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Critical exponent for the semilinear wave

equations with a damping increasing in the
far field

Kenji Nishihara, Motohiro Sobajima and Yuta Wakasugi

Abstract. We consider the Cauchy problem of the semilinear wave equa-
tion with a damping term

uge — Au~+ c(t, v)uy = |ul?, (t,x) € (0,00) x RN,
{u(O,x) =cuo(z), u(0,z) =cui(x), z € RY,

where p > 1 and the coefficient of the damping term has the form
c(t,@) = ao(1+[z*) "2 (1 +1)~"

with some ag > 0, @ < 0, 8 € (—1,1]. In particular, we mainly consider
the cases

a<0,=0 or a<0,8=1,
which imply o + 8 < 1, namely, the damping is spatially increasing and

effective. Our aim is to prove that the critical exponent is given by

p=1+

N—-a’
This shows that the critical exponent is the same as that of the corre-
sponding parabolic equation

c(t,x)vy — Av = |vlP.

The global existence part is proved by a weighted energy estimates with
an exponential-type weight function and a special case of the Caffarelli—
Kohn—Nirenberg inequality. The blow-up part is proved by a test-function
method introduced by Ikeda and Sobajima [15]. We also give an upper
estimate of the lifespan.
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1. Introduction

We consider the Cauchy problem of the semilinear wave equation with a damp-
ing term

(1.1)

g — Au+ c(t, v)us = [ulP, (t,z) € (0,00) x RV,
U(O,l‘) = EUO(x)7 ut(O,:E) - é‘ul(l'),’l’ € RNa

where N > 1, u = u(t,z) is a real-valued unknown function, ¢ is a small
positive parameter, ug,u; are given initial data, p > 1, and the coefficient of
the damping term has the form

c(t,z) = a(z)b(t) = aplx)~*(1 4+ 1), (1.2)

where (z) := /1 + [7]2, a(z) = ao(x)~%, b(t) = (1 +t)~F, with some ag > 0,
a < 2 and § > —1. In particular, in this paper we mainly consider the cases

a<0,6=0 or a<0,6=1. (1.3)
We assume that the initial data satisfies
up € HY(RY), wuy € L*(RY), supp (ug,u1) C {x € RY;|2| < Ry} (1.4)

with some Ry > 0.

Our aim is to determine the critical exponent p.. Here, the meaning of
the critical exponent is the following: if p > p.., then for any (ug,u;) satisfying
(1.4), there exists a unique global solution for sufficiently small ¢; if p < p.,
then there exists (ug,u1) satisfying (1.4), the local solution blows up in finite
time for any small . In this paper, we will show that under the conditions
(1.2) and (1.3), the critical exponent is determined by

2
N—a’
Comparing with previous studies we will explain below, our novelties are to
determine the critical exponent for spatially increasing damping, and to give
the blow-up of solutions for the damping depending on the time and space
variables.

The Cauchy problem of the linear damped wave equation

{utt — Au+c(t,x)us = 0, (t,z) € (0,00) x RV,

u(O,a:) = 5“0(x)a Ut(o,fﬁ) = 6U1($), S RN?

pc:1+

(1.5)

with a damping coefficient c(t,z) = a(x)b(t) = ao(z)~*(1 + t)~” has been
studied for a long time. Roughly speaking, it is known that if the damping
is sufficiently strong, in other words, effective, then the solution behaves like
that of the corresponding parabolic equation c(t,z)u; — Au = 0 (diffusion
phenomenon). On the other hand, if the damping is sufficiently weak, in other
words, non-effective, then the solution behaves like that of the wave equation
without damping (scattering).

It is known that the classical damping @ = # = 0 is included in the
effective case, and the diffusion phenomenon was studied by [2,12,13,26,39—
41,44-46,54,74).
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On the other hand, Yamazaki[73] and Wirth [69-72] considered time-
dependent damping a = 0, 3 € R, and classified the behavior of the solution in
the following way: (i) Scattering: if 5 > 1, then the solution behaves like that of
the wave equation without damping; (ii) Scale-invariant weak damping: if § =
1, then the asymptotic behavior of the solution depends on ag; (iii) Effective: if
—1 < B < 1, then the solution behaves like that of the corresponding parabolic
equation; (iv) Overdamping: if § < —1, then the solution does not decay to
zero in general.

The space-dependent damping o € R, 5 = 0 was also studied by [21,
22,25,42,50-53,55-58,60,66], and similarly to the above, the behavior of the
solution was classified in the following way: (i) Scattering: if o > 1, then the
solution behaves like that of the wave equation without damping; (ii) Scale-
invariant weak damping: if &« = 1, then the asymptotic behavior of the solution
depends on ag; (iii) Effective: if o < 1, then the solution behaves like that of
the corresponding parabolic equation. We note that in the space-dependent
case, the overdamping phenomenon does not occur.

In a similar approach to the space-dependent case, these results are par-
tially extended to the space-time dependent damping «, 3 € R. Mochizuki
and Nakazawa [43] proved that the case a, 8 > 0, + 8 > 1 belongs to the
scattering case. For 0 < a < 1,-1 < < 1,0 < a+ 8 < 1, by [27,28],
energy estimates of solutions were obtained and they indicate the solution has
diffusion phenomenon.

Based on the studies on the linear problem, recently, the Cauchy problem
of the semilinear damped wave equation (1.1) has been intensively studied. In
particular, if the damping is effective, we expect that the critical exponent
is the same as that of the corresponding parabolic problem. Indeed, when
a = 3 = 0, it was shown by [11,30,34,59,75] that the critical exponent is
given by p. = pp(N) =1+ %, which is called the Fujita exponent named after
the pioneering work by [8].

For the time-dependent damping case, namely, « = 0, it was revealed by
[6,37] that the critical exponent remains p. = pp(N) when a = 0,08 € (—1,1)
(see [9,18,67] for the case § = —1). When 8 > 1, Lai and Takamura [31]
and Wakasa and Yordanov [63] showed the small data blow-up for the sub-
Strauss or Strauss exponent 1 < p < oo (N = 1); 1 < p < pg(N) =

N+1+2V(]]:,7it)10]v_7 (N > 2) (see also [68]). Recently, Liu and Wang [38] gave
the global existence result for p > pg(IN) with N = 3,4, while the cases
N = 2 and N > 5 remain open. On the other hand, in the scale-invariant
case = 1, the situation becomes more complicated. First, if ag is sufficiently
large, we expect that the critical exponent coincides with pp (V). Indeed, by
D’Abbicco [3], D’Abbicco and Lucente [4] and Wakasugi [65] it is proved that
pe = pr(N) holds for ap > 5 (N = 1),3 (N = 2),N +2 (N > 3). On
the other hand, when ay = 2, D’Abbicco, Lucente and Reissig [7] showed
pe = max{pp(N),ps(N + 2)} for N < 3 (see [5,49] for higher dimensional
cases). This implies that the critical exponent depends on ag. For ag # 2, the

best known result is by Ikeda and Sobajima [17]. They obtained the small
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data blow-up for N > 1,0 < ag < 1\/2]\4,'752“ and 1 < p < pg(N + ag) (see also
[32,61]). Also, by Ikeda and Wakasugi [20] it is proved that the critical expo-
nent is given by p. = 1 when 8 < —1, namely, the small data global existence
holds for any p > 1.

On the other hand, for the space-dependent damping case, namely, 5 = 0,
Tkehata et al. [24] proved if 0 < a < 1, then the critical exponent is given by
pe = 1+ N%a. However, there is no result in the case a < 0, where the
damping coefficient is unbounded with respect to the space variable, while we
can expect that the critical exponent is still given by p. =1+ N2_a in view of
the result of linear problem [57]. When ae = 1, the equation has scale-invariance
and the critical exponent seems to change depending on ag. Indeed, Tkeda and

Sobajima [16] proved the small data blow-up for N > 3, 0 < q¢ < (N-—1)*

N+l 0
% < p < ps(N + ag), while the global existence part remains open.

In contrast, there were only few results on time and space depen-
dent cases. By Wakasugi [64], the small data global existence was proved for
a,f>0a+06 < landp > 1+ Nz_a. Khader [29] also proved the small
data global existence for 0 < a < 1, -1 < < 1,0 < a+( < 1, and
p>1+ 2(N—a)é(lﬁ(£—t)l)—ﬁ(2—a) (see also [35,36]). However, there are no results
on the small data blow-up for subcritical or critical case.

We also refer the reader to [14,15,19,33,34,47,62] for studies on estimates
of lifespan of blow-up solutions.

Summarizing the previous studies, we can conjecture the following for
the critical exponent of the problem (1.1) with the condition (1.2).

Conjecture

(i) For a < min{2, N}, § > —1 with a + [ < 1, the critical exponent is
pe=1+ N%a’
(ii) For «, € R with o + 8 = 1, the equation has scale-invariance and the
critical exponent will depend on ag.
(iii) For «, 8 € R with o+ > 1, the critical exponent is given by the Strauss
number p. = ps(N).

In this paper, we present some partial answers which support the Con-
jecture (i). In particular, we completely give the critical exponent in the case
a<0,8=0.

Before going to our main results, we mention the existence of the local
solution.

Proposition 1.1. (Existence of the local solution) Let N > 1 and let ¢(t, z) has
the form (1.2) with some ag > 0, o, 8 € R. We assume that the initial data
satisfy (1.4) with some Ry > 0. If p satisfies

l<p<oo (N=12), 1<p<

s (N 23), (L6)

then for any € > 0, there exists a time T > 0 such that the Cauchy problem
(1.1) admits a unique solution

u e C([0,7); H(RM)) nCL([0,T); L*(RY)) (1.7)
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satisfying
suppu(t,-) C {z € RY:|z| < Ry + t}. (1.8)
Moreover, with the notion of the lifespan

T(e) :={T € (0,00]; there exists a unique solution u in the class (1.7)},
(1.9)
we have the following blow-up alternative: if T'(g) < oo, then
Jim [ u) (O 22 = o0 (1.10)
holds.

The proof is given by a standard energy estimate and the contraction
mapping principle (see [23, Proposition 2.1]).

Our first main results are the small data global existence in the super-
critical case.

Theorem 1.2. (Small data global existence for 5 € (—1,1) in the supercritical
case) Let N > 1 and let ¢(t, z) has the form (1.2) with some ag > 0, a < 0 and
B € (—1,1). We assume that the initial data satisfy (1.4) with some Ry > 0.
If p satisfies

2
¥ _a <p<oo (N=12), 1+N—a <p< N 3
then there exists a constant ey > 0 depending on N, p, ag,a, 3, ug, u1, Ry such

that for any € € (0,&9], the Cauchy problem (1.1) admits a unique global
solution

1+

(N >3), (L11)

u € O([0, 00); H'(RY)) N C1([0, 00); L*(RTY)).

Theorem 1.3. (Small data global existence for 8 = 1 in the supercritical case)
Let N > 1 and let c(t,x) has the form (1.2) with some ag > 0, a < 0 and
B = 1. We assume that the initial data satisfy (1.4) with some Ry > 0. If p
satisfies (1.11), then there exist constants a, > 0 depending on p and g9 > 0
depending on N, p,ag, o, ug,ui, Ry such that if ag > a. and € € (0,g¢], then
the Cauchy problem (1.1) admits a unique global solution

u € C([0,00); H'(RY)) N C'([0, 00); L*(RY)).

The second main result is the finite time blow-up of the solution in the
subcritical and the critical cases when o and 3 satisfy (1.3). Moreover, we give
the sharp upper estimates of the lifespan.

Theorem 1.4. (Blow-up in the subcritical or the critical case) Let N >
and let c(t,x) has the form (1.2) with some ag > 0, a and (3 satisfying (1.
Moreover, we assume that p satisfies

L,
3).

9
l<p<l 1.12
<psld g (1.12)

and the initial data satisfy (1.4) with some Ry > 0 and

/RN (w1 (@) + (ao{)~® — Buo(2)) dx > . (1.13)
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Then, there exist constantse1 > 0 and C > 0 depending on N, p, ag, o, ug, u1, R
such that for any € € (0,e1], the lifespan of the local solution is estimated as

2—« 1 N—a)—1
Cce—=tm (= 50) l<p<l+ 4,
T(e) < - (1.14)
exp (Ce~(P~D) p=1+7>.

Remark 1.5. (i) By Theorems 1.2, and 1.4 we conclude that if the damping
term is given by (1.2) with some ag > 0, «, 3 satisfying o < 0,8 = 0,
then the critical exponent of the Cauchy problem (1.1) is determined by

2

N —a’

When o < 0,8 = 1, by Theorems 1.3 and 1.4, the critical exponent is

almost determined as the above one, in the sense that if 1 < p < 1+ﬁ,

pc:]-"f'

then the small data blow-up occurs (for all ag > 0), and if p > 1+ ﬁ,
then the small data global existence holds provided that ag is sufficiently
large (depending on p).

(ii) When the damping is effective, namely, a + 3 < 1, if we do not impose
the condition (1.3), the blow-up of solutions in the subcritical or the

critical case 1 <p <1+ Nia is still an open problem.

We shall comment on the method of proof and construction of the paper.
Theorem 1.2 is proved in Sect. 2 by weighted energy method with a weight
function having the form e¥(**) with an appropriate function (¢, z) (see Defi-
nition 2.1). Such a weight function was developed by [21,48,56,60]. Making use
of this weight, we can estimate the weighted energy of the solution by the sum
of the initial energy and the nonlinear terms (see Lemma 2.5). Then, to con-
trol the nonlinear terms, we apply the Caffarelli-Kohn—Nirenberg inequality,
which is suitable with the energy including polynomially increasing coefficient
a(zx).

Theorem 1.3 can be also proved in the same strategy. To avoid proceeding
the similar computations as before, we emphasize the difference from the proof
of Theorem 1.2 by giving only the outline of proof in Appendix B.

For Theorem 1.4, in Section 3, we apply the so-called test function method
developed by [4,15,37,75]. Multiplying the equation by (1 + ), we can trans-
form the linear part of the equation (1.1) into divergence form. This is a simple
but crucial idea in the proof. Then, we further multiply a test function scaled
by a large parameter R € (0,T(¢)), and apply the integration by parts, which
gives a certain estimate including the parameter R, the initial data, and the
nonlinear term. Finally, letting R to T'(g), we have the estimate of the lifespan.

2. Small data global existence in the supercritical case

To keep the paper readable length, we will give the detailed proof only for the
case a < 0 and B = 0, namely, c(t,z) = a(x), and for the other cases we will
give an outline of the proof in Appendix B.
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2.1. Construction of a weight function

We first prepare a suitable weight function, which will be used for weighted
energy estimates of the solution. In the previous works [21,24,37,48,64] for the
case a > 0, the so-called Ikehata—Todorova—Yordanov type weight function

p(t,x) ith ot z) = <x>27a >0 (2.1)
e wi B) =P B .
was used. The function (¢, z) has the properties
—(t,2)a(z) = (2 + 0)|Vap(t, x)|?, (2.2)
N -« a(x)
> - .
Ayt z) 2 (2(2 — ) 5) 141t (2:3)

with some small § > 0, and these properties are essential for the weighted
energy estimates. However, if & < 0, then the above weight function (¢, )
does not satisfy the estimate (2.3).

Therefore, following the idea of Sobajima and Wakasugi [56], we modify
the weight function (2.1) as follows.

Definition 2.1. Let § € (0,1), pp = oy ersy and Ag > 0. Let Rs > 0 be a

sufficiently large constant depending on § > 0, and we take a cut-off function
nr; € C°(RY) such that

nrs(x) =1 (lz[ < Rs), nr;(x) =0 (lz| > 2Rs).
Let N be the Newton potential, that is,

al (N =1),
N(z) = %bg ﬁ (N =2),
N
We define
b(t ) = 7o (@) Ao = N+ (a2~ 0) (@) nm, (@) ).

Lemma 2.2. For any é € (0,1), there exist constants Rs > 0 and Ao > 0 such
that the function ¥(t,x) defined by Definition 2.1 satisfies

—y(t,x)a(z) > (24 6)|V(E, 2)[%, (2.4)
AY(t,z) > (21(\;:2) —52> f(f)t (2.5)

where §; = %5 and 6y = %5.

Proof. We calculate

AY(t2) = p(N — )2~ ) 4 pa(z2 — o)

() e

(1= i, (@)
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> N-a 5 a(z)

22— ) 1+1¢

for sufficiently large Rs > 0. Thus, we have (2.5). Next, we prove (2.4). We
compute

— ¢u(t, z)a(z)
1

= mw(ta z)a(z)

T T L Ay~ N (a2 - )e) ()

On the other hand, we have

(2+61)|Vo(t,z)?

R
=+ e (150
a? <-'17>_a —2—a
_2(2+61)(27a)3(22+5) e vV (@2 = a) @) g ()]
a? Cola 2
+(2+61)(2—Oz)4(()2+5) (1—|—t2|VN*( a2 — a)(x) 2 "7R5(x))| .

We easily obtain

log 2+z)) (N=2),
[VN (a2 = a)(z) 7, (2))] < Cla)

|N*( (2 — a)(z) 72 np, )|_ { (z)>=N (N=1,N >3),

Now, we take a constant d3 > 0 so that 1 — 83 > £t holds. Then, we have

246
a (2)*~“a(z)
(2—a)2(2+4) (1+1)

ag (z) 2|z

(1 =) @222 (1112

> (2+61)

Finally, we take a sufficiently large constant Ay > 0 so that

ao (53(x)27°‘a(x) + Aopa(x)
@—a)2@2+0) (1 +t)2
= (2—a)20(2+5) 1—|—t)2 A (a2 = a)n (o)) 27|
aj (x)" %z —2-a
e o g i ¥ [+ (a2 = apnn, (o)) 2]
ag

+ @2+ 6) 2 [V (2~ aynm (o)) 22|

(2—a) (2 +0)2 (1+t

Consequently, we have (2.4). O
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2.2. Weighted energy estimates

Using the function ¥(¢, z) constructed in Definition 2.1, we prove the following
weighted energy estimates for solutions to (1.1). Continuing from the previous
subsection, we consider the case o < 0 and 3 = 0. Let 6 € (0, 5=2). We
define

M(t) := sup {(1+T)H+150/ e (u? + |Vul?) dz
]RN

0<r<t

(1 +7)>a % /RN e2a(z)u? dx}. (2.6)

By the blow-up alternative in Proposition 1.1, Theorem 1.2 is obtained
from the following a priori estimate.

Proposition 2.3. Under the assumptions of Theorem 1.2, there exist §y €
(0, ];, =), and constants to = to(ao, Ro,d0) > 1, C = C(N, a, ao, p, Ro, do, to) >
0 such that the solution u constructed in Proposition 1.1 satisfies the a priori

estimate

M(t) < CM(0) + CM (t)P+1)/2
for t 6 [0 T(e)), where the function 1(t,x) is defined in Definition 2.1 with

0= 2(N a) do-
Remark 2.4. The restriction p < 5~ (N > 3) is due to the local existence
(Proposition 1.1), and we can obtal he above a priori estimate for 1+ ﬁ <
N+2
= N-2-

To prove Proposition 2.3, we first prove the following energy estimate.
After that, in the next subsection, we give the nonlinear estimates and com-
plete the proof of Proposition 2.3.

Lemma 2.5. Under the assumptions of Proposition 2.3, for any §y €
(0,];7 =), there exist constants to = to(N,, a0, Ro,00) > 1, and C =

C(N,«, a,p, Ro,00,t0) > 0 such that the solution u constructed in Propo-
sition 1.1 satisfies

(to +t)%+1‘50/

RN

2 (u? 4 |Vul?) dx + (to + t)%_‘so / e a(x)u? do
RN
= C/ (uf + Vo | +u + uo[P*) da
RN

+ Ot + 1) e +1-00 / 2| F(u)| dz
RN
t
+c/ (tﬁﬂ%*%/ e |F(u)| dzdr
0 RN

¢
+C/ (to—l—T)ﬁ"‘l—%/ 62‘”(—1/)t)|F(u)|daz:dT7
RN

where F(u) = [} |v[P dv, and the function (t,x) is defined in Definition 2.1
with 6 = 270“(50
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Proof. Multiplying the equation of (1.1) by e?¥u;, we have

29
% {62(1& + VuQ)] — V- (e®uVu)

2 2
e (a(w) _ vl wt) &+ eV — u VP
-y -y

- % [*VF(u)] + 26 (—44) F(u).

By (2.4), the last term of the left-hand side satisfies

e2¥

—thy
This and using again (2.4) imply

1
[,V — ugVip|? > e?¥ (5(—1/Jt)|Vu|2 - 4(;:—36)51)u?> .

a9 [e*
gy {2(1%2 + |Vu|2)} — V- (e*uVu)

+ e {(a(::) - ¢t> uf + ?Vuﬁ}

< % (€Y F(u)] + 2e*V (=) F(u). (2.7)

On the other hand, multiplying the equation of (1.1) by e?¥u, we have

0 a(x
e [ew (uut + (2)u2)] -V (eZ’puVU)
+ e {|Vul® — ra(z)u? + 2uVy - Vu — 2puuy — uf }
= 62w|u|pu.
By noting
2e*YuVip - Vu = 4e*YuVip - Vu — V - (ewung) + 2% |V *u® + e* (Ag)u?,

we see that

% {ew (uut + a(;)’uZ)] - A <e:bu2>
+ e {|Vul® + VY - Vu+ ((—¢r)a(z) + 2|V ?) v’}
+ e (AY) u® — ¥ (2¢uuy + uf)
= e |ulPu. (2.8)
By (2.4) and the Schwarz inequality, we estimate
[Vul® + 4uVy - Vu+ ((—¢p)a(z) + 2| V|*) v’
> |Vul? + 4uVep - Vu 4 (4 4 64) |V Pu? + g(—z/}t)a(x)zf

1)
> 05| Vul? + 1(*%)@(@“2,
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where 0y = 61 — § — %51 and &5 = 4+5 Here, we remark that § € (0,1) and

81 = 20 ensure (54 > 0. Also7 (2.5) implies

(AP > (2‘2\;:2) - (52> 621#?(7—2“2‘

Moreover, it follows from the Schwarz inequality that

0 o) (—to)u?

8
|29psug| < m(—i/)t)uf +3

Plugging these into (2.8), we conclude
9 24) a(z) o ﬁ 2
5 {e (uut + —~ U A 5 U
) N -« a(x)
29 2,0, 2 N=—a 2 2
+e <65Vu| + 8( P)a(z)u ) + <2(2 — o) (52) e u
8(—1)
2y o\T¥t) 2
(1+ %)

< e |ulPu.

do

Integrating the above over RY and multiplying it by (¢o + ¢ )12Y = ~% we have

d N-o 50/ 24) a(r) ,
pn [(to +1t)2me - e” | uuy + 5 U dx
N - -
- ( e 50) (to +1) 2=4 ~1=% / eV (uut + a(x)u2) dx
2 — RN 2

W 1)
UR Ll (%w - 8<wt>a<x>u2> de
R

N —«a B Noa_j_g, 24 2
+ (2(2 ~ o) 62) (to +1) eYa(x)u® dx

RN
N—oa 8(—¢t)
— (to +t)z=a ~% (1 2d
vt [ o (150 ) e
< (toﬂ)%—%/ 2% |u|Pu da. (2.9)
RN
Since § = 2(N a) 0o and 05 = 5 we see that 405 = §p holds and hence,

we compute

(N - 50) (to+1) =a 10 / 621&@“2 dx
2 RN 2

( 22— )(7f0—|—2€)1;r3_1 5"/ e a(x)u® do
RN
= 09 (to—l-t)g =~ 1750/ e*a(x)u? dr.
RN
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Moreover, the Schawarz inequality implies

N — i
( @ 50) (to + t)%*k%/ eV uuy du
RN

2—«

< ds(to + t)%_l_’sO / e*a(x)u? da
RN

N-a _ q1_ 1
o030 [ it

< ds(to + 15)%_1_50 / e*a(x)u? dx
RN

0(56) Noa_g / 21 Iy
—(tg+t)2—a % —uy d
+ to ( ot ) RN c a(x) U 4T

where dg = %2 and C(dg) = ﬁ(% —J0)2. Applying these estimates to (2.9),
we deduce

a ) 24 a(@)
o [(to +1) /RN e (uut + 5 U dx
N-a )
#lto+ ) [ (19 + Svale?) ds
RN
+ g (to + t)%_l_‘SO / e*Ya(x)u? dx
RN

— (to+1) 3= % /R e (1 + :ji‘zi)) + 8(5;(1);)) ui de

< (to+t)%_‘5°/ e |ulPu dz.
RN

Integrating it over [0,¢], we conclude

(to + t)Hf‘SO / e (uut + a(x)u2> dz
- 2

¢ N-a 0
+/ (to —+ T)ﬁ760 / 62w (55|VU|2 =+ 8(—1)[115)04(.%)’&2) dxdT
0 RN
¢
+56/ (to +7’)%71760\/ e*Va(x)u? dedr
0 RN

- /Ot(to + T)%_‘SO /RN eV (1 + tfc(jz)) + 8(5;5?) U? dxdr

< C(to)/ 20 (you, + @UQ) dz
RN

5 Yo
t N—a
—I—/ (to +7) 2= _60/ e*|ulPu dzdr. (2.10)
0 RN

On the other hand, integrating (2.7) over RV, we have

d eV
dt Jox 7(“? + [Vul?) dz
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+/RNe2w{(“(f)—¢) t+|Vu|2}

< di e*VF(u) dx + 2/ e*V (—1py ) F(u) dx

t RN RN

We multiply it by (¢ + t)%ﬂ_éo to obtain

d N—a ) 50/ e 2
s [ S ) o

N* —a 2’¢
- { 5 “ +1_50} (to+t)%—5o/ (w4 |Vul?) da
RN

— 2
+(t0+t)¥ié‘+1—5o/ o (9D _ )2+ Z2gup gy
- 4 5
]RN
N — Noa_ g5, 21
N3 4 +1—50 (to+1t)2-= RN@ F(u) dx
b2t + 1) 3+ 50/ €2 (=) F(u) da
RN

Noting that

a(z)
g

N — o _
{ 74 +1—50}(t0+t)12v—“_6” < (to—l—t)];—

holds if we choose tg > 1 so that tg > ag—o(N_

2—«
d eV 9 9
yr {(to +t) /RN T(Ut + |Vu| )dx]

+(tg + 1) 2=a +1- 50/ 62w{<“(8$)¢t) uf+§}t|Vu2} dz
RN

N — —a 24
_ { @ —60} (to +t>7]§,a —60/ L|Vu|2 de
v 2

2 -«
d T=2t1-s 29
< — |(to+t)2= 0 e“YF(u) dx
dt RN
N — N-a
{ 5 §+150}(t0+t)2a50/ eV F(u) dz
_ N
2t 4+ 1) 10 / €2 () F(u) da

RN

1 —4p), we calculate

Integrating it over [0, t], we conclude

eV
o+ )50 [ E a4 VP de

¢ _
-l—/o (t0+T) a t1-% /RN 62’”{((1(;)—1/&) uf+gptVu|2} dxdr
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N—Oé t N—a 62’¢'
- 1-4 to+7)=a % [ C |y dad
(o v 1o} [[entes [ G o

< C(to) / 24O (42 4 [Vuol? + [uglPH) da
RN

+ (to + t)%ﬂf‘so / e*V F(u) dx

RN
N — t N
- { S - 60}/ (to + 7)%_60/ e* F(u) dedr
2—« 0 RN
t
+ 2/ (to + T)%Jrlﬂio / >V (—1py) F(u) dadr. (2.11)
0 RN

Finally, we combine (2.10) and (2.11). We take v > 0 so that

N —« 65
_ < 2
V{2 +1 50} 9

holds and, we choose t( sufficiently large so that

1 0(66) v
— <
to (1 + to ) - 16@(%),
8 <V
Stoa(z) — 27

Computing (2.10) +v-(2.11), we conclude

Cw 29
v(to+ t)%ﬂf‘so / 6—(uf + |Vul?) dz
o 2

+ (to + t)%_‘s‘) / eV (uut + a(m)u2) dx
. 2

t j— J—
+ u/ (to+ 7)%‘*1_50 / eV alz) + i ui + L \Vul|? b dedr
o . 6 2 5

t
s [wrneo [ e (up s Hoviaen) dor
0 RN 2 8

t
+56/ (to—i-T)%*l*é"/ e*Va(x)u? drdr
0 RN
< C(to) / PO (i} + |V + [uo["H + a(x)uf) de
]RN
+u(t0+t)%+1*50/ e*|F(u)| dzx
RN

t
+C(N,a,5o,z/)/ (tow)%—%/ 2| P (u)| dadr
0 RN

t
+ C(V)/O (to +7)%+1760 /]RN e2w(—wt)|F(u)| dxdr.
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Finally, noting that

2413 ﬁ2 Vul2)d
o+ 1) 5000 | S 4 [Vul) d

+ (to + t)%%" / eV (uut + a(x)u2> dx
RN 2

Y
(to + 1) ¥ +1-00 /RN (o [Vul) do

/ e*a(z)u? dx
RN

we have the assertion of Lemma 2.5. O

w\t

1 .
+ 3o+ 1) =

if to Tag?
Remark 2.6. In the above proof, we have determined the positive constants
8,6; (j=1,... 6) v,to in the following way. First, for given dg € (0, 2 %),
do. Then, we choose §; (j = 1,...,6) as &; := 2(5

we define ¢ :=

2(N oc)
Jy 7= 55250, b3 such that 1 — 03 > 3% 64 := &1 — § — %L, &5 == 134,
d6 := 2. Note that § = O(0p) amd §; = O(do) (j = 1,..., ) as g — O+.

After that, we take v as Z/(J;’:S +1—4do) < %5. Then, we choose ty > 1 so that

8 N—a 1 Cle)\ _ v
> — 1-— 1 < —
Wz s (Get=a) o (145 < o)

8 v 2
Stoa(z) — 2" °7 vag

H-

hold for any 2 € RY. These observations will be useful when we discuss the
case a < 0,3 =1 (see Appendix B).

Finally, we also remark that Jy will be determined depending on p in the
nonlinear estimates discussed in the next subsection.

2.3. Nonlinear estimates and proof of Proposition 2.3

In this subsection, we give the nonlinear estimates for the right-hand side
of Lemma 2.5 and complete the proof of Proposition 2.3. We first recall the
following special case of Gagliardo—Nirenberg inequality.

Lemma 2.7. (Gagliardo—Nirenberg inequality, see [10, Section 6.1.1]) For 1 <
p<oo (N=12),1<p< 82 (N >3), there exists a constant C > 0 such
that for any u € HY(RY), we have

lull s < CIVul| g2 lull 127,

where 6 = ];((;:11)) € [0,1].

Besides the above lemma, we also use the following special case of
Caffarelli-Kohn—Nirenberg inequality.
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Lemma 2.8. (Caffarelli-Kohn—Nirenberg inequality, see [1]) For k =0,1,2,...,
there exist C(k,N) > 0 such that for u € H*(RN) with compact support, we
have

k
e < Clk, N[Vl 552 22~ 2

We give a short proof of this lemma in Appendix.
Based on the above lemma, we first prepare the following.

Lemma 2.9. Under the assumptions of Proposition 2.3, for any integer k sat-
isfying 2F — 1 > —5, there exists a constant C(a, p,k, N) > 0 such that for
any v € HY(RYN) with compact support, we have

1—1/2%
le¥rullzz < Clap b, N) (147 H e Vaulzz + e Vul| 12 )

o 1/2%
x (14 0)C D )
Proof. By Lemma 2.8, we have
29 24 _
le#ullz < Clk MV Tu)ll Y @) terfial (212)
with k satisfying 2% — 1 > —5. We estimate

()2 lertt = (2)7% (2)F T erty

—ay (2F-149)/2-®)

Lo (@) : 2 2k _14+2)/(2—

:<(p> 2( ep+1.(1_"_t)( +5)/(2—a)
1+t

< Ca,p, b, N)(1 + )@ 158/ @)t fo ).

On the other hand, we compute

2u 29 2
V(er+iu) = ert (M(Vzp)u + Vu)

and
Vel < oL o
<C(x)~ % (<I> )(1_ e ertt - (1 _|_t)( )/ (2—a)
- 144
<O +1t) 2" Ja(z)
Plugging these estimates into (2.12), we have the desired estimate. O

Combining Lemmas 2.7 and 2.9, we obtain the following interpolation
estimate.

Lemma 2.10. Under the assumptions of Proposition 2.3, for any integer k
satisfying 2F —1 > —§, there exists a constant C(c, p, k, N) > 0 such that for
any v € HY(RN) with compact support, we have

29 1 O+(1—1/2%)(1-06)
lew T ull o < Clavp, b, N) (14872 e¥Vaul 2 + [V Vul|12)
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a (1—6)/2k
x (149 DD b 1)

)

N(p—1
where 6 = 2((;_1)) € [0,1].

Proof. By Lemmas 2.7 and 2.9, we estimate

24 24 24
le T ul|pper < OV (e T w)(|T2llem T ul;2°

0 24
|eP+1u||L2

<C((t+0)7 e vaul 2 + eVl s

(1-1/2%)(1-6)

6
(1+ )l Vaul 2 + e Tul| 12 )
(1+ 67 leVaulzz + e Vul 12 )

a

<c(
(

x (( +t>(2k_1+%)/(2_a)||6¢\/5UHL2) 1/2%)(1-0)
(

0+(1—1/2%)(1—-6)
= ¢ (140 He¥ Vaula + ¥ Vul 12 )

a (1-6)/2"
% ((1 1)@ 18/ (2ma) ||6¢\/5UHL2)

which completes the proof. O

)

Now we are in a position to estimate the nonlinearities

Clto + 1) =5 +1§/e%m@mx
RN
t
+C’/ (t0+7_)ﬁ—6o/ e*|F(u)| dedr
RN

+C/ to+7)>a t1- 50/ 2V (=) |F (u)| dadr
RN

= N1+ No+ N

in the right-hand side of Lemma 2.5. We first consider Nj. Applying
Lemma 2.10 and using the definition of M (t) (see (2.6)), we deduce

)
Ni < Clto + ) 7= T |emry B H)

(0+(1—1/2%)(1=0)) (p+1)
<C(t0+t) “+1-36 ((1+t) z||e¢’fu”L2 +||6wvu“m)
’ o 1—0)(p+1)/2F
X ((1_|_t)(2k,1+5)/(27o¢)Hew\/au”LZ)( Y(p+1)/

<C(t0+t) o1 5n(1+t) (5= 4+1-680)(6+(1-1/2%)(1-6)) (p+1)

X (1+1) [(2* *1+%)/(2*0¢)*é(%*éo)](lfe)@+1)/2kM( )Lrl

By a straightforward calculation, we can see that the condition

e (e (- oo

-1y s -] a-neeng <o
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if and only if

2
N —a-— (2 — 04)50/2.
Noting p > 1+ 2= and § < 52 (N —a — p%l), we see have (2.13) holds
and hence,

p>1+

(2.13)

Ny < CM(@t)"™ . (2.14)

We can obtain the same estimate as (2.14) for Ny in the same way. Finally,
for N3, noting

()

(1+1)2

(—)e™ < C < C(1+1) e,

we have
t
N3 < C’/ (to + T)%f‘so/ ePTHw|F(u)| dzdr.
0 RN

We can apply the same argument to the right-hand side and obtain the same
estimate as (2.14) for N3. This completes the proof of Proposition 2.3.

3. Blow-up and the sharp upper estimates of the lifespan in the
subcritical and the critical case

In this section, we give a proof of Theorem 1.4 for the case a < 0,0 = 1. We
can also prove Theorem 1.4 for the case @ < 0,3 = 0 in the same argument
with a slight modification (see Remark 3.1 below). The proof is based on the
test-function method developed by Tkeda and Sobajima [15].

First, we remark that if () < (2R2%)2, where Ry is given in (1.4),
then the assertion of Theorem 1.4 is obvious, provided that ¢ < 1. Thus, we
may assume that T'(g) > (ZR(%_O‘)%. Let n = n(s) be a smooth function such
that

1 if s < 3,
n(s) = { decreasing if 1 <s <1,
0 if s > 1.

Let R € [(2R2™%)2,T(¢)) be a parameter and, we define

Yn(t,z) = [77 (Wﬂzﬂ.

We note that (0, 2) =1 holds for |z| < Ryg. We also define
. 0 1f8§%7 ; . |x|2a+t2>:|2p/
= t = —_— .
Then, we have

Orr(t, )| < CR™2(1+ 1) [ (t,2)] "5
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2vn(t,@)| < CR2 [k ()7,
At )] < CR™ (@)™ [Wh(t,2)]?
and
(xy~* < CR 7“5 on supp ¢¥g, for R > Ry.
Finally, we define
Ugr(t,x) = (1 +t)Yr(t,x).
Multiplying the equation (1.1) by W5 and integrating it over RY, we have

/N |u|P\I/Rdx = /N (utt — Au+ f(_f)tut> Updx.
R R

By integration by parts, we calculate
d a(x)
POpdr = — Up —ud ¥ Up|d
/szlu| R AT dt/RN<utR U0y R+1+tu R)x

a\xr
+/RNu (83\113—A\I/R—8t <1(+)15\PR>) dx

d alx
=2 - <ut\IJRu8t\IIR+1(+)tu\I/R> dx
+ [ u(20un+ (14 000n -+ (14 0A6n — (@) do
]RN
d a(x)
< = _
S5 n <ut\I/R u@t\IlR =+ 1+tu\I/R) dx

+CR™? /RN lul (1+ (z)~*) (1+ Hs? da

(ut\I/R —uoVg + f(f)tu\I'R) dx

< —
— dt RN
+OR 7 / ul(1 4+ O)[Wh] da.
RN
Integrating it over [0, R] and applying the Holder inequality, we have

E/}RN (u1(z) + (a(x) — 1)ug(z)) de + //]RNX(O,R) |u|P (1 + t)Yr dedt

L
7

1
<CR s // [ulP (1 + £y dwdt // (1 +t) dadt
RN % (0,R) Jlz|2me+t2< R?

4 (1 _N-oyl : " »
<CR 2<'p1 2 )y // [ulP(1 + )y dedt | . (3.1)
RN x (0,R)

In the subcritical case 1 < p < 1+ ﬁ, from ¥} < ¥p and the Young
inequality, we obtain

Nfa)

[ (@) + (alz) - Dun(e)) do < CR- =G
RN
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By the assumption of Theorem 1.4, the left-hand side is bounded from below
by Ce. Therefore, we have

Since R is arbitrary in [(2R27%)2,T(e)), we obtain the desired estimate for
T(e).

In the critical case p = 1 4+ =

N—a’

P
= P * —1
Y (p) /0 <//wa(o,m lulP(1 + )Yk da:dt) R dR.

/‘w‘2—o¢+t2

R

p 2—a 42\ 72V
Y(p) < // ulP(1+ 1) / [n* (W)} RVdR | dzdt
RN x(0,p) 0 R

o0 ’
- P(14t ()1 s Vds | dadt.
Moo ([ )

Here, noting suppn* C [%, 1], n* < n and 7 is decreasing, we estimate

[e%s} — 2?’
22 e*~ + ¢
/W [ (D] 57" ds < log2 %( p? ﬂ '
P

Hence, we obtain

Y(p) < log2// [ulP(1+t)y, dedt.
RN x(0,p)

Combining this with (3.1), we have the differential inequality of Y'(R)
P
(5/ (ur(x) + (a(z) — Vug(z)) dz + Y(R)) < CRY'(R)
RN

for R > (2R%7Q)%. Solving the above, we conclude

we define

We note that the changing variable s = implies

—(p—-1)
log R — log(2R2")} < C (s /]R (ur () + (a(z) — 1) () das)

We take a sufficiently small constant €1 > 0 depending on Ry so that

N

log R < C (5 /RN (ur(2) + (a() — Duo(x)) dx) o

holds for & € (0,e,]. Since R is arbitrary in [(2R2~%)2,T(¢)), we obtain the
desired estimate for T'(¢).

Remark 3.1. In the case a < 0,5 = 0, we modify the definition of ¥g(¢,x)
and Y5(t, ) by

ontt = [o ()" s = [ (2]
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and we use 1 itself instead of ¥ . Then, corresponding to (3.1), we can prove

E/RN(ul(m) + a(z)uo(z)) dz + // |ulPtpR dedt

RN x (0,R)

1

-~ e G- ) Pyt ’

<CR g z |ulPepy dedt | .
RN x(0,R)

From this, one has the assertion of Theorem 1.4 for a < 0,5 = 0 in the same
manner.

Appendix A. Short proof of a special case of the
Caffarelli-Kohn—Nirenberg inequality

We give a short proof of Lemma 2.8. For any v > 0, by the integration by
parts, we compute

V- (|z]"2)u? de = —2/ |z (z - Vu)udz
RN

< 2|V e[|z ull e,

RN

which leads to
lz["ullfz < C(v, NIVl g2l ] 2. (A1)
Taking v = 0 and v = 2, we have
lull> < CN)[Vul 2] |2]ull 12 (A.2)
and
NelullZz: < CCyv, NIVul 2|z Pul e, (A.3)

respectively. The inequality (A.2) gives the assertion for k = 1. Next, combin-
ing (A.2) and (A.3), we deduce

3/4 1/4
[ul|22 < C(N) |Vl 25 | Pull )5 (A4)

which gives the assertion for k = 2. Furthermore, taking v = 6 in (A.1), we
have

la]Pul|2e < CN)|[Val 2 |||l 2.
This and (A.4) imply
lull g2 < CN)|[Vul) 762 || T 2%,

which proves the assertion for & = 3. Repeating this argument, we obtain the
desired estimate.
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Appendix B. Sketch of a priori estimate in case of time and
space dependent coefficient damping

Under Proposition 1.1, we here sketch the proof of the following proposition,

corresponding to Proposition 2.3, assuming (i) o < 0, —1 < 8 < 1 or (ii)

a < 0, B =1 with ayp > 1. Then we can reach to Theorems 1.2-1.3, using

usual procedure of the energy method.

Proposition B.1. Under the assumptions of Theorems 1.2-1.3, there ewist
0p € (O,W), and constants to = to(ag,Ro,00) > 1, C =
C(N,«, 3,a9, Ry, 00,t0) such that the solution u constructed in Proposition
1.1 satisfies the a priori estimate

MO () <M (0) + CMP) (1)

fort €[0,T(¢)), where P and MP)(t) are defined in (B.1) and (B.2) with
0= m% below, respectively.

First, the function ¥(? is defined by

u . 2
WO 0) = ({7 o = N ¢ (02— a)e) i (0)} . (B)
where B(t) = 1+ﬂ + ft bd:) 1+5(1 + 1)1+, Since (0 satisfies (2.4)-(2.5) in
s
Lemma 2.2, and since ¢(?) = 1+t ¢(0 and (B(t))’ = —%,

(1+1t)° 1+t
—cltpl? = et ) U 020 2 - () atal?

14+1)\2 0 0
> () (24 5O) VYO = (2 1 50) V2

B()
and
@ _1tt o 116 N—a__wva@)
Ay ~ B(b) AY (1418 <ﬂ2—a) 52 1+t
< —a)(1+5) ym)dh@
_ ) ==
202 — a) 1+¢

Here (5§B) = %6, 65’6 = Wé. Hence, samely as in Lemma 2.2, it holds
that

~ it @)elt,x) > (2+ 07 Vo(t, 2) 2,

avie > (W 0ED ) clin)

Next, since the number

w suggests the decay rate, for the weighted

energy estimate we define M) by

MO (1) = sup {(to+r>W+ﬂ+l-5o / ¢ (u? + |Vul’) da
RN

0<r<t
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+(t0 —I—T)(N ;2(1+B) 5o / 62¢a(1,)u2 d$}7 (B.Q)
RN

where £ is suitably large number and &g > 49s.
Here and after, we abbreviate the suffix (3) for ®, §0® and M@,
Multiplying (1.1) by e**u; and e*¥u, we respectively have

0 [e2¥
— |:62(’u§ + |Vu|2)} -V (ewutVu)

+e*¥ {(ic(t, z) — 1y ) u? + — |Vu|2}

< %[e%F(u)] +2e?Y(—1py)F(u), where F(u)= S

ufPu,  (B.3)

and

0 9y c(t,z) o\] ﬁz
5 [e (uut—|—2 U A 2u

]
+ €2w (55VU|2 + g(—?ﬂt)c(t, .%‘)’U,2>
(N-a)(1+8) B o2 ct,x) 5 8(—¢x)
S A S B VA S v € —e¥ (1 2
*( a2 ) T (M e ) v
< e |ulPu, (B.4)
since c(t, z) & “2 =2 elbo) 2 4 gt(:l(if)) u?, which is only different from the case
B =0, though a(x) is changed to c(t, x). So, note that §;(i > 3) is the same as
one in Section 2 (cf. Remark 2 6). Integrating (B.3) over RY and multiplying

(W =a)(:+0)
it by (to + 1) TRe (1) , we have

d (t()‘f’t)er(lJrﬁ) 60/ ﬂ
RN

dt 2
{(N—a)(Hﬁ)
2—«

(u? + |Vul?) dx}
+O+@%}
a 24
(t0+t)(N )(1+[3)+l3 do / L(u§+|vu‘2) dz
ey 2
C 1
oo 0 [ v Cotna) - wd + TP do
]RN 4
d (N—a)(1+8)
=t t7+(1+ﬂ)—50/
d [( 0+t) .

_{(N_;M+(1+B) }(twt)““““‘*”ﬁ 60/RN e* F(u) da

—

e*V F(u) dx}

(N—a)( )
bt o) SO [ (g () e (B.5)
R
Since

(to + t)e(t, z) = (to + t)ao(x) " * (1 + )7 > agty "+ > 1, (B.6)
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if (i) or (ii) holds, the term [, %uf in the second term in (B.5) is absorbed

into [pn €2V Se(t, )uf dz, where By =0 (8 <0), B4 =3 (0 < 3 < 1). Hence,
integration of (B.5) over [0, ] yields

(N=0)(145) _ eV
(to+1t) 2a  TUFAH=0 /RN 7(?1? + |Vul?) dx

¢ (N=a)(1+6) 1
+ / (to+7) " e T HAEA =G / e {(%(r, z) — wt) ui +
0 Jrw 8

R {UETTEY IO

} dx dr

t Nea)(1 2
></ (to+7) e 222*”)+<1+ﬁ>—6o/ S \Vul?dedr
0 RN 2
< Clto) [ O +[Tuol + o) do
]RN
¥ (to + 1) RSO -5 / _PVF(u)da
R
N_ 1 N—a)(1
_ {—( 2a)( +5 +1+p5) —50}/ (to +7’)w+ﬁ 60/ eV F(u) da dr
— RN
t N—a)(1
2/ (t0_|_7—)( 723((X+ﬁ)+(1+6)—50/ eV (=) F(u) dx dr. (B.7)
0 RNV

Similarly, integrating (B.4) over RY x [0,t], we have

(to +1 )MJF@ % / eV (uut—i— C(t’x)uz) dzx
RN 2

t
" b
+ / (to+ 1) 2oa T HA% / €2 (65|Vu|2+<—wt>c<m)u2) du dr
0 RN 8
t
+56/ (t0+7)W+B*1*50/ esz(T,(E)’LL2d.’EdT
0 RN
(N—a)(1+8)

- (1+ (172)/ (to + T)T—w_é” / ewuf dx dt
aoty 0 RN

8 [t (N—a)(1+8) —
— = [ (to+7) =z A% / e Ve u? dx dr
5 0 ]RN

ot x)
24¢(0,z) c(0,2) ,
C(O{, ﬁ7 tO) € ’ UpU1 + —Q= Uy dx
- 2
t
+/ (to + T)w—i_ﬁ_éo/ e2w|u|pu dx dr, (B.8)
0 RN
where we used, by (B.6),
C(6
/ e uuy de < 56/ e*e(r, x)u? de+(to+7) / __Cl) e*Pu? dr
RN RN 7)

ry (to + C(T,x)
C(ds

< 56/ 62"/’0(7', l’)uz dx + (to + T) B) / 211) 2 d$
RN apty " JR
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Now, we add (B.7) to v-(B.8) (0 < v < 1) and cover the bad terms. In fact,
fix v small as V{W +(14p8)—0do} < %5, and then take tg or ag large
in case of (i) or (ii) as
(56) <V
aot atl P+ 16

that is, by (B.6),

1+

(to + 7)e(r,z) and % . (to + 1),

2
B
3
l\D\t

(56) < Zag to” Fr < —(to—|—T) (r,2),

1
+ aot B+ - ].6 ].6

8 5
- < — < .
2 < Zaoty ™ < 210+ )elr,0)
Thus, the bad terms in the left hand sides in (B.7)—(B.8) are absorbed to good
ones and the following desired inequality holds:

29

(N=0)(145) e

vt +1t) 2-a A% /N 5
R

o t
(to —I—t)(N 0046) g 60/ o2% (uut + 0(2733)u2> de
RN

t
+ u/ (g +7) " B0
0

(u? + |Vu|?) dz

X / e {(IC(T x) — 11/) JuZ 4+ — Vu|2} dxdr
- 16 2

t N—a)(1
4 / (t+7)" " 5a T HOdo / e (§|Vu|2 + §<—¢t>c<m>u2) da dr
0 RN

c(0,x
<t [ 0 (+ 90l + fuoptt + 523 o
R

(N=a)(1+pB)
Uty +1)T e A% / > |F(u)| dw
RN

t
+ C’(to)/ (to + T)(N 22$+ﬁ)+57‘50/ X u|P Tt da dr
0 RN

t —«
+2V/ (t0+7)W+<1+m—%/ 2% (—py)|F(u)| da dr.
0 RN

For the semilinear terms, we estimate, for an example,
(N=a)(1+8) _
Ny 1= vty 4+ 1) R0 / ¢ | F(u)| dx
RN

(N— ﬂ)(1+6)
= v(to +1) HOEO o ety EL.

By the Gagliardo-Nirenberg inequality

N(p—1)

2(p+1)°
2y 29 29 g

< C(llem 1 [Vlul 2 + [le7+7 V]| £2)° [le7+Tul| 5

lemTull o < CIV (e Tu)||aller¥Tull 137, where 6 =
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Since ¢ = 1® has the t-dependent coefficient B(t), instead of 745 for v =
1) in Section 2, by the Caffarelli-Korn Nirenberg inequality, samely as in

Lemmas 2.9-2.10, we have
29
ller+Tul| Lors
_ 1-6
< C(BW)F ¥ vaull s + [l Vull 1)+~ By 3 e Vau| 750,
Hence
(N—a)(148)
N1 S O(t() +t)%+(1+6)_50

% [(to 4 ) R (48— 00) (0+(1- 35 (1-0))

2—«

p+1
(o + )1 OFDGE — 4= (B2 5, ”’21'@'(19)} x M(t)"5".

The exponent of (g + t) is

N —« (50
(1+ﬁ)[ 5, T T 5
+(p+l){—; (J;_(j+1— 1?;3) <9+ ( ;k) (1—9))
(F2) 2 - ) 7]
2—a 2 2\2—a 147 2k ’
Samely as (2.13), this is negative if and only if
2
N—a—(2—a)d/2(1+3)’
because of 1 + # > 0. The other semilinear terms are estimated in a similar

fashion to the above. Thus, taking dg > 0 small, we obtain the desired estimate
on M(t) = MP(t)ifp > 1+ ﬁ, which completes Proposition B.1 for 8 # 0.

p>1+
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