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Abstract. We prove that the solvability of the multiplication group Mult(L) of a con-
nected simply connected topological loop L of dimension three forces that L is classically
solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete
centre or L is an abelian extension of a normal subgroup R by the 2-dimensional non-
abelian Lie group or by an elementary filiform loop. We determine the structure of
indecomposable solvable Lie groups which are multiplication groups of three-dimensional
topological loops. We find that among the six-dimensional indecomposable solvable Lie
groups having a four-dimensional nilradical there are two one-parameter families and a
single Lie group which consist of the multiplication groups of the loops L. We prove that
the corresponding loops are centrally nilpotent of class 2.

1. Introduction

The multiplication group Mult(L) and the inner mapping group Inn(L) of a
loop L are important tools for the investigation of the structure of L since there
are strong connections between the structure of the groups Mult(L) and Inn(L)
and that of L. In [B1] R. H. Bruck proved that if the group Mult(L) is nilpotent,
then the loop L is centrally nilpotent and the group Inn(L) is abelian. In [V]
A. Vesanen showed that if the loop L is finite and the group Mult(L) is solvable,
then L is classically solvable; this means there exists a series of subloops of L
of the form {e} = L0 ≤ L1 ≤ · · · ≤ Ln = L such that Li−1 is a normal
subloop in Li and Li/Li−1 is an abelian group for all i = 1, . . . , n. Since the
variety of loops is congruence modular in [SV1], D. Stanovský and P. Vojtěchovský
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developed commutator theory for loops following universal algebra. A loop L is
called congruence solvable if there is a series {e} = L0 ≤ L1 ≤ · · · ≤ Ln = L
of normal subloops of L such that every factor Li/Li−1 is abelian in L/Li−1. For
loops, congruence solvability is strictly stronger than classical solvability (cf. [SV1,
Construction 9.1 and Example 9.3, pp. 27, 29] and [F, Exercise 10, pp. 44–45]).
In [SV2] D. Stanovský and P. Vojtěchovský proved that a loop L is congruence
solvable if and only if it is obtained by iterated abelian extensions.

In [NS1] P. T. Nagy and K. Strambach investigated consistently topological and
differentiable loops as topological and differentiable sections in Lie groups. In this
paper we follow their treatment and study topological loops L having a solvable
Lie group K as their multiplication group. In this case K is a Lie transformation
group acting transitively and effectively on the topological space L. Using the
transitive actions of Lie groups on the space Rn, n ≤ 3, we show that topological
loops L of dimension 3 with solvable multiplication group are classically solvable.
In connection to abelian extensions we find, necessary and sufficient condition for
L to be congruence solvable (see Theorem 8).

The question, which groups can be realized as the multiplication groups and
the inner mapping groups of loops motivates a lot of research on loops and their
relation to groups (cf. [C], [D], [Ma], [NV], [NK2]). The key concept for answering
this question is the connected transversals which were introduced by T. Kepka and
M. Niemenmaa (cf. [NK1]).

The criteria in [NK1] are applied successfully for Lie groups to be the multipli-
cation groups of topological loops (cf. [F1]–[F5]). In [F1] we proved that only special
nilpotent Lie groups, the elementary filiform Lie groups of dimension ≥ 4, are the
multiplication groups of 2-dimensional connected topological proper loops. In [F3]
we determined the solvable non-nilpotent connected simply connected Lie groups
of dimension ≤ 5 which are the multiplication groups for 3-dimensional topological
loops. Since this classification did not give any example of a topological loop L
having an indecomposable solvable Lie group (i.e., a Lie group which is not the
direct product of proper connected Lie groups) as the group Mult(L) of L in the
present paper, we turn our attention to this type of group.

In Theorems 9, 11, 12 we give the precise structure of the 3-dimensional con-
nected simply connected loops L and their multiplication groups if Mult(L) are
solvable indecomposable Lie groups. Since the isomorphism classes of the 6-dimen-
sional solvable Lie algebras are fully known (cf. [Mu], [ST], [T]) we applied our
results on the one hand for Lie algebras having 2-dimensional centre and on the
other hand for those which have 4-dimensional nilradical. We show that the 6-
dimensional solvable indecomposable Lie groups with one of the following pro-
perties:

• they have discrete centre and correspond to 4-dimensional nilradicals,
• they have 1-dimensional centre and belong to 4-dimensional non-abelian

nilradicals,
• they have 2-dimensional centre

are not the multiplication groups of 3-dimensional topological loops (cf. Proposi-
tions 10 and 14).

In Section 5 we find that among the 6-dimensional solvable indecomposable Lie
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TOPOLOGICAL LOOPS

algebras with 1-dimensional centre and 4-dimensional abelian nilradicals there are
two classes of Lie algebras depending on a real parameter and a single Lie algebra
which consist of the Lie algebras of the multiplication groups of 3-dimensional
simply connected topological loops. All these Lie algebras have 3-dimensional
abelian commutator subalgebras and their nilradical has an abelian complement
in the Lie algebra. We prove that the corresponding loops L are centrally nilpotent
of class 2 and determine their inner mapping groups.

Acknowledgements. We thank the referee for the valuable question and Péter T.
Nagy for the construction of solvable topological loops which are not congruence
solvable.

2. Preliminaries

A set L with a binary operation (x, y) 7→ x · y is called a loop if there exists an
element e ∈ L such that x = e ·x = x · e holds for all x ∈ L and for each x ∈ L the
left translations λx : L → L, λx(y) = x · y and the right translations ρx : L → L,
ρx(y) = y · x are bijections of L. A loop L is proper if it is not a group. The left
and right division operations on L are defined by the maps (x, y) 7→ x\y = λ−1

x (y),
respectively (x, y) 7→ y/x = ρ−1

x (y), x, y ∈ L. Let µx : L→ L be the map µx(y) =
y\x and hence µ−1

x (y) = x/y. The permutation groups Mult(L) = 〈λx, ρx; x ∈ L〉,
TMult(L) = 〈λx, ρx, µx; x ∈ L〉 are called the multiplication group and the total
multiplication group of L. Let Inn(L), respectively T Inn(L) be the stabilizer of
the identity element e ∈ L in Mult(L), respectively in TMult(L). They form a
subgroup of Mult(L), respectively in TMult(L) and call the inner mapping group,
respectively the total inner mapping group of L.

The kernel of a homomorphism α : (L, ·) → (L′, ∗) of a loop L into a loop L′

is a normal subloop N of L. A word W is a formal product of letters λt(x̄), ρt(x̄)

and their inverses, where t(x̄) = t(x1, . . . , xn) is a loop term. Upon substituting
elements ui of a particular loop L for the variables xi in a word W and upon
interpreting λt(x̄), ρt(x̄) as translations of L, we obtain Wū, an element of Mult(L).
If Wū(e) = e for every loop L with identity element e and every assignment of
elements ui ∈ L we say that W is an inner word. The concept of tot-inner word is
defined similarly allowing µt(x̄) as generating letters.

The following result describes the commutator of two normal subloops in purely
loop theoretical fashion (cf. [SV1]).

Theorem 1. Let W be a set of tot-inner words such that for every loop L one
has T Inn(L) = 〈Wū : W ∈ W , ui ∈ L〉. Let L be a loop and N1, N2 be two
normal subloops of L. The commutator [N1, N2]L is the smallest normal subloop
of L containing the set {Wū(a)/Wv̄(a) : W ∈ W , a ∈ N1, ui, vi ∈ L, ui/vi ∈ N2}.

Let Tx = ρ−1
x λx, Ux = ρ−1

x µx, Lx,y = λ−1
xy λxλy, Rx,y = ρ−1

yx ρxρy, Mx,y =

µ−1
y\xµxµy. A suitable set of tot-inner words in Theorem 1 is for instance W =

{Tx, Ux, Lx,y, Rx,y,Mx,y}.
A normal subloop N of L is called central, respectively abelian in L if [N,L]L =

{e}, respectively [N,N ]L = {e}. The centre Z(L) of a loop L consists of all elements
z which satisfy the equations zx · y = z ·xy, x · yz = xy · z, xz · y = x · zy, zx = xz
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for all x, y ∈ L. A normal subloop is central in L if and only if it is a subloop
of Z(L). If we put Z0 = e, Z1 = Z(L) and Zi/Zi−1 = Z(L/Zi−1), then we
obtain a series of normal subloops of L. If Zn−1 is a proper subloop of L but
Zn = L, then L is centrally nilpotent of class n. A loop L is called classically
solvable if there is a series {e} = L0 ≤ L1 ≤ · · · ≤ Ln = L of subloops of L
such that, for every i = 1, 2, . . . , n, Li−1 is normal in Li and the factor Li/Li−1

is a commutative group. A loop L is said to be congruence solvable if there is
a series {e} = L0 ≤ L1 ≤ · · · ≤ Ln = L of normal subloops of L such that
every factor loop Li/Li−1 is abelian in L/Li−1. Every centrally nilpotent loop is
congruence solvable. Let (A,+, 0) be a commutative group, let (F, ·, e) be a loop, let
ϕ, φ : F ×F → Aut(A) be functions with ϕ(y, e) = Id = φ(e, y) and θ : F ×F → A
be a function with θ(e, y) = 0 = θ(y, e) for every y ∈ F . The multiplication

(x, a)⊕ (y, b) = (x · y, ϕ(x, y)(a) + φ(x, y)(b) + θ(x, y))

defines a loop on F × A, denoted by L = F ⊕Γ A, which is called the abelian
extension of the normal subgroup A by F over the cocycle Γ = (ϕ, φ, θ). A loop L
is called an iterated abelian extension if it has the form

((((A0 ⊕Γ1
A1)⊕Γ2

A2)⊕Γ3
· · · ⊕Γk−2

Ak−2)⊕Γk−1
Ak−1)⊕Γk

Ak,

where Ai, i = 0, . . . , k, are abelian groups and all extensions are abelian (cf. [SV2],
Section 5 and [Mo, Def., p. 380]).

The following assertion is proved in [SV2, Cor. 5.1, p. 380].

Lemma 2. A loop L is congruence solvable if and only if it is an iterated abelian
extension.

The next assertion was proved in [A, Thms. 3, 4, and 5], in [B2, IV.1, Lem. 1.3],
and in [F5, Lem. 2.3].

Lemma 3. Let L be a loop with multiplication group Mult(L) and identity ele-
ment e.

(i) Let α be a homomorphism of the loop L onto the loop α(L) with kernel
N . Then α induces a homomorphism of the group Mult(L) onto the group
Mult(α(L)). Let M(N) be the set {m ∈ Mult(L); xN = m(x)N for all x ∈
L}. Then M(N) is a normal subgroup of Mult(L) containing the multiplica-
tion group Mult(N) of the loop N and the multiplication group of the factor
loop L/N is isomorphic to Mult(L)/M(N).

(ii) For every normal subgroup N of Mult(L) the orbit N (e) is a normal subloop
of L and N ≤M(N (e)).

Let K be a group, let S ≤ K, and let A and B be two left transversals to S in
K. We say that A and B are S-connected if a−1b−1ab ∈ S for every a ∈ A and
b ∈ B. The core CoK(S) of S in K is the largest normal subgroup of K contained
in S. If L is a loop, then Λ(L) = {λa; a ∈ L} and R(L) = {ρa; a ∈ L} are Inn(L)-
connected transversals in the group Mult(L). In [NK1] the authors established a
purely group theoretical characterization for a group K to be the multiplication
group of L.
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Lemma 4. A group K is isomorphic to the multiplication group of a loop if and
only if there exists a subgroup S with CoK(S) = 1 and S-connected transversals A
and B satisfying K = 〈A,B〉.

Lemma 5. Let L be a loop with multiplication group Mult(L) and inner mapping
group Inn(L). Then the normalizer NMult(L)(Inn(L)) is the direct product Inn(L)×
Z, where Z is the centre of Mult(L), and CoMult(L)(Inn(L)) = {1}.

A loop L is called topological if L is a topological space and the binary operations
(x, y) 7→ x·y, (x, y) 7→ x\y, (x, y) 7→ y/x : L×L→ L are continuous. In general the
multiplication group of L is a topological transformation group that does not have
a natural (finite dimensional) differentiable structure. If the multiplication group
of L is a Lie group K, then K is a Lie transformation group acting transitively
and effectively on L. Moreover, there is a Lie subgroup S of K with CoK(S) = 1
and S-connected continuous transversals A and B with K = 〈A,B〉.

We often use the following lemma. Its first assertion is proved in [H, IX.1], the
second assertion is showed in [F2, Lem. 3.3, p. 390].

Lemma 6. For every connected topological loop there exists the universal covering
loop L. If L is a 3-dimensional connected simply connected topological loop having
a solvable Lie group as its multiplication group, then it is homeomorphic to R3.

The elementary filiform Lie group Fn is the simply connected Lie group of
dimension n ≥ 3 such that its Lie algebra has a basis {e1, . . . , en} with [e1, ei] =
ei+1 for 2 ≤ i ≤ n − 1. A 2-dimensional simply connected loop LF is called an
elementary filiform loop if its multiplication group is an elementary filiform group
Fn, n ≥ 4. Every elementary filiform loop is centrally nilpotent of class 2 ([F1, p.
420]). A transitive action of a Lie group G on a manifold M is called primitive, if
on M there is no G-invariant foliation with connected fibres of positive dimension
smaller than dim M . A Lie algebra is called indecomposable, if it is not the direct
sum of two proper ideals.

Now we collect the known results about the 3-dimensional topological loops
having solvable Lie groups as their multiplication groups (cf. [F2, Lems. 3.4, 3.5,
3.6 and Props. 3.7, 3.8], [A, pp. 392–393, Thm. 11], [F3, Thm. 6, Sects. 4 and 5],
[F5, Props. 2.6, 2.7]).

Lemma 7. Let L be a 3-dimensional proper connected simply connected topological
loop such that its multiplication group Mult(L) is a solvable Lie group.

a) Then the centre Z of the group Mult(L) and the centre Z(L) = Z(e) of the
loop L, where e is the identity of L, are isomorphic. The centre Z is either
discrete or it has dimension 1 or 2.

b) If dim(Z(L)) = 1 and the factor loop L/Z(L) is isomorphic to the group R2

or if dim(Z(L)) = 2, then L is centrally nilpotent of class 2 and the inner
mapping group Inn(L) of L is abelian.

c) If dim(Z(L)) = 2, then Mult(L) is a semidirect product of the group V ∼= Rm,
m ≥ 3, by a group Q ∼= R such that V = Z × Inn(L), where R2 = Z ∼= Z(L)
is the centre of Mult(L). If Mult(L) is indecomposable, then for every 1-
dimensional connected subgroup N of Z the orbit N(e) is a connected central
subgroup of L such that the factor loop L/N(e) is not isomorphic to R2.
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d) If L has a 1-dimensional connected normal subloop N , then N is isomorphic
to the group R and we have the following possibilities:

(i) The factor loop L/N is isomorphic to R2. Then N is contained in the
centre of L and the group Mult(L) is a semidirect product of the group
P ∼= Rm, m ≥ 2 by a group Q ∼= R2 such that P = C × Inn(L), where
R = C ∼= N is a central subgroup of Mult(L).

(ii) The loop L/N is isomorphic either to the non-abelian 2-dimensional Lie
group L2 or to an elementary filiform loop LF . Then the group Mult(L)
has a normal subgroup S containing Mult(N) ∼= R such that the factor
group Mult(L)/S is isomorphic to the direct product L2×L2 if L/N ∼= L2

or to an elementary filiform Lie group Fn, n ≥ 4, if L/N ∼= LF .

e) The indecomposable solvable non-nilpotent Lie groups of dimension ≤ 5 are
not the multiplication groups of 3-dimensional topological loops. The centre
of every 3-dimensional connected topological proper loop having an at most
6-dimensional indecomposable nilpotent Lie group as its multiplication group
has dimension 1.

3. The structure of indecomposable solvable
multiplication groups of 3-dimensional topological loops

Let L be a 3-dimensional connected simply connected topological proper loop
such that its group Mult(L) is a solvable Lie group. By Lemma 6 the loop L is
homeomorphic to R3. The solvable Lie group Mult(L) has a minimal non-trivial
connected normal subgroup K of dimension 1 or 2. By Lemma 3 the orbit K(e)
is a connected normal subloop of L. Since the core CoMult(L)(Inn(L)) is trivial
one has K(e) 6= {e}. Hence the dimension of K(e) is 1 or 2. Therefore the group
Mult(L) acts transitively, effectively and imprimitively on the topological space L
homeomorphic to R3. According to [L], p. 141, there are three classes of Lie groups
G acting imprimitively on R3:

I. In R3 there is a G-invariant foliation F with 2-dimensional connected fibres
D, but there is no G-invariant foliation of D with 1-dimensional connected fibres.

II. In R3 there is a G-invariant foliation F with 1-dimensional connected fibres
C, but there is no G-invariant foliation with 2-dimensional fibres D which are
unions of fibres C.

III. In R3 there is a G-invariant foliation F with 1-dimensional connected fibres
C and there is a G-invariant foliation with 2-dimensional fibres D which are unions
of fibres C.

If the group Mult(L) belongs to the I. class, then the loop L has a 2-dimensional
connected normal subloop M such that M has no 1-dimensional connected normal
subloop. Since M has a Lie group as its multiplication group, M is either a 2-
dimensional Lie group or an elementary filiform loop. All these loops have a 1-
dimensional normal subgroup (cf. [F1, p. 420]). This contradiction yields that
Mult(L) is not in the I. class.

If the group Mult(L) belongs to the II. class, then the loop L has a 1-dimensional
connected normal subloop N but there does not exist any 2-dimensional connected
normal subloop M of L which contains N . Among the Lie algebras acting locally
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primitively on R2 only

g1 = 〈∂/∂x, ∂/∂y, α(x∂/∂x+ y∂/∂y) + y∂/∂x− x∂/∂y〉, α ≥ 0, and

g2 = 〈∂/∂x, ∂/∂y, x∂/∂x+ y∂/∂y, y∂/∂x− x∂/∂y〉

are solvable (cf. [G, p. 341], also [L, Thm. 34, p. 378]). Hence the Lie algebra
mult(L) of Mult(L) is either isomorphic to one of the Lie algebras gi, i = 1, 2, or
it has a proper subalgebra isomorphic to gi, i = 1, 2. The first case is impossible
since none of the Lie algebras gi, i = 1, 2, is the Lie algebra of the multiplication
group of a 3-dimensional topological loop (cf. [F3, Sect. 4]). In the second case
one has

mult(L) = 〈X1 + φ1(x, y, z)∂/∂z, . . . ,Xk + φk(x, y, z)∂/∂z,

F1(x, y, z)∂/∂z, . . . , Fn−k(x, y, z)∂/∂z〉.

where X1, . . . , Xk are the basis elements of gi, i = 1, 2, according to whether
mult(L) contains the subalgebra isomorphic to gi. Moreover, the Lie subgroup A of
Mult(L) corresponding to the (n−k)-dimensional subalgebra a = 〈Fi(x, y, z)∂/∂z〉,
i = 1, . . . , n − k, leaves every 1-dimensional connected left coset xN , x ∈ L,
invariant (cf. [L, p. 155]). By Lemma 3 the subgroup A is the normal subgroup
M(N) of Mult(L) and the multiplication group Mult(L/N) of the 2-dimensional
connected factor loop L/N is isomorphic to Mult(L)/A. The factor loop L/N is
isomorphic either to a 2-dimensional Lie group or to an elementary filiform loop
(cf. Lemma 7d)). The factor Lie algebra mult(L)/a is isomorphic to gi, i = 1 or
2. But the Lie algebras gi, i = 1, 2, are not the Lie algebra of the multiplication
group of a 2-dimensional topological loop (cf. [F1, Thm. 1, p. 420]).

Hence the group Mult(L) belongs to the III. class and the loop L has a 2-
dimensional connected normal subloop M containing a 1-dimensional connected
normal subloop N of L. Since Mult(L) does not belong to the II. class every 1-
dimensional normal subloop of L lies in a 2-dimensional normal subloop of L. By
Lemma 7d) the loop N is isomorphic to R and every orbit of N is homeomorphic
to R. By [NS1, Thm. 18.18], the 1-dimensional connected factor loop L/M is
isomorphic either to the Lie group R or to SO2(R). The normal subloop M and
the factor loop L/N are 2-dimensional connected loops having a Lie group as their
multiplication groups (cf. Lemma 3). Hence M and L/N are homeomorphic either
to R2 or to S1×R or to S1×S1 (cf. [NS1, Thm. 19.1, p. 249]). The manifold L is
a fibering of R3 over L/N with fibers homeomorphic to N and it is also a fibering
of R3 over L/M with fibers homeomorphic to M . Hence the first fundamental
group π1(R3) of R3 is isomorphic to the sum π1(L/N) + π1(N) and also to the
sum π1(L/M) + π1(M). Since π1(Rn) = 0, π1(S1) = Z and N is homeomorphic
to R we obtain that the loops L/N and M are homeomorphic to R2 and L/M is
homeomorphic to R. Every 2-dimensional topological loop which is homeomorphic
to R2 and having a Lie group as its multiplication group is isomorphic either to
an elementary filiform loop or to one of the Lie groups {R2,L2} (cf. [F1, Thm. 1]).
The series {e} = L0 ≤ N = L1 ≤ M = L2 ≤ L = L3 of normal subloops of L
has the properties that every factor loop Li/Li−1, i ∈ {1, 2, 3}, is isomorphic to R.
The above discussion yields case (a) of the following theorem
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Theorem 8. Let L be a proper connected simply connected topological loop of
dimension 3 having a solvable Lie group as its multiplication group Mult(L).

(a) Then L is classically solvable. There is a normal subgroup N ∼= R of L.
Every normal subgroup N ∼= R of L lies in a 2-dimensional normal subloop
M of L. The factor loop L/M is isomorphic to R, whereas M and L/N are
isomorphic either to a 2-dimensional simply connected Lie group or to an
elementary filiform loop.

(b) The loop L is congruence solvable if and only if either L has a non-discrete
centre or L is an abelian extension of a 1-dimensional normal subgroup N ∼=
R by the factor loop L/N isomorphic either to the Lie group L2 or to an
elementary filiform loop LF .

Proof. It remains to prove case (b). By Lemma 2 the loop L is congruence solvable
if and only if it is an iterated abelian extension. Among the loops L with solvable
multiplication group the following are iterated abelian extensions: If the centre
Z(L) of L is non-discrete, then it has dimension 1 or 2 (cf. Lemma 7a)). If
dim(Z(L)) = 2, then L is centrally nilpotent of class 2 (see Lemma 7b)) and
hence it is congruence solvable. If Z(L) has dimension 1, then L is an extension of
the centre Z(L) ∼= R by a loop F isomorphic to the factor loop L/Z(L). The centre
Z(L) is central in L (cf. [SV2, p. 370]) hence it is abelian in L. By [SV2, Thm. 4.1,
p. 375], the loop L is an abelian extension of Z(L) by L/Z(L). The factor loop
L/Z(L) is isomorphic either to R2 or to L2 or to an elementary filiform loop LF
(cf. case (a)). Since L2 is a solvable Lie group and every elementary filiform loop
is centrally nilpotent of class 2 the factor loop L/Z(L) is an abelian extension of
the group R by R (cf. [Mo, Lems. 10, 11, pp. 380–381]). Therefore L is an iterated
abelian extension. If the loop L has a discrete centre, then by case (a) L has a
normal subgroup N ∼= R such that the factor loop L/N is isomorphic either to
the Lie group L2 or to an elementary filiform loop LF (Lemma 7d)(ii)). Since the
factor loop L/N is an abelian extension L is an iterated abelian extension precisely
if L is an abelian extension of N by L/N . �

Schreier’s extensions of the normal subgroup N ∼= R by the Lie group F = L2 or
by an elementary filiform loop F = LF are special examples of abelian extensions
of N by F (cf. [NS2, p. 761]). Hence they are congruence solvable. Now we give a
construction for topological loops which yields non-abelian extensions.

Example 1. Let (S, ·) be a topological loop of dimension n having a normal
subloop S1 such that the factor loop S/S1 is isomorphic to the group R and let
φ : (S, ·)→ (R,+) be a homomorphism. Consider a one-parameter family of loops
Γt : R×R→ R, (a, b) 7→ Γt(a, b) = a∗t b, t ∈ R, such that Γ0(a, b) = a+b and Γt is
not commutative for some t ∈ R. Assume that all loops Γt on the line R have the
same identity element 0 and denote by ∆t(a, b) : R×R→ R the right division map
(a, b) 7→ ∆t(a, b) = a/tb, t ∈ R, in the loop Γt. For the loops Γt, t 6= 0, we can take

loops defined by the sharply transitive continuous section σt : ˜PSL2(R)/L2 →
˜PSL2(R) given by the continuous functions f(u) = exp[ 1

6 sin2 t cosu(cosu − 1)],
g(u) = (f(u)−1 − f(u)) cotu (cf. [NS1, Prop. 18.15 and its proof, pp. 244–245]).
All these loops Γt, t 6= 0, are proper and hence they are not commutative (cf. Cor.
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18.19., p. 248). The multiplication

(x, a) ◦ (y, b) = (x · y,Γφ(x·y)(a, b))

on S×R defines a loop Lφ which is an extension of the group R by the loop S. The
loop Lφ has the identity element (1, 0), where 1 is the identity element of the loop
(S, ·), because of (1, 0) ◦ (y, b) = (y,Γφ(y)(0, b)) = (y, b) = (y, b) ◦ (1, 0). Hence the
loop Lφ is an Albert extension of the group R by the loop (S, ·) given by the one-
parameter family Γt of the loop multiplications on R (cf. [N, p. 4]). Let x ∈ S such
that φ(x) 6= 0. For the tot-inner word T (x, a) = ρ−1

(x,a)λ(x,a) one has T (x, a)(1, c) =

((x, a) ◦ (1, c))/(x, a) = (x,Γφ(x)(a, c))/(x, a) = (1,∆φ(x)(Γφ(x)(a, c), a)), which is
not independent of a ∈ R since the loop Γφ(x) is not commutative. Hence the
normal subgroup R is not abelian in the loop Lφ (cf. [SV2, Proof of Thm. 4.1, p.
377]). Taking for the loop (S, ·) the Lie group L2 or an elementary filiform loop LF
this construction gives a non-abelian extension of the group R by the loop (S, ·).

Theorem 9. Let L be a 3-dimensional proper connected simply connected topo-
logical loop such that its multiplication group Mult(L) is an indecomposable solvable
Lie group with 2-dimensional centre Z. Then L is centrally nilpotent of class 2
and Mult(L) has dimension ≥ 6. The group Mult(L) is a semidirect product of the
subgroup V = Z×Inn(L) ∼= Rm, m ≥ 5, by a group Q ∼= R, where R2 = Z ∼= Z(L).
For every 1-dimensional connected subgroup N of Z the orbit N(e) is a connected
central subgroup of L and the factor loop L/N(e) is isomorphic to an elementary
filiform loop LF . The group Mult(L) has a normal subgroup S containing N ∼= R
such that the factor group Mult(L)/S is isomorphic to an elementary filiform Lie
group Fn with n ≥ 4.

Proof. According to Lemma 7a),b),c),e), the loop L is centrally nilpotent of class
2, dim(Mult(L)) ≥ 6 and Mult(L) is a semidirect product as in the assertion.
Since N is a subgroup of Z the orbit N(e) lies in the centre Z(L) of L and hence
N(e) is a 1-dimensional central subgroup of L. The multiplication group of the
2-dimensional connected simply connected factor loop L/N(e) is a factor group
of Mult(L). According to Lemma 7c) the loop L/N(e) is not isomorphic to R2.
If L/N(e) would be isomorphic to L2, then by Lemma 7d)(ii) the group Mult(L)
would have a proper factor group isomorphic to L2 × L2. A semidirect product
V o Q, where V is an abelian normal subgroup of codimension 1 does not have
such a factor group. This contradiction yields that L/N(e) is isomorphic to a loop
LF and the remaining part of the assertion follows from Lemma 7d)(ii). �

Proposition 10. There does not exist any 3-dimensional proper connected to-
pological loop L having a 6-dimensional indecomposable solvable Lie group with
2-dimensional centre as the group Mult(L) of L.

Proof. We may assume that L is simply connected and hence homeomorphic to R3

(cf. Lemma 6). If Mult(L) is nilpotent, then the assertion follows from Lemma 7
e). According to Theorem 9 the group Mult(L) has the form Q n V with the
5-dimensional abelian normal subgroup V . Hence the Lie algebra mult(L) of
Mult(L) has a 5-dimensional abelian nilradical. The unique Lie algebra with 2-
dimensional centre in the list given in [ST, p. 37], is the Lie algebra g6,6 with
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a = 0 = b defined by the Lie brackets: [e1, e6] = e1, [e3, e6] = e2, [e5, e6] = e4.
The Lie algebra n of a 1-dimensional central subgroup N < Z has either the
form nα = 〈e2 + αe4〉, α ∈ R, or n = 〈e4〉. There does not exist any ideal s of
g6,6 containing nα or n such that the factor algebra g6,6/s is isomorphic to an
elementary filiform Lie algebra fn, n = {4, 5}. This contradiction to Theorem 9
proves the assertion. �

Theorem 11. Let L be a 3-dimensional proper connected simply connected topo-
logical loop having a solvable indecomposable Lie group with a discrete centre as
its multiplication group Mult(L). The loop L has a connected normal subgroup N
isomorphic to R and the factor loop L/N is isomorphic either to the Lie group L2

or to an elementary filiform loop LF . The group Mult(L) has dimension ≥ 6 and
it has a normal subgroup S containing Mult(N) ∼= R such that the factor group
Mult(L)/S is isomorphic to the direct product L2 × L2 if L/N ∼= L2 or to an
elementary filiform Lie group Fn, n ≥ 4, if L/N ∼= LF . For every 1-dimensional
connected normal subgroup N of L the loop L has a normal subloop M isomorphic
either to R2 or to L2 or to a loop LF such that N lies in M and L/M is isomorphic
to R. The group Mult(L) has a normal subgroup V such that the orbit V (e) is the
loop M , Mult(L)/V ∼= R, V contains the inner mapping group Inn(L) of L and
the group Mult(M) of M .

Proof. By Theorem 8(a) there exists a normal subgroup N of L isomorphic to R
and there is a 2-dimensional normal subloop M of L containing N . As the group
Mult(L) has a discrete centre the factor loop L/N is not isomorphic to R2 (cf.
Lemma 7d)(i)). Hence it is isomorphic either to the Lie group L2 or to a loop LF
and the group Mult(L) has a normal subgroup S as in the assertion (cf. Lemma
7 d (ii)). By Lemma 7 e) we have dim(Mult(L)) ≥ 6. Since L/M is isomorphic to
R there is a normal subgroup V = {v ∈ Mult(L);xM = v(x)M for all x ∈ L} <
Mult(L) such that V (e) = M , Mult(L)/V ∼= R and V contains the multiplication
group Mult(M) of M (cf. Lemma 3). As the group Mult(L)/V operates sharply
transitively on the orbits of M in L the inner mapping group Inn(L) is a subgroup
of V . �

Theorem 12. Let L be a 3-dimensional proper connected simply connected topo-
logical loop such that its multiplication group Mult(L) is an indecomposable solvable
Lie group with 1-dimensional centre Z. For every 1-dimensional connected normal
subgroup K of Mult(L) the orbit K(e) is a normal subgroup of L isomorphic to R.
We have one of the following possibilities:

(a) The factor loop L/K(e) is isomorphic to R2. Then L is centrally nilpotent of
class 2, K(e) coincides with the centre Z(L) of L and the group Mult(L) is
a semidirect product of the normal subgroup P = Z × Inn(L) ∼= Rm, m ≥ 4,
by a group Q ∼= R2 and the orbit P (e) is Z(L).

(b) The loop L/K(e) is isomorphic either to the Lie group L2 or to an elementa-
ry filiform loop LF . The group Mult(L) has a normal subgroup S containing
K such that the orbit S(e) coincides with K(e), the factor group Mult(L)/S
is isomorphic to the direct product L2 × L2 if L/K(e) ∼= L2 or to an
elementary filiform Lie group Fn, n ≥ 4, if L/K(e) ∼= LF .
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The loop L has a 2-dimensional normal subloop M containing K(e) and the
group Mult(L) has a normal subgroup V as in Theorem 11. In particular, if K(e) =
Z(L) and L/Z(L) is an elementary filiform loop LF , then L is centrally nilpotent
of class 3 and M is not isomorphic to the group L2.

Proof. By Lemmata 3, 5 the normal subloop K(e) is different from {e}. Applying
Lemma 7d) for the case N = K(e) assertion (a) and (b) is proved. By Theorem 8(a)
there is a normal subloop M of L containing K(e) and the remaining part of the
assertion follows from the proof of Theorem 11. If K(e) = Z(L) and L/Z(L) is an
elementary filiform loop LF , then L is an iterated central extension, since every
elementary filiform loop is centrally nilpotent of class 2. By [SV2, Cor. 5.2, p. 380],
the loop L is centrally nilpotent of class 3. Moreover, M is not isomorphic to L2

since L2 has a trivial centre. �

4. Six-dimensional indecomposable solvable Lie algebras with
four-dimensional nilradical having trivial centre

or non-abelian nilradical

From now on we deal with 6-dimensional indecomposable solvable Lie algebras
having 4-dimensional nilradical. Firstly we formulate the main technical tool which
we systematically use to exclude those Lie algebras which are not the Lie algebra
of the multiplication group of a 3-dimensional topological loop.

Proposition 13. Let L be a 3-dimensional connected simply connected topological
loop having a 6-dimensional solvable indecomposable Lie algebra g with 4-dimen-
sional nilradical nrad as the Lie algebra of its multiplication group.

a) For each 1-dimensional ideal i of g the orbit I(e), where I is the simply
connected Lie group of i and e is the identity element of L, is a normal
subgroup of L isomorphic to R. We have one of the following possibilities:
(i) The factor loop L/I(e) is isomorphic to R2 and for the nilradical one has

nrad = z ⊕ inn(L) ∼= R4, where z is the 1-dimensional centre of g and
inn(L) is the Lie algebra of the group Inn(L).

(ii) The factor loop L/I(e) is isomorphic either to the Lie group L2 or to an
elementary filiform loop LF . Then there exists a 2-dimensional ideal s
of g such that i < s and the factor Lie algebra g/s is isomorphic either
to the direct sum l2 ⊕ l2, where l2 is the 2-dimensional non-abelian Lie
algebra or to the elementary filiform Lie algebra f4.

Assume that the centre of g is trivial or the nilradical of g is not abelian.
b) For every 2-dimensional abelian ideal a of g such that the factor Lie algebra

g/a is isomorphic neither to l2 ⊕ l2 nor to f4 and for each nilpotent ideal
s of g having dimension > 2 the orbits A(e), S(e), where A, respectively S
is the simply connected Lie group of a, respectively s and e is the identity
element of L, are the same 2-dimensional normal subloop M of L. There
exists a 5-dimensional ideal v of g containing the Lie algebra inn(L), the Lie
algebra mult(M) of the multiplication group of M and the nilradical nrad.
For every ideal a, respectively s one has a∩inn(L) = {0} and the intersection
s∩ inn(L) has dimension dim(s)−2. In particular, if g is not the Lie algebra
N6,28 in [T, Table III, p. 1349], then the loop M is isomorphic to R2.
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Proof. Each 1-dimensional ideal i of g lies in nrad, which is isomorphic either to R4

or to f3⊕R or to f4 (cf. [T]). If the factor loop L/I(e) is isomorphic to R2, then the
orbit I(e) coincides with the 1-dimensional centre Z(L) of L (cf. Proposition 10
and Theorem 12). The Lie algebra p of the normal subgroup P in Theorem 12(a) is
a 4-dimensional abelian ideal p = z⊕ inn(L) of g such that the commutator ideal
g′ is contained in p. The ideal p is nilpotent hence it coincides with the nilradical
nrad of g. This proves assertion (i). Since g has no factor Lie algebra isomorphic
to the 5-dimensional elementary filiform Lie algebra f5 assertion (ii) follows from
Theorems 11, 12(b).

Assume that the centre of g is trivial or the nilradical of g is not abelian.
Taking into account [T, Tables I, III, IV, V, pp. 1347–1350], the commutator Lie
algebra g′ of g coincides with the nilradical nrad of g. Let a be a 2-dimensional
abelian ideal of g. The orbit A(e) is a normal subloop of L (cf. Lemma 3) such
that A(e) 6= {e} and dim(A(e)) 6= 1 (cf. Lemmata 5, 7 d) and Proposition 13 a).
Hence A(e) is a 2-dimensional normal subloop M of L. The 5-dimensional ideal
v is the Lie algebra of the normal subgroup V in Theorem 11 and hence one has
V (e) = M . The ideal a is contained in nrad. Let N be the simply connected Lie
group of nrad. The orbit N(e) is a normal subloop of L having dimension 2 or
3 since A(e) ⊆ N(e). Therefore N(e) is either the subloop M or the loop L. As
g′ = nrad one has nrad ⊂ v. Hence we obtain that V (e) = N(e) = A(e) := M .
Since each nilpotent ideal a and s in assertion b) is contained in nrad one has
A(e) = S(e) = N(e) = M . Since dim(A(e)) = 2 the 2-dimensional abelian Lie
group A acts sharply transitively on A(e). Hence one has A ∩ Inn(L) = {1}. As
dim(s) > 2 and dim(S(e)) = 2 there is a subgroup of S of dimension dim(s) − 2,
which fixes the identity element e of L. The ideal v contains the Lie algebra
mult(M) of the group Mult(M) of the 2-dimensional normal subloop M of L.
The loop M is isomorphic either to R2 or to L2 or to a loop LF (cf. Theorem
11). Since nrad ⊂ v and dim(v) = 5 the intersection of v with the complement of
nrad in g has dimension 1. Therefore v does not contain a subalgebra isomorphic
to l2 ⊕ l2. The radical of the Lie algebras g which are different from N6,28 does
not contain an elementary filiform Lie algebra of dimension ≥ 4. Hence one has
M = V (e) = R2. This proves assertion b). �

Now we prove that the 6-dimensional solvable indecomposable Lie algebras with
4-dimensional nilradical having trivial centre or non-abelian nilradical are not the
Lie algebras of the multiplication groups of 3-dimensional topological loops.

Proposition 14. Let g be a 6-dimensional solvable indecomposable Lie algebra
with 4-dimensional nilradical nrad such that g has trivial centre or nrad is not
abelian. There does not exist a 3-dimensional connected topological loop L having
g as the Lie algebra of the multiplication group Mult(L) of L.

Proof. We may assume that L is simply connected and hence it is homeomorphic
to R3 (cf. Lemma 6). The 6-dimensional solvable indecomposable Lie algebras with
4-dimensional nilradical having trivial centre or non-abelian nilradical are listed [T,
Tables I, III, IV, V, pp. 1347–1350]. The Lie algebras N6,i, i = 4, 7, 30, 39, 40, have
the ideal i = 〈n4〉. The Lie algebras N6,i, i = 5, 16, 17, have the ideal i = 〈n2〉.
The Lie algebras N6,i, i = 8, 9, 10, 13, 14, 28, 35, 36, 37, have the ideal i = 〈n1〉.
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There does not exist any ideal s of the above Lie algebras N6,i which contains i
and the factor Lie algebras N6,i/s are isomorphic either to f4 or to l2 ⊕ l2. For
i = 39, 40, the nilradical of N6,i is not abelian. Hence the factor loop L/I(e) is
not isomorphic to R2. By Proposition 13a)(i),(ii) these Lie algebras are not the
Lie algebras of the multiplication groups of 3-dimensional topological loops. The
Lie algebras N6,j , j = 12, 15, 18, 19, have no 1-dimensional ideal. The unique 2-
dimensional abelian ideal of N6,12, respectively N6,19 is s1 = 〈n2, n4〉, respectively
s2 = 〈n3, n4〉. The Lie algebras N6,15, N6,18 have two 2-dimensional abelian ideals
s2 and s3 = 〈n1, n2〉. None of the factor algebras N6,12/s1, N6,19/s2, N6,j/sk,
j = 15, 18, k = 2, 3, are isomorphic to f4 or to l2⊕ l2. Hence the orbits Si(e), where
Si = exp(si), i = 1, 2, 3, are 2-dimensional normal subloops of L (cf. Proposition
13b)). If N6,j , j = 12, 15, 18, 19, would be the Lie algebra of the multiplication
group of a 3-dimensional topological loop, then L would have no 1-dimensional
normal subgroup. This contradiction to Theorem 8(a) excludes these Lie algebras.

The Lie algebras N6,i, i ∈ {1, 2, 3, 6, 11}, have trivial centre and neither a sub-
algebra nor a factor Lie algebra are isomorphic to an elementary filiform Lie
algebra. The Lie algebra N6,1 depends on four real parameters α, β, γ, δ with
αβ 6= 0, γ2 + δ2 6= 0. It has the ideals i1 = 〈n3〉, i2 = 〈n4〉. If N6,1 is the Lie
algebra of the multiplication group of a 3-dimensional topological loop, then there
are 2-dimensional ideals sj of N6,1 containing ij , j = 1, 2, such that the factor Lie
algebras N6,1/sj , j = 1, 2, are isomorphic to l2 ⊕ l2 (cf. Theorem 11 and Proposi-
tion 13a)(ii). This is the case if and only if γ = δ = 0. This contradiction excludes
the Lie algebra N6,1.

The Lie algebra N6,2 depends on three real parameters α, β, γ and the Lie
algebra N6,6 depends on α, β such that in both cases one has α2 + β2 6= 0. The
Lie algebras N6,3, N6,11 depend on the real parameter α. The Lie algebra N6,2 has
the ideals i1 = 〈n1〉, i2 = 〈n2〉, i3 = 〈n4〉 and the Lie algebras N6,j , j = 3, 6, 11,
have the ideals ik, k = 2, 3. If N6,j , j = 2, 3, 6, 11, would be the Lie algebra of the
multiplication group of a 3-dimensional topological loop, then applying Theorem
11 and Proposition 13a)(ii) there are 2-dimensional ideals s of N6,j , j = 2, 3, 6, 11,
containing ik, k = 1, 2, 3, such that the factor Lie algebras N6,j/s, j = 2, 3, 6, 11, are
isomorphic to l2⊕l2. For the ideals s1 = 〈n1, n4〉, s2 = 〈n2, n4〉 of N6,2, respectively
for the ideal s2 of the Lie algebras N6,j , j = 3, 6, 11, the factor Lie algebras N6,2/si,
i = 1, 2, respectively N6,j/s2, j = 3, 6, 11, are isomorphic to l2 ⊕ l2 precisely if
β = γ = 0, respectively α = 0. Hence we have to consider the Lie algebras N6,2

with β = γ = 0, α 6= 0, N6,j , j = 3, 11, with α = 0 and N6,6 with α = 0,
β 6= 0. These Lie algebras have the abelian ideals s3 = 〈n1, n2〉, s4 = 〈n3, n4〉 such
that the factor Lie algebras N6,j/sl, j = 2, 3, 6, 11, l = 3, 4, are not isomorphic
to l2 ⊕ l2. The 3-dimensional abelian ideals s5 = 〈n1, n2, n4〉, s6 = 〈n2, n3, n4〉,
s7 = 〈n1, n3, n4〉 of N6,2 and the ideals sm, m = 5, 6, of N6,j , j = 3, 6, 11, are
in nrad. According to Proposition 13 b) the orbits Sl(e), where Sl = exp(sl),
l ∈ {3, 4, 5, 6, 7}, and the orbit N(e), where N is the simply connected Lie group
of nrad, are the same normal subgroup M ∼= R2 of L. Since ik ⊂ nrad, k = 1, 2, 3,
the group M contains the 1-dimensional normal subgroups Ik(e) of L, where Ik
are the simply connected Lie groups of ik, k ∈ {1, 2, 3}. The ideal v in Proposition
13 b) has one of the following forms: v1,k = 〈n1, n2, n3, n4, x1 + kx2〉, k ∈ R,
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v2 = 〈n1, n2, n3, n4, x2〉. For l = 3, 4 one has sl ∩ inn(L) = {0}, for m = 5, 6, 7 the
intersections sm ∩ inn(L) have dimension 1 and dim(nrad ∩ inn(L)) = 2. Hence
the Lie subalgebra inn(L) of N6,j , j = 2, 3, 6, 11, has either the basis elements
b1 = n2 + a1n4, b2 = n1 + a2n3 + a4n4, where a1a2 6= 0 or the basis elements
b′1 = n1 + a1n2 + a2n4, b′2 = n2 + a3n3 + a4n4, where a2a3 6= 0. In the second
case for the Lie algebra N6,2 we have a1 = 0. The third basis element of inn(L) is
either b3 = x2 +c1n3 +c2n4 or b3,k = x1 +kx2 +c1n3 +c2n4, k, c1, c2 ∈ R. Only the
subspace 〈b1, b2, b3,k〉 is a 3-dimensional Lie algebra only in the Lie algebras N6,j ,
j = 3, 6, 11. Then the Lie subalgebra inn(L) has the form: inn(L)a,a4 = 〈n2+a(1+
β)n4, n1 + an3 + a4n4, x1 + x2〉, where a 6= 0, a4 ∈ R, β 6= −1 for N6,6 and β = 0
for N6,j , j = 3, 11. Using the automorphism α(ni) = ani, α(xi) = xi, i = 1, 2,
α(n4) = n4, α(n3) = n3− a4

a n4 of the Lie algebras N6,j , j = 3, 6, 11, we can change
the Lie algebra inn(L)a,a4 onto inn(L)β = 〈n2 +(1+β)n4, n1 +n3, x1 +x2〉 in the

case Nβ 6=−1
6,6 and β = 0 for the Lie algebras N6,j , j = 3, 11. Linear representations

of the simply connected Lie groups Gj of N6,j , j = 3, 6, 11, are given by:

for Nα=0
6,3 :

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x6 , x2 + y2e

x6 + x5y1e
x6 , x3 + y3e

x5 ,

x4 + y4e
x5 + y3x6e

x5 , x5 + y5, x6 + y6),
for Nα=0

6,11 :

g(x1 +y1e
x6 , x2 +y2e

x6 +x5y1e
x6 , x3 +y3e

x5 , x4 +y4e
x5 +y3x5e

x5 , x5 +y5, x6 +y6),

for Nα=0,β 6=−1
6,6 :

g(x1 + y1e
x6 , x2 + y2e

x6 + x6y1e
x6 ,

x3 + y3e
x5 , x4 + y4e

x5 + y3(x5 + βx6)ex5 , x5 + y5, x6 + y6).

One has Inn(L) = {g(u1, u2, u1, (1 +β)u2, s, s);ui, s ∈ R}, i = 1, 2, for Nβ 6=−1
6,6 and

β = 0 in the cases N6,j , j = 3, 11. Two arbitrary left transversals to the group
Inn(L) in Gj , j = 3, 6, 11, are

A = {g(f1(k, l,m), f2(k, l,m), k, l,m, f3(k, l,m)), k, l,m ∈ R},
B = {g(h1(u, v, w), h2(u, v, w), u, v, w, h3(u, v, w)), u, v, w ∈ R},

where fi(k, l,m) : R3 → R and hi(u, v, w) : R3 → R, i = 1, 2, 3, are continuous
functions with fi(0, 0, 0) = hi(0, 0, 0) = 0. For all a ∈ A, b ∈ B the condition
a−1b−1ab ∈ Inn(L) holds if and only if in all three cases the equation

e−h3(u,v,w)h1(u, v, w)(1− e−f3(k,l,m))− e−f3(k,l,m)f1(k, l,m)(1− e−h3(u,v,w))

= ue−w(1− e−m)− ke−m(1− e−w),
(1)

and for Nα=0
6,3 ,

e−h3(u,v,w)(1− e−f3(k,l,m))(h2(u, v, w)− wh1(u, v, w))

− e−f3(k,l,m)(1− e−h3(u,v,w))(f2(k, l,m)−mf1(k, l,m))

+ e−f3(k,l,m)−h3(u,v,w)(mh1(u, v, w)− wf1(k, l,m))

= e−w(1− e−m)(v − h3(u, v, w)u)− e−m(1− e−w)(l − f3(k, l,m)k)

+ e−m−w(f3(k, l,m)u− h3(u, v, w)k),

(2)
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for Nα=0
6,11 ,

e−h3(u,v,w)(1− e−f3(k,l,m))(h2(u, v, w)− wh1(u, v, w))

− e−f3(k,l,m)(1− e−h3(u,v,w))(f2(k, l,m)−mf1(k, l,m))

+ e−f3(k,l,m)−h3(u,v,w)(mh1(u, v, w)− wf1(k, l,m))

= e−w(1− e−m)(v − wu)− e−m(1− e−w)(l −mk) + e−m−w(mu− wk),

(3)

for Nα=0,β 6=−1
6,6 ,

(1 + β)[e−h3(u,v,w)(1− e−f3(k,l,m))(h2(u, v, w)− h3(u, v, w)h1(u, v, w))

− e−f3(k,l,m)(1− e−h3(u,v,w))(f2(k, l,m)− f1(k, l,m)f3(k, l,m))

+ e−f3(k,l,m)−h3(u,v,w)(f3(k, l,m)h1(u, v, w)− h3(u, v, w)f1(k, l,m))]

= e−w(1− e−m)[v − u(w + βh3(u, v, w))]

− e−m(1− e−w)[l − k(m+ βf3(k, l,m))]

+ e−m−w[mu− wk + β(f3(k, l,m)u− h3(u, v, w)k)]

(4)

are satisfied for all u, v, w, k, l,m ∈ R. Equation (1) is satisfied precisely if one has
h3(u, v, w) = w, h1(u, v, w) = u, f1(k, l,m) = k, f3(k, l,m) = m. Putting this into
equations (2), (3), (4) we obtain in case (4)

e−w(1− e−m)(v − (1 + β)h2(u, v, w)) = e−m(1− e−w)(l− (1 + β)f2(k, l,m)) (5)

and in cases (2), (3) equation (5) with β = 0. Equation (5) holds if and only if
one has h2(u, v, w) = v/(1 + β), f2(k, l,m) = l/(1 + β), where β = 0 in the cases

Nα=0
6,j , j = 3, 11, and β ∈ R\{−1} in the case Nα=0,β 6=−1

6,6 . In all these cases A∪B
does not generate the group Gj , j = 3, 6, 11. By Lemma 4 the Lie algebras N6,j ,
j = 3, 6, 11, are not the Lie algebras of groups Mult(L) of 3-dimensional topological
loops L.

The Lie algebras N6,j , j ∈ {29, 31, 32, 33, 34, 38}, have non-abelian nilradical,
and neither a subalgebra nor a factor Lie algebra of N6,j are isomorphic to an
elementary filiform Lie algebra fn, n ≥ 4. The Lie algebras N6,31 and Nα

6,32 have
the ideal i = 〈n1〉. Both Lie algebras contain the nilpotent ideals: s1 = 〈n1, n3〉,
s2 = 〈n1, n4〉, s3 = 〈n1, n2〉, s4 = 〈n1, n2, n3〉, s5 = 〈n1, n2, n4〉, s6 = 〈n1, n3, n4〉,
nrad. If N6,j , j = 31, 32, would be the Lie algebra of the multiplication group of
a 3-dimensional topological loop, then by Theorem 11 and Proposition 13a)(ii)
there exist 2-dimensional ideals s of N6,j , j = 31, 32, containing i such that the
factor Lie algebras N6,j/s, j = 31, 32, are isomorphic to l2 ⊕ l2. The factor Lie
algebra N6,31/s1 is isomorphic to l2⊕ l2, whereas the factor Lie algebras N6,31/si,
i = 2, 3, are not so. The factor Lie algebra Nα

6,32/s1 is isomorphic to l2 ⊕ l2 if
and only if α = 0, but the factor Lie algebras Nα=0

6,32 /si, i = 2, 3, are not so. The
factor Lie algebra Nα

6,32/s3 is isomorphic to l2 ⊕ l2 precisely if α = 1, whereas the
factor Lie algebras Nα=1

6,32 /si, i = 1, 2, are not so. Let Sk, respectively N be the
simply connected Lie groups of sk, k = 1, 2, . . . , 6, respectively nrad. For N6,31,
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Nα=0
6,32 the orbits Si(e), i = 2, 3, . . . , 6, and N(e) are the same normal subgroup

M ∼= R2 of L and for Nα=1
6,32 we have Sj(e) = N(e) := M , j = 1, 2, 4, 5, 6 (cf.

Proposition 13 b). The subgroup M contains the normal subgroup I(e) ∼= R, where
I is the simply connected Lie group of i, of L. For m = 4, 5, 6 the intersections
sm∩ inn(L) have dimension 1 and nrad∩ inn(L) has dimension 2 (see Proposition
13 b). Since for N6,31 and Nα=0

6,32 one has si ∩ inn(L) = {0}, i = 2, 3 and for Nα=1
6,32

we have sj ∩ inn(L) = {0}, j = 1, 2, the Lie algebra inn(L) contains the elements
b1 = n1 + a1n3, b2 = n2 + a2n1 + a3n4, a1a3 6= 0, in the cases N6,31 and Nα=0

6,32 and
the elements b1 = n1 + a1n2, b2 = n3 + a2n1 + a3n4, a1a3 6= 0 in the case Nα=1

6,32 .
As [b1, b2] = a1n1, a1 6= 0 in both cases inn(L) would contain the ideal 〈n1〉 of
N6,j , j = 31, 32. This contradicts Lemma 5.

The Lie algebras N6,33, N6,38, Nα
6,34 and Nα,β

6,29 have the ideals i1 = 〈n1〉, i2 =
〈n4〉. The Lie algebras N6,i, i = 29, 38, have the nilpotent ideals s1 = 〈n1, n2〉,
s2 = 〈n1, n4〉, s3 = 〈n1, n3〉, s4 = 〈n1, n2, n4〉, s5 = 〈n1, n3, n4〉, s6 = 〈n1, n2, n3〉,
nrad and the nilpotent ideals of N6,j , j = 33, 34, are s1, s2, s4, s5, nrad. Denote
by Ik, Si and N the simply connected Lie groups of the ideals ik, k = 1, 2, si,
i = 1, 2, . . . , 6 and nrad. The factor Lie algebras N6,k/s2, k ∈ {29, 33, 38}, are
isomorphic to l2 ⊕ l2 and N6,34/s2 is isomorphic to l2 ⊕ l2 precisely if α = 0. If
N6,j , j = 29, 33, 34, 38, would be the Lie algebra of the multiplication group of a 3-
dimensional topological loop, then the orbits Ik(e), k = 1, 2, are normal subgroups
of L isomorphic to R and the factor loops L/Ik(e), k = 1, 2, are isomorphic to L2

since the nilradical of N6,j are not abelian (cf. Proposition 13a)(i),(ii).
For j = 33, 34, the factor Lie algebras N6,j/s1 are not isomorphic to l2 ⊕ l2.

By Proposition 13 b) the orbits Sl(e), l = 1, 4, 5, and N(e) are the same normal
subgroup M ∼= R2 of L such that S1 ∩ Inn(L) = {1}, the intersections Sl ∩ Inn(L)
have dimension 1, l = 4, 5, and dim(N ∩ Inn(L)) = 2. For N6,29 the factor Lie
algebra N29/s1 is isomorphic to l2⊕ l2 precisely if β = 0 and N29/s3 is isomorphic
to l2 ⊕ l2 if and only if α = 0. If α 6= 0, respectively β 6= 0 the orbits Sl(e),
l = 3, 4, 5, 6, and N(e), respectively the orbits Sk(e), k = 1, 4, 5, 6, and N(e) are
the normal subgroup M ∼= R2 of L. For α 6= 0 one has S3 ∩ Inn(L) = {1}, whereas
for β 6= 0 we have S1 ∩ Inn(L) = {1}, for l = 4, 5, 6 the intersections Sl ∩ Inn(L)
have dimension 1 and N ∩ Inn(L) has dimension 2 (cf. Proposition 13b). Since
the factor Lie algebras N6,38/sk, k = 1, 3, are not isomorphic to l2 ⊕ l2 the orbits
Sl(e), l = 1, 3, 4, 5, 6, and N(e) are the same normal subgroup M ∼= R2 of L and
for l = 1, 3, one has Sl ∩ Inn(L) = {1}, for l = 4, 5, 6, the intersections Sl ∩ Inn(L)
have dimension 1, and dim(N ∩ Inn(L)) = 2 (cf. Proposition 13b). In all cases
the normal subgroup Ik(e), k = 1, 2, are in M . For j = 29, 33, 34, 38, the Lie
algebra inn(L) lies in one of the following ideals: v1 = 〈n1, n2, n3, n4, x1〉, v2,k =
〈n1, n2, n3, n4, x2 + kx1〉, k ∈ R. If for N6,j , j = 33, 34, the Lie algebra inn(L)
would contain the basis elements b1 = n2 + a1n4 + a2n1, b2 = n3 + a3n4 + a4n1,
and for N6,29 either the basis elements b1 = n1 + a1n2, b2 = n3 + a2n4 + a3n1, or
the basis elements b1 = n1 + a1n3, b2 = n2 + a2n4 + a3n1 with a1 6= 0 would be
in inn(L), then inn(L) would contain the ideal 〈n1〉 of N6,j , j = 29, 33, 34, since
one has [b1, b2] = cn1, c 6= 0. This is a contradiction to Lemma 5. Otherwise for
N6,j , j = 29, 33, 34, 38, the Lie algebra inn(L) would contain the basis elements
either b′1 = n1 + a1n4, b′2 = n2 + a2n3 + a3n4, b′3 = x1 + c1n3 + c2n4 or b′1, b

′
2,
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b′3,k = x2 + kx1 + c1n3 + c2n4, where a1a2 6= 0, k, c1, c2, a3 ∈ R. The subspaces
〈b′1, b′2, b′3〉, 〈b′1, b′2, b′3,k〉 are not 3-dimensional Lie algebras. This proves that none
of the Lie algebras N6,j , j = 29, 31, 32, 33, 34, 38, are the Lie algebras of the group
Mult(L) of a 3-dimensional topological loop L. �

5. Three-dimensional topological loops corresponding to
six-dimensional solvable Lie algebras with four-dimensional

abelian nilradical and one-dimensional centre

Theorem 15. If L is a connected topological proper loop of dimension 3 such
that the Lie algebra of its multiplication group Mult(L) is a 6-dimensional solvable
indecomposable Lie algebra having 4-dimensional nilradical, then L is centrally
nilpotent of class 2.

Proof. By Lemma 6 we may assume that L is homoemorphic to R3. By Proposi-
tion 14 it remains to deal with the 6-dimensional solvable indecomposable Lie
algebras N6,i, i = 20, . . . , 27, with abelian nilradical and 1-dimensional centre (cf.
[T, Table II, p. 1348]). By Theorem 12(a) we have to prove that there is a normal
subgroup N ∼= R of L such that the factor loop L/N is isomorphic to R2. The

Lie algebra Na,b
6,20, a2 + b2 6= 0, has the ideals i1 = 〈n1〉, i2 = 〈n2〉, i3 = 〈n3〉,

i4 = 〈n4〉. If Na,b
6,20 is the Lie algebra of the multiplication group of a 3-dimensional

connected topological loop L, then the orbits Ik(e), k ∈ {1, 2, 3, 4}, are normal

subgroups of L isomorphic to R (cf. Lemma 3). The Lie algebra Na,b
6,20 has no

factor Lie algebra isomorphic to an elementary filiform Lie algebra. Hence the
factor loops L/Ik(e), k ∈ {1, 2, 3, 4}, are isomorphic either to L2 or to R2 (cf.
Proposition 13(i),(ii)). If all factor loops L/Ik(e), k ∈ {1, 2, 3, 4}, are isomorphic
to L2, then by Proposition 13(ii) there are 2-dimensional ideals sk, k ∈ {1, 2, 3, 4}
such that ik ⊂ sk and the factor Lie algebras Na,b

6,20/sk are isomorphic to l2 ⊕ l2.

For the ideal s1 = s2 = 〈n1, n2〉 one has Na,b
6,20/sk

∼= l2⊕ l2, k = 1, 2. The factor Lie

algebra Na,b
6,20/〈n1, n3〉 is isomorphic to l2⊕l2 if and only if a = 0 and Na,b

6,20/〈n1, n4〉
is isomorphic to l2 ⊕ l2 precisely if b = 0. This contradiction to a2 + b2 6= 0 yields
that at least one of the factor loops L/Ik(e), k ∈ {1, 2, 3, 4}, is isomorphic to R2.
For such k ∈ {1, 2, 3, 4} the orbit Ik(e) is the requested normal subgroup of L in
Theorem 12(a).

The Lie algebras Na
6,21, Nε,a

6,22, N6,24, Na,b
6,25, Na

6,26, Nε
6,27 have the ideal i = 〈n2〉

and the unique 1-dimensional ideal of the Lie algebra Na,ε
6,23 is its centre i = 〈n4〉.

There does not exist any ideal s of these Lie algebras N6,i containing i such that
the factor Lie algebras N6,i/s are isomorphic either to l2 ⊕ l2 or to f4. If N6,i, i =
21, . . . , 27, would be the Lie algebra of the multiplication group of a 3-dimensional
connected topological loop L, then the factor loop L/I(e) is isomorphic to R2 (cf.
Proposition 13(i)). Hence the orbit I(e) satisfies the assertion of Theorem 12(a).
�

Proposition 16. Let g be a 6-dimensional solvable indecomposable Lie algebra
having 4-dimensional abelian nilradical nrad and 1-dimensional centre. Let k be a
3-dimensional abelian subalgebra of g which does not contain any non-zero ideal
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of g and the normalizer Ng(k) of k in g is nrad. Then for the Lie algebra g and
up to automorphisms of g for the subalgebra k we have one of the following cases:

(a) g1 := Na,b
6,20, k1 = 〈n2 + n1, n3 + n1, n4 + n1〉.

(b) g2 := Na
6,21, g3 := N6,24, k2 = k3 = 〈n2 + n1, n3 + ε1n1, n4 + n1〉, ε1 = 0, 1.

(c) g4 := Na,b
6,25, g5 := Na

6,26, k4 = k5 = 〈n2 +n1, n3 +ε1n1, n4 +ε2n1〉, εi = 0, 1,
i = 1, 2, at least one of {ε1, ε2} is different from 0.

(d) g6 := Nε
6,27, k6 = 〈n1 + ε1n2, n3 + ε2n2, n4 + ε3n2〉, εi = 0, 1, i = 1, 2, 3,

such that at least one of {ε2, ε3} is different from 0.
(e) g7 := Na,ε

6,23, k7 = 〈n1 + ε1n4, n2 + ε2n4, n3 + ε3n4〉, εi = 0, 1, i = 1, 2, 3,
such that at least one of {ε1, ε2} is different from 0.

(f) g8 := Na,ε
6,22, k3 = 〈n1 + n4, n2 + n4, n3 + ε1n4〉, ε1 = 0, 1.

Proof. The 6-dimensional indecomposable solvable Lie algebras with abelian nil-
radical and 1-dimensional centre in [T, Table II, p. 1348] are the Lie algebras gi,
i = 1, . . . , 8. The Lie algebras gi, i = 1, . . . , 5, have the centre z = 〈n1〉. For these
Lie algebras the subalgebra k has the form

ka2,a3,a4 = 〈n2 + a2n1, n3 + a3n1, n4 + a4n1〉,

such that

in the case g1: a2a3a4 6= 0, since 〈n2〉, 〈n3〉, 〈n4〉 are ideals of g1,
in the cases g2, g3: a2a4 6= 0 because 〈n4〉 and 〈n2〉 are ideals of gi, i = 2, 3,
in the cases g4, g5: a2 6= 0 and at least one of the constants {a3, a4} is different

from 0 since 〈n2〉 and 〈n3, n4〉 are ideals of gi, i = 4, 5.

For the Lie algebras gi, i = 1, . . . , 5, using the automorphism α(n1) = n1,
α(xi) = xi, i = 1, 2, α(n2) = a2n2, α(ni) = aini, i = 3, 4, if ai 6= 0, otherwise
α(ni) = ni, we can change ka2,a3,a4 onto k = 〈n2 + n1, n3 + ε1n1, n4 + ε2n1〉, such
that ε1, respectively ε2 is equal to 0 or 1, according whether a3, respectively a4 is
0 or 6= 0. The Lie algebra g6 has the centre z = 〈n2〉 and hence for the subalgebra
k one has ka1,a3,a4 = 〈n1 + a1n2, n3 + a3n2, n4 + a4n2〉, such that a3 6= 0 or a4 6= 0
because 〈n3, n4〉 is an ideal of g6. Using the automorphism α(n2) = n2, α(xi) = xi,
i = 1, 2, α(ni) = aini, if ai 6= 0, otherwise α(ni) = ni, i = 1, 3, 4, we can reduce the
Lie algebra ka1,a3,a4 to k = 〈n1 + ε1n2, n3 + ε2n2, n4 + ε3n2〉, εi = 0, 1, i = 1, 2, 3,
such that at least one of {ε2, ε3} is different from 0. The centre of the Lie algebras
gi, i = 7, 8, is 〈n4〉. For the subalgebra k of gi, i = 7, 8, we obtain

ka1,a2,a3 = 〈n1 + a1n4, n2 + a2n4, n3 + a3n4〉,

such that

in the case g7: a1 6= 0 or a2 6= 0, since 〈n1, n2〉 is an ideal of g7,
in the case g8: a1a2 6= 0 because 〈n1〉 and 〈n2〉 are ideals of g8.

For gi, i = 7, 8, using the automorphism α(n4) = n4, α(xi) = xi, i = 1, 2,
α(ni) = aini, if ai 6= 0, otherwise α(ni) = ni, i = 1, 2, 3, we can change ka1,a2,a3
onto k = 〈n1 +ε1n4, n2 +ε2n4, n3 +ε3n4〉, such that εi is equal to 0 or 1, according
whether ai = 0 or ai 6= 0, i = 1, 2, 3. �

296



TOPOLOGICAL LOOPS

Theorem 17. Let L be a connected simply connected topological proper loop of
dimension 3 such that the Lie algebra of its multiplication group Mult(L) is a 6-
dimensional solvable indecomposable Lie algebra having 4-dimensional nilradical.
Then the following Lie groups are the multiplication groups Mult(L) and the fol-
lowing subgroups are the inner mapping groups Inn(L) of L:

1) Mult(L)1 is given by the multiplication

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1, x2 + y2 + x5y1, x3 + y3e
x6 cos(x5)− y4e

x6 sin(x5),

x4 + y4e
x6 cos(x5) + y3e

x6 sin(x5), x5 + y5, x6 + y6),

Inn(L)1 is the subgroup {g(u1, ε1u1 +ε2u2 +ε3u3, u2, u3, 0, 0);u1, u2, u3 ∈ R},
εk ∈ {0, 1}, k = 1, 2, 3, such that ε2

2 + ε2
3 6= 0.

2) The multiplication of the group Mult(L)2 is defined by

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x5 cos(x6)− y2e

x5 sin(x6), x2 + y2e
x5 cos(x6) + y1e

x5 sin(x6),

x3 + y3, x4 + y4 + (ax6 + x5)y3, x5 + y5, x6 + y6), a ∈ R

Inn(L)2 is the subgroup {g(u1, u2, u3, ε1u1 +ε2u2 +ε3u3, 0, 0);u1, u2, u3 ∈ R},
εk ∈ {0, 1}, k = 1, 2, 3, such that ε2

1 + ε2
2 6= 0.

3) The multiplication of the group Mult(L)3 is given by

g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x5+ax6 , x2 + y2e

x6 , x3 + y3,

x4 + y4 + x5y3, x5 + y5, x6 + y6), a ∈ R \ {0}

and Inn(L)3 is {g(u1, u2, u3, u1 + u2 + εu3, 0, 0); u1, u2, u3 ∈ R}, ε = 0, 1.

Proof. According to Theorem 15 the centre Z(L) of the simply connected loop L
is isomorphic to R and the factor loop L/Z(L) is isomorphic to R2. By Proposition
13(i) the Lie algebra g of the group Mult(L) of L has abelian nilradical and nrad =
z⊕ inn(L), where z is the centre of g and inn(L) is the Lie algebra of the group
Inn(L). Hence inn(L) is a 3-dimensional abelian subalgebra of g which does not
contain any non-zero ideal of g and the normalizer Ng(inn(L)) coincides with nrad

(cf. Lemma 5). It follows from Proposition 16 that the pairs (gi,ki), i = 1, . . . , 8,
can occur as the Lie algebras of the group Mult(L) and the subgroup Inn(L).
Linear representations of the simply connected Lie groups Gi of gi are given in
this order by

i = 1 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1 + x6y5, x2 + y2e
ax5+bx6 , x3 + y3e

x6 ,

x4 + y4e
x5 , x5 + y5, x6 + y6),

i = 2 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1 + x6y5, x2 + y2e
x5+ax6 , x3 + y3e

x6 ,

x4 + y4e
x6 + x3y5, x5 + y5, x6 + y6),
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Á. FIGULA, A. AL-ABAYECHI

i = 3 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1 + x5y6, x2 + y2e
x6 , x3 + y3e

x5 ,

x4 + y4e
x5 + x5e

x5y3, x5 + y5, x6 + y6),

i = 4 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1 − x6y5, x2 + y2e
ax5+bx6 ,

y3 + x3 cos(y5)ey6 − x4 sin(y5)ey6 ,

y4 + x4 cos(y5)ey6 + x3 sin(y5)ey6 , x5 + y5, x6 + y6),

i = 5 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1 + x6y5, x2 + y2e
x6 ,

x3 + y3 cos(x5)eax5 + y4 sin(x5)eax5 ,

x4 + y4 cos(x5)eax5 − y3 sin(x5)eax5 , x5 + y5, x6 + y6),

i = 6 : ε = 0 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1, x2 + y2 + x5y1,

x3 + y3e
x6 cos(x5)− y4e

x6 sin(x5),

x4 + y4e
x6 cos(x5) + y3e

x6 sin(x5), x5 + y5, x6 + y6),

i = 6 : ε = 1 :g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1 + x5y6, x2 + y2 + x5y1

+ 1
2x

2
5y6, y3 + x3e

y6 cos(y5)− x4e
y6 sin(y5),

y4 + x4e
y6 cos(y5) + x3e

y6 sin(y5), x5 + y5, x6 + y6),

i = 7 : ε = 0 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x5 cos(x6)− y2e

x5 sin(x6),

x2 + y2e
x5 cos(x6) + y1e

x5 sin(x6),

x3 + y3, x4 + y4 + (ax6 + x5)y3, x5 + y5, x6 + y6),

i = 7 : ε = 1, a = 0 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x5 cos(x6) + y2e

x5 sin(x6),

x2 + y2e
x5 cos(x6)− y1e

x5 sin(x6), x3 + y3 + x5y6,

x4 + y4 + x5y3 + 1
2x

2
5y6, x5 + y5, x6 + y6),

i = 7 : ε = 1, a 6= 0 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x5 cos(x6) + y2e

x5 sin(x6),

x2 + y2e
x5 cos(x6)− y1e

x5 sin(x6),

x3 + y3 + (ax6 + x5)y5,

x4 + y4 + (ax6 + x5)y3 + 1
2 (ax6 + x5)2y5,

x5 + y5, x6 + y6),

i = 8 : ε = 0 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x5+ax6 , x2 + y2e

x6 , x3 + y3,

x4 + y4 + x5y3, x5 + y5, x6 + y6),

i = 8 : ε = 1 : g(x1, x2, x3, x4, x5, x6)g(y1, y2, y3, y4, y5, y6)

= g(x1 + y1e
x5+ax6 , x2 + y2e

x6 , x3 + y3 + x5y6,

x4 + y4 + x5y3 + 1
2x

2
5y6, x5 + y5, x6 + y6),
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where a, b ∈ R such that for i = 1, 4 one has a2 + b2 6= 0 and for i = 8, ε = 0 we
have a 6= 0 (cf. [RT, pp. 16–21]). Using these linear representations the Lie groups
of the Lie algebras ki are:

for i = 1: Inn(L) = {g(u1 + u2 + u3, u1, u2, u3, 0, 0);uj ∈ R}, j = 1, 2, 3;
for i = 2, 3: Inn(L) = {g(u1 + εu2 + u3, u1, u2, u3, 0, 0);uj ∈ R}, j = 1, 2, 3,

ε = 0, 1;
for i = 4, 5: Inn(L) = {g(u1 + ε2u2 + ε3u3, u1, u2, u3, 0, 0);uj ∈ R}, j = 1, 2, 3,

εk = 0, 1, k = 2, 3 such that at least one of {ε2, ε3} is different from 0;
for i = 6: Inn(L) = {g(u1, ε1u1 + ε2u2 + ε3u3, u2, u3, 0, 0);uj ∈ R}, j = 1, 2, 3,

εk = 0, 1, k = 1, 2, 3, such that at least one of {ε2, ε3} is different from 0;
for i = 7: Inn(L) = {g(u1, u2, u3, ε1u1 + ε2u2 + ε3u3, 0, 0);uj ∈ R}, j = 1, 2, 3,

εk = 0, 1, k = 1, 2, 3, such that at least one of {ε1, ε2} is different from 0;
for i = 8: Inn(L) = {g(u1, u2, u3, u1+u2+εu3, 0, 0);uj ∈ R}, j = 1, 2, 3, ε = 0, 1.

Two arbitrary left transversals to the group Inn(L) in Gi, i = 1, . . . , 5, are

A = {g(k, f1(k, l,m), f2(k, l,m), f3(k, l,m), l,m), k, l,m ∈ R},
B = {g(u, h1(u, v, w), h2(u, v, w), h3(u, v, w), v, w), u, v, w ∈ R},

those to the group Inn(L) in G6 are

A = {g(f1(k, l,m), k, f2(k, l,m), f3(k, l,m), l,m), k, l,m ∈ R},
B = {g(h1(u, v, w), u, h2(u, v, w), h3(u, v, w), v, w), u, v, w ∈ R},

those to the group Inn(L) in Gi, i = 7, 8, are

A = {g(f1(k, l,m), f2(k, l,m), f3(k, l,m), k, l,m), k, l,m ∈ R},
B = {g(h1(u, v, w), h2(u, v, w), h3(u, v, w), u, v, w), u, v, w ∈ R},

where fi(k, l,m) : R3 → R and hi(u, v, w) : R3 → R, i = 1, 2, 3, are continuous
functions with fi(0, 0, 0) = hi(0, 0, 0) = 0. We prove that none of the groups Gi,
i = 1, . . . , 5, and Gε=1

j , j = 6, 7, 8, satisfies the condition that for all a ∈ A and

b ∈ B one has a−1b−1ab ∈ Inn(L). By Lemma 4 these groups are not multiplication
groups of L. Taking the elements

a = g(0, f1(0, 0,m), f2(0, 0,m), f3(0, 0,m), 0,m) ∈ A,
b = g(0, h1(0, v, 0), h2(0, v, 0), h3(0, v, 0), v, 0) ∈ B

in Gi, i = 1, 3, 4, 5, the products a−1b−1ab are contained in Inn(L) if and only if
the equation

i = 1 : vm = (1− e−m)h2(0, v, 0) + (e−v − 1)f3(0, 0,m)

+ h1(0, v, 0)e−av(1− e−bm) + f1(0, 0,m)e−bm(e−av − 1),
(6)

i = 3 : −vm = (1− e−m)h1(0, v, 0)− ve−vf2(0, 0,m)

+ (f3(0, 0,m) + εf2(0, 0,m))(e−v − 1),
(7)
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i = 4 : −vm = h1(0, v, 0)e−av(1− e−bm) + f1(0, 0,m)e−bm(e−av − 1)

+ (1− em)(ε1h2(0, v, 0) + ε2h3(0, v, 0))

+ (cos v − 1)(ε1f2(0, 0,m) + ε2f3(0, 0,m))

+ sin v(ε2f2(0, 0,m)− ε1f3(0, 0,m))

(8)

i = 5 : vm = ε1[e−av(cos(v)f2(0, 0,m)− sin(v)f3(0, 0,m))− f2(0, 0,m)]

+ ε2[e−av(sin(v)f2(0, 0,m) + cos(v)f3(0, 0,m))− f3(0, 0,m)]

+ h1(0, v, 0)(1− e−m)

(9)

holds for all m, v ∈ R. On the left hand side of (6), (7), (8), (9) there is the term vm
hence there does not exist any function hi(0, v, 0), fi(0, 0,m), i = 1, 2, 3, satisfying
equations (6), (7), (8), (9).
Taking the elements a = g(0, f1(0, 0,m), f2(0, 0,m), f3(0, 0,m), 0,m) ∈ A, b =
g(0, h1(0, v, w), h2(0, v, w), h3(0, v, w), v, w) ∈ B of G2 the products a−1b−1ab are
contained in Inn(L) if and only if the equation

mv = e−m−wf2(0, 0,m)v + h1(0, v, w)e−aw−v(1− e−am)

+ f1(0, 0,m)e−am(e−aw−v − 1)

+ (h3(0, v, w) + εh2(0, v, w))e−w(1− e−m)

+ (f3(0, 0,m) + εf2(0, 0,m))e−m(e−w − 1)

(10)

holds for all m, v,w ∈ R. The left hand side is mv. But there does not exist any
function hi(0, v, w), fi(0, 0,m), i = 1, 2, 3, satisfying equation (10).
Taking the elements a = g(f1(0, 0,m), 0, f2(0, 0,m), f3(0, 0,m), 0,m) ∈ A, b =
g(h1(0, v, 0), 0, h2(0, v, 0), h3(0, v, 0), v, 0) ∈ B of Gε=1

6 , respectively the elements

a = g(f1(0, 0,m), f2(0, 0,m), f3(0, 0,m), 0, 0,m) ∈ A,
b = g(h1(0, v, 0), h2(0, v, 0), h3(0, v, 0), 0, v, 0) ∈ B

of Gε=1,a=0
7 and of Gε=1

8 the subgroup Inn(L) contains the products a−1b−1ab if
and only if in Gε=1

6 the equation

1
2v

2m− vf1(0, 0,m) = (1− em)(ε2h2(0, v, 0) + ε3h3(0, v, 0))− ε1vm

+ (cos(v)− 1)(ε2f2(0, 0,m) + ε3f3(0, 0,m))

+ sin(v)(ε3f2(0, 0,m)− ε2f3(0, 0,m)),

(11)

respectively in Gε=1,a=0
7 the equation

1
2v

2m− vf3(0, 0,m) = (f1(0, 0,m)− h1(0, v, 0))e−v(ε1 cos(m) + ε2 sin(m))

+ (f2(0, 0,m)− h2(0, v, 0))e−v(ε2 cos(m)− ε1 sin(m))

+ sin(m)(ε1f2(0, 0,m)− ε2f1(0, 0,m))

− cos(m)(ε1f1(0, 0,m) + ε2f2(0, 0,m))

+ e−v(ε1h1(0, v, 0) + ε2h2(0, v, 0))− ε3vm,

(12)
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respectively in Gε=1
8 the equation

1
2v

2m− vf3(0, 0,m) = h1(0, v, 0)e−v(1− e−am) + h2(0, v, 0)(1− e−m)

+ f1(0, 0,m)e−am(e−v − 1)− ε1vm
(13)

holds for all m, v ∈ R. On the left hand side of equations (11), (12), (13) there
is the term 1

2v
2m. Hence there does not exist any function hi(0, v, 0), fi(0, 0,m),

i = 1, 2, 3, satisfying equations (11), (12), (13).
The products a−1b−1ab with a = g(f1(0, l,m), f2(0, l,m), f3(0, l,m), 0, l,m), b =

g(h1(0, v, 0), h2(0, v, 0), h3(0, v, 0), 0, v, 0) in Ga 6=0,ε=1
7 are contained in Inn(L) if

and only if the equation

1
2 (vl2 − v2l − a2vm2) + (am+ l)h3(0, v, 0)− vf3(0, l,m)− amv2

= ε3vam+ (f1(0, l,m)− h1(0, v, 0))e−v−l(ε1 cosm+ ε2 sinm)

+ e−vε1h1(0, v, 0) + e−vε2h2(0, v, 0)

+ (f2(0, l,m)− h2(0, v, 0))e−v−l(ε2 cosm− ε1 sinm)

+ f2(0, l,m)e−l(ε1 sinm+ ε2 cosm)

− f1(0, l,m)e−l(ε2 sinm+ ε1 cosm)

(14)

holds for all l,m, v ∈ R, where εi ∈ {0, 1}, i = 1, 2, 3, such that ε1 6= 0 or ε2 6= 0.
Since on the left hand side of (14) there is the term − 1

2v
2l and a 6= 0 there does

not exist any function fi(0, l,m), hi(0, v, 0), i = 1, 2, 3, such that equation (14)
holds.

The set

A1 = B1 =

{
g

(
e−m cos(l)− 1, k,

1

ε2
2 + ε2

3

(
lem(ε2 cos(l)− ε3 sin(l)) + sin(l)

)
·
(
ε3 cos(l) + ε2 sin(l)

)
,

1

ε2
2 + ε2

3

(
lem(ε2 sin(l) + ε3 cos(l)

)
+ sin(l)

(
ε3 sin(l)− ε2 cos(l)

)
, l,m

)
; k, l,m ∈ R

}
,

with ε2, ε3 ∈ {0, 1} and ε2
2 + ε2

3 6= 0 is an Inn(L)6-connected left transversal in
Gε=0

6 which generates the group Gε=0
6 .

The set

A2 = B2 =

{
g

(
1

ε2
1 + ε2

2

(
el(l + am)(ε1 cos(m)− ε2 sin(m)) + sin(m))

· (ε1 sin(m) + ε2 cos(m)
)
,

1

ε2
1 + ε2

2

(
el(l + am)(ε1 sin(m) + ε2 cos(m))

− sin(m)(ε1 cos(m)− ε2 cos(m)), e−l cos(m)− 1, k, l,m

)
; k, l,m ∈ R

}
,

where ε1, ε2 ∈ {0, 1} and ε2
1 + ε2

2 6= 0 is an Inn(L)7-connected left transversal in
Gε=0

7 which generates the group Gε=0
7 .

The sets

A = {g(0, lem, 1− e−l−am, k, l,m); k, l,m ∈ R},
B = {g(−vev+aw, 0, e−w − 1, u, v, w);u, v, w ∈ R}
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are Inn(L)8-connected left transversals in the group Gε=0
8 such that A∪B generates

Gε=0
8 . This proves the assertion. �
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[SV2] D. Stanovský, P. Vojtěchovský, Abelian Extensions and Solvable Loops, Results.
Math. 66 (2014), 367–384.

[T] P. Turkowski, Solvable Lie algebras of dimension six, J. Math. Phys. 31 (1990),
1344–1350.

[V] A. Vesanen, Solvable loops and groups, J. Algebra 180 (1996), 862–876.

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and

reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this
article are included in the article s Creative Commons licence, unless indicated

,

otherwise in a credit line to the material. If material is not included in the article s
,

Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

Open Access funding provided by University of Debrecen.Funding Information

Publishers Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

303


