik = YRR
if d>0 if d <0

Leta = P[(k) and b = P(lakr) By (3.46), we have:

A(a):%Ek(X)a—i—a@l—l—...
i

where the ellipsis denotes tensors with hinge strictly below the vector (j — i, k).
Meanwhile, (4.44) for —(x, y) chosen as the bottom-most vertex of 7 in the diagrams
above yields:

AD)=1@b+b@c e+ .. +4% 1 —q?.

(=) 5 (k) el i =\
n P—[s s+nl—j+i) ® P—[s JH138) s qni—j+i 8§—j+i mod gq—_5§m0d gq— ifd>0

Z d

d
s=1| p(—= (k k') R —"n —u :
P [s s+] i) ®P —[s—nl+j—i;s) Y54 j—i (8;—}—/—[ mod gq— _S;modgq—> ifd<0
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where the ellipsis denotes tensors with hinge strictly below the triangle T (note that
we invoked Proposition 4.8 in the d > 0 case above). Therefore, the only terms which
appear non-trivially in relation (2.6) for our choice of a and b are:

5i—1 Ve k) - = -
ab —q 5 W ——P it (8’m0dgq_ =8 mod g4-" | = ba ifd >0
ok d d
o Ky wic™ _4 4 :
b_ba+q j P —nl;i) ™ . wj <5trmodgq— 5jm0dgq— ) ifd <0

This is precisely equivalent to (4.13), as we needed to prove.

When j —i = nl > 0, the assumption is only satisfied if nl|k and k = k" £ 1.
We will prove the case when k = k" + 1, and leave the analogous case of k = k' — 1
as an exercise to the interested reader. Moreover, to keep the notation simple we will
assume k€’ = 0 = k = 1, as the general case can be obtained by simply multiplying

. . . i—1, _2a K .
all the rational functions below by the monomial ]_[lel1 (zqq ™ ). Let us write:

(1)
P[l J

as an element of the shuffle algebra. By (3.31)—(3.32) and (3.46)—(3.47), we have:

h =R, zj-1)

n
AR)=R®1+cé@R+ @ ")) clag1 @ Ry + ...
s=1

t=s—1
where Ry = R-g°n [Z a7 g ) = Y g7 g g )" ]

i<t<j i<t<j

©) (O ©)
APE ) =P @c +10 P +..

where the ellipsis in the two formulas above denotes terms whose hinges are too low
to pair non-trivially with each other. Because of this, formula (2.6) therefore reads:

n
0 _ 0 0
R-PO, +@ ' =) c’as,1<R P‘ﬂ;,} PO, R (4.47)

The formula above implies (4.13), once we invoke (3.105) and the following claim:

— =
5 pO i 9-—9- -l
Ry, P >—6 -—9- % (4.48)
< S 18,r q— q,]
To prove (4.48), we will establish the following:
Claim 4.10 With the notation above, we have:

_2s5—1

s __ 4" |p0 O © O
Re= === | Bun + Eui )+ZE[11)EH)

(4.49)

i<t<j
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Then (4.48) follows from relations (4.38) and (4.40), as well as the fact that P(O) , 18
primitive, hence pairs trivially with any product of an E and an E in formula (4.49).

Proof of Claim 4.10 We have:

251 t=s Zj-1 1_2(/ ) r=s—12j-1 _Q_M
R— _ qzq n ~Sym Zi§t<] 2 _Zl<t<j 2t q "
g = ———
q — q_l (1 _ ZH—]) (1 _ &l )
ziq? 2j-2q°
Zb
I «(2)
i<a<b<j d
. 2(j—) 2(j=1)
_ 251 iZj-1— ] 72 Zj—-1 1— ozt
. qzq n Sym 83‘ Zi q " +Zl<t<] 2t " (1 Zt_qu)
= —7"
q9—49

(1-2)..(1- 255)
M «(2)

i<a<b<j

According to formulas (3.59), (3.60), (3.66) and (3.67), the formula above is equal to
the right-hand side of (4.49). O

When j — i > nl = 0, the assumption of Proposition 4.9 is only satisfied if
j =i + 1, in which case the desired relation reads:

®) k Sk plh—k) 1w e
[P0 P, | = PR (3@ o7, @a) )

If we make the substitution (3.105), this relation is a special case of (3.39).
When j —i = 0and ! > 0, our assumption forces k = 1 and nl|k’. To keep the
notation simple we will assume &k’ = 0, as the general case can be obtained by simply

multiplying all the rational functions below by the monomial [;_ 1]_[ s— 11"’ In this
case, we have g = 1, and the relation we must prove reads:

(1 O | _=pM -1
[P”),P ] P nlz)(q—_q )

gul

As P[(lll)) =y IP[(MI)M) (q_l(S’ +(@ -9 H%5 o ), this is equivalent to:

1 0 — — 1o _ _
[P PG )= ZCP([L i (35 -3) |40t g =g T, (4.50)

To this end, let us write:

0)
P*l(s,l = R(lea cees L5 weey Znls oeey an)
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where the rational function R has total homogeneous degree 0. By assumption, the
hinge of any tensor in the coproduct A(R) lies strictly below the vector (—nl, 0).
Therefore, the hinge of any tensor in the coproduct of the element:

1 0 (3.38) _ ~
[P PG 2 eR (@51

where

1
= 67_ (Z Zis — ZZil,s) -R (4.52)
s=1

lies strictly below the vector (—nl, 1). This 1mplies that the expression (4.51) is some

linear combination of the shuffle elements P! P(

a1y P ntiny 1€

¢~ 1. LHS of (4.50) = Zcu p

—[u—nl;u)

To determine the constants c¢,, we apply the linear maps o_[y;,4,7) of (3.80) to the
expression above, for any u € {1, ..., n}. We have:

2l 2u—1
[RI ] (I—qg)"q_" G104
2u 2(u+nl-1) | * = —Cu
Zur> G e Zugnl— 14 2(a—b
! o Hu§a<b<u+nl§(q @ ))
In terms of the variables z11, ..., Zx/, the specialization above corresponds to:
2u—2—2s 2n—2-2. 2——2 —2——2s
Tus = 4 ”q_ Y » Zns > 4 "q_ s , s > g q_ S» vy Zu—1,5 > 6] q_ ’

(4.53)
forall s € {1, ..., ~l }. Let 6, <p denote the number 1 if @ < b and 0 otherwise. Given
the definition of R in (4.52), we obtain:

2 2i—1—i=1) _—*21
2= (2—(’,1’ Wiy | iml)m 25,1<u)1

q " \9 49- —q q-

1— __2 ) evaluation (4.53)
2u—1
(1-¢g q_"
. = —c (4.54)
nu§a<b<u+nl{(q2(a_b)) !
However, the fact that a,[u;,ﬁnl)(Pf% 1) = Q—zutnn(R) = —1 implies that:
(1 —Z)nl——l
. =-1 (4.55)
evaluation (4.53) [],, —a<beu +n1§(‘12(“ b))

Dividing (4.54) by (4.55), and using the identity g = q’”c_jjl, yields:

b, M\ 8-
qq9-" -9 9- 1—5_2

It is elementary to see that the RHS of the expression above equals:
_2u=i

— — 1oi 1. 49-

(ql_ —61_’) qa '8, +@—q 1)572

-1
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which establishes (4.50). L]
Proposition 4.11 Formula (4.15) holds in A = U, z(gl,) with p < P.

Proof We will only prove the case when &= = 4, as the case = = — is analogous.
We divide the proof into several cases, depending on the relative sizes of j — i and

j—=i.
Leta = P() and b = P([If),),andletusassumej—i >j —i">0:

_(j/ _ i/, k/)

(J—i.k)

Note that (3.87) implies:

Vi
t])lﬂ

Aa) = z—c ®Ra+a®1+ Z E

i<s<t<j

GO EM (o)
E )®P ) T

where ¢ = k — u(j —i + s — t) and the ellipsis stands for tensors with hinge strictly
below the triangle 7'. Moreover, as a consequence of (3.47) we have:

Vir

i/

AD)=1®b+b® — + ...

J

where the ellipsis stands for tensors with hinge strictly below the vector —(j" —
i’, k). By the aforementioned discussion on the possible locations of the hinges, we
conclude that the only non-zero terms in relation (2.6) applied to our choice of a and
b are:

I/[f C°FE (o)
ab+ ) Ef v Efiz <P[s z)’b>:ba

i<s<t<j

As a consequence of (4.41), we obtain precisely relation (4.15).
Now let us assume j' — i’ > j —i > 0, as in the picture below:

(J—i.k)

(i = =k

Formula (3.46) implies:

A(a)=%6k®a+a®l+...

1
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where the ellipsis stands for tensors with hinge strictly below the vector (j — i, k).
Meanwhile, formula (3 88) gives us:

1//1 (-) wl ——k'—e

W/ Ty ¢ T

—k' ol
A(b)—l®b+b®—c + D BN EM®

i'<s<t<j'

where @ = —k’ 4 1(j —i 4+ s —1t) and the ellipsis stands for tensors with hinge strictly
below the triangle T. As a consequence of the above discussion on the locations of
the hinges, the only non-trivial terms in relation (2.6) are:

w/ ckEM Iz Vi (o) Iﬂz ——k’—.
ab + Z wl E [t])Ef[i/;s)' a,—jP 5 = ba

As a consequence of (4.41), we obtain precisely relation (4.15) (after collecting
various powers of g by commuting the various v factors).

If j—i = j'—i’ > 0, then our assumptions force ustohave j =i +1, j/ =i’ +1
and k > k’. In this case, the required relation reads:

(k) (=K (@) %+1y-@
I:P[l i+1)° P —[i’; l/+1):| Z E[l+1 i+1) I/f E[i;i)
a+b=k—k'

Using the substitutions (3.96)—(3.97) and (3.106)—(3.107), the relation above is
equivalent to the particular case of (3.40) when k > k'

The only other case covered by our assumptions is j' — i’ > 0 = j — i, in which
case we must have k = 1 and j/ — i’|k’ — 1. To keep the notation simple we will
assume k' = 1, as the general case can be obtained by simply multiplying all the

i'<s<t<j’

rational functions below by the monomial ]_[ ,(Zaq )J -i". The required relation
reads:

M pD
[ﬂurp J X:E%M)—ﬁﬂc (4.56)

i <r<]
Let us write:
P([l})j,) = R(zyry oy Zjr—1)
where the rational function R has total homogeneous degree —1. By assumption, the
hinge of any tensor in the coproduct A (R) lies strictly below the vector —(j' —i’, 1).
Therefore, the hinge of any tensor in the coproduct of the element:

a=i a=i—1
_ 3.38 ~ —2a
[P(.p. peh ] 029 R¢, where R= Z Zaq Z Zaq "

i'<a<j’

lies on or below the vector —(j" — i’, 0). This implies that R € By. Therefore, in
order to prove the required identity:

D 0 0
R = e} §:<Er]E 1sr) (4.57)

’<r<]

we need to show that the two sides of (4.57) have the same intermediate terms for
the coproduct Ao, and also the same value under the linear maps «_,.,) for any
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[u; v) = [i’; j"). We will prove the statement about the coproduct by induction on
J — i’ (the base case is vacuous). By (3.88), we have:

Yy (1)1/fz

I/ft ——1
AR =1@R+R& =5+ > E% ) E° ,s)®w S50

i'<s<t<j'

where the ellipsis denotes tensors with hinge which are more than one unit below
the horizontal line. By commuting the expression above with the primitive element

P(l)

i) We obtain the following formula:

AR =10R+REY L S B, B @

7 i'<s<t<j’

o

vy Jety

Vs

(D (=D
P[l i)’ P [s;1)

By the induction hypothesis of (4.56), we may write the expression above as:

A(R) = 1®R+R®Z—l+

J

1 Fi B B0 g Yo E°, Vi,

_ g1 =[t.j) = =li"ss) —[r,0) [s;r)
9-4 i'<s<r<t<j vy Vs
By (3.73) and (3.74), the last line of the expression above matches A applied to the
right-hand side of (4.57). This proves that the two sides of relation (4.57) have the
same intermediate terms for the coproduct Ag. Therefore, all that is left to show is
that the two sides of the aforementioned relation have the same value under the linear
maps &—:y), for all [u; v) = [i’; j’). To this end, formula (3.80) reads:

& [4;v) (LHS)

_ R(..,q%, . )1 —g Y
Ol_[u;v)(R) = v—u

q-" l_[i<a<b<j g(q2a—2b)
=i 2a 1 _ B
R, ) (S02, 0™ a7 = X0 a™a ™) (=g

v—u

7" Tlicaep<jC(g2=%)

Since formula (3.100) gives us:

R(...q®,.)(1 — g 2)vu L
O—quz) (R) = —377 = _8((;,’:}/))

q—n Hu§a<b<v é—(q2a72b)

we conclude that:

j +t _1 [ asizl _ 2a+1 a=i _ 2a-1
o) (LHS) = 80077 R S S B CR
i'<a<j' i'<a<j’
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As for the right-hand side of (4.57), we have:
O_[u;v) (RHS)

r=i

_ 0
Z a_[r;v)(Eilr’j/))Of—[u;r)(Ef[i’;r))

i'<r<j’

(3.81) 1
q-q7"

(3.84).(3.85) T e e _
st 8T — g + (@ ) Z q-

i'<r<j’

(4.59)
It is easy to see that the right-hand sides of (4.58) and (4.59) are equal to each other,
thus concluding the proof of (4.56). O

4.7 Proof of the main Theorem

We are now ready to prove our main Theorem.

Proof of Theorem 4.3 Propositions 4.4, 4.5, 4.9 and 4.11 imply that there exists an
algebra homomorphism:

¢ — A which sends &, — B,

All that remains to prove is that Y is an isomorphism of vector spaces. Since we have
the triangular decomposition [10]:

AZAT @By ® A~ where A* = X)B; (4.60)
neQ
then it remains to show that:

C=C"®Ex®C™ and C* = ®5i “.61)
neQ
where C* C C are the subalgebras generated by:

(+k) (+K') k,k'€Z, any r

{pi[z 1) Pis r}KjJeN

Both of the statements in (4.61) are immediate consequences of the following
principle (following [1, 13]). We call a “generator” of £ 3: any one of the symbols:

(k) (K)
Piiivyy O Piisr

. k _ kK _
with Fop = MOr = [
Claim 4.12 For any generators x € E)Li andy € Eljf with A > p, we have:

xye Q@ & (4.62)

ve[u,ANQ
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while for any generators x € & and y € £, we have:

R &fELe Q & ifri<u

ve[u,00) VE(—00,A]
Xy € (4.63)
— —
R &FeéLe Q & ifi>pu
ve(—oo,u] VE[A,00)

(when A = p, such formulas are implicit in the defining relations of £,,).

Once one has Claim 4.12, it is straightforward to show (akin to the proof of Corol-
lary 5.1 of [13]) that any product of the generators of C can be written as a sum of
products of elements of 5?} in counterclockwise order of the slope +u. Moreover,
there can be no non-trivial linear relations among such ordered products, because
passing such a relation through the homomorphism Y would violate (4.60).

Proof of Claim 12 The proof follows the idea of [1, 13]. To keep the notation simple,
we will only prove (4.62), as (4.63) is an analogous exercise that we leave to the
interested reader. Moreover, we will only prove the £ = + case of (4.62), as the
4 = — case is proved similarly. We use induction on the number:

#=kd —k'd e N

where k = vdeg x, d = |hdeg x| and k¥’ = vdeg y, d’ = |hdeg y|. If # = 1, then
(4.62) is a particular case of either relation (4.12) or (4.14), which establishes the
base case of the induction. For the induction step, pick any N > 1. Let us assume
that (4.62) holds for all pairs of generators x, y with # < N, and let us prove it for
those pairs such that # = N. We note that the lattice triangle 7' obtained by placing
the vectors (d, k) and (d’, k') € N x Z in succession has area precisely N /2.

Case 1 Suppose there are no lattice points contained strictly inside 7. If there are no
lattice points on at least two of the edges of T (except for the vertices), then (4.62)
once again reduces to either (4.12) or (4.14). If there are lattice points on two of the
edges of T, then there are lattice points on all three edges. Then we run the argument
in Case 2 below, with the triangle 7’ therein defined to have the point (d+d’, k+k') /g
as a vertex, where g = ged(d +d', k + k).

Case 2 Suppose there exists a lattice point inside the triangle 7. Then loc. cit.
considers a lattice triangle T/ C T as in the picture below:

(d, k)

(1 — i1, k1)

d+d, k+k)

D
(j2 —i2, k2)
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We may choose T’ to have minimal area, which means that we may apply (4.14):

W i Bl g an et ORS inin  or
Pl Pl 2 = Pl Plitipd = = iy <5
s<jpandij<t

(4.64)

where the vectors (j; —i1, k1) and (jo» —i2, k) are as depicted in the figure above, and
[i1; j1) + [i2; j2) = hdeg x. As shown in [13], it suffices to prove that iy, ji, iz, j2
can be chosen in such a way that the RHS of (4.64) is equal to a non-zero multiple of
x + sums of products of more than one primitive generator in B;. Indeed, once this

is done, the induction hypothesis of (4.62) will imply that:

N

(k1) ~(k2) ~ (ko) (k1) +

Pl Plimin Y Plisi Py ¥ € Q) &) (4.65)
Vel AINQ

for any z € 5):" that is a product of more than one primitive generator. Taking an
appropriate linear combination of relations (4.65) proves (4.62) for our given x, and
thus establishes the induction step.

As we only need to prove the non-zero-ness underlined in the previous paragraph,
we might as well apply the homomorphism Y to (4.64) and prove this non-zero-ness
in the algebra A. The advantage to doing so is that we may apply the bialgebra pair-
ing: because Y (x) is a primitive generator of .4, it suffices to show that iy, ji, i2, j»
can be chosen so that the right-hand side of (4.64) has non-zero pairing with any
primitive generator of B, of degree opposite to that of x. We will prove this by
considering the two kinds of primitive generators:

® The simple ones, i.e., T(x) = P[(i].(j.) with ged(k, j —i) = 1l and j % i mod n.

Then:
(k)

Eiizj
T (RHS of (4.64)) = ——~—
q9 " —q
for any choice of i = i;] < j1 =iy < j» = j. Then:

_1=—1
<T(RHS of (4.64)), PP > -1 49"
i) q—l —gq
as a consequence of (4.37).
® The imaginary ones, i.e., Y(x) = Plgk)r. Then:
(k) i (k)
E;". +E5S_
T(RHS of (4.64)) = —tnl) _ Lhznbih)
q9  —dq

for any choice of i1 < j; and i < j» such that [i1; ji) + [i2; j2) = I8, where the
ellipsis denotes sums of products of two E’s and E’s. Since PSsk)r is primitive,
it pairs trivially with any such product, and therefore we have:

_d _g——d
q'gqr —q g
g —q
where d = gcd(k, nl), as a consequence of (4.38) and (4.40). O

(T®RHS of (464, P ) =
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4.8 A smaller set of generators |

In the following equation, the first isomorphism was proved as part of the proof of
Theorem 4.3, and the second isomorphism was proved in [10]:

+~ gt~k o
Cr=A"=U_ (@)
Therefore, the algebras C* are generated by the horizontal degree 1 elements:
keZ
(k)
{pi["?"“)}iezmz (4.66)

(this can also be shown directly from relations (4.12) and (4.14), by an argument
similar to the one in the proof of Theorem 4.3). In the following Proposition, we will
show that all the relations between generators of Ct and C~ can be deduced from the
relations among the generators (4.66) and the generators of £x.

Proposition 4.13 IfC* = (5f)ue(@/(relati0ns (4.12), (4.14)), then:

C=CTREL® C_/relations (4.68)—(4.70) (4.67)
where the following are special cases of (4.12)—(4.15):

q d d

(k) (£d) (k*d) -~ —n
[pi[i;i+l)’ Pos,r | = P4zt <(Sl'rqi - 5;+161i) (4.68)

- d d

(k) (Fd) (kFd) -0 —u | =Fd

[pi[i;i+l)’ Pos,r | = EPapiit <5ir‘1¢ - 5;+1CI:F) ct (4.69)

and.:

(k) (=k" 1
[p[i;i+1)’ P_jiniry) |

_ 4
q—q!
a,b>=0 a,b<0
@  Vitl 1) @ Yi s
Z 608,i+1_1//, ¢ €50 — Z eOé,i-ﬁ-l_w_ 1C €03,
a+b=k—k' d a+b=k—k' i+

4.70)
forallk,k' € Z,d,d e Nandi,i' € Z/nZ.

Proof Let C' be the algebra in the right-hand side of (4.67). We want to show that the
natural surjective map:

' —C 471

is an isomorphism. To this end, we will show that relation (4.15) holds in C’ (the
analogous statement for relation (4.13) will be left as an exercise to the interested
reader). Clearly, the map (4.71) restricts to isomorsphisms:

C'F =ct (4.72)
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on the subalgebras generated by pﬁf)j), pflfz foralli < j,I > Oand k, k' € Z,

because the two algebras in (4.72) have the same generators and relations. Since the
half subalgebras C* are generated by degree one elements, then we can write:

Eo P (£b1) (£bj—i)
Py = ZCOCfflClent “Pifara+1) - pi[aj,l-;aj,,-+1)
(FK) o (FY GFVy i)
Py = Zcoeffment ij[“i?“Hl) "'pﬂ“;r,l-,:“;r,,-,Jrl)

in C'* = C*, for various numbers aq, ay, ba, b);. Then the Leibniz rule implies that:

j=i J'=i
- +b Fb))
LHS of (4.15) = Y _ coefficient - Y ) ( . [pi[ajfm]), ij[a;’/;al,ﬂH)} : )

d=1d'=1
in C’. One can use (4.68)—(4.70) to rewrite the expression in the right-hand side with
all products ordered as in (4.61), i.e.,

LHS of (4.15) = Z coefficient - ... p&) (ckdy) (~b2)

lavias+1) ** Pos.ry +* P—falsal1) - 4.73)

as an identity in C’. However, the right-hand side of (4.73) is equal to the right-hand
side of (4.15) in the algebra C, because the computation above could have been done
in C just as well as in C’. Because of the triangular decomposition (4.61), we conclude
that the right-hand side of (4.73) is equal to the right-hand side of (4.15) as elements
of the vector space C* ® 5 ® C™. Therefore, the right-hand of (4.73) is equal to the
right-hand side of (4.15) in C’, precisely what we needed to show. O

5 An Orthogonal Presentation
In the present section, we state and prove an alternate version of Theorem 1.1, which
will yield a different presentation of U, 7(gl,), that will be used in [11].

e In Section 5.1, we consider a triangular decomposition A = A’ ® By®.A' which
is “orthogonal” to the defining triangular decomposition 4 = AT ® Boo ® A~

. . (k) F (k) (k) G(Ek)
® In Section 5.2, we define elements Fi[l.;j), Fﬂi;j) to replace Eﬂi;_j), Eﬂi;j)
e In Section 5.3, we give formulas for the coproduct of Fj(iki) and Ff[clk)/)
. (£k)  a(£k) . (k) (k)
® In Section 5.4, we connect the elements Ei[i;j), Ei[i;j) with Fi[i;j), Fi[l.;j)
(k) (k) (Fk) (£K)

In Section 5.5, we define elements 0Li iy Oxrs.r 1O replace Piiisjy Pais.y

In Section 5.6, we state and prove Theorem 5.7

In Section 5.7, we consider an analogue of the situation of Section 4.8

In the remainder of the present section, we prove the formulas in Propositions 5.4
and 5.5, which were invoked in Section 5.4

5.1 Triangular decompositions

Looking at relations (4.12)—(4.15), we observe that the commutation relations
between the generators of the quantum toroidal algebra depend quite strongly on
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whether the degree (d, k) of the generators in question lies in N x Z or in —N" x Z.
This is because the triangular decomposition:

A=AT® B @ A™ (5.1

prefers the vertical direction, i.e., that of slope co. In the present section, we will see
that this is just a consequence of our choice of generators. More specifically, we will
construct another decomposition, which prefers the horizontal direction:

A=AT® By ® A (5.2)
and see that the commutation relations between the generators will now depend quite
strongly on whether the degree (d, k) of the generators in question lies in Z" x N
or Z" x —N. This presentation will be used in [11] to compare the quantum toroidal
algebra with a new type of shuffle algebra, that will be defined therein.

Remark 5.1 We expect infinitely many triangular decompositions as (5.1) and (5.2),
indexed by a rational number u, in which the role of the middle subalgebra is played
by B,,. The question is to find good descriptions of the left/right subalgebras.

5.2 Alternate generators Il

Recall the elements (3.59)—(3.62) of AT ® Boo ® A~ = A, and define:

Fiyy = Wi, ),W} c gy (5.3)
Fitp = wigff;)pwijé_k (5.4)
Fih = vi- B et (g (5.5)
Flity = %B( i Vit (5.6)

forall( < j) € %,k € NUO (recall thatg, =gandqg_ = g"g "), as well as:

Fi) =B -a (5.7)
Fiy) = Biijy -a’ =g (5.8)
FO. =A% ™ (5.9)
Fo = A% g =gty (5.10)
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forall (i < j) € k € N. Note that we have the following, for all k € N LI 0:

(nn)Z’
- 1
(k) _ 1 G (Ek) ¥k
Fiip =¥ Ex ‘”F (5.11)
1
o(xk) (£k) —Tk
F:Hl N w E:t[i;j)w;tlc (5.12)
J

FER

When k < 0, we will connect the elements Ef[lk)j) and 1) in Propositions 5.13

and 5.14. Define F{ ). F{) by formulas (5.11)~(5.12) and (3.106)~(3.109).

Definition 5.2 Consider the subalgebras:

AT = (RS 2 and AF = (R0 z
where we recall that [i; j) = —[j;i) foralli, j € Z.
5.3 Coproduct formulas Il
Let us write:
Flijy = Fiwy and Rl = Fi)
for all (i, j) € . n)Z and k € Z, where u = ——. Then:
F[ltLJ)’ FMJ) € By

for all (i, j) € 7> L € Q. Moreover, ifi < j, we have the coproduct formulas:

n.n)Z n)

Yi _
[1 j)) - Z [iss) F[l; ])W M(l Y (5.13)
A F“ Vs anis- DEH 5.14
[/L( ])) Z [s; 1) ® ‘(/f_c li:s) ( . )
/ v
S -
Au(F ) = ) FH Dy @ L (5.15)

s=i

0 vj n
Ap(Fly ) = Z LU E @ F

S

s (5.16)

s=i
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if w > 0, as a consequence of (5.11)—(5.12) and (3.71)—(3.74). Meanwhile:

Au(Fli ) = Z Ui s DFl. ) ® Fliy (5.17)
AL(FY, ) = X_;Ff[,.;s) ® :Z Gui- e (5.19)
Ap(FY Ty = ZFM[V n® FM CM(S ha (5.20)

v

if u < 0, which is an analogous exercise that we leave to the interested reader.

s=i

5.4 Connecting the generators

To go from Theorem 4.3 to its equivalent version Theorem 5.7, one needs to connect
the elements E, E with the elements F, F defined above. This is achieved by the
results in the present subsection, which will be proved at the end of the paper. We
consider any y = % < 0 with ged(a, b) = 1.

Definition 5.3 For any (i, j), (i’, j') € ﬁ such that j — i + j' — i’ > 0, define:

(0=t
M _ L n
Vipain = 2o EliypBlin (5-21)
i<tand s<j
(s:0)=G".j")
i _ N
Vipawn = 2 EhsnBlun (5-22)
i<tand s<j
(=G,
n _ T
Ziipawn = 2 FruoFi (5.23)
i<tand s<j
(=007
i _ N "
Zhipawyy = 2o Flun P (5.24)

i<tand s<j

Proposition 5.4 Forall (i, j). (', j') € Gy such that j — i + j' — i’ > 0 and:
alb(j —iY+1 and alb(j' —i")F 1 (5.25)

we have the identity:

YM ‘Si-/_‘g,-j/ ZM

iz ),y — 47 £ ), £l ) (5.26)
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Similarly, if alb(j — i) F 1 and a|b(j' —i") + 1, then we have:

" _ s{,-a'ﬂ, “
Yoty =9" 7 Ly, 41 ) (5-.27)

Proposition 5.5 Forall (i, j), (i’, j') € % such that j —i + j' — i’ > 0 and:

b(j—i)+e b(j/—i)—¢
p=bU=DFe o g w2 D= g (5.28)
a a
(for any ¢ € {—1, 1}) we have the identity:
" = Bt y B 5.29
Yihein = 2 4 i/ ), i ) (5-29)
x,x'€Z/nZ
—s/ j - -8/, i’ - +
a8 +8 (g —qg | |a 8+ (qa—q S
g% — 1 g1 —1

There is also an analogous relation involving Z and Z, which we will not need.

Remark 5.6 Note that the assumption i < 0 could be removed, if we defined F*, FH
by the analogues of formulas (5.7)—(5.10) instead of (5.3)—(5.6) for . > 0.

5.5 Alternate primitive elements

Recall the algebras £, of (4.1), and replace their simple and imaginary generators by
the following elements, for all i < j, ! > 0 and all applicable k, k’, r:

Y TS BT S
Oxily = Vi Piiijy € (530)
v;
oy k) Tl =K
Oizs,i = Pim,iﬁlﬁ" (5.31)
if k, k' > 0, while:
) (k) 500 | o 194 “49) ~(+k)
0Ly = 2 Pllitwjin|d V8@ —a o | Py (5:32)
xeZ/nZ 9+
(£K)) (£K)) 40, o d_ —a 9+
Otisr = Z Piisray|d Oyt @ —a ) 5 (5.33)
YEL/ZL gy —1
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if k, k' <0, where d = gcd(k’, nl), g = ged(n, "71) and X is defined as the element
in the set {1, ..., g} which is congruent to x modulo g. We will use the notation:

2Tk
~(£k) (k) ) i 1.9+
Otlizj) = Z Offitxjin |4 0 H 8@ —a7 )5 1
X€Z/n7Z 9+
4.9) EES S
=y pa et (5.34)
v;
if k, k' > 0, while we define:
g
Sk _ (k) —8 00 | g -1, 9% @.10) (k)
O%lizj) = ) Oifitnjiny |4 705+ 850 —q )—2——1 = Pipjp
x€Z/nZ EES
(5.35)
if k, k¥ < 0. Finally, let us write:
(Ek) 7(£k)
Flip €€x and JHD € €x (5.36)

for the images of the elements (5.3)—(5.10) under the isomorphisms (4.3). There-
fore, we have the natural analogues of Definition 5.3, Propositions 5.4 and 5.5 when
E,E,F, F € B, are replaced by the symbols e, e, f, f € &,.

5.6 An equivalent form of the main theorem

With the notation above in mind, we are ready to state and prove the following ana-
logue of Theorem 4.3. Specifically, both (4.11) and (5.37) are presentations of the
same quantum toroidal algebra, but while the relations in the former distinguish the
vertical line (i.e., i = j), the relations in the latter distinguish the horizontal line (i.e.,
k=0).

Theorem 5.7 We have an algebra isomorphism:

Uq@(g"[n) = |D = (E1) peQuoo /relations (5.38) — —(5.41) (5.37)

where the defining relations in D are of the four types below.

Type 1: for all® (i, j) € %, l € Zandk, k' > 0 such that:

/
d::det(.k.k>
j—1inl

satisfies |d| = ged(k’, nl), we set (letting g = ged (n %l))for anyr € 2/87:

d d
(k) (k) (k£K") _4 _—d
[Oi[i;j)’ O:I:IS,r] =015 i) (‘Sirmodgq:t — 8% mod g+ ) (5.38)

8We only allow k = 0 in the following if i < j and ¥’ = 0if [ > 0
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Type 2: under the same assumptions as in Type 1, we set:

Eh) F K, GERFR) _ _—4
I:Oi[in)’ozFl(sJ’] = £(cT )W OLlizj—nl) <8irmodgq¥ _8; mod g9 F
d
+1 =4k Tdl
R P NI
Oxlizjy OFi8.r | = P O%(izj—nl) \ O mod g4F ~ %) mod ¢+
1

(5.39)

with the first equation in (5.39) holding ifk > k' (or k = k' and j — i > nl) and the
second equation holding ifk < k' (ork =k" and j — i < nl).

Type 3: for all’ (i, j), (i’, j') € ﬁ and k, k' > 0 such that:
k k' .. . .
det(j—i j’—i’) =gedk+K,j—i+j —i)
we set:

S . (s,0)=0"5j") g1t Fi
(Ek) (k) 8,8, (k) (k) 8,8, Z Figs, y Ftisn
—1 _

Otii; j)O+ir; jH4 OtiirjnO+i:pd " = q 40
i<tands<j
_ k+k
where @ = g
Type 4: for all® (i, j), (i, j)) € % and k, k' > 0 such that:
/
det(] ]il J/k—l/) :ng(k_k/a] —l—]/+l/)
we set:
0=EJ) PR
) iy T i R> K

@ o ] 1 issst=] : s a1

[Oi[i;j)’ %[i/;ﬂ)] Ta—q (541)

Y

i M . )
FJ) 1//,*‘ Tring  Uhk=k

i'<s<t<j’

_ k—k'

where m = m

Proof We will prove that relations (4.12), (4.13), (4.14), and (4.15) are equivalent to
relations (5.38), (5.39), (5.40), and (5.41), respectively. We will prove the first and
the third of these equivalences, and leave the second and fourth as exercises for the
interested reader. Let us start by proving the equivalence of (4.12) and (5.38).

9We only allow k = 0 in the following if i < j and k' = 0if i’ < j’
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e wheni < jand!/ > 0, the p and o generators are connected by formulas (5.30)
and (5.31), hence relations (4.12) and (5.38) are equivalent in virtue of the fact
that v; and v/; commute with pS‘]; 3,

e wheni > jand/ < 0, we have:

Eh) (EK)] (5:32).(533) (£k) (X))
[Oi[z ) :I:lSr] = Z Z [pi[l+x j+x)r Pxis, r+y]

and ¢ commutes with everything.

XEL/nZ yel/8Z
) 6]7 kx
751. .
q 180+ 8 (g —q7H=E
—1
9%
2d Ky
— n [
—|d| 0 d —a’
x| g \ |(3y+(q| I -l I) 2|d\g
q$n -1
(4.12) (£k=Ek")
- Z Z +p Pifitx; j4nl+x)
XEZ/nT yel]g7

r+y — _ ety "
- n
X 8i+x modngF =9 Jj+x modgq:F

8L 00 | i 1 ar d| 50 d an 9% “
q j8x+55'(51_‘] )_2:': 1 [ |3 +(q| I _ | \);ST
q:': 6:':)1 _ 1
. 2.H
(£k=£K") -8 00 i —1
> EP it jntn |4 10 950 — ) 1
xXeZ/nZ :|:
) , | ) ) ay}kﬁ?ﬂ_% 7¥_k’7m\4)+%
- T T
q H(‘I:F 81+rm0d5 q:psﬁ—xmodg)—i_(q‘l H) 7% - 7%
9" —1 9" —1

To complete the proof of relation (5.38), we need to show that the expression
with the squiggly underline is equal to:

(k+k/ (x—i)

_1.9% d _—4

]8l +8 (g—q 1):':— <8rmodgqi Sjmodei )
q; -1

for all x € {1, ..., n}. This is an elementary consequence of the assumption that

knl —k'(j —i) = d and |d| = gcd(k’, nl), and one deals with the cases of i # j

mod n and i = j mod n separately (in the latter case, the assumptions imply

n|k’, hence n|d, hence g = 1). We leave the details to the interested reader.

When j —i and [ have different signs (here we consider the number O to be among
the positive integers), there are only two cases when our assumption holds:
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e wheni = j, k = 1and nl|k’ (which implies g = 1), relation (5.38) reads:

ED)  @E | oy @EIED (-
I:Oi[i;i)’ 0113,1] = 0 L(iitin) (‘Ii 4+ )

If we apply the substitutions (5.30), (5.32), and (5.33), the formula above
becomes equivalent to:

i —nl —l
(E1) 1 (EK) q"qk —q7"qz
Piisn¢ > Py T
Q:': - CI:F
25

I A (EI£K) ~140 o1 9%
—i(qi—‘li) D Pllirwiesin |47 00+ @4 T
x€Z/nZ 9+

By using ¢"g, = E;l, the formula above is equivalent to:

(€3] FD| o mEl (—1  = (£1£K")
[pi[i:i)’Pﬂs,l] = ¢ (q:F _q:F) Z Plix;i-tx+in)
x€Z/nZ
25

_ _ 671
7'+ (q—qg H5—
Q:F_l

If we apply Lemma 4.2, then the formula above is equivalent to:

(1) ~150 _p, 44 (k)
Z Pilitxitn |4 T W@—q )= P31
xeZ/nZ 9+

TS o) (Y o G (F1%k")
= *c (‘1¢ _qu)p:Hi;iHn)

which is precisely the second option in (4.13) for / < 0.
e when/ =0andi = j 4 1 (which implies g = n), relation (5.38) reads:

K K
(£k) (k)| (kkEk) o ——
[Oi[i;i—l)’ Oioa,r] =+o ;1) (‘Sirqi -8 194 )
Using (5.31) and (5.32), the relation above becomes equivalent to:

k/ k/
(Fk) (FK) 7K' | _ (kkEk") _= _-L
I:pq:[i—l;i)’ Pios,r € ] =EPoi 10 (5;% =419+ )

The formula above is precisely the first option of (4.13).

Let us now prove the equivalence of (4.14) and (5.40).
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e wheni < jandi’' < j/, we have (to keep our formulas legible, we set ¢ = 1 in
what follows, since it is clear that we will encounter the same powers of ¢ in the
left- and right-hand sides of the equations below):

k) @K 8=, k) (k) 8-
o v g i — o Y ogi i
ki jy O+l )4 O(ir; j1) O£z )
+1 . .
w1 @b Vi sy L s,

(G30)(534)
= i Py ET P =T
J J'

s Vi @ L8l
Vir Pipirjry e Pjis j) s q
J’ j

(4.6) (Eh)  ~(£K) 1 8, =8/,

1, 41 y
= Vi Vi PPy w24’
Vi Yy

L1kl =) @ L s
Vi Vi PayjnPii) Tzl
Vi

@.14) o,—5 (0= éi[ ')ei[' ) 1

- i 0 +1 , +1 S, J it

=q" VY Y Z 1 1, +1
q q Wj i

i<tand s<j

S ) Vi ou 1 o _
(s,)=0",j") e NTETC ) TET s,0=0"j") rm 1
0= Vs Hs )y EED Y (541, 5.12) s fas T
B g~ —¢q B 2 g '—¢q

i<tands<j i<tand s<j

(indeed, the last formula holds because (5.36) stipulates that the e, €’s are to the
f, f’sasthe E, E’s are to the F, F’s, and the latter are related by (5.11)—(5.12)).

e wheni > jandi’ > j/, we have:
) @) 88, k) (k) 88

Otfi; jyO+1i7; 04’ Ot(ir; jHO+lis j)

(531).(5.35) ~(F(—k)  (F(-K) 8,8 _  F k) ~(F (k) 6,8
= T Py 4 Pxijniny PxLjsi)

(4.9),¢4-10) FR)  SGF R 8,8,
- Z |:p¥[j+x;i+X)pq:[j/+x/;i/+x/)q !
x,x'€Z/nZ
S(F(K) GF-ky -8
TPt Pl i

: C—I%E . qgm
-8 [ _ -8, v _ ¥

q -/5g+5l~(q—q h== q i 82/_{_3’_/((]_‘1 hz

J 2 —-1 J 5) 1
F 9+

(5.42)

Note that the identity:

i Jo_si o] _ sJtx i+x _ oJtx _ gitx
Sj/ + (Si/ 81'/ 8]/ —_ 8i’+x’ + 8j’+x’ 8j/+)(’ (Si’—‘,—x/
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holds for all x, x" that have non-zero coefficient in (5.42) (this is because i #
J = nlx and i’ # j' = n|x’). Therefore, formula (5.42) equals:

Fh)  =F ) R AR I
> [p Fljtxiit Pljatiteand T
x,x'€Z/nZ
_ AF (K F—h) 8-
Fj i ) PEL+xii+n 4
) —
D S e vl I R 1 ﬁi'kx
qj i i'+x J'+x q 15x+8](q_q )_2—
qq: -1
. q%-fk’x/
=3, i’ — +
x| g 8Y +85q—q HS—
g —1
By invoking (4.14), the expression above equals:
(s,0)=(j"+x",i’"+x") sk 1 S )
» :F[s,i+_x1>e¢[j+x;r) I TN
x,x'€Z/nZ | j+x<tands<i+x 4 -4
_Zkx , _2 Wy
_si i 1. 4 8%, 4 1,9+
q 8 +8q—qg | |a Y +8a—qaHS
-1 -1
7= 9+
Note that the identity:
J Jo_ gitx itx i o i X
8j/ - 81-/ - 8i’+x/ +8j/+x/ — 81' - 8/ +8j+x - 5i+x

holds for all x, x’ that have non-zero coefficient in the expression above. Thus,
we may apply (5.29) to conclude that the expression above equals:

s,

8 5
a7 Y gl 620 L. F)
7' —q 7' —q

(the notations Y and Z are defined in (5.22) and (5.23)). The right-hand side of
the expression above precisely equals the right-hand side of (5.40), as required.

Wheni — j > 0 > i’ — j/, our hypothesis also holds in the following cases:

e whenj—ilk+1,i’ = j and k' = 1, relation (5.40) reads:

s=i’ fll- f,u
(k) ~(£1) (D) (k) +[s,/)J £liss)
Okfis ) Okliniy — O%linin O%lizj) = P _
i<s<j 1 1
We may use the substitutions (5.30) and (5.32) to rewrite the left-hand side, and
(5.27) to rewrite the right-hand side as:

() (D) &) (k) 58 1 e i)
~ ~ ~ ~ _ l’ R — Flj.s) " Flssi
PeijinPriininy = Papitin P =4 7€ Z g —¢q

i<s<j
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If we convert the p’s into p’s using formula (4.9), and apply (5.29) to the right-
hand side, the formula above reduces to (4.15).
e wheni = j+ landi' = j — 1, relation (5.40) reads:

£k ~(EK) 8,80 _ 5K (£k) 8, —8)
Ogfjrt; j)O+rirsir4 14 Ofinsirg1)Oxj+1:p9 " 7
(a) f(b)
_ ) ;)Y £+1/+D)
—y y Ll
a-+b=k-+k’

With the substitutions (5.11), (5.12), (5.30), and (5.32), this formula reads:

R
(k) 11 (£K) etk DAL A
p:F [J; j+1)¢i’ pi[l’ i'+1) I//j:l 31 4
i+
/ .
-5/,

cFk
c
(EK) (£k) 8 =8

Vi Pi[i/;i’+1)wi1 l’¢u+1>q
/+1
é(ﬂ) e(b) —:|:k:|:k’
_ (S.j Z £ ) i[/+l j+D¢

B g '—q

a+b=k+k'

If we move wl.j,t (respectively wlﬂl) to the left (respectively right) of the formula
above using (4.6), then we obtain precisely (4.15). O]

5.7 A smaller set of generators Il

By analogy with Proposition 4.13, we have the following:

Proposition 5.8 Let DT C D be the subalgebras generated by ofﬁ)j) and ol({;/i with

k,k e Nandalli, j,l, r, modulo relations (5.38) and (5.40). Then we have:

D=D"Q&E QD™ /relations (5.44)-(5.48) (5.43)
where the following are special cases of (5.38)—(5.41):
[Oizl)n’ Oigz)s 1] = ioﬁil;)ﬂnn (qit - C_Iil) (5.44)
(0650 00 1] = 05,y (a5 —75) (5.45)
O(ii[ll)f)oi)[)v v+1)q b Oi)[)s g+1)0§:i[ll)])f18{“_ag
=+ (‘3 5;"0%1) 1y — o q;’:of[ll)j+1)> (5.46)

(1) (O) - 4+ (Sl —n (D) l+] _6] o ) (il)
Oxliyjy OFlsis+1) | = qﬂFOi[erl ) wil s+1 47 e OLlisj—1)
j—1

(5.47)
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and.:

1
W n_
[O[i;n’ O[i’;‘/')] - (5.48)

Iz Vic zu
Z f[l '+nk, J)I/, f, lisj/+nk) — Z f—[J+nkl/) i f Lj'si4nk)

el e

forall (i, j). (', j') € Gy, | € Z, s € Z/n.

The proof of the Proposition above is completely analogous to that of Proposi-
tion 4.13, so we leave it as an exercise to the interested reader.

5.8 Proof of Propositions 5.4 and 5.5, step |

In the remainder of this paper, we will prove Propositions 5.4 and 5.5. As we have
seen in Lemma 3.11, a frequent strategy for proving identities of shuffle elements in
B,,, such as (5.26), is the following two-step process: one first shows that the LHS and
RHS have the same intermediate terms under the coproduct A, and then one shows
that the LHS and RHS have the same value under linear maps which “detect” primi-
tive elements. Such linear maps are the o[z ) of (3.79)—(3.80), however, these never
give nice formulas on both Y, Y and Z, Z of (5.21)—(5.24). To remedy this issue, we
will consider a different choice of linear maps, and we will show in Lemma 5.11 that

they detect primitive elements. Fix generic parameters xi, ..., x, € F and introduce
the following linear maps (inspired by the similar construction of [8]):
p: AT > F (5.49)

given for any Ri(..., Zils Zi2s ---s Zik; » ---) Of homogeneous degree & by the formula:

2= ) — k|

RE(.., xi, xig?, ..., xi . n
p(RY) = Bl X %47, o X1 q (5.50)
/ .q2a
nlgi,i’gn éfgsgki,lsa’gkﬂé‘ <;;Zza’>
where x; has color i. We have the following analogue of Proposition 3.10:
Proposition 5.9 Ifdeg R; = (k, i) and deg R, = (18, h2), we have:
hynl—hy k|
p(R1R2) = p(R1)p(Ra)g ™7 (5.51)
while if deg Ry = (=18, hy) and deg Ry = (=K, hy), we have:
hynl—hy k|
p(R2R1) = p(R1)p(R2)g ™~ 7 (5.52)

Proof We will only prove (5.51), and leave the analogous (5.52) as an exercise to the
interested reader. By definition, p(R| R,) involves summing over partitions:

2 2(ki+—1
(xi, xiq?, o, xig? &0 L = ViUV

& Birkhauser



The PBW Basis of Uy g(gl,) 343

multiplying together the evaluations of R, R; at the set of variables V7, V> (respec-
tively) and then multiplying the result by []cy, [1.cy, £ (v/2). However, because
£(g~? of color 0) = 0, the only non-zero contribution produced by the procedure
above happens for:

Vi = {ig?, o xig? G0y vy = (g, xig  xig? D)

We conclude that:

n  0<ad<l
xian )

(Ri Ry) = R Ry 11 11 c<
Ziak>xig2@=h Zigr>xjg2U+a=D Ziak>Xig2@=1 ot a1 xl,,an

Since Ril,, sy q20ta-10 = Rily, 1y g2 - g*M! | the formula above implies (5.51).
O
Proposition 5.10 Forany (i < j) € % and h € Z, let p = ]hTz We have:
B h(a—i+1) | _ | h(a=i) Jj
" i—1 _2a j—i j—i r X 8,‘
b et () T gt
p(A:I:[i'j)) = - 5 : 2 (5.53)
5 j—1 Xa—19 Xi—19
l_[a:i—H <1 - x; ) _1 - xl,-
. ) ; ha=i+1) | _| ha=i) .
) qaﬁfj H(J;;ll (x&qa>L J=t J { J=t J r 1— xx_,l 51‘1
,o(Ai[l.;j)) = = . T— T (5.54)
[Tz ( - m) L xi—19?
h(a—i+1) h(a—i)
1 2a = || =
" qﬁ”ni - (xaq )L 7 J { j J
,O(Bi[,-;])) = P (5.55)
l_[a H—l ( N xa—qu)
h(a—i+1) h(a—i)
B -1 _ua\| == |7 i
o P TTZ] (x&q : )( 7 W { j W
)O(B:t[i;J)) = (5.56)

I—[ _ xa—lqz
a= 1+1 Xq

where we extend the notation x; to all i € Z by the rule xi+nc_12 = x;, and define:

w(j —i)?

o) = @Qu(j =D +1) V _’J —2 )" [unk] -

o .
¥, = WU—i)—l)L’ ’J—z Lunkj—@
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; ’7/ —‘ 1 (._i)z
1—1>+1 —2 > [unk] - T‘j“
k=1
P =i by w2
k=1

Bl = Qu(j—i+1) ([

S

Proof We will prove (5.53), and leave the other three formulas as analogous exercises
to the interested reader. Recall that we have:

(h) _ (h)
Al = Sym (a o j)) (5.57)

where:

1 _zg [MasitD] [ha=id
RO [T/ (zag ™ )[ a w [ - w l—[ ¢ (% (5.58)
ij) i i’ > \za '

1 =) (1 i<a<b<j
Zit1 Zj-1

Applying the linear map p to the rational function (5.57) entails specializing Al i[ it )
at:

Za > xaqu%hﬂ%J Ya e i, j—1} (5.59)
The fact that £(g~2 of color 0) = 0 means that we obtain the same result by
specializing the rational function (5.58) according to (5.59). Thus, we have:

h
(h) g

_h(-D)
a,i. . n
) (5.50) £[i:7) | evaluation (5.59)

= : (5.60)
us>u' X _qZu
ngs,s’gnHlfufks,lswgkx/; ( : 21/)

Xgrq

where k = [i; j) and k; denotes the number of elements in the set {i, ..., j — 1}
congruent to s modulo n. It is easy to see that when we specialize the ¢ factors of
(5.58) according to (5.59), we pick up precisely the product of ¢ factors in (5.60), but
with “u > u’” replaced by “u > u’ oru = u’,s =i — 1, s’ =i mod n”. Hence:

j— _2a a=i | | ha—it+]) ha=i) umi
p( (n) ): ]_[]_y(xaql)nqﬂ 0 J)[ 7= —‘ [ =i —‘ . 1_[ . <xlq251>

AL
+[i5 ) 725t 251
e el M B Sy
a= z+l Xa

The number of ¢ factors is equal to L J while the number of linear factors in the

Xa

denominator of the expression above is equal to L%J These two numbers are
equal unless i = j modulo #n, in which case the number of ¢ factors is one more than
the other number. Therefore, plugging in the explicit formula for ¢ yields:

2 [ ha=i+l) h(a—i)

) q# 1_[ _1(xaq n )(T—‘_’Vﬁ—‘ 1 _ x’x—jl 8!
M=is ( - "+"nl> 1— X;_wz

( A®

O (5.61)
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where:

j—1 . . . .. ..
_ a—i h(a—i+1) B h(a —1i) Jj—i _h(j—l)
0 el (el B b =l K Bl Rl

a=i

It remains to compute the number #. To this end, let us write j = i + nl + r and
a=1i-+nk+sforr,s €{0,.. n—1}. Thus, we have:

-1 . .
4= sz([kn(_kfl)—‘ - ( .hnk.DHl <h _ [ .hnl.DH——h(] —9) = ol
= j—i j—i J—i n '

precisely as prescribed by (5.53). O

5.9 Proof of Propositions 5.4 and 5.5, step Il

Let us introduce the following notation:

j-1 2 i1
e,-,j:n(l_ﬂ) and zi,,-=1‘[<1— *e ) (5.62)

a=i Ya a=i xa_lqz
as well as:

I\ el D1~ Tu(a—)]

ol =[] (xa7™) (5.63)
a=i
j-1 , .

_2a\ ln@—i+D]—p(a—i)]
rl.’fj = 1_[ (xaq n ) (5.64)

a=i
for all © € Q such that u(j — i) € Z. The following identities are obvious:
Gitn,jn = Gi,j and  Tipn i =% (5.65)

and:

Xa

n 2
Sijtn = 6ij -5, where 5= l_[ (1 _ da-14 ) (5.66)
a=1
n

Tijon = Sij- b, where  t=]] <1 - e 2) (5.67)

Xg—
a=1 a-19

Meanwhile, if we write u = g with ged(a, b) = 1 and set g = ged(n, a), then:

I _ K I _n
Opyns jyne =0 A T i =T (5.68)
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and:
J+ -1
2\ [n(a=j+1=Tn@=))]
K — oM . L — _Tn
ot =0ly sy sup= [] (xag?) (5.69)
a=j
jyna_
M M e a4 Lata))
e = N s luj = H (x“_q"> (5.70)
a=j

(it is easy to see that s, ; and ¢, ; only depend on j mod g). Finally, we have:

_ , i — i
affj.:ﬁ&—i—l—S{-l—Z{%J—j—i—i (5.71)
_ j (J—1g .
aszﬂfj—1+ﬁf—2{7 +j—i (5.72)

and the identities:

I _ o, Mna 1 _ pn  Hna  ona
afjw = ol Bl =Bl s =1 BT
na — — na na
@ o=a + M Bl w =B+ L (54
g J g J=" : g g

All the formulas above are elementary, and we leave them to the interested reader.
5.10 Proof of Propositions 5.4 and 5.5, step Ill

The main reason the maps p are useful to us is that they “detect” primitive elements,
according to the following:

Lemma 5.11 For all u € Q, any element of B, which is primitive for A, and is
annihilated by p (for generic parameters xi, ..., X,), vanishes.

Proof 1t is well-known [10] that primitive elements have horizontal degree [§ for
some [ € N, so we will focus on the graded piece of B, of degree:

(14, k) (5.75)

where % = . Let us consider all n—tuples of partitions of /§:

A=0D 2™y where A0 =@ =20 > )1

Take the partial ordering on n—tuples of partitions where we set p > A if, for all
i €{l,..,n}, we have u(’) > A9 with respect to the dominance ordering on usual
partitions. Then we consider the linear maps:

oV —>F(o,xi1,xi0,...)
given by:

2001y 2081y )

2 2
O (R) = R(...,xi 1, X197, ..., Xi 14 s Xi2 Xi2q”, oy Xi2q
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(as i runs over {1, ..., n}, and x; ; are variables of color i) where V denotes the vector
space of primitive elements of B, of degree (5.75). The subspaces:

W = ﬂ Ker ¢
n>A

form a filtration of V. Therefore, to prove the Lemma, it suffices to show that:
(V) =0 (5.76)

for all n—tuples of partitions A # Amax = ((I), (1), ..., (!)). Indeed, once we have
(5.76), let us consider a shuffle element R € V as in the statement of the Lemma.
Our assumption on R implies that R € Ker ¢ . . Then (5.76) allows one to prove
(by induction on A in decreasing order) that R € Vj for all n—tuples of partitions
L. Hence R € Vy, , where Amin = ((1%), (1%), ..., (1')), and then (5.76) implies that
¢r, (R) = 0. However, ¢, . is just the identity map, so we conclude that R = 0.

It remains to prove (5.76), so let us choose an arbitrary R € Vy. By (3.9), we have:

r(..., x,"l N x,',z, )

o (R) = (5.77)

(D)5 G+1)
H?:lna,ﬁ(xi,a - Xi+1,ﬂqm)x“ b
In the formula above and throughout, ¢ simply refers to an integer power of ¢, that
will not be crucial to our argument. Moreover, the notation (x — x’g)¥ will refer to
a product of k factors of the form x — x’g. The powers of ¢ which appear in these
factors might be different, but this fact does not change the validity of our argument in
any way, and so we prefer this slightly imprecise notation in order to ensure legibility.

For any natural numbers d, d’, relation (3.10) implies that:

FC x,xg%, o xq? 470 X X G x’qz(d/_l), )
of color i of color i+1
is divisible by (x — x’q"')dd/_mi“(d’d/) (indeed, assume without loss of generality that

d’ < d, so each of the d’ variables of color i + 1 participates in d — 1 vanishing
conditions (3.10) with the d variables of color 7). Hence, (5.77) may be written as:

S(..., )C,',l, x,',2, )

R) = —
(p}‘( ) min(kg),kgﬂ))

(5.78)
[Tl s i — Xit1,86)

for some Laurent polynomial s. We recall that the integer powers of ¢ which appear in
the formula above are arbitrary, and it is no problem for our argument if (x — x'g~)™
actually refers to a ratio (x — x'q)*/(x — x'q)?, for some a — b = m. However,
the fact that R € Vi means that ¢, (R) = O for all @ > A, which implies that the
analogues of formula (5.78) for partitions g > A vanish. This implies that the Laurent
polynomial s vanishes whenever:

23, @) (D) 2\ g)—l
Xia € {xi,ﬂqz, e Xi Bq *p }I_l {xi,ﬁq Pal L Xipq G = )} (5.79)
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for any i and any o < . Therefore, (5.78) implies that:

2)L(i)
[lo<pCia — xipg=)~""

min(Ag

QAR =1 xin Xig, ) [ ] (5.80)

(l) (1+1))
i=1 [ 1o, p(ie — Xit1,8G7)

for some Laurent polynomial . We wish to show that # = 0. To this end, the fact that
R has homogeneous degree k implies that ¢ is homogeneous of degree:

. (i) 5 G+D 0
deg,, jictin (t)—k+21: zﬂ:mm(x’ gty - ZZA’((X | .81
l o

The fact that R € B, C A<, implies that:

k )\(1) n . R .
degy,, yietton () < Z‘ 1 +Z minG{, A7)+ mina @, 26FY)

a>2

+Y minG P, 20Ty = Y2
a>2 a>2

(5.82)

deg{xia}ie{l ,,,,, ny (1)

S I>2

K i Yamahs | o @ 54D @ 54D
1= o= . 1 . 1
< T+ E E min(A, A )+ E min(Ay’, A} ")

i=1|ap>2 a>2

+Y minG ), A8t =Y 20D @ — 1)
a>2 a>2

(5.83)

where the inequalities are strict because R is primitive (here we use the fact that
A # Amax). If t # 0, then we would have:

LHS of (5.81) < LHS of (5.82) + LHS of (5.83)
and therefore:
0< Z > min(?, A8 D) + min{ Y, A0) -y 2D
a>2 a>2

Since the right-hand side of the expression above is < 0 (simply because min(x, y) <
y), we obtain a contradiction. Hence ¢t = 0 = ¢; (R) = 0, and thus (5.76) is proved.
O
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5.11 Proof of Propositions 5.4 and 5.5, step IV

By comparing (3.71)—(3.74) with (5.17)—(5.20), we conclude that when p < 0:

Efy.;, and EY, . (5.84)
enjoy the same coproduct formulas as:
" -1 n 1-6%
Fy i ])q 5 and F vipd (5.85)

respectively. Using the formulas of Proposition 5.10, we will show the following:

Proposition 5.12 With the notation of Section 5.9, we have for all u < 0:

L(/‘;{i)S’J
w — w 8i—1
P(ELy;. ;) = Z Y <F:I:[i'j—’”"k)q J ) Yk, j (5.86)
k=0 T
L(r t)gJ
EH — Il 1-8. ) —
'O(Ei[i;j)) - Z 1Y <F:I:[i'j—"“k>q ]) Yk, j (5.87)
k=0 ’ 8
where yo,u,j = You = 1 and:
k k
2 j 5 S,
Ve =(1-q )[%} Yk j=(—q )[%ﬂ}
teg ¢ s58q 8
—2 na k ~2 pna k
= o | (Eg2) s _ 5 (—gg) Sty
Vk,ﬂ’jz(l—q ) @ wma_y ‘}/_k’u’jz(l—q ) W
s8q 8 tgq 8

Vk > 0. Just like sy, j, 1, j, the quantities ik, j, V +k ., j only depend on j mod g.

Proof Recall the formulas (3.66)—(3.69) and (5.7)—(5.10):

" i K K =i
E[l N Alj) 2 Fl]) B[l 7 A 2
- P
E[z S l]) (=g )l g F/IL]) B[l J) q] l( q% )] l
Jj—i
E—[t n = B—[l ) iy = A i) 4 2
S UL _ ph i—j 2 A N G
Eliiy = Boyisjy - (4% D Fliip = Al ' 70

Let us prove (5.86) when the sign is 4, and leave the other cases as analogous
exercises to the interested reader. By (5.54), we have:

—

" - q i Tiﬂj xqu(S/
PEy ) = p(Ay) = =z =1~ (5.88)

<, xi—19>
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Similarly, formula (5.55) implies that:

[ i1
(F“ 55—1) (B“ i i+8j-—l> _ qﬂ” a lMJ T
P\ Find = PPl pd = 5 P

Using formulas (5.67), (5.70) and (5.73), we obtain:

Bl ik Bt - +8i—1 a 1k
" si—1y 4 (55-1)+4) o |t Xj
’O F .+ nak q ! - : P 1_ 2
[“J g ) Tij Tu.j Xi-19
————

—U=ie
does not appear for k===

Summing over all k from 0 to L I l)gJ we conclude that the RHS of (5.86) equals:

(=g i L una i
na Bi i Aj—itk( EE—1)+8—1_p a 1k
\\ J q L] ( 8 ) J Ti,j tg y (1 X )
> — | Vi -
i j j xi—19°
—_— ——

k=0 T

does not appear for k= (/ ') g

The fact that the expression above equals (5.88) (which would imply (5.86)) is an
immediate consequence of (5.72) and the following elementary identities:

. L(j;:f)gJ a qk
q_z\\%J: Z |:qu;m_1 tg':| Vi, j

k=0 i

if i = j modulo n, while:

G=ig

na 4 k
(=g X una | {8 Xi
o 2V hnib)-4 i 1 i
q na (1 — —) = q g — Vk,l»b,j (1 — ' 2>
Xi—1 =0 Ty, j Xi—14
—_—

does not appear for k= (/ l)g

ifi = j modulo n (which implies that 2¢ | Jj—1i). We leave these identities as exercises.
O

5.12 Proof of Propositions 5.4 and 5.5, step V

For any reduced fraction u = g with ¢ = ged(n, a), recall that B, has g countable
families of primitive (with respect to the coproduct A ;) elements:

"
Py, € Bu
for every k € Nand r € Z/gZ. For all collections of scalars a4, the expression:

o0

1+y G_ = exp Z 3 Pltar ok ’aik’ (5.89)

k=1 k=1reZ/gZ
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is the generating series of a family of group-like elements of 55,,. We will write

1—|—§:%—ex Z 3 i"‘”ai’” (5.90)
xk P )
k=1 k=1 reZ/gZ

for the inverse of the generating series (5.89).

Proposition 5.13 Forany u = g < O with ged(a, b) = 1, ged(n, a) = g, we have:

L(,/—i)gj
na

Bl = ; Fi[ .mglk>q8§'_lGik; (5.91)
L(j;é)gj
Ei[i;j) - ]; Fi[i;j—"%)ql 51 Gikliv (5.92)

where i denotes the residue of i modulo g, v € /g7 is uniquely defined by:
bv=1moda

and for all i, Gik -~ G“ are of the form (5.89, (5.90) for certain scalars ot r.

Proof The natural analogue of Proposition 2.5 applied to the tensor product
U, (g[§)®g = B,, implies that we have (5.91) and (5.92), where:

1+2Gikl = exp Z 3 ﬂ‘”a*’”’ (5.93)

| k=1reZ/gZ

1+ZGikl=exp Z Z ﬂ (5.94)

for certain coefficients {4 ,,, aik,r,r’}ffiz /o7 Thus, it remains to show that:

a:l:k,r,r’ = —O4k,r,r (5.95)

for all k, r, r’. Let us apply the map p to the identities (5.91)-(5.92), and recall (from
Proposition 5.9) that p is multiplicative on the subalgebra of elements of any fixed
slope. With this in mind, Proposition 5.12 implies that:

() =i 0 o (0 ~Ter
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We may now plug these formulas into (5.93) and (5.94), and obtain:

o0
1+Zyi;:}(ﬂ’i _ x_qzyi — exp Z Z
k=1

( +k$ r) X ir

rT)E k=1 reZ/gZ
o0 — ) _2 00 0 PPL o
Vikwizo _ X —q "2+ ( :I:k&,r) tki,r
1+ = = ex
D il 1 DIIDY o
k=1 k=1reZ/gZ
2\ o\
i s <_qfn) Spji—v (—@r") Ty itv
fory—i-:#a Y-="= /Ln;él n s L4 @ pna ’Z—za/um—nu-
t5g ¢ 7! s8g 8 & s8q 8 ! (5q g g
Taking the logarithms of the above power series in x !, we conclude that:
2 p (Pﬁka,r) a7, = (1 =gk (5.96)
rez/g7
Z L (P:'::Lks,r> aj:k,,i\,r = (1 - q_2k)zki (597)
reZ/g7
Vk > 0.Since s = t- (—¢?)"g* and s,; = t,.i+y, we conclude that z4 = g%y,
hence the right-hand sides of (5.96) and (5.97) are 0pp051tes of each other. Since this
holds for all i mod g, Lemma 5.11 implies (5.95) for all r, r’. O

Proposition 5.14 If u = s with gcd(a, b) = 1, then for all j —i = a we have:

Ei[l ) = F} +[i ) g7 (5.98)
Ei[z N = F{ +i;j) "4 (5.99)
ifnta, while:
_2Ebw—0)
By = Z L imivw 4 a7+ @ —q 1);—_1 (5.100)
n _2Ebu-0)
Ei{x )N X;Fﬁ[u, i+u) "4 | 4 o4+ —q” );—_1 (5.101)
u

if nla.

Proof Our assumptions imply that the left- and right-hand sides of (5.98)—(5.101)
are primitive elements of B,,. Therefore, Lemma 5.11 says that it is sufficient to
show that the map p takes the same values on the left- and right-hand sides of these
equations. We will prove the + = + case of both (5.98) and (5.100), and leave all the
remaining cases as exercises to the interested reader. By Proposition 5.10, we have:

i

o M 28"

q it xiqg™i
Ef ) =o(Af ) =L (1= 5.102
'0< [9)) [9)) Ti Xi—1q2 ( )
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and:
B j—i+si—1_p
. i q"h T S X;
F* g% 1): (B’f_. J=i+3; 1): VA N
p( li; )4 P\ Plind T PR
(5.103)
Under the assumption that j — i = a, relation (5.72) reads:
_ CL i 0 ifnta
L _ gt
=P ti—ity; _1_{2 if nla

Therefore, we conclude that (5.102) is equal to (5.103) when n t a, and this estab-
lishes (5.98). For the remainder of this proof, we will deal with the case n|a, when
formula (5.103) implies that:

EM. . "
q u.jfl+u-[uyj7i+u ) Xy
P (F[Z;j—i—i-u)) =——= |9~

‘Iu,j—i—l-u Xu—1
: L= .. v — M .
for all integers u. We have T; ; = T, j_iyu, Uy jipn = and:
al — -\ LG+ 1)~ Lps]
" _ l_[ s ) .
u,j—i+u — u+s4
s=0

However, we have the following elementary identity, which holds for all integers b, ¢
and all residues r € {1, ..., n}:

ssrmodn /s 4+ 1) B 1\ _ eas b(r + 1) br
2 Q ne J{ED‘gc(’C)Qngcdw,c)J{ngcdw,c)J)

0<s<nc

Back to our setting, letting ¢ = ¢ and recalling that ged(a, b) = 1, we infer that:

n b(r—u+1) b(r—u)
o | Mo || b |
rlifjfz#u = 1_[ (x,q ! )
r=1
Therefore, (5.100) follows from the identity:

_2.p(u—i)

n n br—u+l) | _| b(r—u)
Z@Z—x—“)l‘[(xra?fﬂ [ o+ - T
r=1

Xy—
u=1 u—1

AR N Ly R ey
- (=) 1 6a)

r=1

which holds for all i, u € Z and b that is coprime with n. Since the aforementioned
identity is elementary, we leave it to the interested reader. O

5.13 Proof of Propositions 5.4 and 5.5, step VI

Let us now use the results above to prove Propositions 5.4 and 5.5.

) Birkhauser



354 A.Negut

Proof of Proposition 5.4 We will only prove (5.26), as (5.27) is analogous, and hence
left as an exercise to the interested reader. We have:

© _ ©
Yi[l 3 0)sxl ) - Z E:l:[l’—i—nl ])E:I: [i;j'+nl)

o o
J<l<u
n n

(5.91),(5.92) i I
= E E F F
+[i’'+nl;j— "“k) +[i;j'+nl— "“k )

i—j’ <l<j7i/ k,k'>0
n — — n

8, =8 = n
q Gik,ﬂ\vGik’,T‘ (5.104)
(in the latter formula, we used the fact that group-like elements are central in BIJ[).
The assumption (5.25) implies that a|j — i + v and a|j’ — i’ F v. Moreover, we
assume that i’ = j and j/ = i modulo g = gcd(n, a), otherwise the right-hand sides
of (5.21) and (5.24) are 0 and the problem is vacuous. Therefore, we conclude that
i’ £ v =i modulo g. By switching the order of the sums, formula (5.104) equals:

=10 2 8=

Because the series (5.89) and (5.90) are inverses of each other, only the t =
0 summand in the formula above survives, and it precisely equals the RHS of
(5.26). O

Proof of Proposition 5.5 We will prove the case = = +, as the case + = — is
analogous. Due to Lemma 4.2, the required identity (5.29) is equivalent to:

2 ekl X
- _ q_
Z Vi jy i+ jry | 80a % +(q q 1)51 =
X'€Z/nT q9- =

. _,21 —ekx

8, —87, -1
=q" Z Yiirsjoy it jr) | 094 %+ (g—q )5] —

x€Z/nZ q_
(5.105)

which we will now prove. Because of formulas (3.71) and (3.72), we have:

_ B B _
B (Y[i;j)’[i/;j/)) - Z Au (E[i’+nl;j)> A (E[i:j’+nl))
Vs _
- Z Z [s+nl’; J) Ui El list+nl’) @ E[i/+n12S)E[t;j’+nl)
ey 1
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We make two remarks about the formula above: firstly, we set ¢ = 1 in the coprod-
uct, to keep notation simple (it will not be important for this proof). Secondly, the
sum in the latter expression involves picking an arbitrary representative (s, r) € Z>
of a certain residue class modulo (1, n), and then summing over all [, I’ such that all
the Ey,y) and E[y;y) which appear in the formula have x < y. After commuting all
the ¥ symbols to the very left of the expression above, we conclude that:

2
(s.0€ G55

Ysihjr
Ay (Yisjy.iinn) = > — L Vit ® Vi) iinjnd” (5.106)
1

i'—j<s—t<j—i
where ¥ =1 — 8] — 8+ 8tj + 8;{‘/ — 6? — (Sj:/ + 8;/. Therefore, we obtain:

81(/ 7

> 6 _
Ay Z Yiiojy.lir+x: j +x)) 5/4 "+ —q 1)3’

x'€Z/nZ q* -1

72
(s,t)e [CRDY/

WSwj’ = = ¥
Z Z Yiiij)tsio) @ Yooy liats jraand

X' E€LInT i~ <s—t<j—i wtlpi’
—ek/x’
80,q i + (qg—q Hs //—2— (5.107)
—1
q_
10 Similarly, we have:
—E —Skx
# Q’ Z Y[l,j ), [i+x;j+x) 8xq /_|_(q_ _1)5]_2 1
XE€ZL/nZ g> —
2
(x,t)e(nZT)Z |
| vl w481, 87,
Z Z wv w/ Y[S;t),[l"‘!‘x;j-i,-x) ® Yli/Qj/),[t;s)q i j
XELInTi'—j <s—t<j—i '
= —ekx
%% +(q—q —1)3152—_1 (5.108)

where # = 1 — 8] — 81 + 6 + 8/ — 6! — 5/ + 6] . Let us prove (5.105) by induction
on j —i + j/ — i’ (the base case will be covered by the induction step). By applying

10Note that the number % in (5.107) is still given by the same formula as the same-named number in
(5.107), because i’ = j" modulo n implies:

+x +x 5
8 =8 =8 48 =T s 5T
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the induction hypothesis, we see that the intermediate terms in the RHS of (5.107)
and (5.108) are both equal to the intermediate terms in the following expression:

(s.)e L2
Vs 4
2. ) 7, 1/// Yiisjtsin) ® Yiirsjo.fr-xis04
XEL/nLi'—j <s—t<j—i
_% —elx
807 + (g —g "8y L
q- —1

where # = ¥ + 8 — 8 = x+ 6, — 8, + 8 — 8l and | = Y5=DFE (the Tatter
expression is an integer, because unless s — t = j — i mod a, all the Y’s and Y’s
in (5.107) and (5.108) are 0). Therefore, we conclude that the intermediate terms in
(5.107) and (5.108) are equal to each other. Therefore, it remains to show that the left-
and right-hand sides of (5.105) have the same values under the linear maps (3.79).
For all u, v satisfying v —u = j — i + j' — i/, Claim 4.6 states that:

= 75kx
Wy | Y Vi it | 8907 Yt (g - 4_1)3, —
xeZ/nZ q- —
_1 j=iti =i’ (Sj ) o J_si
— (q _ q) 8l 81 na q (Sl (Sl/a+ na q J’ i’
(5.109)
(technically, the proof of Claim 4.6 only deals with the case ¢ = —1, but the case

e = 1 is analogous) and we also have the following analogous formula:

iy
— _ q_

Ao | 2 Fiptirvesee | 80077 o pL =
x'€Z/n7 q-

.= G i s g
e <3 §ig, ™ ¢ ~5, s 5’/@ g 8-“)(5.110)

i _sJ
Formulas (5.109) and (5.110) are equal up to qai/ 5/’, thus proving (5.105). O
6 Index of Notations

In the present section, we will give a list of the most common notations in the present
paper, and the location where they were first encountered.
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8ij Section 2.2
J
51’ mod g 4.7)
(%)
8, 4.8)
q+ (3.70)
xt (2.7)
Vs 2.7
Vstn = Vs (2.14)
@s (2.42)
P+k (2.23)
€t[i:j)» €£[i3 ) (2.34), (2.61)
sind = as.aq > (3.25)

v

connection between xl.jE and e4[;; j
connection between p+ and e4[;; j)
connection between e [;; j) and e[;; j)
A(Ys)

A(xF)

A(p+i)

Alex(i; ), Alexi:j)

A(as,+aq)

A(R%)

Au(R%)

intermediate terms in the coproduct

Uy(sly), UZ (sh), U (s1), U (sly)

Uy(aly), U7 (gh), U (g, U (aly)
Ug(al). U (al,)
T

(3.20), (3.27)
(2.38)—(2.39)
Definition 2.4
(2.62)

(2.15)
(2.16)-(2.17)
(2.24)—(2.25)
(2.35)—(2.36), (2.63)—(2.64)
(3.29)—(3.30)
(3.31)—(3.32)
(3.48)—(3.49)
(2.43)—(2.44)

.21

(2.21)

(2.29)

(2.49)

(3.34)

(3.35)

2.7), (2.18), (2.19), (2.22)

(2.23), (2.26), (2.27), (2.30)
(2.33), (2.40)

(2.53)
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deg (the grading on quantum groups) (2.41)
hdeg (horizontal grading on the shuffle algebra) (3.11)
vdeg (vertical grading on the shuffle algebra) (3.12)
(k, 1) 3.1
K| (3.2)
Rx* R 3.7
A* Definition 3.1, (3.15)
A, A=, A= (3.36), (3.19), (3.20)
Ask, Atk (3.13), (3.16), (3.14), (3.17)
naive slope (3.18)
slope Definition 3.5
hinge Section 3.8
AL, A<piik, A<plika (3.43), (3.44), (3.45)
BE (3.50)
BE, B, By (3.51)-(3.52), (3.56)
Xy = X5

fork=pu(j —i)and X €{A, A,B, B,E,E,F,F,P, P,e,e.f, f.p, p,o,0} (3.63)

A Al B B (3.59), (3.60), (3.61), (3.62)
El gy Efpigy (3.66)~(3.69)
Fiicjy Fiiicj) (5.3)~(5.10)
PGR . PGS (3.96, (3.97, (3.101)
P (4.16), (4.17)
Gl Gliy (5.89), (5.90)
Yﬂlfli;j),i[i/;j/)’ Yﬁ[i;j),ili/;j/) (5.21), (5.22)
Zitizpy iy Loty i ) (5.23),(5.24)
connection between Ei[i;j) and Ei[i;j) (3.75)
A (B ) S (Bysy) (3.71)~(3.74)
Ap (Fjlé[i;j)) A (Fﬁ[i;/‘)) (5.13)—(5.20)
Ax (P & ¢ (PSR (3.98)~(3.99), (3.102)~(3.103)
i j) (RF) (3.79), (3.80)
oafirs (Bl )y o jry (Bl ) (3.84)~(3.85)
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(k) (£K")
At[y;v) (P:t[l';j)), Ot [u;u+nl) (Pilé,r>
connection of ay;; ) with the pairing

W %
<Et K E— ")>

[EESRESS @D A
Piiijy Ex /')> <Pﬂzn’E¢[z )>

(ik) (Fk) (£k) (Fk)
( Pisr Eqi /)) (P:I:ISr’E i’ /)>
(k) (=k) k)  p(=k)
<P[l 7 P—[i’ ) (P[l 7 P_ ’,J/)>
(£k) é(ik)
x[i57)° Tkl j)
(k)  7(£k)
Fiy T
(k) (£K')
+[i; /) P+1s,r
~(£k)
Pfi;j
(£h) (£K')
Oxlijy O+18,r
~(+k)
Oxliz j)
+
Vijk(x)
C,C*

D, D+

(3.100), (3.104)

(3.83)
(3.86)
(4.37), (4.39)
(4.38), (4.40)
(4.41), (4.42)
(4.4)

(5.36)

4.2)

(4.9), (4.10)
(5.30)~(5.31)
(5.34), (5.35)
4.32)
@.11), (4.61)

(5.37), (5.43)
(5.49), (5.50)

Proposition 5.10
Proposition 5.10

(5.62)
(5.62)
(5.63)
(5.64)
(5.66)
(5.67)
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