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Abstract. Let X be a complex projective manifold, L an ample line bundle on X,
and assume that we have a C∗ action on (X,L). We classify such triples (X,L,C∗) for
which the closure of a general orbit of the C∗ action is of degree ≤ 3 with respect to L
and, in addition, the source and the sink of the action are isolated fixed points, and the
C∗ action on the normal bundle of every fixed point component has weights ±1. We treat
this situation by relating it to the classical adjunction theory. As an application, we prove
that contact Fano manifolds of dimension 11 and 13 are homogeneous if their group of
automorphisms is reductive of rank ≥ 2.
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A. Embedding SL3 into classical linear groups

1. Introduction

1.1. A view on manifolds with a C∗ action

Let us recall that Amplitude Modulation (AM) and Frequency Modulation (FM)
are two different technologies of broadcasting radio signals. AM works by modulat-
ing the amplitude of the signal with constant frequency. In FM technology the
information is encoded by varying the frequency of the wave with amplitude being
constant. In the present paper we adopt the idea of passing the information via
either AM or FM technology to deal with varieties with a C∗ action.

Given a complex projective variety X with an ample line bundle L and an
action of C∗ on (X,L), we can study this setup in two ways: (1) by examining the
amplitude of L on curves on X (AM technology) and (2) by understanding the
weights of a linearization of the action of C∗ on L over the connected components
of the fixed point set of this action (FM technology).

The structure of X with a C∗ action can be encoded in a graph whose vertices are
components of the fixed point locus, and the edges are orbits whose closures meet
the respective components. Given a linearization µL of the line bundle L, to each
component of the fixed point locus one can associate the weight in Hom(C∗,C∗) =
Z with which C∗ acts on fibers of L over the component in question. Now, the
radio analogy goes as follows: one can relate the values of µL (frequencies of L) on
the components of the fixed point set of the C∗ action with the degree (the volume)
of L on the closures of orbits joining the respective fixed point set components.

Namely, given a C∗ equivariant morphism f : P1 → X we get the following
identity (see Lemma 3.1):

δ · deg f∗L = µL(f(0))− µL(f(∞)) (AM↔FM)

where 0,∞ are the fixed points of the action of C∗ on P1, and δ = δ(T0P1) is the
weight of the C∗ action on the tangent of P1 at 0. Thus, the left-hand side of the
above equality measures the amplitude of the line bundle L, while the right-hand
side measures the difference of the weights of the C∗ action on the fibers of f∗L
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ADJUNCTION FOR VARIETIES WITH A C∗ACTION

over the fixed points. In view of the (AM↔FM) equality we define the bandwidth
of a pair (X,L) as the degree of the closure of a general orbit of the C∗ action with
respect to L, and we are interested in classifying some pairs (X,L) admitting a
C∗ action of small bandwidth.

In [11], [16] Ionescu and Fujita proved classification results for polarized pairs
(X,L) by looking at the nef value τ = τ(X,L) := min{t ∈ R : KX + tL is nef}
(see Theorem 2.1). In this paper, assuming that we have a nontrivial C∗ action on
(X,L), we will make use of the (AM↔FM) equality to study the positivity of the
divisor KX + tL, so that we are able to compute the nef value of (X,L) or find an
estimate of it. Combining this information with classical results from adjunction
theory, we obtain a first classification result for bandwidth one and two varieties
(see Theorem 4.1). As a main application of our approach we study pairs (X,L) of
bandwidth three which emerged naturally in the context of the LeBrun–Salamon
conjecture (see Theorem 4.5). To this end, the technique consists again in relating
new methods and properties due to the torus actions arising from Bia lynicki-Birula
decomposition (cf. Theorem 2.3) with the more classical adjunction machinery.

1.2. Motivation and contents of the paper

The celebrated LeBrun–Salamon conjecture in Riemannian geometry asserts that
the only positive quaternion-Kähler manifolds are Wolf spaces. Its algebro-geomet-
ric counterpart asserts that the closed orbits in projectivizations of adjoint repre-
sentations of simple algebraic groups are the only Fano contact manifolds. Recently,
in [5] the combinatorics of torus action have been used to prove the conjecture in
low dimensions. In the present paper we use the techniques of a C∗ action on
pairs (X,L) as above, to prove the following extension of previous results; see also
Theorem 6.2 for a more detailed formulation.

Theorem. Let Xσ be a Fano contact manifold of dimension ≤ 13 and PicXσ =
ZLσ. If the group of contact automorphisms G is reductive of rank ≥ 2 then Xσ

is the closed orbit in the projectivization of the adjoint representation of a simple
algebraic group.

It is known that the contact manifold coming from a quaternion-Kähler manifold
admits Kähler–Einstein metric, so that when dealing with the LeBrun–Salamon
conjecture the varieties in question have the group of the contact automorphisms
reductive, hence this assumption on G is not restrictive (see [32]). Moreover, earlier
results were for contact Fano manifolds X with dimX ≤ 9 and without lower
bound on the rank of the group of its automorphisms. Notice that, being the
dimension of the Lie algebra of G equal to h0(X,L) (see for instance [5, Lem.
4.5]), then the assumption on the rank is true if, e.g., h0(X,L) > 3. We refer
to Section 6, where after recalling past and recent results in the context of the
LeBrun–Salamon conjecture, we apply new methods from adjunction theory for
varieties with a C∗ action to solve the conjecture under the assumptions of the
above theorem.

Indeed, following the strategy of [5], to deal with the LeBrun–Salamon conjec-
ture we need to classify polarized pairs (X,L) of small bandwidth. As will be
explained in Subsection 6.3, such pairs (X,L) appear in our analysis as subvarieties
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of the initial Fano contact manifold, and we need to study them to collect all the
combinatorial data of the action as a crucial step to show the above theorem.
To this end, we use tools and new methods developed in the previous sections,
concerning adjunction theory for varieties admitting a C∗ action. In this framework,
the main technical result of the paper is Theorem 4.5 describing polarized pairs
(X,L) with an action of C∗ of bandwidth three which satisfies some technical
assumptions that are natural for the application to contact manifolds. Denoting
by n the dimension of X with n ≥ 2, the result is the following list of possibilities:

(1) (X,L) = (P(V),O(1)) is a scroll over P1, where V is either O(1)n−1 ⊕ O(3)
or O(1)n−2 ⊕ O(2)2, or

(2) (X,L) is a quadric bundle (P1 × Qn−1,O(1, 1)), or
(3) n ≥ 6 is divisible by 3 and X is Fano, ρX = 1, −KX = (2/3)nL.

In order to obtain the above classification, in Section 3 we relate the classical
adjunction theory (see [2], [12], [16]) and Mori theory (see [20], [24]) with a
combinatorial description of a manifold with a C∗ action. In fact, types (1) and
(2) of pairs (X,L) in the above list are described in terms of their adjunction
morphism. Type (2) in the above list leads to contact manifolds which are homo-
geneous with respect to SO groups, as described in the Appendix of the present
paper. Type (3) in the same list has been recently classified in [28] by using
different methods from birational and projective geometry. In total, there are four
of these varieties, all of them rational homogeneous; we refer to [28, Thm. 6.8]
for their complete list. In the recent preprint [29] the varieties of type (3) are
related to contact manifolds homogeneous with respect to the four exceptional
simple groups of F4, E6, E7 and E8 type. Dealing also with such cases in which
G is of exceptional type, in [28, Thm. 6.1] the LeBrun–Salamon conjecture has
been proved in arbitrary dimension, under certain assumptions on the rank of the
maximal torus.

Acknowledgements. Thanks to Joachim Jelisiejew, Gianluca Occhetta,  Lukasz
Sienkiewicz, Luis Solá Conde, Andrzej Weber for discussions; and to the referees
for their valuable comments which improved the exposition of the present paper.

1.3. Notation

The following notation is used throughout the article.

• X is a complex projective normal variety of dimension n. For the largest part
of the paper we assume X smooth with an ample line bundle L, so that (X,L)
is a polarized pair.

• Given a polarized pair (X,L) we denote by τ = τ(X,L) the nef value, namely
τ(X,L) := min{t ∈ R : KX + tL is nef}, moreover

φτ := φKX+τL : X → X ′

is the adjunction (or adjoint) morphism.
• We denote by H = (C∗)r an algebraic torus of arbitrary rank r, acting on X.

Moreover, we denote by M = Homalg(H,C∗) ∼= Zr the set of characters (or
weights) of H.
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ADJUNCTION FOR VARIETIES WITH A C∗ACTION

• XH =
⊔
i∈I Yi is the fixed locus of the H action, where I is a set indexing

its connected components; by Y = {Yi} we denote the set of the irreducible
fixed point components of XH .

• For an arbitrary line bundle L ∈ PicX we denote by µL : H × L → L (or
simply by µ) a linearization of the action of H on L. By abuse, we continue
to denote by µL : Y → M ∼= Zr the associated map on the set of fixed point
components, which we call the fixed point weight map, see Definition 3.

• Given a C∗ action on X, and a nef line bundle L ∈ PicX admitting a
linearization µ = µL, the bandwidth of the triple (X,L,C∗) is defined as
|µ| = µmax − µmin where µmax and µmin denote the maximal and minimal
value of the function µL, see Definition 4.

2. Preliminaries

In the present section we recall basic definitions and properties of adjunction
and Mori theory as well as regarding varieties with a C∗ action. We refer the reader
to [24] for a detailed exposition on Mori theory, and to [2], [12], [16] for an account
on adjunction theory. We work over the field of complex numbers, with projective,
irreducible, reduced varieties.

2.1. Adjunction and Mori theory

Let X be a normal projective variety of arbitrary dimension n. Let us denote
by N1(X) (respectively N1(X)) the R-spaces of Cartier divisors (respectively, 1-
cycles on X), modulo numerical equivalence. We denote by ρX := dim N1(X) =
dim N1(X) the Picard number of X, and by [·] the numerical equivalence class
in N1(X), and in N1(X). The intersection of divisors and curves determines a
nondegenerate bilinear pairing of these two R-spaces. We consider cones C(X) ⊂
N1(X) and A(X) ⊂ N1(X) spanned by classes of effective curves and classes of
ample divisors, respectively. Their closures (in the standard topology on R-spaces)
are dual in terms of the intersection product.

A contraction of X is a surjective morphism with connected fibers φ : X → Y
onto a normal projective variety. Any contraction yields a surjective linear map
φ∗ : N1(X) → N1(Y ) given by the push-forward of 1-cycles, and the pull-back of
Cartier divisors φ∗ : N1(Y )→ N1(X) such that φ∗([D]) = [φ∗(D)].

The case of our main interest is the following situation.

Assumption 1. Let (X,L) be a polarized manifold, namely X is a smooth projec-
tive variety of dimension n and L is an ample line bundle on it. In addition we
assume that the variety X admits a nontrivial C∗ action, that is C∗ × X → X,
with a linearization µ : C∗ × L→ L.1

For the polarized pair (X,L) we define its nef value as follows:

τ = τ(X,L) := min{t ∈ R : KX + tL is nef}.

We note that if X admits a C∗ action then it is uniruled, hence KX is not nef, so
that τ > 0. Thus, by the Kawamata rationality theorem (see [20, Thm. 4.1.1]) one

1Note that in Section 6 we consider the case when the variety is a contact manifold
Xσ of dimension 2n + 1 with an action of a torus Ĥ of rank ≥ 2.
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has τ ∈ Q. Moreover, the Kawamata–Shokurov Base Point free Theorem provides
the adjunction morphism

φτ := φKX+τL : X → X ′

such that KX +τL = φ∗τL
′ for some Q-Cartier ample divisor L′ on X ′. The variety

X ′ is normal and φτ has connected fibers, namely φτ is a contraction of X. In fact

X ′ = Proj

(⊕
m≥0

H0(X,m(KX + τL))

)
(1)

where m is such that m(KX + τL) is Cartier.
The following result is due to Ionescu and Fujita (see [16] and also [12]), and

will be crucial for proving the results in Sections 4 and 5.

Theorem 2.1. Let (X,L) be a polarized pair. Then τ ≤ n+ 1 with equality only
for the projective space, that is if (X,L) = (Pn,O(1)).

(1) Suppose that n ≥ 2 and τ < n+ 1. Then τ ≤ n with equality only if
1. either X is a smooth quadric, that is (X,L) = (Qn,O(1)), or
2. (X,L) is a Pn−1-bundle over a smooth curve with L relative O(1).

(2) Suppose that n ≥ 3 and τ < n. Then τ ≤ n− 1 with equality only if one of
the following holds:
1. (X,L) is a del Pezzo manifold, that is −KX = (n − 1)L; see [11], [17]

for their complete classification.
2. (X,L) is a quadric bundle over a smooth curve with L relative O(1).
3. (X,L) is a Pn−2-bundle over a smooth surface with L relative O(1).
4. The adjoint morphism φn−1 : X → X ′ is a birational morphism contract-

ing a finite number of disjoint divisors Ei ∼= Pn−1 to smooth points of
X ′ and L|Ei

∼= O(1); there exists an ample line bundle L′ over X ′ such
that φ∗n−1L

′ = KX + (n− 1)L.

The following observation follows easily by taking a rational curve C ⊂ X which
spans an extremal ray contained in the extremal face contracted by the adjoint
morphism φτ : X → X ′, and using that τ = −(KX · C)/(L · C) ≤ (n+ 1)/(L · C).

Remark 1. Let (X,L) be a polarized pair with n ≥ 3. Assume that τ > n − 2.
Then τ ≥ n − 1, and τ ∈ Z except for (X,L) = (P4,O(2)), (X,L) = (P3,O(3)),
and (X,L) = (Q3,O(2)).

2.2. Varieties with a C∗ action

Let us consider an effective (i.e. nontrivial) action of an algebraic torus H = (C∗)r
on a smooth projective variety X, that is H × X 3 (t, x) → t · x ∈ X. Given a
subtorus H ′ ⊆ H we can consider the resulting action H ′×X → X; this operation
will be called downgrading the action of H to H ′ (see [5, §2.2] for further details).
The action is called almost faithful if the resulting homomorphism H → Aut(X)
has a finite kernel.

Except for Section 6, we will be primarily interested in the case r = 1.
We consider the fixed locus of the action XH and its decomposition into con-

nected components:

XH =
⊔
i∈I

Yi

1436



ADJUNCTION FOR VARIETIES WITH A C∗ACTION

where I is a set of indices, and each component Yi is a smooth subvariety (see,
e.g., the main theorem in [18]). By Y = {Yi : i ∈ I} we denote the set of the
irreducible fixed point components of XH .

Remark 2. We stress that if X is smooth then the connected components of XH

are smooth, hence irreducible. If X is not smooth then the connected components
of XH may not be irreducible as the following example shows (thanks to Joachim
Jelisiejew): consider the quadric cone Q = {z1z2+z2z4 = 0} in the projective space
with coordinates [z0, z1, . . . , z4] and a C∗ action with weights (0, 0, 0, 1,−1). Then
the fixed point set consists of two isolated points [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], and the
reducible conic Q ∩ {z3 = z4 = 0}.

We have the following standard observation.

Lemma 2.2. Let X be a variety with an effective C∗ action. Then the cone of
curves C(X) is generated by classes of closures of orbits and by classes of curves
contained in the fixed locus of the action.

Proof. The result follows by applying standard Mori breaking technique using the
C∗ action, see, e.g., [36, p. 253] for details. Let us take an arbitrary irreducible

curve C ⊂ X with normalization f : Ĉ → C ⊂ X. We consider the morphism
F : C∗ × Ĉ → X defined by setting

C∗ × Ĉ 3 (t, p) 7→ F (t, p) = t · f(p) ∈ X.

We extend the morphism F to a rational map C× Ĉ 99K X which we resolve to a
regular morphism F̂ : Ŝ → X blowing up the product over 0 = C \C∗. The image

(as a 1-cycle) under F̂ of the fiber of Ŝ → C× Ĉ over 0 is the sum of curves which
are stable under the C∗ action and it is numerically equivalent to C. �

For every Y ∈ Y the torus H acts on TX|Y so that we get the decomposition
TX|Y = T+ ⊕ T 0 ⊕ T−, where T+, T 0, T− are respectively the subbundles of
TX|Y on which H acts with positive, zero or negative weights. Then, by local
linearization, T 0 = TY and

T+ ⊕ T− = NY/X = N+(Y )⊕N−(Y )

is the decomposition of the normal bundle NY/X into the part on which H acts
with positive, respectively, negative weights.

Definition 1. Setting as above. We say that the C∗ action on X is equalized if for
every component Y ∈ Y the torus acts on N+(Y ) with all the weights equal to +1
and on N−(Y ) with all the weights equal to −1.

It is a basic fact (see [33]) that for x ∈ X the action C∗ × {x} → X extends to
a holomorphic map P1×{x} → X, hence there exist limt→0 t · x, and limt→∞ t · x.
Moreover, since the orbits are locally closed, and the closure of an orbit is an
invariant subset, then both the limit points of an orbit lie in Y. We will call these
limits the source and the sink of the orbit of x, respectively.

For every Y ∈ Y we can define the Bia lynicki-Birula cells in the following way:
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X+(Y ) = {x ∈ X : lim
t→0

t · x ∈ Y } and X−(Y ) = {x ∈ X : lim
t→∞

t · x ∈ Y }.

The following result is due to Bia lynicki-Birula and known as BB decomposition.
We use this argument as presented in [6]. See [3] for the original exposition. A vast
generalization of this result, which is also valid for singular varieties, can be found
in a recent paper [19] and references therein.

Theorem 2.3. In the situation described above the following hold:

• X±i are locally closed subsets and there are two decompositions

X =
⊔
i∈I

X+(Yi) =
⊔
i∈I

X−(Yi)

which we call X+ or X− BB decomposition, respectively.
• For every Y ∈ Y there are C∗-isomorphisms X+(Y )∼=N+(Y ) and X−(Y )∼=
N−(Y ) lifting the natural maps X±(Y )→ Y . Moreover, the map X±(Y )→ Y

is algebraic and is a Crk±(Y ) fibration, where we set rk±(Y ) := rankN±(Y ).
• There is a decomposition in homology

Hm(X,Z) =
⊕
i∈I

Hm−2 rk+(Yi)(Yi,Z) =
⊕
i∈I

Hm−2 rk−(Yi)(Yi,Z).

The unique Y such that X+(Y ) is dense in X is called the source of the action.
The unique Y such that X−(Y ) is dense in X is called the sink.

We have a partial order on Y in the following way:

Yi ≺ Yj ⇔ ∃ x ∈ X : lim
t→0

t · x ∈ Yi and lim
t→∞

t · x ∈ Yj (2)

Definition 2. An effective C∗ action on a smooth variety X is said to have one
pointed end if its source or sink is a single point. The action is said to have two
pointed ends if both the source and the sink are isolated points.

We note that replacing t with t−1 we change the action to the opposite and X+

decomposition into X− decomposition. When we refer to a one pointed end action
we are assuming that the source is given by an isolated point.

Using BB decomposition we can describe the Picard group of our varieties in
terms of the source of the action.

Proposition 2.4. Let us keep the same notation of Theorem 2.3. Suppose that a
C∗ action on a smooth variety X has one pointed end with source y0. Then X is
rational, and PicX is finitely generated with no torsion. Moreover, the divisors
D+
i = X+(Yi) for Yi such that rk−(Yi) = 1, are irreducible and their classes make

the basis of PicX.

Proof. Applying Theorem 2.3, we get H2(X,Z) =
⊕

i∈I H2−2 rk−(Yi)(Yi,Z). Being

y0 an isolated point with rk− (y0) = 0, then the only fixed components Yi which
contribute to the homology are those having rk−(Yi)=1. Therefore H2(X,Z)∼=Zρ
with ρ ∈ Z≥0. By Theorem 2.3, one has X+(y0) ∼= Cn, hence X is rational. In
particular, X being simply connected, one has

PicX ∼= H2(X,Z) ∼= HomZ(H2(X,Z),Z) ∼= Zρ

and our claim follows. �
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2.3. Linearization

Let p : L → X be a line bundle over a normal projective variety with an action
of an algebraic torus H = (C∗)r. We recall that a linearization µ of L is an H
equivariant action on L which is linear on the fibers of p, that is for every t ∈ H
and x ∈ X the restriction µ : Lx → Lt·x is linear. In this case we say that (L, µ) is
an H linearized line bundle on X. See [27, §1.3], [4, §2.2] or [22, §2] for details on
linearizations. From now on, we denote by µL or simply by µ a chosen linearization
of the line bundle L.

By [22, Prop. 2.4] and the subsequent Remark in [22], we know that there exists
a linearization of the action of an algebraic torus H on L. Using [4, Lem. 3.2.4] we
deduce that given two line bundles L1 and L2 with linearizations µL1

and µL2
,

their product L1 ⊗L2 has a natural linearization µL1⊗L2
= µL1

+ µL2
, where for

H linearized line bundles we will use the additive notation. Also the dual of any H
linearized line bundle on X is H-linearized as well. Thus the isomorphism classes
of H-linearized line bundles form an abelian group relative to the tensor product,
which we denote by PicH(X). We have a short exact sequence:

0 // Hom(H,C∗) = M
γ

// PicH(X)
ϕ

// Pic(X) // 0 (3)

where ϕ forgets the linearization and γ are linearizations of the trivial bundle. In
particular, any two linearizations of a line bundle differ by a character. Moreover,
TX and ΩX have natural linearizations, hence KX too.

Remark 3. Given a line bundle L→ X with a linearization µ : H ×L→ L we get
the action on H0(X,L) such that

H ×H0(X,L) 3 (t, σ)→
(
x 7→ (t · σ)(x) := µ(t, σ(t−1 · x))

)
∈ H0(X,L)

for every σ ∈ H0(X,L), t ∈ H, and x ∈ X. When L is semiample we can consider
the graded finitely generated C-algebra R =

⊕
m≥0 H0(X,mL). As we have already

observed, each line bundle mL has an induced linearization, so then there is an
induced H action on H0(X,mL), hence on R.

Proposition 2.5. Let (X,L) be as in Assumption 1. Then the target of the ad-
junction morphism φτ : X → X ′ admits an action of C∗ (possibly non effective)
such that φτ is C∗ equivariant.

Proof. Taking the natural linearization for KX it follows that KX + τL admits a
linearization, and by Remark 3 we deduce that the torus acts on the variety given
by (1). In fact, taking a sufficiently large multiple m of the divisor KX + τL, we
may assume that m(KX + τL) is the pullback of a very ample divisor on X ′, and
the action on X ′ is induced by equivariant embedding into P(H0(X,m(KX +τL)).
�

The following construction was used in [5, §2.1]. Let X be a normal projective
variety with an action of an algebraic torus H of rank r whose set of fixed point
components is Y. Let us consider a linearization µL of a line bundle p : L → X,
and Y ∈ Y. Given y ∈ Y we associate µL(y) ∈ M = Homalg(H,C∗) ∼= Zr which
is the weight of the action of H on p−1(y). If y1, y2 belong to the same connected
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component Y , then µL(y1) = µL(y2), and we will denote this weight by µL(Y ).
In this way we get a homomorphism of abelian groups PicH(X)→MY, with MY

denoting the additive group of functions Y → M , which to linearized line bundle
(L, µL) associates the function

Y 3 Y 7→ µL(Y ) ∈M

Definition 3. The above constructed function, which by abuse we continue to
denote by µL (or simply by µ), will be called fixed point weight map

µL : Y → M = Homalg(H,C∗) ∼= Zr

Remark 4. Suppose that an algebraic torus H acts on X and it contains an
algebraic subtorus ι : H ′ → H. Then the action of H induces via ι the action
of H ′. Given any line bundle L over X with H linearization µL, we have a unique
induced linearization µ′L of the action of H ′. Moreover, we have the inclusion of

the fixed point locus XH ⊂ XH′ , and hence the map of the fixed point components
ι• : Y→ Y′. Then for the associated fixed point weight maps one has

µ′L ◦ ι• = ι∗ ◦ µL

where ι∗ : M →M ′ is the homomorphism of lattices of characters of the respective
tori.

In the case of a C∗ action on X, we distinguish the sink Y∞ of the action and
say that the linearization is normalized if µL(Y∞) = 0. That is, a normalized line
bundle (L, µL) is in the kernel of the homomorphism

PicC
∗
(X) 3 (L, µL) 7→ µL(Y∞) ∈ Z.

In other words, the choice of a normalized linearization splits the exact sequ-
ence (3).

Using the map µL for a C∗ action, we introduce the following new definition.

Definition 4. Let X be a normal projective variety admitting a C∗ action. Sup-
pose that L is a nef line bundle over X with the fixed point weight map µL : Y → Z.
We denote by µmin and µmax the minimal and maximal value of µ. The bandwidth
|µ| of the triple (X,L,C∗) is |µ| := µmax−µmin. For short, we also say that X and
L have bandwidth |µ|.

3. Adjunction, Mori theory for varieties with a C∗ action

In this section we describe the main ideas regarding adjunction theory for
varieties with a C∗ action.

3.1. AM vs FM

We begin with an easy example which we discuss in detail. Then we will prove AM
vs FM equality in Lemma 3.1. We refer to [29, §2.3] for some consequences of this
equality, and for its generalization to vector bundles.

1440



ADJUNCTION FOR VARIETIES WITH A C∗ACTION

Example 1. Let us consider the standard action of C∗ on P1 which in homoge-
neous coordinates [x0, x1] is defined as follows

C∗ × P1 3 (t, [x0, x1])→ t · [x0, x1] = [tx0, x1] ∈ P1

The two fixed points are y0 = [0, 1] and y∞ = [1, 0] with local coordinates
x0/x1 and x1/x0 on which C∗ acts with weights +1 and −1, respectively. If we
write t = x0/x1 and t−1 = x1/x0, then the action extends the action of C∗ on
itself. Moreover, if y ∈ P1 \ {y0, y∞} then limt→0 t · y = y0 and limt→∞ t · y = y∞.
Thus y0 is the source and y∞ is the sink of the action.

We recall that the universal bundle L = O(−1) is embedded into the trivial
bundle V ×P1, where V is the vector space with coordinates (x0, x1) and V \{0} →
P1 is the projection. The vector space has the obvious C∗ action t · (x0, x1) =
(tx0, x1), and the composition

L ↪→ V × P1 −→ P1

is C∗ equivariant. The fiber of L → P1 over y∞ = [1, 0] is a line with coordinate
x0, and over y0 = [0, 1] is a line with coordinate x1. This yields a linearization µL

of L such that µL(y∞) = 1 and µL(y0) = 0. Then, if we replace L = O(−1) with
L∨ = O(1) we get µL∨(y∞) = −1 and µL∨(y0) = 0.

Lemma 3.1. Let C∗×P1 → P1 be an effective action with fixed points y0 and y∞,
which are respectively the source and the sink of the action. Consider a line bundle
L over P1 with linearization µL. Then

µL(y0)− µL(y∞) = δ(y0) · degL

where δ(y0) denotes the weight of the C∗ action on the tangent space Ty0P1.

Proof. If L := O(−1) and the action is standard, then the statement follows by
Example 1. As observed in Subsection 2.3, a linearization of a line bundle implies
a linearization of its multiples and of its dual. Similarly, a multiple of the standard
action multiplies the weights, both δ and µ. Hence the claim follows. �

Now let us apply the above observation to any manifold X with a C∗ action.
Given a nontrivial orbit C∗ · x ↪→ X and its closure C ⊂ X we can take either
a normalization f : P1 → C ⊂ X or a parametrization fC∗ : P1 → C ⊂ X. The
latter is defined by the formula fC∗(t) = t · x for t ∈ C∗, so that the action of C∗
on P1 is standard.

The morphism fC∗ factors through the normalization f :

P1

fC∗

##

πδ
��

P1 f
// C ⊂ X

.

That is fC∗ = πδ◦f where πδ is C∗ equivariant cover P1 → P1 of degree δ associated
to the weight of the C∗ action on the tangent space Ty0P1. Equivalently, δ is the
order of stabilizer of x in C∗ acting on X.

Finally, if the action of C∗ on X is equalized then, by the local description of
the action around the fixed point components (see Theorem 2.3), we conclude that
C is smooth and f = fC∗ .

Having the above in mind we obtain the following:
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Corollary 3.2. Let X be a smooth variety with an effective C∗ action, and let
f : P1 → X be a non-constant C∗ equivariant map. Let y∞ and y0 be respectively the
sink and source of the action on P1. Take L a line bundle on X with linearization
µL. Then the following hold:

(a) deg f∗L has the same sign (or it is zero) as the difference

µL(f(y0))− µL(f(y∞)).

(b) If L is nef and the action of H is faithful, then the bandwidth of the triple
(X,L,C∗) is equal to the degree of L on the closure of a general orbit of C∗.

(c) If the action of C∗ is equalized and f is the normalization of the closure of
a nontrivial orbit C ⊂ X, then deg f∗L = µL(f(y0))− µL(f(y∞)).

Example 2. In what follows, we discuss an easy example of a non-equalized action
which explains the assumptions in the preceding corollary. Let us consider an action
of C∗ on P2 with weights (0, 1, 2), that is

C∗ × P2 3 (t, [z0, z1, z2])→ [z0, tz1, t
2z2] ∈ P2

with three fixed points y0 = [1, 0, 0], y1 = [0, 1, 0], y2 = [0, 0, 1], where y0 is the
source of this action, and y2 is the sink. If L = O(1) then µL(yi) = −i for i = 0, 1, 2,
so that (P2, L,C∗) has bandwidth two. Lines z0 = 0 through y1 and y2, and z2 = 0
through y0 and y1 are closures of orbits with the standard action of C∗. Take the
line z1 = 0 through y0 and y2. By Lemma 3.1, we deduce that this line is the
closure of the orbit with the action of C∗ of weight 2 (and thus the isotropy of
rank two), so that Corollary 3.2(c) fails. A general orbit is a conic z0z2 = a · z21
with a 6= 0.

3.2. Graph of the action, cone theorem

Let us start this subsection with a simple version of the localization theorem, see,
e.g., [10], [31] for more details. We are interested in the description of PicX in
terms of normalized linearizations.

Proposition 3.3. Let X be a projective manifold with an action of the torus
C∗. Take the decomposition of the fixed locus into irreducible components XC∗ =⊔
i∈I Yi with Y∞ denoting the sink component. Suppose that any effective curve

on X is numerically equivalent to a sum of closures of orbits of C∗. Consider a
function Υ : PicX →

⊕
Yi 6=Y∞ Z · Yi such that

Υ(L) =
∑

Yi 6=Y∞

µ∞L (Yi) · Yi

where µ∞L is the normalized linearization of L, i.e., µ∞L (Y∞) = 0. Then Υ is a
homomorphism of groups with the kernel equal to numerically trivial line bundles.

Proof. In the discussion following Remark 4, we noted that normalized lineariza-
tion splits the sequence (3). Therefore, Υ is the composition

PicX → PicC
∗
X → ZY →

⊕
Yi 6=Y∞

Z · Yi

where the arrow in the middle is the fixed point weight map, and the right arrow
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is the projection. Thus Υ is a homomorphism of groups. By Lemma 3.1, if µ0
L is

zero then the degree of L on the closure of every orbit is zero, hence the claim.
�

Definition 5. Let X be a smooth projective variety with an effective C∗ action.
We define a directed graph G = G(X,C∗) := (Y,E) with the set of vertices being
the set of the fixed point components Y = {Yi} of the C∗ action, and the set of

directed edges E defined as follows: ε(Yi1 , Yi2) =
−−−→
Yi1Yi2 ∈ E is a directed edge

joining components Yi1 , Yi2 ∈ Y if and only if there exists a nontrivial orbit C∗ · x
such that limt→0 t · x ∈ Yi1 and limt→∞ t · x ∈ Yi2 . Note that this edge is directed
from Yi1 to Yi2 and by (2) we have Yi1 ≺ Yi2 . In this case, we say that the fixed
point components Yi1 and Yi2 are joined by an orbit of the C∗ action; Yi1 precedes
Yi2 , and Yi2 succeeds Yi1 in the graph G.

Example 3. This is an extension of Example 1. Let us consider an action of C∗
on a vector space W of dimension d = d1 + · · ·+ ds, with dj > 0, given by weights
a1 > · · · > as, and eigenspaces of dimensions d1, . . . , ds. Namely, if t ∈ C∗ then in
some coordinates on W we have

t · (z1, . . . , zd1 ,zd1+1, . . . , zd1+d2 , . . .)

= (ta1z1, . . . , t
a1zd1 , t

a2zd1+1, . . . , t
a2zd1+d2 , . . .).

The C∗ action descends to Pd−1, the quotient of W via homotheties. The fixed
locus of this action has s components Y1 ∼= Pd1−1, . . . , Ys ∼= Pds−1 associated to
eigenspaces of weights a1, . . . , as respectively. The action of C∗ on the fiber of
W \ {0} → Pd−1 over Yi is of weight ai. Thus, the induced linearization µL of the
ample line bundle L = O(1) maps Yi to −ai. The graph G is a complete graph with
vertices in Y = {Y1, . . . , Ys} directed, so that we have

ε(Yi1 , Yi2) =
−−−→
Yi1Yi2 ∈ E ⇔ ai1 < ai2 ⇔ µ(Yi1) > µ(Yi2). (4)

We note that any polarized pair (X,L) with a C∗ action can be embedded
equivariantly into some projective space PN , so that mL is the restriction of O(1),
for some m � 0. Accordingly, the graph G of fixed points and orbits for X is
mapped to the graph of PN . Thus, in particular, the graph G has no directed
cycles nor loops.

An edge ε(Yi1 , Yi2) =
−−−→
Yi1Yi2 ∈ E is called minimal if there is no sequence of

length > 1 of directed edges joining Yi1 to Yi2 . The set of minimal edges for the
graph G = (Y,E) is denoted by E0.

In the situation of Proposition 3.3, we consider a vector space R|Y|−1 =
⊕

i 6=∞ R·
Yi with the dual basis of functionals Y ∗i . We define functionals ε̂(Yi, Y∞) = Y ∗i and
ε̂(Yi1 , Yi2) = Y ∗i1−Y

∗
i2

for i2 6=∞. For a functional ε̂, we denote by ε̂≥0 the halfspace
on which the functional is non-negative.

The following is an effective version of the nef cone for varieties with a C∗ action.

Theorem 3.4. In the situation of Proposition 3.3, we assume that the cone of
1-cycles C(X) is generated by classes of closures of orbits of the C∗ action. Let us
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consider the map ΥR : N1(X) →
⊕

Yi 6=Y∞ R · Yi which comes from the morphism
defined in Proposition 3.3. Then

ΥR(A(X)) = ΥR(N1(X)) ∩
( ⋂
ε(Yi1 ,Yi2 )∈E0

ε̂(Yi1 , Yi2)≥0

)
.

Proof. In view of Corollary 3.2, since C(X) is generated by classes of closures of
orbits of C∗, we need to prove that a line bundle L ∈ PicX is nef if and only if
the fixed point weight map µ∞L : Y → Z is non-increasing on the vertices of the
directed graph G. That is, the partial linear order given by the function µ∞L is
opposite to the order ≺ coming from the directed graph G. Given ε(Yi1 , Yi2) ∈ E,
then µ∞L (Yi1) ≥ µ∞L (Yi2) if and only if ε̂(Yi1 , Yi2)(µ∞L ) ≥ 0. It is enough to check
this inequality for the minimal edges ε(Yi1 , Yi2) ∈ E0 to conclude the proof. �

3.3. When orbits generate the cone of 1-cycles

In Proposition 3.3 and Theorem 3.4 we assume that the classes of closures of orbits
generate N1(X) and C(X), respectively. On the other hand, from Lemma 2.2 we
know that C(X) is generated by the classes of closures of orbits and classes of curves
contained in the fixed locus of the action. Hence the assumptions of Proposition 3.3
and Theorem 3.4 are satisfied when the fixed locus consists of a finite number of
points. In this subsection we extend this observation for a broader class of varieties
which turns out to be very useful in our applications.

Lemma 3.5. Assume that C∗ acts effectively on a projective manifold X. Suppose
that Y is a connected component of the fixed locus of the action. Then the following
conditions are equivalent:

(1) The component Y is succeeded in the directed graph G by one component
consisting of a single point y.

(2) The closure of the Bia lynicki-Birula cell X+(Y ) adds a single point:

X+(Y ) \X+(Y ) = {y}.

(3) The positive weight subbundle T+ of TX|Y is an ample line bundle and
there exists an H equivariant morphism:

PY (T+⊕ O) −→ X

where the action of H on the P1-bundle has two fixed point components
associated to two sections, Y 0 and Y∞. The section Y 0 has normal bundle
T+ and it is mapped isomorphically to Y ⊂ X; the section Y∞ has normal
bundle (T+)∨ and it is mapped to a point y ∈ X.

Proof. The implication (2)⇒ (1) is clear, because X+(Y ) contains all orbits whose
source is in Y . Also the implication (3)⇒ (2) is obvious. This let us focus on the
implication (1)⇒ (3).

Take L a very ample line bundle on X and consider a C∗ invariant divisor D
in |L| which does not contain y. Every orbit t · x of C∗ such that limt→0 t · x ∈ Y
has limt→∞ t ·x = y. Since the closure of every such orbit has intersection with D,
it follows that D ∩X+(Y ) = Y and, as a divisor on X+(Y ) ∼= T+ (cf. Theorem
2.3), the restriction of D is a multiple of the zero section in the bundle T+, that
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is D ·X+(Y ) = mY for some m > 0. Thus T+ is an ample line bundle over Y on
which H acts with a weight δ > 0. Moreover, since the argument does not depend
on the choice of a very ample L, the restriction PicX → PicY is contained in
Z · T+. On the other hand, because of Lemma 3.1, the degree of any line bundle
L on the closure of every orbit joining Y with y is equal to (µL(Y )− µL(y))/δ.

The projective P1-bundle π : PY (T+⊕ O) → Y has two sections associated to
projections to two factors of the decomposable bundle. We denote the one with
normal T+ by Y 0 and the other one, whose normal is dual to T+, by Y∞. Since
T+ is ample, we have a contraction morphism

PY (T+⊕ O)→ Proj(Sym(T+⊕ O)) := S(Y, T+)

which contracts the section Y∞ to a point y∞ which is the vertex of the projective
cone S(Y, T+). We define the action of C∗ on PY (T+⊕O) so that Y 0 and Y∞ are
the source and sink, respectively, and along the fibers of the P1-bundle the action
has weight δ. Therefore, we have a C∗ equivariant embedding T+ ↪→ PY (T+⊕ O)
with image equal to PY (T+⊕ O) \ Y∞ = S(Y, T+) \ {y∞}.

We claim that the C∗ equivariant isomorphism T+ ∼= X+(Y ) (see Theorem 2.3),
extends to a regular C∗ equivariant morphism

PY (T+⊕ O)→ S(Y, T+)→ X

which has the properties as in (3). Indeed, any C∗ invariant divisor in |mY | on
T+ ∼= X+(Y ) extends to PY (T+⊕ O) as the sum aY 0 + bY∞ + π∗(M), where
a+ b = m and M ∈ |bT+|. Thus the desired extension exists and maps Y∞ to y.
We note that S(Y, T+)→ X+(Y ) ↪→ X is the normalization. �

We note that changing the direction of the action of C∗, and therefore the
direction of the graph G, we get a similar statement as in the lemma above, with
0 swapped with ∞, source with the sink, and T+ with T−.

Corollary 3.6. Assume that C∗ acts effectively on a projective manifold X, and
let Y be a fixed point component which satisfies one of the equivalent conditions
of Lemma 3.5. Then the curves contained in Y are numerically proportional to
classes of closures of orbits joining Y with y.

Proof. The corollary is a version of a known observation that curves in the base of a
cone are numerically proportional to lines in the ruling of the cone. We use Lemma
3.5(3), and keep the same notation there introduced. For an irreducible curve C

contained in PY (T+) = Y∞, one has C ≡ C̃+αF , where C̃ is an irreducible curve
contained in PY (O) = Y 0, F is a fiber of the P1-bundle PY (T+⊕ O) → Y , and

α ∈ Q. Mapping PY (T+⊕ O) to X, since C̃ is contracted to a point, we get the
claim. �

3.4. Technical lemmata

This last part of the present section contains technical lemmata which will be used
later in our applications.
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Lemma 3.7. Let φ : X → Z be a surjective C∗ equivariant morphism of two
normal projective varieties with an action of C∗. Suppose that X is smooth and Y0
(resp. Y∞) is the source (resp. the sink) of X. Then for a general z ∈ Z we have

lim
t → 0

t · z ∈ φ(Y0) and lim
t → ∞

t · z ∈ φ(Y∞).

Proof. Since φ is equivariant, its restriction to X+(Y0) or, respectively, to X−(Y∞)
dominates Z, and this implies the claim. �

Corollary 3.8. Let φ : X → Z be a surjective C∗ equivariant morphism of two
normal projective varieties with an action of C∗. If X is smooth and the action of
C∗ on X has one pointed end or two pointed ends, then the action on Z has at
least one pointed end or two pointed ends, respectively.

Lemma 3.9. Suppose that C∗ acts effectively on a projective manifold X. Let us
consider two different components Y1 and Y2 ∈ Y. Assume that both Y1 and Y2 are
succeded in G by a single point component {y} ∈ Y. Then we have

dimY1 + dimY2 ≤ n− 2

Proof. First we observe that dimX+(Y1)+dimX+(Y2) ≤ n, otherwise there would
be an orbit passing through y and belonging to X+(Y1) ∩ X+(Y2), against BB
decomposition. On the other hand, because Yi ( X+(Yi) for i = 1, 2, we obtain
that

dimY1 + dimY2 + 2 ≤ dimX+(Y1) + dimX+(Y2) ≤ n

hence the claim. �

4. Varieties with small bandwidth

In the present section we classify polarized varieties (X,L) with an effective
C∗ action such that the bandwidth, or the degree of the closure of a general orbit,
is ≤ 3.

4.1. Bandwidth ≤ 2

The following has been proved in [5, Prop. 3.12], we reprove it using the notion of
adjunction.

Theorem 4.1.Let (X,L) be a polarized pair satisfying Assumption 1, and dimX=
n. Then

• if the sink of the action is an isolated point, and |µ| = 1 then (X,L) =
(Pn,O(1));
• if n ≥ 2 and the C∗ action has two pointed ends with |µ| = 2 then either

(X,L) = (Pn,O(1)), or (X,L) = (Qn,O(1)). Moreover, the C∗ action is
equalized only in the latter case.

Proof. Assume that |µ| = 1. Let Y∞ = {y∞} and Y0 be respectively the sink and
the source of the action. We can take µ(Y∞) = 0, so that µ(Y0) = 1. Applying [5,
Lem. 3.11] we deduce that µKX (Y∞) ≥ n and µKX (Y0) < 0. Therefore

µKX+nL(Y∞) ≥ n > µKX+nL(Y0)
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and denoting by C the closure of an orbit joining the source and the sink, by
Corollary 3.2 (a) we get the inequality (KX +nL) ·C < 0, so that KX +nL is not
nef. Therefore, using Remark 1 one has τ = n+ 1, and by Theorem 2.1 we obtain
that (X,L) = (Pn,O(1)).

Similarly, in case |µ| = 2, Y∞ = {y∞}, Y0 = {y0}, we get

µKX+nL(Y∞) ≥ n ≥ µKX+nL(Y0).

If µKX+nL(Y∞) > µKX+nL(Y0), then as above we deduce that KX + nL is not
nef, τ = n + 1 and applying Theorem 2.1 we get (X,L) = (Pn,O(1)). Assume
that µKX+nL(Y∞) = n = µKX+nL(Y0), and thus KX +nL is nef. Then the divisor
KX + nL has intersection zero with a general orbit joining the source and the
sink, so that the adjoint morphism φn contracts X to a point. Applying again
Theorem 2.1, which in this case coincides with a classical result by Kobayashi and
Ochiai (see [23]), we then deduce that either (X,L) = (Pn,O(1)), or (X,L) =
(Qn,O(1)). In the first case, the C∗ action in coordinates will be (t, [z0, . . . , zn])→
[z0, tz1, . . . , tzn−1, t

2zn]. This action is not equalized because there exists an inva-
riant line joining the sink and the source, and in view of Lemma 3.1 one has that
the weight of the tangent bundle of this line at the sink is 2 (the case n = 2 has been
discussed in Example 2). Consider (X,L) = (Qn,O(1)). The action of a maximal

torus Ĥ on (X,L) is described in [5, Exmpl. 2.20]. Now, the C∗ action is obtained

from a downgrading of the action of Ĥ, that gives a projection of the corresponding
lattice of characters π : M̂ → Z. We observe that taking a component Y ⊂ XC∗

corresponding to a weight i ∈ Z, the weights of the C∗ action on NY/X are obtained

as projection of the weights of the Ĥ action on the normal bundles at all the fixed

components of XĤ which correspond to the weights that are sent to i through π.
Using the computations done in [5, Exmpl. 2.20] regarding the weights of the Ĥ
action on the cotangent bundles at the fixed components, we obtain the weights on
the normal bundles at the same components, and using the previous observation
we finally conclude that the C∗ action is equalized. �

The following two results concern the action of a torus on a quadric, a case
of small bandwidth. Before this discussion, we recall by [5, §2.1] that for any
polarized pair (X,L) with an action of an algebraic torus H, the polytope of fixed
points ∆(X,L,H, µL) is the convex hull of the image of the weight point map µL
(see Definition 3).

Lemma 4.2. Let X be a smooth quadric of dimension n ≥ 3. Suppose that C∗
acts effectively on X with fixed locus consisting of two components. Then both fixed
point components are isomorphic to Pm, with m = bn/2c.

Proof. X being a smooth quadric, C∗ is contained in some maximal torus Ĥ
of SOn+2 with the lattice of characters M̂ =

⊕m
i=0 Zei. Thus, we are in the

situation described in [5, Exmpl. 2.20] and the action of C∗ is obtained from

some downgrading C∗ → Ĥ which comes with the homomorphism of lattices of
characters M̂ → Z. We know that the polytope ∆ = ∆(Qn,O(1), Ĥ) = conv(±ei,
i = 0, . . . ,m) has 2(m + 1) vertices associated to fixed points of the action of Ĥ.
Moreover, the polytope ∆ is central symmetric and therefore its projection has the
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same property. In view of Remark 4 all vertices of ∆ are mapped via M̂ → Z to the
set consisting of two points. Therefore the projection contracts two opposite facets
of ∆(Qn,O(1), Ĥ), each containing at least m+ 1 vertices, thus both symplices are
associated to Pm. The last statement follows by [5, Lem. 2.10]. �

Proposition 4.3. Let X be a smooth quadric of dimension n ≥ 3 or a quadric
cone, that is a cone over the smooth quadric of dimension n− 1. By L we denote
the line bundle O(1). Suppose that the torus C∗ acts effectively on X with one
pointed end, and the bandwidth of the action is |µ| ≤ 2. Then one of the following
holds:

(1) X is a smooth quadric, |µ| = 2, the C∗ action has two pointed ends y0 and
y2, and XC∗ = {y0, y2} t Qn−2.

(2) X is a quadric cone and XC∗ has two components: the vertex and a divisor
∼= Qn−1.

(3) X is a quadric cone and XC∗ has three components: the vertex and two
components ∼= Pm, with m = b(n− 1)/2c.

Proof. First, suppose that X is the smooth quadric Qn, so that we are in the
situation described in [5, Exmpl. 2.20]. The torus C∗ is contained in some maximal

torus Ĥ of SOn+2 with the lattice of characters M̂ . Denote by r the rank of Ĥ, and

take e1, . . . , er a basis of M̂ . By the downgrading, we see that the linearization of
the action is associated to a projection π : M̂ → Z. From [5, Exmpl. 2.20] we know

that ∆(Qn,O(1), Ĥ) = conv(±ei, i = 1, . . . , r), and all the fixed points correspond

to vertices of this polytope. Therefore π(∆(Qn,O(1), Ĥ)) is a central symmetric
polytope, and the action of C∗ has two pointed ends corresponding to π(ei), π(−ei)
for some i = 1, . . . , r. Moreover, the elements ±ej with j 6= i will be projected to
the same point in Z, so that |µ| = 2. We then obtain that the fixed point component
associated to such a point is isomorphic to Qn−2, and this settles the smooth case.

Now suppose that X is a quadric cone. Let us choose a section of L = O(1)
which is C∗ equivariant and does not vanish at the vertex of the cone. Thus, the
zero set X ′ ⊂ X is a smooth quadric invariant with respect to the action of C∗.
Then either X ′ ∈ XC∗ and we get (2), or the restriction of the action of C∗ to
X ′ has bandwidth 1. In this latter case, applying Lemma 4.2 to X ′ we obtain (3).
�

4.2. Bandwidth 3

In this subsection we will study polarized pairs (X,L) under the following assump-
tion.

Assumption 2. Let (X,L) be a polarized pair, where X is a manifold of dimen-
sion n ≥ 2 with a linearized C∗ action, such that it has two pointed ends and the
bandwidth of (X,L,C∗) is three. In addition, assume that the action is equalized.

We start by discussing the easier case of surfaces, that was first studied in [5,
Exmpl. 3.16].

Lemma 4.4. Assume that (X,L) satisfies Assumption 2, with n = 2. Then either
(X,L) = (P1 × P1,O(1, 2)), or (X,L) = (PP1(O(1)⊕ O(3)),O(1)).
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Proof. First, using either BB decomposition or the localization theorem (see proofs
[5, pp. 29–30]) we get the description of the fixed point components, which are
four isolated points, one for every weight 0, . . . , 3. Applying Proposition 2.4 and
its proof, we conclude that X is rational, and PicX ∼= Z2. Therefore, X ∼= PP1(O⊕
O(e)) for some e ∈ Z≥0. We will observe that either e = 0 or e = 2.
L being ample on a Hirzebruch surface, we may write L = aC0 + bF , where

C0 is the minimal section, F the fiber of the natural projection, a > 0, and
b > ae. The C∗ action on X is obtained by a downgrading of a (C∗)2 action
on X. The weights of this action on L at the fixed points are the following: (0, 0);
(0, a); (b− ae, a); (b, 0) (cf. [7, Ex. 6.1.18]). Then, the weights of the C∗ action are
obtained by a projection π : Z2 → Z, such that π(4(X,L, (C∗)2)) = 4(X,L,C∗).
A straightforward computation shows that the only cases in which we get a band-
width three C∗ action having one fixed point corresponding to each lattice point,
are those listed in the statement. �

We now extend the study of bandwidth three varieties to a high dimension. The
following result will be the crucial point to prove the results in Subsection 6.3, and
will be shown in Section 5, by using adjunction theory when n ≥ 3. Here, by inner
fixed points components we mean the components which are neither the sink nor
the source.

Theorem 4.5. Suppose that (X,L) satisfies Assumption 2. Then one of the fol-
lowing holds:

(1) (X,L) = (P(V),O(1)) is a scroll over P1, with L being relative O(1) on
the projectivisation of the vector bundle V which is either O(1)n−1 ⊕ O(3)
or O(1)n−2 ⊕ O(2)2. The inner fixed points components are two copies of
Pn−2.

(2) (X,L) = (P1×Qn−1,O(1, 1)) is a product quadric bundle over P1. The inner
fixed points components are two isolated points and two copies of Qn−3.

(3) n ≥ 6 is divisible by 3 and X is Fano, ρX = 1, −KX = (2/3)nL. The inner
fixed points components are two smooth subvarieties of dimension 2n/3−2.

In the scroll case, we have the standard action of a rank n algebraic torus on X;
in the quadric bundle case one has the standard action of C∗×Hr, with C∗ acting
on P1, and Hr a maximal rank torus acting on Qn−1. In Examples 4, 5 we will
see how the C∗ action is obtained from a downgrading of the standard action of
the respective torus of bigger rank. In Example 6, we present a variety satisfying
Theorem 4.5(3). Notice that the classification of varieties satisfying part (3) of
the above theorem has been recently reached in [28], using tools from birational
and projective geometry. In total, there are four of these varieties, all of them are
rational homogeneous; we refer to [28, Thm. 6.8] for their complete list.

4.3. Examples

Example 4. Let us consider the standard action of C∗ on P1 with source at y0
and sink at y∞. For any line bundle L over P1, we can choose its linearization so
that µL(y0) = a and µL(y∞) = a− degL, where a ∈ Z can be chosen arbitrarily,
cf. (3) and Lemma 3.1. Given a decomposable bundle V over P1, we can define its
linearization by linearizing its components. If V = O(1)n−1⊕O(3) then we linearize
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O(1)’s with µ(y∞) = 1 and µ(y0) = 2, while the component O(3) is linearized so
that µ(y∞) = 0 and µ(y0) = 3. This determines the action of C∗ on X = P(V)
with the linearization of the relative L = O(1).

Alternatively, the pair (X,L) can be described as a toric variety associated to a
polytope ∆(L) in a lattice M with generators ei, i = 1, . . . , n. We take the vertices
of ∆ as follows: 0, 3e1 and e1 + ei, 2e1 + ei for i > 1. The action of C∗ is defined
by a downgrading M → Z by the projection to the first coordinate.

A similar construction works for V = O(1)n−2 ⊕ O(2)2. We linearize O(1)’s as
before with µ(y∞) = 1 and µ(y0) = 2, one copy of O(2) with µ(y∞) = 0 and
µ(y0) = 2, and the other with µ(y∞) = 1 and µ(y0) = 3. Or, alternatively we take
∆(L) in M =

⊕n
i=1 Zei with vertices as follows: 0, 2e1 and e1 + e2, 3e1 + e2, and

e1 + ei, 2e1 + ei for i > 2. The action of C∗ is defined by downgrading M → Z by
the projection to the first coordinate.

The fixed locus has four components: two extremal fixed points and two compo-
nents isomorphic to Pn−2. The chosen linearization of the bundle L associates to
them the values 0, 1, 2, 3.

We note that KX + nL = π∗O(n), with π : P(V) → P1 the natural projection,
hence the nef value of the polarized variety (X,L) is n and π is the adjunction
map for (X,L).

In Figure 1 we present schematically the scroll situation: the thick black points
and line segments are fixed point components, the thin, dotted and dashed line
segments are orbits, and the shaded regions are fibers of the adjoint morphism
over 0 and ∞.

µ

Figure 1. Scroll case: fixed points, orbits, linearization

Example 5. For r ≥ 2, let Hr be a torus (C∗)r with lattice of characters M =⊕r
i=1 Zei. The standard action of Hr ⊂ SO2r, SO2r+1 on the quadrics Q denoting

Q2r−2 or Q2r−1 has a natural linearization on O(1), so that ∆(Q,O(1), Hr) has
vertices ±ei. Take P1 with the standard action of C∗, and the linearization of O(1)
with weights (1, 2). Consider X = P1 × Q with the induced action of the product
C∗ ×Hr, and the lattice of characters Ze0 ⊕M . If L = O(1, 1) then the induced
linearization yields ∆(Q, L,C∗ ×Hr) with vertices e0 ± ei, 2e0 ± ei for i > 0.

Now, we take the action of C∗ on X = P1 × Q which is obtained by the
downgrading associated to the projection

⊕r
i=0 Zei → Z such that e0, e1 7→ 1

and ei 7→ 0 for i > 1.
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If dimX = 3, then X = P1 × P1 × P1, L = O(1, 1, 1), and the downgrading
can be described in a symmetric way as a projection of a cube onto one of its
diagonals. The action has 8 fixed points. We note that in this case −KX = 2L and
the associated adjoint morphism contracts X to a point. In Figure 2 we present
schematically the fixed point set together with the orbits of the action, and the
associated value of the linearization µ on the fixed point components.

µ

Figure 2. P1 × P1 × P1 with diagonal C∗ action

If dimX = n > 4, then the induced action of C∗ has two pointed ends and
there are two fixed components associated to each weight 1 and 2: one is given by
an isolated point, the other one is isomorphic to Qn−3. In particular, for n = 4 the
two fixed components associated to the weight 1 are an isolated point, and another
one isomorphic to P1 with the restriction of L being O(2), and the same holds for
the fixed components associated to the weight 2.

The nef value of the pair (X,L) is n−1 with the adjoint map being the projection
X → P1.

In Figure 3 we present schematically the fixed point locus together with the
orbits of the action, and the associated value of the linearization µ on the fixed
point components. The two shaded regions present the fibers of the adjoint mor-
phism over the fixed points of the C∗ action on P1, that is 0 and ∞.

µ

Figure 3. P1 × Q with C∗ action
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Example 6. Consider the Sp6 homogeneous variety, namely the Lagrangian Gras-
smannian of isotropic planes in P5. We verify that such a variety satisfies Theorem
4.5(3). It has dimension 6 and lives in P13 (see [13, §17.1] for details about
this variety). The representation of dimension 14 is associated to the highest
weight (1, 1, 1). The action of the big torus in Sp6, which is of rank 3, has 8
fixed points associated to the Weyl group orbit of the dominant weight. The
weights associated to fixed points yield a cube in the weight space. We take the
downgrading associated to the projection of the cube onto a long diagonal. The
resulting C∗ action has fixed point locus which consists of two isolated points (the
source and the sink) and two copies of P2. A schematic picture is presented in
Figure 4, with shaded triangles denoting the surface components of the fixed point
set. The adjoint morphism contracts the variety to a point. We refer the interested
reader to [28, §6] for the complete treatment and classification of all the varieties
satisfying Theorem 4.5(3).

µ

Figure 4. The Sp6 homogeneous variety

Remark 5. In the case in which all fixed points are isolated points, we can apply BB
decomposition and equivariant cohomology. Assume that n≥3. Under the Assump-
tion 2, the equivariant Riemann–Roch gives the formula for χm(t) = χ(X,Lm) (see
[5, Cor. A.3]):

χm(t) =
1

(1− t)n
+ a

tm

(1− t−1)(1− t)n−1
+ a

t2m

(1− t)(1− t−1)n−1
+

t3m

(1− t−1)n

where a = rank PicX is the number of fixed points associated to the weights 1
and 2. In fact, because of the BB decomposition, X has pure cohomology and
χ(OX) = 1; therefore

1

(1− t)n
+ a

1

(1− t−1)(1− t)n−1
+ a

1

(1− t)(1− t−1)n−1
+

1

(1− t−1)n
= 1.

From this, multiplying by (1 − t)n(1− t−1)n we get the equality

(1− t)n+(1− t−1)n+a(2− t− t−1) ·
(
(1− t−1)n−2 + (1− t)n−2)

)
= (2− t− t−1)n.
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For n = 2 we get a = 1, while for n = 3 we get a = 3. Let us assume n ≥ 4 and
write the highest terms of the left-hand side

(−t)n + (n+ a) · (−t)n−1 +

((
n

2

)
+ na

)
· (−t)n−2 + · · ·

while the highest terms of the right-hand side are

(−t)n + 2n · (−t)n−1 +

(
4

(
n

2

)
+ n

)
· (−t)n−2 + · · ·

Comparing the second and the third term we see that for n ≥ 4 there is no solution.
For n = a = 3 we have the case of P1 × P1 × P1.

5. Classification of bandwidth 3 varieties

This section is devoted to prove Theorem 4.5. Let us keep Assumption 2, where
we consider a normalized linearization µ so that we define Yi := {Y ∈ Y : µ(Y ) = i}
for i = 0, 1, 2, 3. All the fixed components in Y1 and Y2 are called inner components.
Using this notation, we will denote by Y0 = {y0} and Y3 = {y3} respectively the
sink and the source of the C∗ action. In view of Lemma 4.4, from now on we
suppose that n ≥ 3.

Lemma 5.1. In the situation of Assumption 2 we have Y1 6= ∅ 6= Y2. Moreover,
in notation of Theorem 2.3, for every Y1 ∈ Y1, Y2 ∈ Y2 we have rk+(Y1) = 1 =
rk−(Y2).

Proof. Firstly, arguing as in the proof of Proposition 2.4, we note that for n > 1 we
have Y1∪Y2 6= ∅. So, contrary to what the lemma says, let us assume Y2 = ∅ and
take Y ∈ Y1. Then, because of Lemma 3.5, one has rk+(Y ) = rk−(Y ) = 1, hence
dimY = n− 2, and both X+(Y ) and X−(Y ) are divisors. Thus, using Lemma 3.9
we deduce that there are no other fixed point components in Y1, that is Y1 = {Y }.
Again, by Proposition 2.4, divisors X+(Y ) and X−(Y ) are linearly equivalent and
PicX = Z ·D, where D is their equivalence class. Moreover, if C1 is the closure of
an orbit with source at Y and sink at y0 and C2 the closure of an orbit with source
at y3 and sink at Y , then D ·C1 = D ·C2 = 1. However, because of Corollary 3.2,
L · C1 = 1 while L · C2 = 2, a contradiction. The last statement follows again by
Lemma 3.5. �

5.1. Orbits

The following is the graph of closures of possible orbits joining fixed points compo-
nents with Y i1 ∈ Y1 and Y j2 ∈ Y2. By abuse, the orbits and their closures will be
called by the same name. We use the notation A∗ to denote that there could
be different orbits of type A joining the component Y0 (or Y3) with one of the
components Y i1 ∈ Y1 (respectively, with one of the components Y j2 ∈ Y2). In the
same way, B∗ and C∗ denote the possible different orbits of type B and C.

1453



ELEONORA A. ROMANO, JAROS LAW A. WIŚNIEWSKI

•Y0
•Y i1 •Y j2 •Y3A∗ A∗

B∗ B∗

C∗

E

Remark 6. For n ≥ 2 orbits of type A and E always exist. However, not all of the
above types of orbits always exist:

(1) if X = P1 × P1, L = O(1, 2) then there are no orbits of type C,

(2) if X = P(O(1)n−1 ⊕ O(3)) then there are no orbits of type B.

In what follows, if not needed, we will not distinguish curves of different types A
or B and, if no confusion is probable, we will write d∗ for the respective dimension
of a component in Y∗.

Lemma 5.2. Let (X,L) be as in Assumption 2 and let us keep the above notation
for the possible orbits. The first two rows in the following table present the inter-
section of the closure of the orbit of the respective type (the column) with the divisor
L and −KX . The third row presents the resulting estimate on τ .

A∗ B∗ C∗ E
L 1 2 1 3
−KX d∗ + 2 2n− d∗ − 2 2n− 4− (d1 + d2) 2n
τ ≥ d∗ + 2 n− 1− d∗/2 2n− 4− (d1 + d2) 2n/3

For curves of type A and B, by d∗ we denote the dimension of the corresponding
fixed source or sink component in Y1 or Y2. For curves of type C, by d2 and d1 we
denote the dimension of the sink/source component in Y2, Y1, respectively.

Proof. In view of Corollary 3.2, the values of the first two rows are obtained by
calculating the difference in µL and µ−KX at the source and the sink of each of
the one-dimensional orbits of the respective type. The values for µL are known.
Here, by µ−KX we denote the natural linearization of −KX . Since the action is
equalized, by [5, Lem. 3.11] we have

µ−KX (Y ) = rk+(Y )− rk−(Y )

where we use the notation rk±(Y ) = N±(Y ) as in Theorem 2.3. On the other hand,
by Lemma 3.5 one has rk+(Y1) = rk−(Y2) = 1 for Y1 ∈ Y1, Y2 ∈ Y2. This allows
us to compute the values of µ−KX , and thus of the second row in the table. The
third row is obtained by calculating the value of KX + τL from the two previous
rows. �
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Proposition 5.3. In the situation of Assumption 2 we have the following:

(1) The space of 1-cycles N1(X) and the cone of curves C(X) are generated by
classes of closures of orbits of the C∗ action.

(2) If −KX = τL then τ = 2n/3 and for any Y ∈ Y1 ∪ Y2 we have dimY =
2n/3− 2.

(3) X is a Fano manifold unless there are components Y1 ∈ Y1, Y2 ∈ Y2, both
of codimension 2, connected by an orbit of type C.

(4) If there exists a component of XH of codimension 2, then τ ≥ n.
(5) If a component in Y1 ∪ Y2 does not meet a curve of type C, then it is of

codimension 2.

Proof. Claim (1) follows by Corollary 3.6. To prove (2) we note that the orbits of
type E are general, thus they always exist, so, by Lemma 5.2, using the column
associated to E, we have

−KX · E = 2n = τL · E = 3τ

while using other entries in the table we get 2n−d∗−2 = 4
3n. In order to show (3)

we use Lemma 5.2 again, and look at the intersection of orbits with −KX , where
we recall that d∗ ≤ n − 2. Part (4) follows by the existence of orbits of type A,
and by the respective entries at the last row of the above table. Finally, assume
that Y ∈ Y1 ∪ Y2 does not meet a curve of type C. Then, by Lemma 3.5 we get
rankN±(Y ) = 1, hence dimY = n− 2 and we obtain (5). �

5.2. τ ≥ n, scroll over a curve

If τ ≥ n, then because of Proposition 5.3(2), we know that (X,L) is neither
(Pn,O(1)) nor (Qn,O(1)). Thus by Remark 1 and Theorem 2.1, it follows that
(X,L) is a scroll over P1. This is the first claim in the following.

Lemma 5.4. If the nef value of the pair (X,L) is ≥ n then this pair is a scroll
over P1 as described in case (1) of Theorem 4.5.

Proof. By the above discussion, we deduce that (X,L) is a scroll, so we know
that there exist curves contracted by the adjoint morphism, passing through the
end points. By looking at the table of Lemma 5.2, we see that the intersection of
KX + nL with curves of type B∗ and E is positive, hence curves of type A∗ are
contracted. Using the same table to compute the intersection number with such
curves, we get

(KX + nL) ·A∗ = −d∗ − 2 + nL ·A∗ = 0.

Since by Corollary 3.2(c) we know that L · A∗ = 1, we deduce that d∗ = n − 2,
namely there exist Y1 ∈ Y1 and Y2 ∈ Y2 which have dimension n − 2. Hence
rankN±(Yi) = 1, and being ρX = 2, arguing as in the proof of Proposition 2.4
we conclude that XC∗ = {y0} t Y1 t Y2 t {y3}. Moreover, X+(Y1) and X−(Y2)
are divisors and fibers of the adjoint morphism φ := φn : X → P1, then they are
isomorphic to Pn−1. Since by Lemma 3.5 these divisors are respectively cones over
Y1 and Y2, and X is a scroll, it follows that Y1 ∼= Y2 ∼= Pn−2.

We observe that there exist orbits of type C joining Y1 and Y2, otherwise we
reach a contradiction using Lemma 3.9. By Proposition 2.4, we deduce that X is
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a rational scroll, hence it has another contraction. Therefore, by Theorem 3.4, the
curves of type C generate the other ray of the cone C(X) whose intersection with
−KX is zero, as we see from the table in Lemma 5.2. Let V = φ∗L, thus X = P(V)
and if we write V = O(a1) ⊕ · · · ⊕ O(an) with 0 < a1 ≤ · · · ≤ an, then the other
contraction of X contracts sections of φ associated to the smallest summand in
this decomposition. Hence, 1 = L ·C = a1 and because KX +nL = φ∗O(degV−2)
one has 0 = KX ·C =

∑
ai−n−2 from which we get both possible splitting types

of V as in Theorem 4.5(1). �

Lemma 5.5. Suppose that |Yi| = 1 for either i = 1 or i = 2. Then either ρX = 1
and X is Fano of index 2n/3 , or (X,L) is a scroll over P1 as in Lemma 5.4.

Proof. Suppose that |Y1| = 1. If ρX > 1, then by Proposition 2.4 there exists a
component Y j2 ∈ Y2 with rankN+(Y j2 ) = 1, and since by Assumption 2 one has

rankN−(Y j2 ) = 1, then this component is of codimension 2. Hence, by Proposition
5.3(4) one has τ ≥ n, and by Lemma 5.4 we obtain that (X,L) is a scroll over P1

as in Lemma 5.4. On the other hand, if (X,L) is not such a scroll, then by what
we have already proved it follows that τ < n, and there is no component of XC∗ of
codimension 2. Then X is Fano because of Proposition 5.3 (3), and by the claim
(2) of the same Proposition its index is 2n/3. �

5.3. τ ≤ n− 1, quadric bundle over a curve

In this subsection we keep Assumption 2 with τ ≤ n− 1.

Lemma 5.6. If τ ≤ n − 1 then |Y1| = |Y2| = ρX , every inner component is
connected to another inner component by a curve of type C, the manifold X is
Fano, and the cone C(X) is generated by classes of curves of type A and C.

Proof. Firstly, we note that if an inner component Y is not connected to some other
inner component by a curve of type C, then we are in the situation of Lemma 3.5
for both y3 preceding Y and y0 succeeding Y ; therefore Y is of codimension 2
and Proposition 5.3 (4) gives a contradiction. Now we prove that ρX = |Y1|; the
equality ρX = |Y2| follows by the same arguments. By Proposition 2.4, we know
that ρX ≥ |Y1|; if the inequality is strict then we argue as in the proof of Lemma
5.5 to get a component Y j2 ∈ Y2 with rankN+(Y j2 ) = 1, which again leads to

dimY j2 = n − 2, and by Proposition 5.3(4) we reach a contradiction. The rest of
the lemma follows by Proposition 5.3(3) and Theorem 3.4. �

Lemma 5.7. Suppose ρX > 1. Then τ ≥ n− 2.

Proof. By Lemma 5.6, we may assume that there are at least two components
Y 1
i 6= Y 2

i ∈ Yi for each i = 1, 2 and, moreover, we can choose these components so
that Y i2 is connected to Y i1 via a curve of type C, for i = 1, 2. The latter follows
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by a standard argument on finding partial matching in a bipartite graph with
vertices Y1 t Y2. Using Lemma 3.9 we get d1i + d2i ≤ n− 2, where dji = dimY ji for
i, j = 1, 2. We confront this inequality with the estimate on τ for curves of type C
from Lemma 5.2 to get

2τ ≥ 4n− 8− (d11 + d21 + d12 + d22) ≥ 2n− 4

hence the claim. �

Remark 7. From the proof of Lemma 5.7 we conclude that in case ρX > 1 and
τ = n− 2 all inequalities in the proof become equalities. That is, using the above
notation

d11 + d21 = d12 + d22 = n− 2 = d11 + d12 = d21 + d22.

In view of Lemma 5.2 the two right-hand side equalities imply that in this case
the curves of type C joining Y i1 with Y i2 , for i = 1, 2, are contracted by φτ .

Remark 8. Suppose that the adjoint morphism φτ : X → X ′ is not the contraction
to a point. Using Lemma 5.2 we get τ > 2

3n. Assuming τ ≤ n− 1 we obtain n ≥ 4,
and if τ = n− 2 then n ≥ 7.

Lemma 5.8. Assume that the adjoint morphism φτ : X → X ′ is not the contrac-
tion to a point. Then τ ≥ n− 1.

Proof. By Lemma 5.7 and Remark 1, we need to exclude the case τ = n− 2. We
argue by contradiction and assume that φn−2 : X → X ′ is the adjoint morphism.
We use Remarks 7 and 8. By the former, we know that curves of type C which
join Y 1

1 ∈ Y1 and Y 1
2 ∈ Y2 are contracted by φn−2. We may assume d11 ≥ d21,

hence d11 ≥ 3 and dimX+(Y 1
1 ) ≥ 4. By fiber-locus inequality [35, Thm. 1.1] we

deduce that fibers of φn−2 have dimension ≥ n − 3, hence a fiber of φn−2 has

positive dimensional intersection with X+(Y 1
1 ). Then X+(Y 1

1 ) is contracted to a
point by φn−2, because of Corollary 3.6. Thus φn−2 contracts curves of type A
joining y0 and Y 1

1 , hence d11 = n − 4 by Lemma 5.2. Applying Remark 7 we get

d21 = d12 = 2 and d11 = d22 = n − 4. Using Lemma 5.2, the curves in X+(Y 2
1 ) and

X−(Y 1
2 ) are not contracted; therefore no fiber of φn−2 of dimension ≥ n− 2 meets

these subvarieties. Again, by [35, Thm. 1.1] we conclude that φn−2 : X → X ′ is an
equidimensional scroll over a smooth threefold; the smoothness follows from [12,

Lem. 2.12]. The morphism X+(Y 2
1 ) → X ′ (and, in fact, X−(Y 1

2 ) → X ′) is finite
and C∗ equivariant, from which we infer that the C∗ action on X ′ has two fixed
point components, the image of y0 and of Y 2

1 , which is of dimension 2. However,
also X → X ′ is C∗ equivariant; thus Corollary 3.8 implies that the action of C∗
on X ′ has two pointed ends, a contradiction. �

Lemma 5.9. Suppose that τ = n − 1, and the adjoint morphism φn−1 : X → X ′

is not the contraction to a point. Then dimX ′ = 1, and φn−1 is a quadric bundle.

Proof. Applying Theorem 2.1(2), since by our assumption X is not as described
in point (a), we are left to eliminate also cases (c) and (d) of that theorem. In the
former case, because of Corollary 3.8, there exists a fixed point y′ of the C∗ action
on X ′ which is not an end point. Hence, if F ⊂ X is the fiber of φτ over y′, then F
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is C∗ invariant with µ|Y∩F assuming values only 1 or 2. In fact F ∼= Pn−2, hence
one of its fixed point components is of positive dimension and contained in, say, a
component Y1 ∈ Y1. We note however that by Corollary 3.6 the curves in Y1 are
numerically proportional to orbits joining the sink of the C∗ action with Y1. Hence
the morphism φn−1 contracts Y1 and also X+(Y1), which contains the sink. This
contradicts the fact that F does not contain any of the end points of the C∗ action
on X.

Suppose that φn−1 : X → X ′ is birational; thus, by Theorem 2.1 it contracts at
least one F ∼= Pn−1 to a point. By the same arguments as above, we may assume
that F contains one of the end points of the C∗ action on X, say y0 ∈ F . The
action of C∗ on F is of bandwidth ≤ 2 and it is equalized. If the action of C∗ on F
is of bandwidth 1, then it has a fixed point component of dimension n− 2, which
by Proposition 5.3 implies τ ≥ n, which is not possible. If the C∗ action on F is of
bandwidth 2 then, by the same argument which was used in the first part of the
proof, the other fixed end point component is an isolated point. Now, by Theorem
4.1, this is not possible if the action is equalized. �

Lemma 5.10. Suppose that τ = n− 1 and the adjoint morphism φn−1 : X → P1

is a quadric bundle. Then X = P1×Qn−1, L = O(1, 1), and φn−1 is the projection.
Moreover, the sets of inner fixed points components Y1 and Y2 consist of an isolated
point and a copy of Qn−3.

Proof. By Remark 8 we know that n ≥ 4. We describe XC∗ , by proving that for
each i = 1, 2 the set of the fixed point components Yi contains an isolated point
and Qn−3. Let us take the quadrics corresponding to the fibers of φn−1 over the end
points of the induced action of C∗ on P1; these fibers are either smooth quadrics
or quadric cones. In view of Corollary 5.6 and Proposition 4.3, we deduce that
both Y1 and Y2 have two components, say Yi = {Y 1

i , Y
2
i }. Using Lemma 3.9 we

get dimY 1
i + dimY 2

i ≤ n− 2, and we may assume that dim Y 1
i ≤ dimY 2

i . Notice
that the fibers cannot be quadric cones. Suppose by contradiction that there is a
fiber which is a quadric cone, then curves of type B must be contracted by φn−1,
but by Lemma 5.2 we know that KX + (n − 1)L has intersection positive with
these curves. Thus, by Proposition 4.3 we deduce that Y 1

i is an isolated point and
Y 2
i
∼= Qn−3 for each i = 1, 2, as claimed.

Now we will prove that X is a product. Using Proposition 5.3 we know that
X is Fano, then we can consider the other extremal contraction Ψ: X → Z. By
Theorem 3.4, we recall that the cone C(X) is generated by classes of curves of
type A and C. More specifically, curves of type A may join an end point, say y0,
with a component Y 1

1 which is a point, or with Y 2
1
∼= Qn−3. In the former case, by

Lemma 5.2 the intersection with −KX is 2, in the latter n − 1. Similarly, using
Lemma 5.2 we verify that curves of type C may have intersection with −KX equal
to 2, n− 1 and 2n− 4; the latter is not possible as τ = n− 1 and n ≥ 4. Fibers of
Ψ are of dimension ≤ 1 and have intersection ≥ 2 with −KX , hence applying [35,
Cor. 1.3] it follows that Ψ is a P1-bundle. Moreover Ψ has two disjoint sections
which correspond to the smooth quadrics that are fibers of φn−1 over the two end
points of the action on P1. Therefore Ψ is a trivial bundle over Z ∼= Qn−1, and
X ∼= P1 × Qn−1. �
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5.4. Conclusion of the proof of Theorem 4.5

Now fitting together the results of the above subsections, we are able to prove the
classification theorem for bandwidth 3 varieties.

Proof of Theorem 4.5. If n = 2 we reach the claim by Lemma 4.4. Hence, from
now on we consider the case n ≥ 3. We first assume that ρX ≥ 2. By Lemma
5.7, we know that τ ≥ n − 2. Moreover, Remark 1 and Theorem 2.1 imply that
τ ∈ {n−2, n−1, n}. If τ = n then by the discussion at the beginning of Subsection
5.2 and Lemma 5.4 we get (1).

Assume that τ < n. We first show that if ρX ≥ 2 and the adjunction morphism
φτ is the contraction to a point, then (X,L) = (P1 × P1 × P1,O(1, 1, 1)). Indeed,
if φτ is the contraction to a point, applying Lemma 5.2 we deduce that τ = 2

3n.
We analyze what happens for τ = 2n/3 = n − 1, and τ = 2n/3 = n − 2. In the
first case, applying calculations from Remark 5, we see that ρX = 3. Moreover, by
Proposition 5.3(3),(4) X is a Fano 3-fold and from Theorem 2.1(2) it has index
2, then we get (X,L) = (P1 × P1 × P1,O(1, 1, 1)). The fixed point locus of the C∗
action is given by 8 isolated points as described in Example 5.

Now, we prove that the case ρX ≥ 2 and τ = 2
3n = n − 2 is not possible. If

this happens, [34, Thm. B] implies that (X,L) = (P3 × P3,O(1, 1)). Then L =
L1 ⊗ L2 where Li are the pullback of O(1) via projections on each of the factors
pi : P3×P3 → P3. Each Li is nef and nontrivial, therefore, since by our assumption
the bandwidth of L is 3, then one of them, say L1 has bandwidth 1. The contraction
p1 is equivariant and thus the resulting action of C∗ on (P3,O(1)) has bandwidth
1, and by Corollary 3.8 it has two pointed ends, a contradiction.

Hence, for n ≥ 4 we may assume that either ρX = 1 or φτ is not the contraction
to a point. In the latter case, applying Lemma 5.8, Lemma 5.9, and Lemma 5.10
we obtain (2). If ρX = 1, using Proposition 5.3 (2), (3) and Remark 5 we obtain
part (3) of the statement, hence the claim. �

Remark 9. Let us focus on Theorem 4.5(1), (2), and keep the notation used in
the proof of that theorem. Take the corresponding adjunction morphism φτ : X →
P1. Since φτ is C∗ equivariant (see Proposition 2.5), the fixed locus XC∗ will be
contained in the inverse image of the fixed locus of the C∗ action on P1. In the scroll
case, in the proof of Lemma 5.4, we have shown that the fixed point components
Y1 ∼= Y2 ∼= Pn−2 ⊂ F ∼= Pn−2, with F being the fiber of φτ . Therefore, we get
N+(Y1) = O(1), N−(Y1) = O, N+(Y2) = O, and N−(Y2) = O(1). In the quadric
bundle case, in Lemma 5.10, we proved that Yi = {pt} t Y 2

i for i = 1, 2, where

Y 2
1
∼= Y 2

2
∼= Qn−3 ⊂ F̃ ∼= Qn−2, with F̃ being the fiber of φτ . Hence, one has

N+(Y 2
1 ) = O(1), N−(Y 2

1 ) = O(1)⊕ O, N+(Y 2
2 ) = O(1)⊕ O, and N−(Y 2

2 ) = O(1).

6. Contact manifolds

6.1. Contact manifolds of dimension 11 and 13

In this section, Xσ is a contact variety of dimension 2n + 1 with Lσ an ample
line bundle on it, and PicXσ

∼= ZLσ. By definition, Lσ is the cokernel of the
contact distribution Fσ → TXσ with a rank 2n vector subbundle Fσ ⊂ TXσ,
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and σ ∈ H0(Xσ,ΩXσ ⊗ Lσ) such that dσ defines a nowhere degenerate pairing
Fσ × Fσ → Lσ. In particular, −KXσ = (n+ 1)Lσ.

Contact manifolds appear in the context of quaternion-Kähler manifolds and
LeBrun–Salamon conjecture in differential geometry, which asserts that every
positive quaternion-Kähler manifold is a Wolf space. The algebro-geometric version
of LeBrun–Salamon conjecture predicts that every Fano contact manifold is ratio-
nal homogeneous and, in fact, isomorphic to the adjoint variety of a simple group,
that is the closed orbit in the projectivisation of the adjoint representation of this
simple group. The contact manifold coming from a quaternion-Kähler manifold
admits a Kähler–Einstein metric, so that in the differential-geometric context it is
not restrictive to assume that the group of its contact automorphisms is reductive.

Let us recall that the case when PicXσ 6= ZLσ is known; in such a case
(Xσ, Lσ) = (P(TY ),OP(TY )(1)) with Y a projective manifold of dimension n + 1;
see [26, Cor. 4.2], [21, Thm. 1.1], [8, Cor. 4]. Also the case in which Lσ have
sufficiently many sections is known, see [1, Thm. 0.1]. For dimXσ ≤ 9 we have the
following theorem; we refer to [9, Thm. 1], [5, Thm. 1.2].

Theorem 6.1. Let (Xσ, Lσ) be a contact Fano manifold of dimension ≤ 9 whose
group of contact automorphisms G is reductive. Then G is simple and Xσ is the
closed orbit in the projectivisation of the adjoint representation of G.

In [5] the proof of the above theorem for dimXσ = 7, 9 is based on the analysis

of the action of the maximal torus Ĥ in the group G of contact automorphisms
of Xσ. The torus Ĥ is of rank ≥ 2 by a result of Salamon (see [32, Thm. 7.5])
reproved in [5, Thm. 6.1] in the contact case.

In Theorem 6.2 we will follow the strategy adopted in [5] to extend the above
result. To this end, before recalling the main idea of [5], we briefly recall some
preliminaries.

For any manifold X with an ample line bundle L and an almost faithful action
of a torus H, one analyses data in the lattice M of characters of H. We recall, see
[5, §2.1], that a linearization µ of L defines the polytope of fixed point ∆(L) :=
∆(X,L,H, µ) that is the convex hull in MR of the weights µ(Yi) ∈M with which
H acts on the fiber of L over each point in a fixed component Yi ⊂ XH . Moreover,
such a linearization gives also the polytope of sections Γ(L) := Γ(X,L,H, µ) which
is the convex hull in MR of the characters (eigenvalues) of the action of H on
H0(X,L).

Fixed point components in Y are represented by points in M together with
vectors representing the weights of the action of H on their conormal bundle; for
each Y ∈ Y the set of these (possibly multiple) weights is called the compass and
denoted by C(Y,X,H) or simply by C(Y ). We refer to [5, §2.3] for details about
the compass. In the contact case, because of the pairing coming from the contact
form, the vectors in the compass satisfy the associated symmetry (see [5, Lem.
4.1]).

Definition 6. Given a polarized pair (X,L) with an action of an algebraic torus
H and linearization µ, we define the grid data of the quadruple (X,L,H, µ) as
follows:

1460



ADJUNCTION FOR VARIETIES WITH A C∗ACTION

(1) the isomorphism classes of connected fixed point components Yi, for XH =⊔
i∈I Yi together with the fixed point weight map

µ : Y = {Yi : i ∈ I} → M = Hom(H,C∗);

(2) the compasses C(Yi) for every Yi ⊂ XH ; and the isomorphism classes of the
splitting of the normal bundle

NYi/X =
⊕

N−ν(Yi)(Yi)

where ν(Yi) ∈ C(Yi) and N−ν(Yi)(Yi) are the eigen-subbundles of the respec-
tive weights.

The localized version of the Riemann–Roch theorem asserts that the Euler
characteristic of L, χH(X,L) as a function graded in M depends only on the
grid data under certain assumptions, see [5, Thm. A.1].

The proof of Theorem 6.1 for dimXσ = 7, 9 goes along the following steps:

(0) Prove that there exists a nontrivial action of a (reductive) group G with a

maximal torus Ĥ of rank r on Xσ; it is enough to show that h0(Xσ, Lσ) > 0, see
[32] and [5, Thm. 6.1].

(1) Prove that ∆(Xσ, Lσ, Ĥ, µ) = Γ(Xσ, Lσ, Ĥ, µ), and the vertices of this
polytope are associated to isolated fixed point components [5, Lem. 4.7].

(2) Prove that Γ(Xσ, Lσ, Ĥ, µ) is associated to the adjoint representation of the
group G [5, Lem. 4.5] and therefore G is semisimple [5, Lem. 4.6].

(3) Prove that G is simple and therefore ∆(Lσ) = Γ(Lσ) is the root polytope
of G in the lattice of weights of G (see [5, Prop. 4.8]).

(4) Examine, case by case, root polytopes of simple groups and eliminate the
ones which are not associated to the action on the adjoint contact variety (see [5,
§5]).

(5) Once it is shown that the grid data of the quadruple (Xσ, Lσ, Ĥ, µ) are the
same as in the adjoint contact variety case, one can conclude that Xσ is actually
the adjoint variety by [5, Prop. 2.23].

We note that the starting point, that is step (0), is essential to launch the
whole argument. On the other hand, steps (2), (3) and (5) in this line of argument
are fairly general. Step (1) depends on a general lemma about the existence of
sections of an ample line bundle LY on a arbitrary Fano manifold Y such that
PicY = ZLY , and dimY = n − r + 1. In [5], a well-known fact for Fano 3-folds
is used. In what follows, we present a generalization of this result for Fano 4-folds
and 5-folds, that is Lemma 6.3 (see also [14, Cor. 1.3]).

The results of step (4) are summarized in [5, Thm. 5.3]. If dimXσ ≤ 13 and
r ≥ 2 then that theorem can be improved by analysing the case of the action
of a simple group of type A2 or G2 on Xσ. This is done in Subsection 6.3. The
classification of bandwidth 3 manifolds given by Theorem 4.5 is the key ingredient
in this argument.

As result we obtain the following:
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Theorem 6.2. Let (Xσ, Lσ) be a polarized pair, with Xσ contact Fano manifold
of dimension ≤ 13, and PicXσ = ZLσ. Assume that the group of contact automor-
phisms G is reductive of rank ≥ 2 (the latter is true if, e.g., h0(Xσ, Lσ) > 3). Then
Xσ is a rational homogeneous variety, and in particular:

(1) if dimXσ = 11 then Xσ is the closed orbit in the projectivisation of the
adjoint representation of SO9;

(2) if dimXσ = 13 then Xσ is the closed orbit in the projectivisation of the
adjoint representation of SO10.

Proof. As noted above, the proof goes along the lines established in [5]. Namely,
using Corollary 6.4, and applying [5, Prop. 4.8] and [5, Lem. 4.5] we are in the
situation of [5, Assumption 5.2]. In particular, by that assumption we recall that
the group G is simple. By contradiction, assume that G is of type A2 or G2. In
such a case, consider the action of a rank two torus Ĥ ⊂ G on (Xσ, Lσ). Due

to Proposition 6.9, we find out that the grid data of (Xσ, Lσ, Ĥ, µ) coincide with
the grid data of (G(1,Qn+2), L,H2, µ) with H2 a rank two torus contained in the
maximal torus acting on G(1,Qn+2). From the proof of Propositions 6.9, and A.1
we observe that Lσ |Y ∼= L|Y for every fixed point component Y . The equality of
the grid data, together with the isomorphism Lσ |Y ∼= L|Y are equivalent to require

that Lσ |Y is Ĥ-equivariantly isomorphic to L|Y and that NY/Xσ is Ĥ-equivariantly

isomorphic to NY/G(1,Qn+2), respectively. This gives an equality of Ĥ-equivariant
Euler characteristics (see [5, Thm. A.1]):

χĤ(Xσ, Lσ) = χH2(G(1,Qn+2), L).

Then, being Xσ and G(1,Qn+2) Fano, one has that H0(Xσ, Lσ), H0(G(1,Qn+2), L)

are equal as elements of the representation ring of Ĥ. Therefore, using again
Proposition 6.9, if n = 5 then h0(Xσ, Lσ) = dim SO9 = 36, and if n = 6 then
h0(Xσ, Lσ) = dim SO10 = 45. In both cases, these dimensions are bigger than the
dimensions of G2 and A2, against [5, Assumption 5.2] for which H0(Xσ, Lσ) can
be identified with the Lie algebra of G. Thus G is neither G2 nor A2. Now, applying
[5, Thm. 5.3] we conclude that when n = 5 one has (Xσ, Lσ) ∼= (G(1,Q7),O(1))
with G = B4; while for n = 6 we get (Xσ, Lσ) ∼= (G(1,Q8),O(1)) with G = D5;
hence the claim. �

Remark 10. Notice that the theorem above improves [5, Thm. 5.3], since when
n = 5, 6 the group of the contact automorphisms G cannot be of type neither
G2 nor A2. We refer to the recent preprint [28, Thm. 6.1] where, under certain
assumptions on the rank of the maximal torus, the LeBrun–Salamon conjecture
has been proved in arbitrary dimension, dealing also with the cases in which G
is of exceptional type. We note that with our approach of downgrading torus
action to C∗ action of bandwidth 3, the assumption that the rank of the group G
is at least two is inevitable. The case of rank one group requires understanding
bandwidth 4 action of C∗ on contact manifolds. Finally, as noted above, the fact
that h0(Xσ, Lσ) > 0 implies the action of a reductive group of positive rank. On
the other hand, h0(Xσ, Lσ) > 3 implies the action of a reductive group of rank
≥ 2, because the only rank 1 groups are C∗ and PSL(2). Although, at present we
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can not verify either of these inequalities, they seem to be almost equally hard to
check, hence the assumption on rank of G being ≥ 2 is rather harmless.

6.2. Dimension of anticanonical systems

For the following result see also the recent paper [14] and references therein.

Lemma 6.3. Let X be a Fano manifold of positive dimension ≤ 5 with PicX =
ZL. Then h0(X,L) > 1.

Proof. The claim is known if dimX ≤ 3, or if X is a Mukai variety of index
dimX − 2. Hence, it is enough to prove the claim for dimX = 4 and L = −KX ,
and for dimX = 5 and L = −KX , or L = −KX/2. Moreover, because of Kodaira
vanishing, we are left to prove that χ(X,L) =

∑
i(−1)ihi(X,L) > 1.

First, assume that dimX = 4. We define χ(t) = χ(X, t(−KX)), and using the
Riemann–Roch for 4-folds we get

χ(t) =
1

24
c41 · t4 +

1

12
c41 · t3 +

1

24
(c21c2 + c41) · t2 +

1

24
c21c2 · t+ 1

where ci = ci(TX) are the Chern classes, and their intersection is evaluated at the
fundamental class of X. The last coefficient is 1 because χ(0) = 1. Thus we get

χ(1) = χ(0) +
1

6
c41 +

1

12
c21c2 > 1.

The inequality follows because TX is stable (see [30], [15]) and we can use the
Bogomolov inequality [25, Thm. 0.1] to get

c21c2 ≥
rkTX − 1

2 rkTX
· c41 > 0.

Now, we consider the case dimX = 5. We use the notation of the previous
argument; for simplicity we set d = c51. The Hilbert polynomial χ(t) is invariant
with respect to Serre’s involution t 7→ −t − 1. Using this involution we get two
possible presentations of its decomposition in R[t]:

χ(t) =
d

120

(
t+

1

2

)
(t2 + t+ a1)(t2 + t+ a2) or

χ(t) =
d

120

(
t+

1

2

)
(t2 + b1t+ b2)((t+ 1)2 − b1(t+ 1) + b2)

where da1a2 = 240 and db2(b2 − b1 + 1) = 240, respectively, because χ(0) = 1. We
can compare it with the Riemann–Roch formula:

χ(t) =
1

120
c51 · t5 +

1

48
c51 · t4 +

1

72
(c31c2 + c51) · t3 +

1

48
c21c2 · t2

+
1

720

(
−c51 + 4c21c2 + 3c1c

2
2 + c21c3 − c1c4

)
· t+ 1.

So we get respective identities

c31c2 =
d

5
· (3a1 + 3a2 + 1) and c31c2 =

d

5
· (6b2 − 3b21 + 3b1 + 1).
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Using these identities, we verify that

χ(1) = 3χ(0) +
1

24
· (c31c2 + c51) and χ

(
1

2

)
= 2χ(0) +

1

96
c31c2 +

1

384
c51

which, again, by the stability of TX and the Bogomolov inequality, yields the
lemma. �

We now obtain the following result which improves [5, Lem. 4.7].

Corollary 6.4. Let Xσ be a contact Fano manifold of dimension 2n + 1 with
PicXσ = ZLσ. Suppose that Xσ admits an almost faithful action of a torus Ĥ
of rank r. If r ≥ n − 4 then Γ(Xσ, Lσ, Ĥ) = ∆(Xσ, Lσ, Ĥ), and every extremal

component of XĤ
σ is a point.

Proof. The proof is the same as the one of [5, Lem. 4.7] but in place of [5, Cor.
3.8] we use the respective version following from Lemma 6.3 of the present paper.
�

6.3. SL3 action on contact manifolds

In this subsection we consider the following situation; compare with [5, Assumption
5.1].

Assumption 3. Let G be a simple group of type A2 or G2 with a maximal two
dimensional torus Ĥ < G. Assume that G acts almost faithfully via contactomor-
phisms on a contact manifold (Xσ, Lσ), with dimXσ = 2n+ 1 and PicXσ = ZLσ.
That is, the morphism G→ Aut (Xσ) has finite kernel. The linearization µ comes
from the action of G on TXσ. Assume that all extremal fixed points of the action
of Ĥ on Xσ are isolated, and the polytope ∆(Xσ, Lσ, Ĥ, µ) is the root polytope

∆(G) in the lattice M̂ of characters of the torus Ĥ.

The following diagram is copied from [5, §5.5]. We use the notation coming from
that paper.

◦ 0

◦β0

◦ β1

◦ β2

◦β3

◦β4

◦β5

•α0

• α1

•α2•α3

•α4

•α5

Figure 5. Lattice points corresponding to the action of Ĥ

By yαi we denote the extremal fixed points of the action of Ĥ; by Y jβi we denote
the inner fixed point components associated to the weight βi, while by Y0 we
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denote central components associated to the weight 0. The indices of α’s and β’s
are between 0 and 5; by convention they are taken modulo 6.

Fix i ∈ {0, . . . , 5} and let H ′ be the subtorus corresponding to the projection

πi : M̂ → Z which maps αi−1, βi, βi+1, αi+1 to 1 ∈ Z. Using that ρXσ = 1, and
arguing as in the proof of Proposition 2.4, we deduce that there exists a unique
connected component Xi ⊂ XH′

σ which contains the extremal fixed points yαi+1,

yαi−1, and all inner components of XĤ
σ associated to βi and βi+1. On the above

diagram, we indicate the (solid) line segment associated to Xi. We will use the
convention that yαi−1 is the sink and yαi+1 is the source of the action of C∗ on Xi.

Lemma 6.5. Let us keep the above notation, and suppose that Assumption 3 is
satisfied. Then the following hold:

(1) Xi is a smooth connected variety of dimension n − 1 with an ample line
bundle Li := Lσ |Xi ,

(2) Xi admits a natural C∗ action and a natural linearization µi of Li,
(3) the fixed point components of XC∗

i are {yαi−1
}, Y jβi , Y

j
βi+1

, {yαi+1
},

(4) (Xi, Li) is a bandwidth 3 variety with two end points, and the action of C∗
is equalized.

Proof. By construction, Xi is smooth and connected. Moreover, Xi admits the
restricted action of the 1-dimensional torus C∗ = Ĥ/H ′ as required in (2) (see

[5, Lem. 2.10(2)]), and by [5, Lem. 2.10(3)] one has XC∗
i = XĤ

σ ∩ Xi; therefore
the extremal fixed points of the C∗ action have weights αi−1 and αi+1, thus the
bandwidth of (Xi, Li,C∗) is three. We are left to check that the C∗ action is
equalized, and that dimX = n − 1. To this end, let us describe the compasses
at the fixed point components. Taking a fixed component Y ⊂ XC∗

i , applying the

definition of the compass, and using the projection πi : M̂ → Z, one has

C(Y,Xi,C∗) = C(Y,Xσ, Ĥ) ∩ ker(πi). (5)

The description of the compasses for the rank two torus Ĥ is obtained following
the same proof of [5, Lem. 5.15]. In what follows, we use an exponent to denote
the occurrence of the corresponding element in the compass. By [5, Lem. 5.15(1)],
we obtain that:

C(yαi−1 , Xσ, Ĥ)=
(
αi−αi−1, αi−2−αi−1,−αi−1,(βi−αi−1)

n−1
, (βi−1−αi−1)

n−1)
. (6)

Using (5) we deduce that C(yα−1, Xi,C∗) = (1n−1). In a similar way, we obtain
that C(yα+1, Xi,C∗) = (−1n−1). This also implies that dimX = n − 1, because
by definition of the compass at a fixed component Y , the elements contained in it
must be in number equal to dimX − dimY ; and if we consider Y = yα−1, being
the sink a point by assumption, we obtain claim (1).

For an irreducible inner fixed point component Yβi of dimension d, the proof of
[5, Lem. 5.15 (2)] allows to compute

C(Yβi , Xσ, Ĥ) =
(
αi − βi, αi−1 − βi, βi+2 − βi, βi−2 − βi,
− βd+1

i , (βi+1 − βi)n−d−2, (βi−1 − βi)n−d−2
)
;

(7)

1465



ELEONORA A. ROMANO, JAROS LAW A. WIŚNIEWSKI

and by (5) we obtain that C(Yβi , Xi,C∗) = (1n−d−2,−1). Repeating the same
procedure for the other inner fixed point components, we may conclude that the
C∗ action on Xi is equalized, and the statement follows. �

Lemma 6.6. Let us keep the above notation, and suppose that Assumption 3
holds. Then

N−
Y jβi

/Xi
∼=
(
N+

Y jβi
/Xi−1

)∗
⊗ L|Y jβi

Proof. The pairing dσ : Fσ × Fσ → Lσ is invariant with respect to the action of
Ĥ. Hence it determines the pairing on the normal of the eigencomponents of the
normal to any fixed point component. �

Corollary 6.7. The variety (Xi, Li) described in Lemma 6.5 is not a scroll over
P1 described in case (1) of Theorem 4.5.

Proof. In the scroll case N−
Y jβi

/Xi
∼= N+

Y jβi
/Xi−1

∼= O, see Remark 9, which contra-

dicts Lemma 6.6. �

Lemma 6.8. Suppose that Assumption 3 is satisfied, and keep the same notation
there introduced. Then:

(1) if n = 5 there are no central components;

(2) if n = 6 one has Y0 = P1tP1, and the compass C(P1, Xσ, Ĥ) is given by all
the vectors ±βi for i = 0, 1, 2, where each element occurs with multiplicity
two.

Proof. We first show that if Y0,k is an irreducible central component, then the

elements αi 6∈ C(Y0,k, Xσ, Ĥ). Assume by contradiction that one of these elements,

say α0, belongs to the compass. Consider a subtorus H1 ⊂ Ĥ corresponding to a
projection π : M̂ → Z sending α0 to 0. Take a variety Z ⊂ XH1

σ which contains Y0,k
and the extremal fixed points yα0

, yα3
. Applying [5, Lem. 2.10(2)] such a variety

Z admits the action of C∗ = Ĥ/H1, with fixed locus ZC∗ = yα0
t Y0,k t yα3

.
Moreover, by Corollary [5, Cor. 4.4] the variety Z is contact. Replacing Xi with
Z and πi with π in the formula (5), and using (6) we get C(yα0

, Z,C∗) = (−α0),
therefore dimZ = 1. We then conclude Z ∼= P1, so that Y0,k = ∅, a contradiction.
Hence, if Y0,k 6= ∅, applying [5, Cor. 2.14], it follows that the only elements which

belong to C(Y0,k, Xσ, Ĥ) are among the βi’s. On the other hand, using Lemma 6.5,
Corollary 6.7, and Theorem 4.5 we deduce that if n = 5 one has Yβi = {pt} t P1;
if n = 6 we have Yβi = {pt} t P1 × P1.

By the above argument, if Y0,k 6= ∅, we may assume that the element β0 belongs

to C(Y0,k, Xσ, Ĥ). Being Y0,k contact (see [5, Cor. 4.4]), its compass is symmetric
(see [5, Lem. 4.1]), therefore β3 also has to belong to the compass with the same
multiplicity of β0.

Now, take a subtorus associated to the projection of the lattice M̂ along the
dotted line segment in Figure 5. Applying the reduction procedure explained above,

we find a contact variety Z ′ ⊂ XĤ
σ which contains an irreducible fixed component

of Yβ0 , and of Yβ3 ; these fixed components will be respectively the sink and the
source of a bandwidth two C∗ action on Z ′. We may exclude the case in which
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the sink (or the source) of such an action is the isolated fixed point in Yβ0 (resp.
in Yβ3

); indeed in such a case, arguing as above, we would again have Y0,k = ∅.
Hence, the two extremal points of the C∗ action on Z ′ are both isomorphic to
Qn−4.

Using (5) and (7), we get C(Yβ0
, Z ′,C∗) = (−βn−30 ); therefore dimZ ′ = 2n− 7;

so that if n = 5 one has Z ′ ∼= P3; if n = 6 we get Z ′ ∼= P(TP3).

In the first case, since the extremal components are isomorphic to P1 with the
restriction of Lσ being O(2) (see Theorem 4.5(2)), we are considering a C∗ on
(P3,O(2)) having weights (0, 0, 1, 1), and such an action does not have central
components.

If n = 6, we consider the corresponding polytope of fixed points of the big torus
in SL4 acting on Z ′ (see the picture of [13, Exercise 15.10]), and by a downgrading
associated to the projection along one of the faces of the cube in which the polytope
is inscribed we get Y0 = P1 t P1. We have already observed that the compass at
the central components is symmetric. Using this fact, and being dimZ ′ = 5, one
has C(P1, Z ′,C∗) = (β0, β0, β3, β3). Since dimXσ = 13, the compass C(P1, Xσ, Ĥ)
contains 12 elements counted with their multiplicity. Therefore, repeating the same
argument with the weights β1 and β2, we obtain the claim. �

Proposition 6.9. Suppose that Assumption 3 is satisfied. Then for n = 5, 6
the grid data of the quadruple (Xσ, Lσ, Ĥ, µ) is the same as for the quadruple
(G(1,Qn+2), L,H2, µ) from Proposition A.1.

Proof. We need to compare the information about the fixed point components
for Xσ with the result obtained in Proposition A.1. The information about inner
components Yβi is given by downgrading to subvarieties Xi. Indeed, because of
Lemma 6.5 and Corollary 6.7, we are in the situation of case (2) of Theorem 4.5;
see also Remark 9. Therefore, the isomorphism classes of the components and
their normal subbundles in Xi are uniquely determined. We now observe that
the same holds for the central components. To this end, we apply Lemma 6.8 to
(Xσ, Lσ) and to (G(1,Qn+2), L). In particular, when n = 6, by the proof of the
same lemma we recall that the central component Y0 = P1 t P1 is contained in
three distinct varieties Zj admitting a bandwidth two C∗ action whose sink and
source are respectively associated to the weights β0 and β3; β1 and β4; β2 and
β5. Since the normal bundle of each copy of P1 in Zj is uniquely determined,
also its decomposition according to the weights of the C∗ action will be uniquely
determined, and the statement follows. Thus, for n = 5, since the extremal compo-
nent Yβi is P1 with restriction of L being O(2) it follows that Z ′i

∼= P3 and
Lσ |Z′i

∼= O(2), and there are no central components. Moreover the eigenbundle

Nβi(Yβi) is also uniquely determined and equal to O(1)2. If n = 6, since the
component Yβi is P1 × P1 we get b2(Z ′i) = 2 and one has Z ′i

∼= P(TP3). In this
latter case, we consider the corresponding polytope of fixed points of the big torus
in SL4 action on Z (see the picture of [13, Exercise 15.10]), and by downgrading
associated to the projection along one of the faces of the cube in which the polytope
is inscribed we get Y0 = P1 t P1. Finally, we note that the normal bundle of
each of the fixed point components in Z ′i is uniquely determined together with its
decomposition according to the quotient torus action. �
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A. Embedding SL3 into classical linear groups

In this appendix we summarize information about the structure of the adjoint
variety Xadj of a classical simple algebraic group G from the viewpoint of a linear
embedding of the group SL3 into the group in question. Let us recall that Xadj is
the closed orbit in the projectivisation of the adjoint representation of G.

We focus on the case of a linear embedding SL3 ↪→ SOm which yields the action
of SL3 on the adjoint variety of SOm. The results of this section are stated in
Proposition A.1. The conclusion is that the associated bandwidth 3 variety which
we described in Subsection 6.3 (see Lemma 6.5) yields the case (2) in Theorem
4.5.

First, let us recall that the root systems of SL4 and SO6 coincide and their
adjoint variety is P(TP3). We consider a natural embedding SL3 ↪→ SL4 which
comes with the linear embedding of the standard representation W3 of SL3 into
the standard representation of SL4, that is W4 = W3 ⊕ C, as representation of
SL3, where C denotes the trivial representation of SL3. The adjoint representation
adj(SL4) of SL4 is an irreducible summand of W4 ⊕W ∗4 = adj(SL4)⊕C; thus as a
representation of SL3 it decomposes as

adj(SL4) = W3 ⊕ adj(SL3)⊕W ∗3 ⊕ C

On the other hand, an embedding SL3 ↪→ SO6 is defined as follows

SL3 3 A −→ Â =

(
0 (Aᵀ)−1

A 0

)
∈ SO6,

where SO6 is understood as the group of matrices preserving the form

(
0 I
I 0

)
,

or a quadric in P5 given by the equation x1y1+ · · ·+x3y3 = 0. If V6 is the standard
representation of SO6, then as a representation of SL3 ↪→ SO6 it decomposes as
W3 ⊕W ∗3 . The second exterior power

∧2
V6 is the adjoint representation of SO6

and, as the representation of SL3, it can be written again as

∧2(W3 ⊕W ∗3 ) = ∧2W3 ⊕W3 ⊗W ∗3 ⊕∧2W ∗3 ⊕ C = W3 ⊕ adj(SL3)⊕W ∗3 ⊕ C

In terms of the action of the Cartan torus H3 of both SL4 and SO6, the fixed
points of the action on the adjoint variety via the standard linearization map are
mapped to roots in the associated rank three lattice of weights M3. As points in the
space M3⊗R they are vertices of a cuboctahedron (rectified cube). The embedding
of SL3 in each of these groups yields an embedding of Cartan tori H2 ↪→ H3, with
H2 the 2-dimensional torus contained in SL3. Thus we get the projection of the
corresponding lattices of weights M3 → M2. The diagram below describes the
projection of the roots visualized as a projection of the cuboctahedron. The front
and the rear faces are associated to representation W3 and W ∗3 , while the hexagonal
cross-section is associated to the representation adj(SL3).
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By [5, Lem. 4.5], the vertices of the root polytopes are associated to the fixed
points of the action of the Cartan torus on Xadj under the fixed point weight map
for the standard linearization. Thus, it follows that the dots • are also the images
of these fixed points.

We can write the above description directly in terms of the coordinates of
the action of the torus H2 ⊂ SL3. Its associated lattice of characters is M2 =⊕3

i=1 Zei/
∑
ei. We choose the coordinates (xi, yi) on V6 so that the weights of

the action of H2 on V6 = W3 ⊕ W ∗3 are ei on xi and −ei on yi. There are six
fixed points of the action of H on the quadric Q4 = {

∑
xiyi = 0} ⊂ P(V6), each

associated to the weight ±ei.
Recall that Xadj for SO6 parametrizes the lines contained in the quadric. If α∧β

denotes the line for which only coordinates α and β do not vanish, then the H2

invariant lines contained in the quadric
∑
xiyi = 0 are either of the two types:

• xi ∧ yj for i 6= j
• xi ∧ xj , or yi ∧ yj for i 6= j.

There are six lines of each type; the weight of the action of H2 on the line of the
first type is ei− ej , while on the latter type it is ±ei. These are the fixed points of
the action described above as a projection of the vertices of the cuboctahedron.

When m ≥ 7 we take a natural inclusion

SL3 ↪→ SO6 × SOm−6 ↪→ SOm

for a suitable decomposition of the standard SOm representation Vm = V6⊕Vm−6.
As before, we decompose the resulting SL3 representation:

∧2Vm = W3 ⊕ adj(SL3)⊕ C⊕W ∗3 ⊕ (W3 ⊗ Vm−6)⊕ (W ∗3 ⊗ Vm−6)⊕∧2Vm−6

where the representation Vm−6 is trivial as the SL3 representation.

We extend the preceding discussion to the SOm invariant quadric Q̂ ⊂ P(Vm)

such that Q̂ ∩ P(V6) = {
∑
xiyi = 0} = Q. That is, for suitably chosen coordinates

(zi) in Vm−6 we have

Q̂ = {x1y1 + x2y2 + x3y3 + z21 + · · ·+ z2m−6 = 0}.
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By Q⊥ we denote the intersection Q̂ with P(Vm−6) = {xi = yj = 0}. That is,
Q⊥ = {z21 + · · · + z2m−6 = 0} is a quadric of dimension m − 8. Now, apart from
the lines contained in Q, we have extra components in the fixed point locus of the
action of H2 ⊂ SL3 on the grassmannian of lines on Q̂. They are as follows:

• lines joining fixed points of the action of H2 on Q with any point in Q⊥;
they are contained in the subspaces W3 ⊗ Vm−6 and W ∗3 ⊗ Vm−6 in the

decomposition of
∧2

Vm−6 above; therefore there are six of such components
associated to the weights ±ei;

• lines contained in Q⊥ for m ≥ 9; they are contained in the subspace ∧2Vm−6
in the above decomposition; therefore these fixed point component(s) are
associated to the weight 0.

We summarize the discussion in the following.

Proposition A.1. Assume the situation as above. The following is the list of the
fixed components of the fixed point locus of the action of the 2-dimensional torus
H2 ⊂ SL3 ⊂ SOm on the Grassmannian of lines in the quadric Qm−2 denoted by
G(1,Qm−2), which is a contact variety of dimension 2m − 7. Let us denote by L
an ample line bundle generating PicG(1,Qm−2).

(1) For m ≥ 6 one point extremal components associated to weights ±ei +±ej,
i 6= j;

(2) for m ≥ 6 one point components associated to weights ±ei;
(3) for m ≥ 8 additional components associated to weights ±ei which are quadrics

of dimension m− 8; in particular they are

1. two points for each weight, for m = 8;

2. a conic, that is P1 with L|P1 ∼= O(2), for m = 9;

3. a quadric P1 × P1 with restriction of L being O(1, 1), for m = 10;

4. a quadric Qm−8 with restriction of L being O(1), for m ≥ 11;

(4) central component(s) for m ≥ 10 which is the grassmannian of lines in the
quadric Qm−8, in particular

1. P1 t P1 for m = 10;

2. an irreducible variety for m ≥ 11.

A similar discussion can be made in the case of classical linear groups. In
the following table we present adjoint varieties as well as bandwidth 3 varieties
and central components associated to the downgrading of the action to a linear
embedding of SL3. Notation: G is the group, Xadj is the adjoint variety for the
group, dimXadj = 2n + 1. In the spirit of Subsection 6.3, Xi is the bandwidth 3
variety associated to restricting and downgrading of the group action following
the embedding SL3 ↪→ G, dimXi = n − 1; moreover Y∗ is the set of fixed
point components in Y1 or Y2. Finally, Y0 is the union of fixed point components
associated to the weight 0.
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n G rkG Xadj Xi Y∗ Y0

3 SO7 3 G(1,Q5) P1 × P1 • ∅
4 SO8 4 G(1,Q6) P1 × P1 × P1 • t • t • ∅
5 SO9 4 G(1,Q7) P1 × Q3 • t P1 ∅
6 SO10 5 G(1,Q8) P1 × Q4 • t P1 × P1 P1 t P1

7 SO11 5 G(1,Q9) P1 × Q5 • t Q3 P3

≥ 8 SOn+4 bn/2c G(1,Qn+2) P1 × Qn−2 • t Qn−4 G(1,Qn−4)
≥ 3 Sp2n+2 n+ 1 P2n+1 P1 ∅ P2n−5

≥ 3 SLn+2 n+ 1 P(TPn+1) Pn−2 t Pn−2 Pn−3 P(TPn−2)
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