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Abstract. We consider the initial value problem for a fully-nonlinear de-
generate parabolic equation with a dynamic boundary condition in a half
space. Our setting includes geometric equations with singularity such as
the level-set mean curvature flow equation. We establish a comparison
principle for a viscosity sub- and supersolution. We also prove existence
of solutions and Lipschitz regularity of the unique solution. Moreover, re-
lation to other types of boundary conditions is investigated by studying
the asymptotic behavior of the solution with respect to a coefficient of
the dynamic boundary condition.
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1. Introduction

Equation. We consider the initial value problem for a fully-nonlinear parabolic
equation with a dynamic boundary condition of the form

(DB)

⎧
⎪⎨

⎪⎩

ut(x, t) + F (∇u(x, t),∇2u(x, t)) = 0 in Ω × (0, T ), (1.1)
ut(x, t) − βuxn

(x, t) = 0 on ∂Ω × (0, T ), (1.2)

u(x, 0) = u0(x) in Ω. (1.3)
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Here u : Ω × [0, T ) → R is unknown and ut = ∂tu, ∇u = (∂xi
u)n

i=1 and
∇2u = (∂xixj

u)n
i,j=1. Moreover, throughout this paper we assume that

• Ω := {x = (x′, xn) ∈ Rn−1 × R | xn > 0} is the half space of Rn;
• β > 0.

The prime ′ and the index n are used to represent the first (n−1) components
and the last component of a vector in Rn, respectively.

Our goal in this paper is to establish a comparison principle, existence and
regularity results of viscosity solutions to (DB) when F = F (p,X) is allowed
to be singular at p = 0. Examples include the level-set mean curvature flow
operator stated below. We also study the asymptotic behavior of the unique
solution as β → 0 and β → ∞.

The case β = 0 appears to be the Dirichlet problem but it is not exactly
the same as the traditional Dirichlet problem u = u0 on the boundary ∂Ω; see
Sect. 6.3. We also note that the case β < 0 is ill-posed if n >= 2 as pointed
out by Vázquez and Vitillaro [48]. This is why we restrict ourselves for β > 0
although we occasionally mention the case β = 0.
Interface evolution equations. Our problem (DB) applies to level-set equations
for interface problems, which were first rigorously analyzed by [8] and [17]; the
method was introduced by [42] as a numerical scheme and by [43] for physical
explanation of scaling laws. We briefly explain the method below. See [29,
Chapter 1] for a more detailed description of this approach.

Let us consider evolving (smooth) interfaces {Γt}t∈[0,T ) in Ω which divide
Ω into two regions Ω+

t and Ω−
t . See Fig. 1. Denote by n = n(x, t) the unit

normal vector at x ∈ Γt from Ω+
t to Ω−

t . We assume that Γt evolves according
to a surface evolution equation

V = f(n,∇n) on Γt ∩ Ω. (1.4)

Here V = V (x, t) is the normal velocity of Γt at x in the direction of n, f is
a given function, and −∇n is the second fundamental form in the direction of
n. To track a motion of Γt we represent it as the zero level-set of an auxiliary
function u(x, t). Namely, Γt = {u(·, t) = 0} and Ω±

t = {±u(·, t) > 0}. Then

V =
ut

|∇u| , n = − ∇u

|∇u| , ∇n = − 1
|∇u|Q∇u(∇2u),

where
Qp(X) = RpXRp with Rp = I − p ⊗ p

|p|2 , (1.5)

provided that u is smooth and ∇u �= 0. Here we write q ⊗ q = (qiqj)ij for
q = (qi)i ∈ Rn, and | · | stands for the standard Euclidean norm in Rn.
Substituting the above formulas for (1.4), we are led to the parabolic equation
(1.1) for u with a (possibly) singular operator F given by

F (p,X) = Ff (p,X) = −|p|f
(

− p

|p| ,−
1
|p|Qp(X)

)

. (1.6)

The resulting equation (1.1) is often called a level-set equation. The operator
F derived in this way possesses a kind of scaling property called geometricity;
see (F5) in Sect. 4.3.
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Figure 1. Interface problem

A typical example of such surface evolution equations in our mind is the
mean curvature flow equation given by

V = H on Γt ∩ Ω (1.7)

with the mean curvature H = −(divΓt
n)(x) of Γt at x. In this case the asso-

ciated equation (1.1) is

ut(x, t) − |∇u(x, t)|div
( ∇u(x, t)

|∇u(x, t)|
)

= 0 in Ω × (0, T ) (1.8)

with F defined as

F (p,X) = −tr
{(

I − p ⊗ p

|p|2
)

X

}

. (1.9)

In the level-set formulation, our dynamic boundary condition (1.2) cor-
responds to the following boundary condition for evolving surfaces:

vb = β cot θ on bΓt := Γt ∩ ∂Ω. (1.10)

Here vb = vb(x, t) is the normal velocity of bΓt on the boundary ∂Ω at x ∈ bΓt,
and θ is the contact angle at x ∈ bΓt formed by ∂Ω and Γt, or equivalently
the angle between two vectors en ∈ (0, . . . 0, 1) ∈ Rn and −n at x ∈ bΓt. Since
they are given as

vb =
V

sin θ
=

ut

|∇u| sin θ
, cos θ = 〈en,−n〉 =

uxn

|∇u| ,

where 〈·, ·〉 is the standard Euclidean inner product in Rn, we see that (1.10)
yields (1.2).

For (1.8) and more general singular geometric equations, a unique ex-
istence result for viscosity solutions is obtained by [8] and [17] in the case
where there is no boundary, that is, Ω = Rn. When Ω is a domain, a unique
existence of viscosity solutions for singular equations is well studied for Neu-
mann type boundary conditions; see [6,38,44,45]. See also [36,47] for Dirichlet
boundary problems, but the domain Ω is assumed to be strict mean-convex
which excludes the half space. However, such a well-posedness result for singu-
lar equations like (1.8) has not been known for a dynamic boundary condition
even if the boundary is flat like our case. This paper provides a first attempt
in this problem.
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Our typical problem (1.8) with (1.2) is obtained, at least formally, as a
sharp interface limit of the Allen–Cahn equation

vε
t (x, t) − Δvε(x, t) +

1
ε2

W ′(vε(x, t)) = 0 in Ω × (0, T ) (1.11)

with the same dynamic boundary condition

vε
t (x, t) − βvε

xn
(x, t) = 0 on ∂Ω × (0, T ). (1.12)

Here W (r) = (1 − r2)2/4 is a double-well potential. See, e.g., [9,26] and refer-
ences therein for the Allen–Cahn equation with a dynamic boundary condition.
Also, the authors of [31] study Brakke flows with Dirichlet or dynamic bound-
ary condition obtained by the limit of the Allen–Cahn equation.

To see the derivation of (1.8) and (1.2), let us suppose as usual that the
solution vε is of the form

vε(x, t) = q

(
d(x, t)

ε

)

,

where q is the standing wave solution to q′′(r) − W ′(q(r)) = 0 in R with
q(±∞) = ±1 and d is a smooth function such that {d = 0} = {vε = 0}. On
one hand, the equation (1.8) for d is derived in a usual way by substituting
the derivatives of vε for (1.11). Indeed, we then have

1
ε
q′

(
d

ε

)

(dt − Δd) − 1
ε2

q′′
(

d

ε

)

(|∇d|2 − 1) = 0.

This implies that dt − Δd = 0 and |∇d|2 = 1, and hence

dt − tr
{(

I − ∇d ⊗ ∇d

|∇d|2
)

∇2d

}

= dt − Δd +
n∑

i,j=1

dxi
dxj

dxixj

= 0 +
n∑

i=1

dxi
∂xi

(|∇d|2) = 0.

Since |∇d| = 1, we see that d is a distance function to {d(·, t) = 0} = {vε(·, t) =
0}. On the other hand, it follows from (1.12) that

1
ε
q′

(
d

ε

)

(dt − βdxn
) = 0,

which gives (1.2) for d. In a strict sense, it is known that the distance function
is a viscosity supersolution of the heat equation. This is shown in [16] and
[39] for the case with no boundary and the case of the Neumann boundary
condition, respectively. By using this fact, [16,39] prove that the zero level-
set of a solution to the Allen–Cahn equation converges to a mean curvature
flow. Unfortunately, it seems that a similar technique does not work for (DB).
In fact, we show in Example 2.5 that the distance function may not be a
supersolution of the heat equation in Ω.

A similar type of boundary conditions to (1.2) can be found in [4]; it is
of the form

vb = f cos θ + g (1.13)
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with f free energy of the interface and g the difference between the free energies
of two parts of ∂Ω separated by the interface. The derivation of (1.13) is based
on a capillary force balance, dissipation inequality, etc.
Literature overview. We review a few typical known results on dynamic
boundary value problems related to our problem. This list is not exhaustive
at all.

For fully nonlinear parabolic equations without a singularity at ∇u = 0,
Barles established a quite general comparison result in [5, Sect. II] and [6,
Sect. 3] for a general nonlinear dynamic boundary condition; see also [7] for
the large time behavior of the solution. However, as is stated in [6, Comment
after Theorem 3.2], a similar choice of a test function to the non-singular case
does not work when we prove the comparison principle for singular equations.
A difficulty is a control of |∇xφ − ∇yφ| for a test function φ = φ(x, t, y, s)
in the procedure of doubling variables. In this paper, we carry out a different
approach based on a perturbation of a test function employed in [27,28,33]
rather than modification of test functions given in [5,6]. We perturb the test
function by translation in the direction vertical to the boundary and apply
a kind of flattening argument developed by [27,28,33]. We then reduce the
problem to the one only depending on tangential variables; see Step 5 in the
proof of Theorem 3.1 for the details.

In the context of viscosity solutions, the papers [2,12] study dynamic
boundary problems for first order equations. Motivated by a mean field models
of superconductivity and a surface evolution problem, the authors of [12] study
a Hamilton–Jacobi equation under a dynamic boundary condition without the
spatial derivative of the unknown function in one space dimensional case. A
comparison principle and an existence theorem are established. The paper [2]
is concerned with the asymptotic behavior of solutions to a dynamic boundary
problem for the eikonal equation

εut(x, t) + |∇u(x, t)| = 1 in D × (0,∞)

with a bounded domain D. The limit of the solution u as ε → 0+ is inves-
tigated. Recent work [24,35] also study such a vanishing time derivative of
the equation for second order equations. In [34,35] a deterministic game in-
terpretation is proposed for dynamic boundary value problems of the mean
curvature flow equation (1.8) and fully nonlinear parabolic equations.

The paper [1] proves a short-time existence and uniqueness of solutions
to equations for the volume-preserving mean curvature flow and Willmore
flow. See also [11,14,46,48] for various other studies of a dynamic boundary
problem for parabolic equations; the heat equation [48], semilinear equations
[46], quasilinear equations [14] and higher order equations [11]. These work
emphasize construction of unique regular solutions.

The theory for an elliptic equation of the form
{

−Δu(x, t) = f(u(x, t)) in D × (0, T ),
ut(x, t) + 〈ν,∇u(x, t)〉 = g(u(x, t)) on ∂D × (0, T ),
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where ν is a unit outward normal vector to ∂D, has also been developed. When
D is the half space Ω, the paper [3] establishes a blow-up theorem of Fujita
type when f ≡ 0 and g(u) = up. See also [18,40,41] for extension of the result
and the asymptotic behavior of solutions. When f(u) = up (or more general
functions) and g ≡ 0, Fila, Ishige and Kawakami investigated (non-)existence
of solutions, the large time behavior, minimal solutions and so on; see [19–
22]. We also refer the reader to [13,15,25] for problems in a general bounded
domain D and [23] for problems in an exterior domain D.
Results. Our first result of this paper is a comparison principle presented in
Sect. 3. It applies to a viscosity subsolution u and a viscosity supersolution v
of (DB) with a singular F which is not necessarily geometric. The theorem is
proved under a suitable decay condition for u − v at infinity, which is satisfied
if, for example, u and v are constant at infinity. Namely, both u(·, t) − α
and v(·, t) − α have a compact support for some α ∈ R. This assumption is
usual and not restrictive in the level-set approach when we study a motion of
bounded interfaces [8,17]. As a corollary of the comparison result, we obtain
uniqueness of solutions when the initial data is constant at infinity.

Our idea to handle a singularity together with a dynamic boundary con-
dition is as follows: As usual we study a maximum point Ẑ of

Φ(x, t, y, s) = u(x, t) − v(y, s) − φ(x, t, y, s) (1.14)

with a smooth test function φ. A standard choice of φ involves |x − y|4 to
guarantee that ∇2φ = O whenever ∇φ = 0; see the assumption (F3). Now,
we add a perturbation parameter ζ ∈ R to xn-variable, which is the normal
direction to the boundary of Ω, and put |x′ − y′|4 + |xn − yn − ζ|2 into φ = φζ .
Such a perturbation of a test function is first employed in [33, Theorem 2.2]; see
also [27, Comparison Principle (Sect. 1.2), Proposition 7.6] and [28, Theorem
4.1]. We further add a suitable term so that φ violates the boundary condition
(1.2).

The classical argument is applicable if there is some ζ such that ∇φ �= 0
at the maximum point Ẑ = Ẑζ since the singularity does not affect. A difficulty
arises if it is not the case. Then it turns out that, we are able to reduce the
number of the variables of the test function by using the relation φxn

= 0. In
this way, we are led to define a reduced test function ρ which no longer depends
on xn, yn and ζ. It also turns out that a maximum point of the associated
function Θ(x, t, y, s) = u(x, t)−v(y, s)−ρ(x, t, y, s) is unchanged from Ẑ0. This
fact is guaranteed by using the constancy lemma (Lemma 2.3). Accordingly,
we have ∇ρ = 0 and ∇2ρ = O at Ẑ0, which concludes the theorem. This
approach is sometimes called a flattening argument [28,32]. Unfortunately, it
seems to be non-trivial to extend this approach for more general boundary
conditions rather than the linear condition (1.2) since the derivatives of φ
are not well controlled. Also, it would not be straightforward to apply this
method to a domain with non-flat boundary. The naive idea is to employ
the distance function to the boundary as in [5,6] with perturbation along the
normal direction, but by this change of variables it becomes difficult to control
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derivatives, so at least the direct application of this idea is difficult to carry
out.

Existence results of viscosity solutions are proven in Sect. 4 by employing
Perron’s method for viscosity solutions [37]. A crucial step is to construct
barrier functions which are a viscosity sub- and supersolution satisfying the
initial data. We first construct such barriers for a general uniformly continuous
initial data, which gives a viscosity solution of (DB). We further construct
refined barriers for an initial data being constant at infinity so that the barriers
are also constant at infinity. A unique existence result of viscosity solutions of
(DB) is thus established for such an initial data. Our unique existence result
yields unique global-in-time existence of a generalized solution (level-set flow)
of interface evolution equations (1.4) with (1.10).

We also study Lipschitz regularity of the unique solution u in Sect. 5.
In the proof of Theorem 5.3, on one hand, we apply the comparison principle
to u with its shift both in space and time variables to get Lipschitz estimates
with respect to x′ and t. On the other hand, for the estimate with respect
to xn-variable, we employ the method of doubling variables like the proof of
the comparison principle. We again study a function of the form (1.14) with
u instead of v. Such a method has been used in the literature; see, e.g., [5,
Theorem II.3]. These Lipschitz estimates are derived for initial data u0 in
C1+1-class, which is the same regularity assumption as in [5, Theorem II.3].
We further discuss in Sect. 5.2 a sufficient condition which guarantees that the
Lipschitz constant is independent of β.

In Sect. 6 relation to other types of boundary conditions is investigated.
We study the asymptotic behavior of the unique solution u = uβ of (DB) as
β → ∞ and β → 0. At least formally, these limits are expected to solve

−uxn
(x, t) = 0 on ∂Ω × (0, T ) and ut(x, t) = 0 on ∂Ω × (0, T ),

respectively. In other words, new boundary conditions are of the Neumann
type and the “Dirichlet” type. This formal observation can be justified by
stability results for the half-relaxed limits of viscosity solutions, provided that
the comparison principle for the limit problem holds. For the Neumann case,
the convergence is established in Sect. 6.1 since the comparison principle is
a classical result [45], while it fails in general for the Dirichlet type. For this
reason, in Sects. 6.2 and 6.3 we give some sufficient conditions that imply the
convergence of uβ to the solution of the limit problem of the Dirichlet type.

By a change of variables, it is possible to treat a more general boundary
condition of the form

ut(x, t) − 〈γ,∇x′u(x, t)〉 − βuxn
(x, t) = 0 on ∂Ω × (0, T ) (1.15)

with a vector γ ∈ Rn−1. In fact, u(x, t) is a viscosity solution of (1.1), (1.15)
and (1.3) if and only if v(x, t) := u(x′−γt, xn, t) is a viscosity solution of (DB).
For this reason, we only study the simpler problem (DB) and give results for
(DB) in this paper.

This paper is organized as follows: Sect. 2 is devoted to preparation. We
give a definition of viscosity solutions, a key lemma and some examples. In
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Sect. 3 we establish a comparison principle for a viscosity sub- and supersolu-
tion of (DB). This implies a uniqueness of solutions while existence of solutions
is discussed in Sect. 4. As an application, we give a typical result for interface
evolution equations with the boundary condition (1.10). Section 5 is concerned
with a Lipschitz regularity of the unique solution. Finally, in Sect. 6 we study
the asymptotic behavior of the solution to (DB) as β → 0 and β → ∞. We
prove a convergence to a solution of the limit problem.

2. Preliminaries

2.1. Definition of viscosity solutions

Let K ⊂ RN be a subset. For a function h : K → R, its upper semicontinuous
envelope h∗ and lower semicontinuous envelope h∗ are defined as

h∗(x) := lim sup
K�y→x

h(y), h∗(x) := lim inf
K�y→x

h(y) (x ∈ K).

We list assumptions on the function F : (Rn\{0}) × Sn → R appearing
in (1.1). Here Sn stands for the space of real n×n symmetric matrices with the
usual ordering. Namely, we write X <= Y if 〈(Y − X)ξ, ξ〉 >= 0 for all ξ ∈ Rn.
(F1) F is continuous in (Rn\{0}) × Sn.
(F2) F is degenerate elliptic, i.e, F (p,X) >= F (p, Y ) for all p ∈ Rn\{0} and

X,Y ∈ Sn such that X <= Y .
(F3) −∞ < F∗(0, O) = F ∗(0, O) < ∞.
Throughout this paper we assume (F1)–(F3). We remark that it follows from
(F2) that F ∗(0,X) >= F ∗(0, Y ) and F∗(0,X) >= F∗(0, Y ) if X <= Y .

To give a definition of viscosity solutions, we introduce a notion of para-
bolic semi-jets P2,±u(x0, t0). Let (x0, t0) ∈ Ω× (0, T ). We define P2,+u(x0, t0)
(resp. P2,−u(x0, t0)) as the set of ((∇φ(x0, t0), φt(x0, t0)),∇2φ(x0, t0)) ∈ Rn ×
R × Sn with φ ∈ C2,1(Ω × (0, T )), C2-class in x and C1-class in t, such that
u−φ attains a local maximum (resp. local minimum) at (x0, t0) over Ω×(0, T ).
By definition we have P2,−u(x0, t0) = −P2,+(−u)(x0, t0). For equivalent defi-
nitions and some basic properties, see [29, Chapter 3.2.1] for instance.

Definition 2.1. (Viscosity solution) Let u : Ω × [0, T ) → R. We say that u is
a viscosity subsolution (resp. a viscosity supersolution) of (1.1) and (1.2) if
u∗ < ∞ (resp. u∗ > −∞) in Ω × (0, T ) and if for all (x0, t0) ∈ Ω × (0, T ) and
((p, τ),X) ∈ P2,+u∗(x0, t0) (resp. ((p, τ),X) ∈ P2,−u∗(x0, t0)), we have

⎧
⎪⎨

⎪⎩

τ + F∗(p,X) <= 0 (resp. τ + F ∗(p,X) >= 0) if xn > 0,

τ + F∗(p,X) <= 0 or τ − βpn <= 0 if xn = 0.

(resp. τ + F ∗(p,X) >= 0 or τ − βpn >= 0)

If u further satisfies u∗(·, 0) <= u0 (resp. u∗(·, 0) >= u0) in Ω, then we say that u
is a viscosity subsolution (resp. a viscosity supersolution) of (DB). A viscosity
solution is a function which is both a viscosity subsolution and a viscosity
supersolution.
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Remark 2.2. Assume that u is a viscosity subsolution of (1.1) and (1.2) and let
(x0, t0) ∈ ∂Ω×(0, T ). If ((p, τ),X) ∈ P2,+u∗(x0, t0) and if the boundary condi-
tion (1.2) is violated, namely τ −βpn > 0, then the inequality τ +F∗(p,X) <= 0
should be fulfilled. This is clear by the definition of subsolutions.

The same thing is true for an element of the extended parabolic semi-jet
P2,+

u∗(x0, t0), which is defined as the set of ((p, τ),X) ∈ Rn × R × Sn such
that

there exist {(xm, tm)}∞
m=1 ⊂ Ω× (0, T ) and {((pm, τm),Xm)}∞

m=1 ⊂
Rn × R × Sn such that ((pm, τm),Xm) ∈ P2,+u∗(xm, tm) and, as
m → ∞, (xm, tm) → (x0, t0), ((pm, τm),Xm) → ((p, τ),X) and
u∗(xm, tm) → u∗(x0, t0).

Indeed, if ((p, τ),X) ∈ P2,+
u∗(x0, t0) and τ − βpn > 0, then τm − β(pm)n > 0

for sufficiently large m. This implies that τm+F∗(pm,Xm) <= 0, and by sending
m → ∞ we obtain τ + F∗(p,X) <= 0. Clearly, a similar assertion holds for a
viscosity supersolution u and the extended parabolic semi-jet P2,−

u∗(x0, t0) =
−P2,+

(−u∗)(x0, t0).

2.2. Constancy lemma

We state a generalized version of the constancy lemma appearing in [33, Sect. 4,
Case 2b] and [27, Lemma 7.5]. The lemma plays an important role in the proof
of a comparison principle when we perturb a test function to avoid singularities
of equations. In Lemma 2.3 below, the variables of φ are expanded so that it
depends on ρ while, in [27,33], φ is a function of only r. The proof is almost
the same as the literature, but we give it for the reader’s convenience.

Lemma 2.3. (Constancy lemma) Let K ⊂ RN be a bounded set and G ⊂ Rd

be a bounded domain with 1 <= d < N . Let h : K → R ∪ {−∞} be a function
such that h �≡ −∞, and let φ = φ(r, ρ) : RN → R, where (r, ρ) ∈ Rd ×RN−d,
be a C2-function with respect to r. For each ζ ∈ G we define

Hζ(r, ρ) := h(r, ρ) − φ(r − ζ, ρ) for (r, ρ) ∈ K.

If for each ζ ∈ G there is a maximizer (rζ , ρζ) ∈ K of Hζ over K such that
∇rφ(rζ − ζ, ρζ) = 0, then h̃(ζ) := Hζ(rζ , ρζ) is constant in G.

Proof. Fix ζ, η ∈ G which satisfy θζ + (1 − θ)η ∈ G for all θ ∈ [0, 1]. By the
definitions of functions h̃, Hη, Hζ and the maximality at (rζ , ρζ), we observe

h̃(η) = Hη(rη, ρη) = h(rη, ρη) − φ(rη − η, ρη)

= {h(rη, ρη) − φ(rη − ζ, ρη)} + φ(rη − ζ, ρη) − φ(rη − η, ρη)

= Hζ(rη, ρη) + φ(rη − ζ, ρη) − φ(rη − η, ρη)

<= h̃(ζ) + φ(rη − ζ, ρη) − φ(rη − η, ρη). (2.1)

We next apply Taylor’s theorem to φ with center (rη − η, ρη). Then, by the
assumption that ∇rφ(rη − η, ρη) = 0, we see that

φ(rη − ζ, ρη)=φ(rη − η, ρη)+
1
2
〈∇2

rφ(rη − {θζ + (1 − θ)η}, ρη)(η − ζ), (η − ζ)〉
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Figure 2. Shrinking arcs

for some θ ∈ [0, 1]. Now, by the boundedness of K and G, there is a compact
set KG in RN which covers {(r − ζ, ρ) | (r, ρ) ∈ K, ζ ∈ G}. Fix such KG and
define C := (maxKG

‖∇2
rφ‖)/2. Here ‖X‖ := supp∈Rn, |p|<=1 |Xp| for X ∈ Sn.

It then follows that

φ(rη − ζ, ρη) <= φ(rη − η, ρη) + C|η − ζ|2,
and so h̃(η) − h̃(ζ) <= C|η − ζ|2 by (2.1). Changing the role of ζ and η yields

|h̃(η) − h̃(ζ)| <= C|η − ζ|2.
This gives ∇h̃ = 0 in G. Since G is connected, we conclude that h̃ is constant
in G. �

2.3. Examples

Example 2.4. We study (DB) for the mean curvature flow equation (1.8). For
simplicity we let n = 2. Let C ∈ R be a constant and define

u(x1, x2, t) = −C + x2
1 +

(

x2 +
1
β

)2

+ 2t.

Then u is a classical solution (and hence a viscosity solution; see Proposition
4.2) of (DB) with u0(x) = −C + x2

1 + (x2 + (1/β))2. In fact, it is known
that the zero level-set of such a function u describes a shrinking circle by the
mean curvature; see [29, Chapter 1.7.1]. One can check that u solves (1.1) by
direct calculations. It is also easy to check that the boundary condition (1.2)
is satisfied since we have ut(x, t) = 2 and ux2(x, t) = 2(x2 + (1/β)).

Assume now that C > 1/β2, so that the zero level-set of u(·, t) in Ω,
denoted by Γt, is not empty for a short time. Then Γt is an arc of a circle
of radius r(t) =

√
C − 2t centered at Q = (0,−1/β), and it connects two

points P±
t = (±√

C − (1/β2) − 2t, 0). See Fig. 2. An extinction time of Γt is
T ∗ = (C − (1/β2))/2. Namely, Γt �= ∅ if and only if t ∈ [0, T ∗].
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Example 2.5. We revisit Example 2.4 and study the signed distance function
d(x, t) to Γt, which is given by

d(x, t) =

{
dist(x,Γt) above Γt,

−dist(x,Γt) else.

We show that d is NOT a viscosity supersolution of

dt(x, t) − Δd(x, t) = 0 in D+, (2.2)

where D+ = {(x, t) ∈ Ω × (0, T ∗) | d(x, t) > 0}. This fact shows that our
dynamic boundary problem is significantly different from a problem posed in
the whole space [16, Theorem 2.2] and the Neumann boundary value problem
[39, Lemma 4].

We use the same notation as in Example 2.4. Let us first calculate the
value of d in Ω × [0, T ∗). We divide this set into the following two parts:

E1 :=
{

(x, t) ∈ Ω × [0, T ∗)
∣
∣
∣
∣ x2 >=

1
β

( |x1|
|P±

t | − 1
)}

,

E2 := (Ω × [0, T ∗))\E1.

(See Fig. 2 again.) Note that intE2 ⊂ D+.
If (x, t) ∈ E1, then the distance from x to Γt is achieved at the per-

pendicular foot on Γt, and so the situation is the same as that in [16]. We
have

d(x, t) = |x − Q| − r(t),

which implies that

dt(x, t) − Δd(x, t)= − r′(t) − 1
|x − Q|=

1
r(t)

− 1
|x − Q| =

1
r(t)

− 1
d(x, t) + r(t)

.

This shows that d is a supersolution of (2.2) in D+ ∩ int E1 in the classical
sense.

We next let (x, t) ∈ E2. Then geometric observation shows that the dis-
tance from x to Γt is achieved at P±

t if ±x1 > 0. Namely,

d(x, t) = |x − P±
t | =

√
(

x1 ∓
√

C − 1
β2

− 2t

)2

+ x2
2 if ± x1 > 0.

By this we find

dt(x, t) − Δd(x, t) =
1

|x − P±
t |

( |x1|
|P±

t | − 1
)

− 1
|x − P±

t |
=

1
|x − P±

t |
( |x1|

|P±
t | − 2

)

.

This implies that dt(x, t) − Δd(x, t) < 0 for any (x, t) ∈ E2 such that |x1| <
2|P±

t |. Therefore d is not a supersolution of (2.2) in the whole of D+.
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Note that the current d is not a C2-function in x on (Ω × (0, T ∗)) ∩ ∂E1

since

Δd(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

1
d(x, t) + r(t)

if (x, t) ∈ int E1,

1
d(x, t)

if (x, t) ∈ int E2.

Though d is not a supersolution of (2.2) even on (∂Ω × (0, T )) ∩ E2,
we see that d satisfies the dynamic boundary condition (1.2). Indeed, for any
(x, t) ∈ E2, we have

dt(x, t) =
1

|x − P±
t |

( |x1|
|P±

t | − 1
)

> 0, dx2(x, t) =
x2

|x − P±
t | ,

which gives dt(x, t) − βdx2(x, t) > 0 if x2 = 0.

3. Comparison principle

We denote by BR(0) the open ball in Rn of radius R > 0 with center at the
origin. Our comparison result is stated as follows:

Theorem 3.1. (Comparison principle) Let u : Ω × [0, T ) → R be a viscosity
subsolution of (DB) which is assumed to be bounded from above. Let v : Ω ×
[0, T ) → R be a viscosity supersolution of (DB) which is assumed to be bounded
from below. Assume that

lim
R→∞

sup{u∗(x, t) − v∗(x, t) | (x, t) ∈ (Ω\BR(0)) × [0, T )} <= 0. (3.1)

If u∗(·, 0) <= v∗(·, 0) in Ω, then u∗ <= v∗ in Ω × (0, T ).

Proof. To simplify notation we write u for u∗ and v for v∗.
1. Doubling the variables. Suppose by contradiction that M := u(x0, t0)−

v(x0, t0) > 0 for some (x0, t0) ∈ Ω × (0, T ). Define an upper semicontinuous
function Φζ : (Ω × [0, T ])2 → R ∪ {−∞} by

Φζ(x, t, y, s) := u(x, t) − v(y, s) − φζ(x, t, y, s)

with

φζ(x, t, y, s) := α(|x′ − y′|4 + |xn − yn − ζ|2 + |xn − yn − ζ + β(t − s)|2)
+

σ

T − t
+

σ

T − s
.

If t = T or s = T , we conventionally set Φζ(x, t, y, s) = −∞. Here constants
α >= 1, σ > 0 and ζ ∈ R are chosen so that

σ <=
M(T − t0)

8
(3.2)

and

|ζ| < κ(α) :=
1
αγ

min{C1, C2} with γ >= 1, C1 :=

√
M

8
, C2 :=

σ

4βT 2
.

(3.3)
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Such choices guarantee that

Φζ(x0, t0, x0, t0) >=
M

2
. (3.4)

Indeed, by the definition of Φζ , we have

Φζ(x0, t0, x0, t0) = M − α · 2ζ2 − 2σ

T − t0
.

Applying (3.2) and the inequality ζ2 < C2
1/α2γ coming from (3.3), we see that

Φζ(x0, t0, x0, t0) >= M − α · 2 · M

8α2γ
− 2

T − t0
· M(T − t0)

8

= M − M

4α2γ−1
− M

4
.

Since α2γ−1 >= 1, this yields (3.4).
Let (x̂ζ , t̂ζ , ŷζ , ŝζ) be a maximum point of Φζ over (Ω × [0, T ])2. This

maximum is attained in a compact set (BR(0) × [0, T ])2 if we choose R > 0
such that u−v <= M/4 in (Ω\BR(0))×[0, T ). Existence of such R is guaranteed
by (3.1). Note that by (3.4) we have

Φζ(x̂ζ , t̂ζ , ŷζ , ŝζ) >= Φζ(x0, t0, x0, t0) >=
M

2
. (3.5)

Also, notice that (x̂ζ , t̂ζ) is a maximizer of

(x, t) �→ Φζ(x, t, ŷζ , ŝζ) = u(x, t) − v(ŷζ , ŝζ) − φζ(x, t, ŷζ , ŝζ), (3.6)

while (ŷζ , ŝζ) is a minimizer of

(y, s) �→ −Φζ(x̂ζ , t̂ζ , y, s) = v(y, s) − u(x̂ζ , t̂ζ) − (−φζ(x̂ζ , t̂ζ , y, s)). (3.7)

For later use we set Ẑζ := (x̂ζ , t̂ζ , ŷζ , ŝζ), and we compute the derivatives
of φζ :

∇x′φζ(x, t, y, s) = −∇y′φζ(x, t, y, s) = 4α|x′ − y′|2(x′ − y′),

φζ
xn

(x, t, y, s) = −φζ
yn

(x, t, y, s)

= 2α{(xn − yn − ζ) + (xn − yn − ζ + β(t − s))},

φζ
t (x, t, y, s) = 2αβ(xn − yn − ζ + β(t − s)) +

σ

(T − t)2
,

φζ
s(x, t, y, s) = −2αβ(xn − yn − ζ + β(t − s)) +

σ

(T − s)2
.

In particular,

φζ
t (x, t, y, s) + φζ

s(x, t, y, s) =
σ

(T − t)2
+

σ

(T − s)2
>=

σ

T 2
+

σ

T 2
=

2σ

T 2
. (3.8)

2. Estimates for the maximum points Ẑζ . Set N := supΩ×[0,T ) u

+ supΩ×[0,T )(−v). Then, by (3.5), we have 0 <= Φζ(Ẑζ) <= N − φζ(Ẑζ) and
this implies that

α|x̂′ζ − ŷ′ζ |4 <= N, α|x̂ζ
n − ŷζ

n − ζ|2 <= N, α|x̂ζ
n − ŷζ

n − ζ + β(t̂ζ − ŝζ)|2 <= N,

(3.9)
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where we write x̂ζ = (x̂′ζ , x̂ζ
n) and ŷζ = (ŷ′ζ , ŷζ

n). Using an elemental inequality
(a − b)2 <= 2(a2 + b2) for a, b ∈ R, we further observe

αβ2(t̂ζ − ŝζ)2 = α{(x̂ζ
n − ŷζ

n − ζ + β(t̂ζ − ŝζ)) − (x̂ζ
n − ŷζ

n − ζ)}2

<= 2α{(x̂ζ
n − ŷζ

n − ζ + β(t̂ζ − ŝζ))2 + (x̂ζ
n − ŷζ

n − ζ)2} <= 4N.
(3.10)

We next show that t̂ζ and ŝζ are uniformly away from T . In fact, since
(u − v)(Ẑζ) <= N and φζ(Ẑζ) >= σ/(T − t̂ζ), (3.5) implies

M

2
<= N − σ

T − t̂ζ
.

Arranging this inequality shows

t̂ζ <= T − σ

N − (M/2)
=: T−.

In the same manner we obtain ŝζ <= T−.
It also turns out that neither t̂ζ nor ŝζ lies on the initial time. Namely,

we prove that

∃α0 > 0, ∀α >= α0, ∀|ζ| < κ(α), t̂ζ > 0 and ŝζ > 0. (3.11)

Suppose the contrary; then there would exist a sequence {αj}∞
j=1 ⊂ (0,∞)

such that αj → ∞ as j → ∞ and

∃|ζj | < κ(αj), t̂ζj = 0 or ŝζj = 0. (3.12)

Since x̂ζj , ŷζj ∈ BR(0) and t̂ζj , ŝζj ∈ [0, T−], we may assume that the sequence
{(x̂ζj , t̂ζj , ŷζj , ŝζj )}∞

j=1 converges to some (x̄, t̄, ȳ, s̄) as j → ∞ with x̄, ȳ ∈
BR(0) and t̄, s̄ ∈ [0, T−]. Taking the limit along {αj}∞

j=1 and {ζj}∞
j=1 in (3.9),

we see that the first and the second inequality there imply x̄′ = ȳ′ and x̄n = ȳn

respectively. Here we have used the fact that ζj → 0 as j → ∞, which comes
from (3.3). We thus have x̄ = ȳ. Similarly, (3.10) shows t̄ = s̄, and from this it
follows that t̄ = s̄ = 0 because of (3.12).

Now, in view of (3.5) we have

M

2
<= Φζj (x̂ζj , t̂ζj , ŷζj , ŝζj ) <= u(x̂ζj , t̂ζj ) − v(ŷζj , ŝζj ).

By the upper semicontinuity of u and the lower semicontinuity of v, sending
j → ∞ implies M/2 <= u(x̄, t̄) − v(x̄, t̄). Since t̄ = 0, this contradicts the initial
condition, and hence (3.11) follows. Hereafter we fix α such that α >= α0. (We
do not take the limit of α in the following argument.)

3. Violation of the boundary condition. We show that, if the maximum
point lies on the boundary, then the equation (1.1) should be satisfied by φζ .
First, we compute
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φζ
t (x, t, y, s) − βφζ

xn
(x, t, y, s) =

σ

(T − t)2
− 2αβ(xn − yn − ζ)

>=
σ

T 2
− 2αβ(xn − yn − ζ),

−φζ
s(x, t, y, s) − β(−φζ

yn
(x, t, y, s)) = − σ

(T − s)2
− 2αβ(xn − yn − ζ)

<= − σ

T 2
− 2αβ(xn − yn − ζ).

Let us study the maximum point (x̂ζ , t̂ζ) of the map (3.6). Suppose that x̂ζ
n =

0. Then

φζ
t (Ẑ

ζ) − βφζ
xn

(Ẑζ) >=
σ

T 2
+ 2αβ(ŷζ

n + ζ).

Noting that ŷζ
n + ζ >= 0 − κ(α) >= −C2/αγ and that αγ−1 >= 1, we estimate

φζ
t (Ẑ

ζ) − βφζ
xn

(Ẑζ) >=
σ

T 2
− 2α1−γβC2 >=

σ

T 2
− 2β · σ

4βT 2

=
σ

T 2
− σ

2T 2
=

σ

2T 2
> 0,

which implies that the boundary condition (1.2) is violated. A similar conclu-
sion is obtained for the minimum point (ŷζ , ŝζ) of the map (3.7). Indeed, if
ŷζ

n = 0, we have

−φζ
s(Ẑ

ζ) − β(−φζ
yn

(Ẑζ)) <= − σ

T 2
− 2αβ(x̂ζ

n − ζ).

Applying x̂ζ
n − ζ >= 0−κ(α) >= −C2/αγ to the above inequality yields violation

of the boundary condition.

4. The case ∇xφζ(Ẑζ) �= 0 for some |ζ| < κ(α). In this case the argument
is classical. Making use of Crandall–Ishii lemma [10, Theorem 3.2, Theorem
8.3], we see that there exist Xζ , Y ζ ∈ Sn such that

((∇xφζ(Ẑζ), φζ
t (Ẑ

ζ)),Xζ) ∈ P2,+
u(x̂ζ , t̂ζ), (3.13)

((−∇yφζ(Ẑζ),−φζ
s(Ẑ

ζ)),−Y ζ) ∈ P2,−
v(ŷζ , ŝζ), (3.14)

(
Xζ O
O Y ζ

)

<= A + A2 (3.15)

with

A = ∇2
(x,y)φ

ζ(Ẑζ) =
(

B −B
−B B

)

, B = ∇2
xφζ(Ẑζ).

Since A is of the above form, operating (ξ, ξ) ∈ Rn ×Rn to (3.15) implies that
Xζ + Y ζ <= O. Set pζ := ∇xφζ(Ẑζ) = −∇yφζ(Ẑζ) �= 0. By the fact that the
boundary condition (1.2) breaks for φζ and Remark 2.2, we derive from (3.13)
and (3.14)

φζ
t (Ẑ

ζ) + F (pζ ,Xζ) <= 0, −φζ
s(Ẑ

ζ) + F (pζ ,−Y ζ) >= 0.
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By (F2), the ellipticity of F , and (3.8), subtraction of these inequalities implies

0 >= φζ
t (Ẑ

ζ) + φζ
s(Ẑ

ζ) + F (pζ ,Xζ) − F (pζ ,−Y ζ) >=
2σ

T 2
+ 0 > 0.

This is a contradiction.

5. The case ∇xφζ(Ẑζ) = 0 for all |ζ| < κ(α). The constancy lemma
(Lemma 2.3) is able to be applied in this case. We apply the lemma for

N = 2n + 2, d = 1, K = ((Ω ∩ BR(0)) × [0, T ])2, G = (−κ(α), κ(α)),

r = xn, ρ = (x′, t, y, s), h(r, ρ) = u(x, t) − v(y, s), φ(r, ρ) = φζ(x, t, y, s)

to see that
Φ0(Ẑ0) = Φζ(Ẑζ) for all |ζ| < κ(α). (3.16)

Also, by the fact ∇xφζ(Ẑζ) = 0 and the derivatives of φζ computed in Step 1,
we have for all |ζ| < κ(α)

x̂′ζ = ŷ′ζ (3.17)
and

(x̂ζ
n − ŷζ

n − ζ) + (x̂ζ
n − ŷζ

n − ζ + β(t̂ζ − ŝζ)) = 0.

The latter one is equivalent to

x̂ζ
n − ŷζ

n − ζ = −β

2
(t̂ζ − ŝζ), (3.18)

and in particular

x̂0
n − ŷ0

n = −β

2
(t̂0 − ŝ0). (3.19)

We now define a compact set U ⊂ (Ω × [0, T ])2 by

U :=
{

(x, t, y, s) ∈ ((Ω ∩ BR(0)) × [0, T ])2
∣
∣
∣
∣

∣
∣
∣
∣xn − yn +

β

2
(t − s)

∣
∣
∣
∣
<=

κ(α)
2

}

and an upper semicontinuous function Θ : (Ω × [0, T ])2 → R ∪ {−∞} by

Θ(x, t, y, s) := u(x, t) − v(y, s) − ρ(x, t, y, s)

with

ρ(x, t, y, s) := α

(

|x′ − y′|4 +
β2

2
(t − s)2

)

+
σ

T − t
+

σ

T − s
.

For these we assert that
max

U
Θ = Θ(Ẑ0). (3.20)

Since x̂0, ŷ0 ∈ BR(0), t̂0, ŝ0 ∈ (0, T ) and x̂0
n−ŷ0

n+β(t̂0−ŝ0)/2 = 0 by (3.19), we
see that Ẑ0 belongs to the interior of U . Thus maxU Θ >= Θ(Ẑ0). To prove the
opposite inequality, let us fix (x, t, y, s) ∈ U . We set ζ̃ := xn − yn + β(t − s)/2;
then |ζ̃| <= κ(α)/2 and an easy computation shows that

φζ̃(x, t, y, s) = α

(

|x′ − y′|4 +
β2

2
(t − s)2

)

+
σ

T − t
+

σ

T − s
= ρ(x, t, y, s).

(3.21)
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Therefore

Θ(x, t, y, s) = u(x, t) − v(y, s) − φζ̃(x, t, y, s) = Φζ̃(x, t, y, s) <= Φζ̃(Ẑ ζ̃).

We now apply (3.16) to obtain

Θ(x, t, y, s) <= Φ0(Ẑ0).

At Ẑ0 the number ζ̃ defined above is 0 by virtue of (3.19). This and (3.21)
imply that φ0(Ẑ0) = ρ(Ẑ0), and so Φ0(Ẑ0) = Θ(Ẑ0). Consequently,

Θ(x, t, y, s) <= Θ(Ẑ0).

(3.20) is proved.
Now we list the derivatives of the test function ρ, which are

∇x′ρ(x, t, y, s) = −∇y′ρ(x, t, y, s) = 4α|x′ − y′|2(x′ − y′),

ρxn
(x, t, y, s) = ρyn

(x, t, y, s) = 0,

ρt(x, t, y, s) = αβ2(t − s) +
σ

(T − t)2
,

ρs(x, t, y, s) = −αβ2(t − s) +
σ

(T − s)2
,

∇2
x′ρ(x, t, y, s) = 4α(2(x′ − y′) ⊗ (x′ − y′) + |x′ − y′|2I),

ρxnxi
(x, t, y, s) = 0.

Similarly to Step 3, the boundary condition is not achieved by the test function
ρ at the maximum point. In fact, if x̂0

n = 0, by using (3.19) we observe

ρt(Ẑ0) − βρxn
(Ẑ0) =

{

αβ2(t̂0 − ŝ0) +
σ

(T − t̂0)2

}

− 0

= 2αβŷ0
n +

σ

(T − t̂0)2
>=

σ

T 2
> 0.

In the same manner, it follows that

−ρs(Ẑ0) − β(−ρyn
(Ẑ0)) <= − σ

T 2
< 0.

By (3.17) the spatial derivatives of ρ at Ẑ0 are now

∇xρ(Ẑ0) = ∇yρ(Ẑ0) = 0, ∇2
xρ(Ẑ0) = ∇2

yρ(Ẑ0) = O.

Therefore we have the viscosity inequalities

ρt(Ẑ0) + F∗(0, O) <= 0, −ρs(Ẑ0) + F ∗(0, O) >= 0.

(Here we do not need to apply Crandall–Ishii lemma.) Combining these and
using (F3), we get

0 >= ρt(Ẑ0) + ρs(Ẑ0) =
σ

(T − t̂0)2
+

σ

(T − ŝ0)2
>=

σ

T 2
+

σ

T 2
> 0,

which is a contradiction. �
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Remark 3.2. In the proof of Theorem 3.1, the positivity of β is needed to
guarantee that t̂ζ and ŝζ converge to the same value, which is used to prove
(3.11). When β = 0, this may not hold since the left-hand side of (3.10) is 0.
In fact, the comparison principle fails for semicontinuous viscosity solutions
of (DB) with β = 0 even if the equation is non-singular and first order [2,
Example A.5].

In contrast, our existence results (Theorems 4.5 and 4.11) presented in
the next section hold even if β = 0. See Remark 4.6.

Remark 3.3. For a ∈ R we define

K+
a (Ω × [0, T ))

:=
{

u : Ω × [0, T ) → R
∣
∣
∣
∣

u is bounded from below;
u >= a in (Ω\BR(0)) × [0, T ) for some R > 0

}

,

K−
a (Ω × [0, T ))

:=
{

u : Ω × [0, T ) → R
∣
∣
∣
∣

u is bounded from above;
u <= a in (Ω\BR(0)) × [0, T ) for some R > 0

}

.

The comparison principle (Theorem 3.1) is then applicable to a subsolution
u ∈ K−

a (Ω × [0, T )) and a supersolution v ∈ K+
a (Ω × [0, T )) since (3.1) is

satisfied.

We now state a uniqueness result. Define

Ka(Ω × [0, T ))

:= K−
a (Ω × [0, T )) ∩ K+

a (Ω × [0, T ))

=
{

u : Ω × [0, T ) → R
∣
∣
∣
∣

u is bounded;
u = a in (Ω\BR(0)) × [0, T ) for some R > 0

}

and

Ca(Ω) := {u0 ∈ C(Ω) | u0 ≡ a in Ω\BR(0) for some R > 0}.

Theorem 3.4. (Uniqueness) Assume u0 ∈ Ca(Ω). If u, v ∈ Ka(Ω × [0, T )) are
viscosity solutions of (DB), then u = v and they are continuous in Ω × [0, T ).

Proof. Since u is a subsolution and v is a supersolution, Theorem 3.1 and
Remark 3.3 imply that u∗ <= v∗. Similarly, we have v∗ <= u∗. Combining these
inequalities, we obtain u∗ <= v∗ <= v∗ <= u∗ <= u∗ in Ω × [0, T ). Thus all of the
inequalities should be equalities, which gives the results. �
Remark 3.5. The same choice of the test function Φζ works for a domain Ω
of layer type: Ω = {x = (x′, xn) ∈ Rn−1 × R | 0 < xn < L} with L > 0. The
comparison principle is proven in the same argument.

4. Existence of solutions

4.1. Stability and consistency

We first prepare stability and consistency results for viscosity solutions.
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Proposition 4.1. (Stability) Let S be a family of viscosity subsolutions (resp.
viscosity supersolutions) of (1.1) and (1.2). Set u(x, t) := sup{w(x, t) | w ∈
S} (resp. u(x, t) := inf{w(x, t) | w ∈ S}) and assume that u∗ < ∞ (resp.
u∗ > −∞) in Ω × (0, T ). Then u is a viscosity subsolution (resp. a viscosity
supersolution) of (1.1) and (1.2).

For the proof see, e.g., [10, Lemma 4.2] and [29, Lemma 2.4.1].

Proposition 4.2. (Consistency) Assume that u ∈ C2,1(Ω× (0, T )) is a classical
subsolution (resp. a classical supersolution) of (1.1) and (1.2), i.e.,

⎧
⎪⎨

⎪⎩

ut(x, t) + F∗(∇u(x, t),∇2u(x, t)) <= 0 in Ω × (0, T ),
(resp. ut(x, t) + F ∗(∇u(x, t),∇2u(x, t)) >= 0)
ut(x, t) − βuxn

(x, t) <= 0 (resp. >= 0) on ∂Ω × (0, T ).

Then u is a viscosity subsolution (resp. a viscosity supersolution) of (1.1) and
(1.2).

Proof. Let ((p, τ),X) ∈ P2,+u(x0, t0) and take φ ∈ C2,1(Ω × (0, T )) such
that u − φ attains a maximum at (x0, t0) and ((p, τ),X) = ((∇φ, φt),∇2φ)
at (x0, t0). If x0n > 0, it follows from a maximum principle for smooth func-
tions that (∇u, ut) = (∇φ, φt) and ∇2u <= ∇2φ at (x0, t0). This together with
degenerate ellipticity of F∗ shows that

τ + F∗(p,X) <= ut(x0, t0) + F∗(∇u(x0, t0),∇2u(x0, t0)) <= 0.

If x0n = 0, we have ut = φt and uxn
<= φxn

at (x0, t0). Therefore τ − βpn <=
ut(x0, t0) − βuxn

(x0, t0) <= 0. �

4.2. Uniformly continuous initial data

We prove that there is a viscosity solution of (DB) when the initial data u0 is
uniformly continuous in Ω, i.e, u0 ∈ UC (Ω). The solution will be constructed
by Perron’s method [10, Sect. 4], [29, Chapter 2.4], which was originally es-
tablished in [37]. A unique existence result will be established in the next
subsection for initial data being constant at infinity when F is a geometric
operator.

In what follows we assume a local boundedness of F :

(F4) μ(C1, C2) := sup{|F (p,X)| | 0 < |p| <= C1, ‖X‖ <= C2} < ∞ for all
C1, C2 > 0.

Note that (F4) implies that |F∗(p,X)|, |F ∗(p,X)| <= μ(C1, C2) if |p| <= C1 and
‖X‖ <= C2.

Let u0 ∈ UC (Ω). Let ω0 : [0,∞) → [0,∞) be a modulus of continuity of
u0, which is defined as

ω0(r) := sup{|u0(x) − u0(y)| | x, y ∈ Ω, |x − y| <= r}. (4.1)

Since u0 is uniformly continuous, the modulus ω0 has at most linear growth
and satisfies 0 = ω0(0) = limr→0 ω0(r).
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We now take an increasing function f : [0,∞) → [0,∞) such that f(0) =
0 and f(r) >= k1r − k2 (r >= 0) for some k1, k2 > 0. By the properties of ω0, we
then see that for every ε > 0 there is a constant Cε > 0 such that

ω0(r) <= ε + Cεf(r) for all r >= 0. (4.2)

For later use, we further require f to satisfy f ∈ C2([0,∞)), f ′(0) = f ′′(0) = 0,
f ′(r) > 0 for r > 0, ‖f ′/r‖∞ = supr∈(0,∞) |f ′(r)/r| < ∞, ‖f ′‖∞ < ∞ and
‖f ′′‖∞ < ∞. We denote by F the set of f : [0,∞) → [0,∞) satisfying all
the conditions above. Examples of f ∈ F include f(r) = (r4 + 1)1/4 − 1 and
f(r) = r − arctan r.

For a fixed y ∈ Ω and ε > 0, let us define

V −
y,ε(x, t) := u0(y) − ε − Cεf(|x − y|) − Mεt, (4.3)

V +
y,ε(x, t) := u0(y) + ε + Cεf(|x − y|) + Mεt, (4.4)

where Mε >= 0 is a constant given by

Mε := μ(Cε‖f ′‖∞, Cε(‖f ′′‖∞ + ‖f ′/r‖∞)). (4.5)

Since f is now supposed to satisfy f ∈ C2([0,∞)) and f ′(0) = f ′′(0) = 0, it
follows that V ±

y,ε ∈ C2,1(Ω × [0, T )). In particular, we have

∇V ±
y,ε(y, t) = 0, ∇2V ±

y,ε(y, t) = O. (4.6)

Also, the definition of Mε, (4.5), gives

− Mε <= F∗(0, O) <= F ∗(0, O) <= Mε. (4.7)

We shall prove that V ±
y,ε are a classical sub-/supersolution of (DB).

Lemma 4.3. Assume u0 ∈ UC (Ω). Assume (F4). Then the functions V −
y,ε and

V +
y,ε given in (4.3) and (4.4) are, respectively, a classical subsolution and a

classical supersolution of (DB).

Proof. For (x, t) ∈ Ω × (0, T ), we see by (4.2) and (4.1) that

V −
y,ε(x, t) <= u0(y) − ω0(|x − y|) − Mεt <= u0(x) − Mεt. (4.8)

In particular, V −
y,ε(x, 0) <= u0(x), and so the condition at the initial time is

fulfilled.
Let us compute the derivatives of V −

y,ε at (x, t) ∈ Ω × (0, T ). Clearly,
∂tV

−
y,ε(x, t) = −Mε. When x = y, it follows from (4.6) and (4.7) that

∂tV
−
y,ε(y, t) + F∗(∇V −

y,ε(y, t),∇2V −
y,ε(y, t)) = −Mε + F∗(0, O) <= 0.

Next, assume that z := x − y �= 0. Then

∇V −
y,ε(x, t) = −Cεf

′(|z|) z

|z| �= 0,

∇2V −
y,ε(x, t) = −Cε

{

f ′′(|z|)z ⊗ z

|z|2 +
f ′(|z|)

|z|
(

I − z ⊗ z

|z|2
)}

.

It is well known that ‖z̄ ⊗ z̄‖ <= 1 and ‖I − z̄ ⊗ z̄‖ <= 1 for z̄ := z/|z|, and thus
we see

|∇V −
y,ε(x, t)| <= Cε‖f ′‖∞, ‖∇2V −

y,ε(x, t)‖ <= Cε(‖f ′′‖∞ + ‖f ′/r‖∞).
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This and (4.5) yield

∂tV
−
y,ε(x, t) + F (∇V −

y,ε(x, t),∇2V −
y,ε(x, t))

= −Mε + F (∇V −
y,ε(x, t),∇2V −

y,ε(x, t)) <= 0,

which together with the case where x = y implies that V −
y,ε is a subsolution of

the equation (1.1).
It remains to check the boundary condition (1.2). When xn = 0, we

observe

∂xn
V −

y,ε(x, t) = −Cεf
′(|x − y|) −yn

|x − y| >= 0

if x �= y; otherwise ∂xn
V −

y,ε(x, t) = 0. Therefore

∂tV
−
y,ε(x, t) − β∂xn

V −
y,ε(x, t) = −Mε − β∂xn

V −
y,ε(x, t) <= 0.

The proof for V −
y,ε is now complete, and that for V +

y,ε is parallel. �

Making use of V ±
y,ε, we next create a viscosity sub- and supersolution

satisfying the initial condition. Define

v−(x, t) := sup{V −
y,ε(x, t) | y ∈ Ω, ε > 0}, (4.9)

v+(x, t) := inf{V +
y,ε(x, t) | y ∈ Ω, ε > 0}. (4.10)

Since (4.8) implies

V −
y,ε(x, t) <= u0(x) for all (x, t) ∈ Ω × (0, T ) (4.11)

for every y ∈ Ω and ε > 0, it follows that v− is a real-valued function. Similarly,
v+ is real-valued too. We further prepare a function α : [0,∞) → [0,∞) defined
as

α(t) := inf
ε>0

(ε + Mεt). (4.12)

By definition we see that α is non-decreasing and satisfies 0 = α(0) =
limt→∞ α(t).

Proposition 4.4. Assume u0 ∈ UC (Ω). Assume (F4). Then the functions v−

and v+ given in (4.9) and (4.10) are, respectively, a viscosity subsolution and
a viscosity supersolution of (DB). Moreover they satisfy

u0(x) − α(t) <= v−(x, t) <= u0(x) for all (x, t) ∈ Ω × [0, T ), (4.13)

u0(x) <= v+(x, t) <= u0(x) + α(t) for all (x, t) ∈ Ω × [0, T ). (4.14)

Proof. Since V −
y,ε is a classical subsolution of (DB) by Lemma 4.3, it follows

from the consistency (Proposition 4.2) that V −
y,ε is a viscosity subsolution of

(DB). Thus the stability result (Proposition 4.1) guarantees that v− is a vis-
cosity subsolution of (DB).

Let us prove (4.13). Fix (x, t) ∈ Ω×[0, T ). The inequality v−(x, t) <= u0(x)
is a direct consequence of (4.11). In order to derive the other inequality, we
observe

v−(x, t) >= V −
x,ε(x, t) = u0(x) − ε − Mεt.
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Taking the supremum with respect to ε > 0 implies that v−(x, t) >= u0(x) −
α(t). The same argument proves (4.14). �

Finally, we establish an existence of viscosity solutions to (DB) by Per-
ron’s method. For this purpose, we set

S0 :=
{

w

∣
∣
∣
∣

w is a viscosity subsolution of (DB)
such that v− <= w <= v+ in Ω × [0, T )

}

,

where v± are given by (4.9) and (4.10). Note that S0 is not empty since
v− ∈ S0.

Theorem 4.5. (Existence) Assume u0 ∈ UC (Ω). Assume (F4). Then u(x, t) :=
sup{w(x, t) | w ∈ S0} is a viscosity solution of (DB). Moreover, it satisfies

u0(x) − α(t) <= u(x, t) <= u0(x) + α(t) for all (x, t) ∈ Ω × [0, T ). (4.15)

Proof. By the definition of u we have v− <= u <= v+ in Ω × [0, T ). This and
the estimates (4.13) and (4.14) give (4.15). In particular, we have u∗(x, 0) =
u∗(x, 0) = u0 in Ω. The initial condition is thus satisfied.

The fact that u is a viscosity subsolution of (DB) is guaranteed by
the stability, Proposition 4.1. If u were not a supersolution, we would have
u(x0, t0) < w(x0, t0) for some (x0, t0) ∈ Ω × (0, T ) and w ∈ S0 by the classical
argument; see [10, Lemma 4.4] and [29, Lemma 2.4.2] for more details. This
contradicts a maximality of u. �

Remark 4.6. Theorem 4.5 is still true if β = 0. If fact, since ∂tV
−
y,ε

<= 0 <= ∂tV
+
y,ε,

we see that V −
y,ε and V +

y,ε are, respectively, a classical subsolution and a classical
supersolution of (1.1) and (1.2) with β = 0. Since Proposition 4.2 (consistency)
also holds for β = 0, the same proof by Perron’s method remains valid. For
the same reason, we obtain Theorem 4.11 in the next subsection even if β = 0.

4.3. Initial data being constant at infinity

We next establish a unique existence result of viscosity solutions of (DB) in
the class Ka(Ω × [0, T )) when u0 ∈ Ca(Ω). Recall that these function spaces
are defined before Theorem 3.4.

For this purpose, we assume in this subsection that F is geometric.
Namely,
(F5) F (λp, λX + σp ⊗ p) = λF (p,X) for all (p,X) ∈ (Rn\{0}) × Sn, λ > 0

and σ ∈ R.
The mean curvature flow operator (1.9) satisfies (F5).

Remark 4.7. Assume that F satisfies (F5).
(1) Since we have F (λp, λX) = λF (p,X) by putting σ = 0 in (F5), sending

λ → 0 gives

F ∗(0, O) >= lim sup
λ→0

F (λp, λX) = lim sup
λ→0

λF (p,X) = 0.

Similarly, we have F∗(0, O) <= 0. Thus it follows from (F3) that

F ∗(0, O) = F∗(0, O) = 0. (4.16)
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(2) It is known that the facts F ∗(0, O) = 0 and F∗(0, O) = 0 are, respectively,
equivalent to

sup{F (p,−I) | 0 < |p| <= 1} < ∞, inf{F (p, I) | 0 < |p| <= 1} > −∞.

See [29, Lemma 1.6.16] for the proofs. For later use, we set

ν := sup{|F (p,±I)| | 0 < |p| <= 1} < ∞. (4.17)

In this subsection, we do not impose the local boundedness (F4) on F ;
instead we use (4.17) to construct barrier functions.

One of important properties of geometric equations is invariance under
changes of dependent variables.

Theorem 4.8. (Invariance) Assume (F5). Let θ : R → R be a nondecreasing
and upper semicontinuous (resp. lower semicontinuous) function. If u is a
viscosity subsolution (resp. supersolution) of (1.1) and (1.2), then so is θ ◦ u∗

(resp. θ ◦ u∗).

For the proof, see [29, Theorem 4.2.1] for instance. In order to construct a
solution in Ka(Ω×[0, T )), we reconstruct barriers (sub-/supersolution) without
assuming (F4) so that they belong to Ka(Ω × [0, T )).

We fix f ∈ F , where F is given at the beginning of the previous subsec-
tion. Similarly to (4.3) and (4.4), we define

Ṽ ±
y,ε(x, t) := u0(y) ± ε ± Cεf(|x − y|) ± M̃εt, (4.18)

where the only difference is coefficients of t. Here M̃ε is defined by

M̃ε = Cεν max{‖f ′‖∞, ‖f ′/r‖∞}.

Lemma 4.9. Assume u0 ∈ Ca(Ω). Assume (F5). Then the functions Ṽ −
y,ε and

Ṽ +
y,ε given in (4.18) are, respectively, a classical subsolution and a classical

supersolution of (DB).

Proof. We show that Ṽ −
y,ε is a classical subsolution of (1.1) at (x, t) ∈ Ω×(0, T ).

The initial condition and the boundary condition can be checked in the same
manner as in the proof Lemma 4.3, and so we omit them. We also omit the
proof for Ṽ +

y,ε since it is parallel.
We may suppose that z := x − y �= 0; otherwise the desired inequality is

derived for the same reason as in the proof of Lemma 4.3. Let us set

p = −z, X = −I, λ =
Cεf

′(|z|)
|z| , σ = −Cε

(
f ′′(|z|)

|z|2 − f ′(|z|)
|z|3

)

,

so that

∇Ṽ −
y,ε(x, t) = λp, ∇2Ṽ −

y,ε(x, t) = λX + σp ⊗ p.

Thus (F5) implies that

J := F (∇Ṽ −
y,ε(x, t),∇2Ṽ −

y,ε(x, t))

= F (λp, λX + σp ⊗ p) = λF (p,X) =
Cεf

′(|z|)
|z| F (−z,−I).
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If |z| <= 1, we see that J <= Cε‖f ′/r‖∞ν <= M̃ε. We next let |z| >= 1. Then
−|z|I <= −I, and so F (−z,−|z|I) >= F (−z,−I) by (F2). We therefore have

J <=
Cεf

′(|z|)
|z| F (−z,−|z|I) = Cεf

′(|z|)F
(

− z

|z| ,−I

)

<= Cε‖f ′‖∞ν <= M̃ε.

The proof is now complete since ∂tṼ
−
y,ε(x, t) + J = −M̃ε + J <= 0. �

For A± ∈ R let us set

U−(x, t) := A− + f(|x|) − Nt, U+(x, t) := A+ − f(|x|) + Nt

with N := ν max{‖f ′‖∞, ‖f ′/r‖∞}. In the same manner as in the proof of
Lemma 4.9, we see that U− and U+ are, respectively, a classical subsolution
and a classical supersolution of (1.1) and (1.2).

Let u0 ∈ Ca(Ω), and let R > 0 be a constant such that u0 ≡ a in Ω\BR(0).
Now, we choose A > 0 large so that −A + f(|x|) <= u0(x) − a <= A − f(|x|) for
all x ∈ BR(0). Setting A± = a ± A, we have U−(x, 0) <= u0(x) <= U+(x, 0) for
all x ∈ BR(0). In order to extend these inequalities to ones in the whole of Ω,
we define

Ũ−(x, t) := min{U−(x, t), a}, Ũ+(x, t) := max{U+(x, t), a}. (4.19)

It then follows that Ũ−(·, 0) <= u0 <= Ũ+(·, 0) in Ω. Moreover, if we set θ−(r) =
min{r, a} and θ+(r) = max{r, a}, then we have Ũ± = θ±◦U±. Thus Theorem
4.8 implies that Ũ− and Ũ+ are, respectively, a viscosity subsolution and a
viscosity supersolution of (1.1) and (1.2).

We furthermore have Ũ± ∈ Ka(Ω × [0, T )). In fact, for |x| >= R0 with
R0 > 0 satisfying f(R0) >= A + NT , we see that U−(x, t) >= a − A + f(R0) −
NT >= a. This shows that Ũ− ∈ Ka(Ω × [0, T )). For the same reason we see
that Ũ+ ∈ Ka(Ω × [0, T )).

Summarizing the above arguments, we obtain

Proposition 4.10. Assume u0 ∈ Ca(Ω). Assume (F5). Then, the functions
Ũ− and Ũ+ defined in (4.19) are, respectively, a viscosity subsolution and a
viscosity supersolution of (DB). Moreover, Ũ± ∈ Ka(Ω × [0, T )).

A unique existence result immediately follows from this proposition. Set

W−(x, t) := max{Ũ−(x, t), v−(x, t)}, W+(x, t) := min{Ũ+(x, t), v+(x, t)},

where v± are the functions in (4.9) and (4.10) with Ṽ ±
y,ε instead of V ±

y,ε. Note
that W− and W+ are, respectively, a subsolution and a supersolution of (DB)
by Proposition 4.1. Let us define

S :=
{

w

∣
∣
∣
∣

w is a viscosity subsolution of (DB)
such that W− <= w <= W+ in Ω × [0, T )

}

.

Theorem 4.11. (Unique existence) Assume u0 ∈ Ca(Ω). Assume (F5). Then
u(x, t) := sup{w(x, t) | w ∈ S} is a unique viscosity solution of (DB) in the
class Ka(Ω× [0, T )). Moreover, u ∈ C(Ω× [0, T )) and it satisfies (4.15), where
in the definition (4.12) of α we replace Mε by M̃ε.
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Proof. We see that u is a viscosity solution of (DB) and satisfies (4.15) for
the same reason as in the proof of Theorem 4.11. Moreover, the fact that
Ũ− <= u <= Ũ+ gives u ∈ Ka(Ω × [0, T )). The uniqueness and continuity of u is
a consequence of Theorem 3.4. �

4.4. Interface evolution equation

We consider a class of interface evolution equation of the form (1.4) with the
dynamic boundary condition (1.10). Set

E := {(p,Qp(X)) | p ∈ Rn, |p| = 1, X ∈ Sn},

where Qp(X) is defined by (1.5). The standard assumption is that f : E → R
is continuous and the equation is parabolic. Namely,
(f1) f is continuous in E;
(f2) f(p,Qp(X)) >= f(p,Qp(Y )) for all p ∈ Rn with |p| = 1 and X,Y ∈ Sn

such that Qp(X) <= Qp(Y ).
They imply that the corresponding Ff given in (1.6) satisfies (F1) and (F2).
To get (F3), it suffices to assume that f grows at most linearly in the second
fundamental form. More specifically,
(f3) There exists some M > 0 such that

∣
∣
∣
∣ρf

(

−p,−Rp

ρ
I

)∣
∣
∣
∣
<= M for all ρ ∈ (0, 1] and p ∈ Rn with |p| = 1.

In fact, Ff satisfies (F3) if and only if f fulfills (f3) [29, Proposition 1.6.18].
By the definition of Ff , (1.6), it always satisfies geometricity (F5).

The growth assumption (f3) can be removed in the whole space problem
by changing the notion of viscosity solutions; see e.g. [29]. Here we do not in-
tend such generalization since we would like to keep interior interface evolution
equations as simple as possible under unusual boundary condition.

Examples of interface evolution equations satisfying all of (f1)–(f3) in-
clude the mean curvature flow equation (1.7), and more generally the mean
curvature flow equation with a driving force term

V = H + c on Γt ∩ Ω (4.20)

with a constant c ∈ R. The associated f for (4.20) is given by

f(p,X) =
1
|p| tr(Qp(X)) + c.

To track an interface evolution, we assume that the initial interface Γ0

and two sets Ω±
0 separated by Γ0 are given as follows:

(A1) (i) Γ0 ⊂ Ω is a bounded closed set;
(ii) Ω±

0 ⊂ Ω are disjoint, relatively open sets in Ω such that Ω+
0 ∪ Ω−

0 =
Ω\Γ0.

Let Γt,Ω±
t ⊂ Ω be subsets for t ∈ [0, T ). We say that {(Γt,Ω+

t )}t∈[0,T )

is a generalized solution of (1.4) and (1.10) with the initial data (Γ0,Ω+
0 ) if

there is a viscosity solution u ∈ C(Ω × [0, T )) of (DB) such that Γt = {x ∈ Ω |
u(x, 0) = 0} and Ω±

t = {x ∈ Ω | ±u(x, 0) > 0} for all t ∈ [0, T ).
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Theorem 4.12. Assume (f1)–(f3). Assume (A1). Then there exists a unique
generalized solution of (1.4) and (1.10) with the initial data (Γ0,Ω+

0 ).

Proof. Fix a > 0 and define

d(x) =

{
dist(x,Γ0) if x ∈ Ω+

0 ,

−dist(x,Γ0) if x �∈ Ω+
0 .

Existence of a generalized solution is shown by solving (DB) with the initial
data u0(x) = max{min{d(x), a}, −a}. Uniqueness is a consequence of the
invariance property (Theorem 4.8). Since the argument is the same as the
classical one, we omit the detail; see [29, Chapter 4.1 and Chapter 4.2]. �

5. Lipschitz continuity of solutions

5.1. Lipschitz estimates depending on β

We prove that the unique solution u of (DB) with a geometric F is Lipschitz
continuous when the initial data u0 is regular enough.

We take an initial data u0 ∈ Ca(Ω)∩C1+1(Ω). Here we denote by C1+1(Ω)
the set of u0 ∈ C1(Ω) whose gradient ∇u0 is Lipschitz continuous in Ω. Note
that u0 itself is also Lipschitz continuous in Ω. We define

L0: the Lipschitz constant of u0, L1: the Lipschitz constant of ∇u0.

We further set L′
0 and L0n as the Lipschitz constant of u0 with respect to x′

and xn, respectively. More explicitly,

L′
0 := sup

{ |u0(x) − u0(y)|
|x − y|

∣
∣
∣
∣ x, y ∈ Ω, x �= y, xn = yn

}

,

L0n := sup
{ |u0(x) − u0(y)|

|x − y|
∣
∣
∣
∣ x, y ∈ Ω, x �= y, x′ = y′

}

.

We first derive some estimates for elements of semi-jets of u0 ∈ C1+1(Ω).
For a given x0 ∈ Ω, let us denote by J2,+u0(x0) (resp. J2,−u0(x0)) the set of
(∇φ(x0),∇2φ(x0)) ∈ Rn × Sn with φ ∈ C2(Ω) such that u − φ attains a local
maximum (resp. local minimum) at x0 over Ω.

Lemma 5.1. Assume that u0 ∈ C1+1(Ω). Let x ∈ Ω and (p,X) ∈ J2,+u0(x)
(resp. (p,X) ∈ J2,−u0(x)). Then

{
p = ∇u0(x) and X >= −L1I (resp. X <= L1I) if x ∈ Ω,

pn >= ∂xn
u0(x) (resp. pn <= ∂xn

u0(x)) if x ∈ ∂Ω.

Proof. We give the proof for (p,X) ∈ J2,+u0(x). The assertions relevant to p,
the first order derivative component, follow in an easy way since u0 belongs to
a C1-class.

Let us fix x ∈ Ω and prove that 〈Xξ, ξ〉 >= −L1 for every ξ ∈ Rn with
|ξ| = 1. Since (p,X) ∈ J2,+u0(x), we have

u0(x + h) <= u0(x) + 〈∇u0(x), h〉 +
1
2
〈Xh, h〉 + o(|h|2) as Rn � h → 0.
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Note that u0(x+h)−u0(x) =
∫ 1

0
〈∇u0(x+θh), h〉 dθ. Then, using this relation,

Cauchy-Schwarz inequality and the Lipschitz continuity of ∇u0, we observe
that

1
2
〈Xh, h〉 + o(|h|2) >=

∫ 1

0

〈∇u0(x + θh) − ∇u0(x), h〉 dθ

>= −
∫ 1

0

|∇u0(x + θh) − ∇u0(x)| · |h| dθ

>= −
∫ 1

0

L1 · θ|h| · |h| dθ = −1
2
L1|h|2.

We now choose h = tξ for t > 0. Then, dividing both the sides by |h|2 = t2

and sending t → 0, we obtain the desired inequality. �

We now define

ν(L0, L1) := sup{|F (p,±L1I)| | 0 < |p| <= L0},

which is a finite value due to the fact (4.17) and (F2). Also, define

Lt := max {βL0n, ν(L0, L1)} .

Using Lemma 5.1, we next construct a sub- and supersolution of (DB) being
linear with respect to the time variable t.

Lemma 5.2. Assume u0 ∈ C1+1(Ω). Assume (F5). We define w±(x, t) :=
u0(x) ± Ltt. Then w− and w+ are, respectively, a viscosity subsolution and a
viscosity supersolution of (DB).

Proof. We prove that w− is a subsolution of (DB). It is clear that w− satisfies
the initial data. To check the other conditions, we let (x, t) ∈ Ω × (0, T ) and
((p, τ),X) ∈ P2,+w−(x, t). By the definition of w−, we then have τ = −Lt.
Moreover, fixing the time variable, we derive (p,X) ∈ J2,+u0(x).

Let x ∈ Ω. Then Lemma 5.1 and the ellipticity of F∗ imply that

τ + F∗(p,X) = −Lt + F∗(∇u0(x),X) <= −Lt + F∗(∇u0(x),−L1I).

By the definition of Lt, the right-hand side is not positive. When x ∈ ∂Ω, the
boundary condition (1.2) is satisfied. In fact, noting that pn >= ∂xn

u0(x) >=
−L0n, we deduce that τ − βpn <= −Lt + βL0n <= 0. The proof for w+ is
similar. �

In Theorem 5.3 below, we show that L′
0 and Lt are, respectively, a Lip-

schitz bound for the solution u(x, t) with respect to x′ and t. Moreover the
constant

Ln := max
{

L0n,
Lt

β

}

= max
{

L0n,
ν(L0, L1)

β

}

turns to be a Lipschitz bound for u with respect to xn. Note that indexes t and
n of L do not mean dependence on the time-variable t and the xn-variable.
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Theorem 5.3. (Lipschitz continuity) Assume u0 ∈ Ca(Ω) ∩ C1+1(Ω). As-
sume (F5). Let u be the unique viscosity solution of (DB). Then, for all
x = (x′, xn) ∈ Ω, y = (y′, yn) ∈ Ω and t, s ∈ (0, T ), the following estimates
hold:

|u(x, t) − u(x, s)| <= Lt|t − s|, (5.1)

|u(x′, xn, t) − u(y′, xn, t)| <= L′
0|x′ − y′|, (5.2)

|u(x′, xn, t) − u(x′, yn, t)| <= Ln|xn − yn|. (5.3)

Proof. (5.1): Let w± be the functions in the statement of Lemma 5.2. Since
w± ∈ K±

a (Ω× [0, T )), the comparison principle, Theorem 3.1 (see also Remark
3.3), implies that w− <= u <= w+ in Ω × (0, T ).

For h ∈ (0, T ) let us define

w̃±(x, t) =

{
w±(x, t) if 0 <= t <= h,

u(x, t − h) ± Lth if h <= t < T.

Then w̃+ is a viscosity supersolution while w̃− is a viscosity subsolution of
(DB). These assertions are obvious except at the time t = h. When t = h,
they are guaranteed by the facts that P2,∓w̃±(x, h) ⊂ P2,∓w±(x, h). In fact,
since w̃− = w− if t <= h and w̃− >= w− if t >= h, where the latter one comes
from w−(x, t − h) <= u(x, t − h), we see the inclusion for P2,+. That for P2,−

follows in a similar way.
Since w̃± ∈ K±

a (Ω × [0, T )), we therefore obtain w̃− <= u <= w̃+ in Ω ×
(0, T ) by comparison. At (x, t + h) this gives

u(x, t) − Lth <= u(x, t + h) <= u(x, t) + Lth.

We have thus proved (5.1).

(5.2): For h ∈ Rn−1 we define v±(x, t) := u(x′ + h, xn, t) ± L′
0|h|. Obvi-

ously, these functions belong to K±
a (Ω × [0, T )). Since the equation (1.1) and

the boundary condition (1.2) is independent of x′, the functions v± are vis-
cosity solutions of (1.1) and (1.2). Also, at the initial time, we have v−(·, 0) <=
u0 <= v+(·, 0) in Ω. This is due to the Lipschitz continuity of u0; that is,
u0(x′ + h, xn) − L′

0|h| <= u0(x′, xn) <= u0(x′ + h, xn) + L′
0|h|.

Hence the comparison principle (Theorem 3.1) implies that v− <= u <= v+

in Ω × (0, T ). By the definitions of v±, this means

u(x′ + h, xn, t) − L′
0|h| <= u(x′, xn, t) <= u(x′ + h, xn, t) + L′

0|h|,
which shows (5.2).

(5.3): 1. Doubling the variables. We argue by contradiction. Suppose that
there are x0, y0 ∈ Ω and t0 ∈ (0, T ) such that x′

0 = y′
0 and M := |u(x0, t0) −

u(y0, t0)| −Ln|x0n − y0n| > 0. Take δ > 0 sufficiently small so that |u(x0, t0)−
u(y0, t0)| − L̃|x0n − y0n| >= M/2 for L̃ := Ln + δ. Define a function Φ : (Ω ×
[0, T ])2 → R ∪ {−∞} by

Φ(x, t, y, s) := u(x, t) − u(y, s) − φ(x, t, y, s)
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with

φ(x, t, y, s) := L̃|xn − yn| + α|x′ − y′|2 + α(t − s)2 +
σ

T − t
. (5.4)

Here α >= 1, σ > 0 are constants such that 0 < σ < M(T − t0)/4, which gives

Φ(x0, t0, y0, t0) >=
M

2
− σ

T − t0
>

M

2
− M

4
=

M

4
.

Let Ẑ = (x̂, t̂, ŷ, ŝ) ∈ (Ω × [0, T ))2 be a maximum point of Φ. Since
u ∈ Ka(Ω×[0, T )), this maximum is attained in a compact set (BR(0)×[0, T ])2

with a suitable R > 0. At this maximum point, we have

Φ(x̂, t̂, ŷ, ŝ) >= Φ(x0, t0, y0, t0) >
M

4
. (5.5)

2. Convergence of maximum points Ẑ. Set N := supΩ×[0,T ) |u|. By (5.5)
and the definition of Φ, we then have 0 < Φ(Ẑ) <= 2N −α|x̂′ − ŷ′|2 −α(t̂− ŝ)2.
This gives

|x̂′ − ŷ′|2 <=
2N

α
, |t̂ − ŝ|2 <=

2N

α
. (5.6)

Now, since x̂, ŷ ∈ BR(0) and t̂, ŝ ∈ [0, T ), we may assume by (5.6) that
(x̂′, x̂n) → (x̄′, x̄n) = x̄ ∈ Ω, (ŷ′, ŷn) → (x̄′, ȳn) = ȳ ∈ Ω and t̂, ŝ → t̄ ∈ [0, T ]
as α → ∞.

We prove that

t̄ �= 0, T, x̄n �= ȳn.

First, (5.5) implies that 0 < 2N − σ/(T − t̂), and rearranging this inequality
shows

t̂ < T − σ

2N
=: T−.

Accordingly, t̄ <= T− < T . Next, by (5.5) again, we see that M/4 <= u(x̂, t̂) −
u(ŷ, ŝ) − L̃|x̂n − ŷn|, and sending α → ∞ yields

M

4
<= u(x̄, t̄) − u(ȳ, t̄) − L̃|x̄n − ȳn|. (5.7)

If x̄n = ȳn, the right-hand side would be 0, and hence x̄n �= ȳn. If t̄ = 0, by the
Lipschitz continuity of u0 and the fact that L̃ > Ln >= L0n, we would have

M

4
<= u0(x̄′, x̄n) − u0(x̄′, ȳn) − L̃|x̄n − ȳn| <= L0n|x̄n − ȳn| − L̃|x̄n − ȳn| <= 0,

a contradiction.
In what follows, we fix α >= 1 sufficiently large so that

t̂, ŝ �= 0, T, x̂n �= ŷn. (5.8)

In particular, the second fact implies that Φ is smooth near Ẑ.
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3. Use of Crandall–Ishii lemma. We now apply the Crandall–Ishii lemma
to Φ at Ẑ = (x̂, t̂, ŷ, ŝ) ∈ (Ω × (0, T ))2. Since Φ is smooth near Ẑ, the lemma
is applicable. Its conclusion guarantees that there exist X,Y ∈ Sn such that

((∇xφ(Ẑ), φt(Ẑ)),X) ∈ P2,+
u(x̂, t̂),

((−∇yφ(Ẑ),−φs(Ẑ)),−Y ) ∈ P2,−
u(ŷ, ŝ),

(
X O
O Y

)

<= A + A2,

where A := ∇2
(x,y)φ(Ẑ). Note that X + Y <= O for the same reason as in Step

4 in the proof of Theorem 3.1 and that

φxn
(Ẑ) = −φyn

(Ẑ) = L̃
x̂n − ŷn

|x̂n − ŷn| =: pn �= 0,

φt(Ẑ) = 2α(t̂ − ŝ) +
σ

(T − t̂)2
, φs(Ẑ) = −2α(t̂ − ŝ).

Since we have already known that u is Lipschitz continuous with respect to t,
(5.1), it follows that

|φt(Ẑ)| <= Lt, |φs(Ẑ)| <= Lt.

This guarantees that the boundary condition (1.2) is violated by φ. To see
this, let x̂n = 0. Then pn = −L̃. Noting that L̃ = Ln + δ >= (Lt/β) + δ, we
have

φt(Ẑ) − βφxn
(Ẑ) >= −Lt + βL̃ >= βδ > 0.

Similarly, if ŷn = 0,

−φs(Ẑ) − β(−φyn
(Ẑ)) <= Lt − βL̃ <= −βδ < 0.

Therefore, whether x̂ ∈ Ω or x̂ ∈ ∂Ω, we have by Remark 2.2

φt(Ẑ) + F (p,X) <= 0, −φs(Ẑ) + F (p,−Y ) >= 0, (5.9)

where p = ∇xφ(Ẑ) �= 0. Subtracting these inequalities and applying the ellip-
ticity of F , we see that

0 >= φt(Ẑ) + φs(Ẑ) + F (p,X) − F (p,−Y ) >=
σ

(T − t̂)2
+ 0 > 0.

This is a contradiction. �

Remark 5.4. In view of the proof, we notice that it suffices to assume that
u0 ∈ Ca(Ω) satisfies L′

0 < ∞ in order to prove (5.2), while C1+1-regularity of
u0 is used to derive (5.1). Also, (5.3) is proved by making use of (5.1).
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5.2. Lipschitz estimates independent of β

The Lipschitz bound with respect to xn given in (5.3) of Theorem 5.3 depends
on β, and this is derived for smooth initial data u0. We next prove that, for
rather restrictive initial data and equations, but for less regular initial data,
the Lipschitz bound is uniform in β. This enables us to obtain the unique
Lipschitz continuous viscosity solution of (DB) with β = 0; see Theorem 6.6.

We will impose the following assumptions. They will be used to construct
barrier functions independent of β; see Step 1 in the proof of Theorem 5.7.
First, the initial data u0 ∈ Ca(Ω) is supposed to be independent of x′ on ∂Ω
and Lipschitz continuous with respect to xn from the boundary. Namely,

(A2) (i) u0(x′, 0) ≡ a for all x′ ∈ Rn−1;
(ii) there exists some L∗

0n > 0 such that

|u0(x′, xn) − u0(x′, 0)| <= L∗
0nxn for all x ∈ Ω.

We next assume that F = F (p,X) satisfies (F6) below. In what follows, we
represent a vector p ∈ Rn and a matrix X ∈ Sn as

p =
(

p′

pn

)

, X =
(

X ′ X ′
n

(X ′
n)t xnn

)

with p′ ∈ Rn−1, pn ∈ R, X ′ ∈ Sn−1, X ′
n ∈ Rn−1 and xnn ∈ R.

(F6) F (p,O) = 0 for all p ∈ Rn\{0} such that p′ = 0.

For example, it is easily seen that the mean curvature flow operator (1.9)
satisfies (F6).

Remark 5.5. If F satisfies (F5) and (F6), then

F (p,X) = 0
for all (p,X) ∈ (Rn\{0}) × Sn

such that p′ = 0, X ′ = O and X ′
n = 0. (5.10)

To see this, let us fix such (p,X). By (F5) we have λF (p,X) = F (λp, λX +
σp ⊗ p) for any λ > 0 and σ ∈ R. We now choose σ = −λxnn/p2

n, so that
λX + σp ⊗ p = O. Then, by (F6), we see that λF (p,X) = F (λp,O) = 0. This
shows that F (p,X) = 0.

Remark 5.6. Another possible condition on F which is more general than (F6)
is

(F6)′ There is a constant μ ∈ R such that F (p,O) = μ for all p ∈ Rn\{0} such
that p′ = 0.

However, it turns out that μ should be 0 under (F5). In fact, (F6)′ gives
F∗(0, O) <= μ <= F ∗(0, O). Since (4.16) holds under (F5), we conclude that
μ = 0.

Theorem 5.7. (Lipschitz continuity) Assume u0 ∈ Ca(Ω) and (A2). Assume
(F5) and (F6). Let u be the unique viscosity solution of (DB). Then, for all
x = (x′, xn) ∈ Ω, y = (x′, yn) ∈ Ω and t ∈ (0, T ), the following estimate holds:

|u(x′, xn, t) − u(x′, yn, t)| <= L∗
0n|xn − yn|. (5.11)
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Proof. 1. Barriers (Lipschitz continuity from the boundary). We prove that

|u(x′, xn, t) − u(x′, 0, t)| <= L∗
0nxn for all (x, t) ∈ Ω × (0, T ). (5.12)

Set w±(x, t) = a ± L∗
0ng(xn) with g(xn) =

√
x2

n + ε for ε > 0. Clearly, w± ∈
K±

a (Ω × [0, T )). We show that w± are classical solutions of (1.1) and (1.2). In
the following, we only study w− since the same argument applies to w+.

Let t > 0. If x ∈ Ω, we see by (5.10) that

w−
t (x, t) + F∗(∇w−(x, t),∇2w−(x, t))

= 0 + F

((
0

−L0g
′(xn)

)

,

(
O 0
0 −L0g

′′(xn)

))

= 0.

If x ∈ ∂Ω, then

w−
t (x, t) − βw−

xn
(x, t) = 0 − β(−L0g

′(0)) = 0.

Thus w− is a classical solution.
When t = 0, the fact g(xn) >= xn and the assumption (A2) on u0 give

w−(x, 0) <= a − L∗
0nxn = u0(x′, 0) − L∗

0nxn <= u0(x′, xn).

In the same manner, we obtain w+(x, 0) >= u0(x′, xn). Therefore, the compar-
ison principle (Theorem 3.1) implies that w− <= u <= w+. Sending ε → 0, we
obtain

a − L∗
0nxn <= u(x, t) <= a + L∗

0nxn for all (x, t) ∈ Ω × (0, T ).

Putting xn = 0 in the above, we find u(x′, 0, t) = a. Finally we plug this into
the above inequalities to conclude (5.12).

2. Proof of (5.11). We carry out the same argument as in the proof of
(5.3) in Theorem 5.3. Here the only difference is that we replace L̃ by L∗

0n in the
definition of φ, (5.4). Then the same discussions as in Step 1 and 2 work without
any changes, and we have the limit x̄ = (x̄′, x̄n) ∈ Ω and ȳ = (x̄′, ȳn) ∈ Ω.
Now we further prove that

x̄n, ȳn �= 0.

Suppose ȳn = 0. Then, applying (5.12) to (5.7) with L∗
0n instead of L̃, we

would have
M

4
<= u(x̄′, x̄n, t̄) − u(x̄′, 0, t̄) − L∗

0nx̄n <= 0.

This is a contradiction, and so ȳn �= 0. Similarly, we obtain x̄n �= 0. Hence we
may assume that

x̂n, ŷn �= 0 (5.13)

in addition to (5.8).
We apply Crandall–Ishii lemma at Ẑ = (x̂, t̂, ŷ, ŝ). Since x̂, ŷ �∈ ∂Ω by

(5.13), the resulting viscosity inequalities are those for (1.1). Namely, we have
(5.9) with p = ∇xφ(Ẑ) �= 0 and X,Y ∈ Sn such that X + Y <= O. As before,
we arrive at a contradiction. �
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6. Asymptotic behavior of solutions with respect to β

6.1. Half-relaxed limits

We study the asymptotic behavior of solutions uβ to (DB) as β → 0 or β → ∞.
For this purpose, we study the upper half-relaxed limits u and the lower half-
relaxed limits u of the solutions uβ to (DB), which are defined as, in the case
where β → 0,

u(x, t) = lim sup
β→0

∗uβ(x, t)

:= lim
δ→0

sup{uβ(y, s) | |x − y| < δ, |t − s| < δ, 0 < β < δ},

u(x, t) = lim inf
β→0

∗uβ(x, t)

:= lim
δ→0

inf{uβ(y, s) | |x − y| < δ, |t − s| < δ, 0 < β < δ}.

When we send β → ∞, we replace “0 < β < δ” by “1/δ < β”.
By stability results for viscosity solutions [10, Lemma 6.1, Remarks 6.2

and 6.3], it is known that u and u are, respectively, a viscosity subsolution and
a viscosity supersolution of the corresponding limit problem with the boundary
condition ut(x, t) = 0 on ∂Ω×(0, T ) as β → 0 and −uxn

(x, t) = 0 on ∂Ω×(0, T )
as β → ∞, provided that −∞ < u < ∞ and −∞ < u < ∞. If we further know
that u = u =: u, then we conclude that uβ converges to u locally uniformly; see
[10, Remark 6.4]. Usually, the fact that u = u is guaranteed by a comparison
principle to the limit problem.

For (DB), the fact that −∞ < u <= u < ∞ follows from (4.15) since the
left- and right-hand sides of (4.15) do not depend on β. We thus have

Proposition 6.1. Assume u0 ∈ Ca(Ω). Assume (F5). Then, for both the case
β → 0 and β → ∞, we have −∞ < u <= u < ∞ in Ω × [0, T ) and u(·, 0) =
u(·, 0) = u0 in Ω. Moreover, u and u are continuous on Ω × {0}.

6.2. The limit as β → ∞
In this case, the limit problem is

(NE)

⎧
⎪⎨

⎪⎩

ut(x, t) + F (∇u(x, t),∇2u(x, t)) = 0 in Ω × (0, T ),
−uxn

(x, t) = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) in Ω.

The comparison principle for this Neumann boundary value problem (NE) is
a classical result [45, Theorem 2.1]. We therefore obtain

Theorem 6.2. (Convergence) Assume u0 ∈ Ca(Ω). Assume (F5). Let uβ and
u be the unique viscosity solutions of (DB) and (NE) respectively. Then uβ

converges to u locally uniformly in Ω × [0, T ) as β → ∞.
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6.3. The limit as β → 0 (I)

Unfortunately, viscosity solutions to the limit problem

(DB)0

⎧
⎪⎨

⎪⎩

ut(x, t) + F (∇u(x, t),∇2u(x, t)) = 0 in Ω × (0, T ),
ut(x, t) = 0 on ∂Ω × (0, T ), (6.1)

u(x, 0) = u0(x) in Ω

are not unique as is shown in [2, Example A.5]. Moreover, in the viscosity
sense, the dynamic boundary condition (6.1) may be different from a Dirichlet
condition

u(x, t) = u0(x) on ∂Ω × (0, T ) (6.2)
obtained by the integration of (6.1); see [12, Sect. 5] and [30, Sect. 5.3].

For this reason, we restrict ourselves to the case where the limits of uβ

satisfy (6.2) in the strong (classical) sense so that the comparison principle is
applicable. Here we say that u satisfies (6.2) in the strong sense if u(x, t) =
u0(x) for all (x, t) ∈ ∂Ω × (0, T ).

We will give a sufficient condition on the initial data which guarantees
the boundary condition in the strong sense. We assume existence of barrier
functions as follows:
(A3) For all x0 ∈ ∂Ω and η > 0, there exist functions φ± ∈ C(Ω) such that

(i) φ− <= u0 <= φ+ in Ω;
(ii) u0(x0) − η <= φ−(x0) and φ+(x0) <= u0(x0) + η;
(iii) φ+ and φ− are, respectively, a viscosity supersolution and a viscosity

subsolution of

F (∇φ,∇2φ) = 0 in Ω;

(iv) there exist some L± > 0 such that

|φ±(x′, xn) − φ±(x′, 0)| <= L±xn for all x ∈ Ω.

Under (A3) it turns out that uβ converges to the unique solution of

(DI)

⎧
⎪⎨

⎪⎩

ut(x, t) + F (∇u(x, t),∇2u(x, t)) = 0 in Ω × (0, T ),
u(x, t) = u0(x) (in the strong sense) on ∂Ω × (0, T ), (6.3)

u(x, 0) = u0(x) in Ω.

By the classical theory (e.g. [10, Theorem 8.2]), the comparison principle is
true for a viscosity sub- and supersolution of (DI).

Proposition 6.3. Assume u0 ∈ Ca(Ω) and (A3). Assume (F5). Let uβ be the
unique viscosity solutions of (DB). Then u and u satisfy (6.3).

Proof. We prove that u satisfies (6.3). The proof for u is omitted since it is
parallel. Fix (x0, t0) ∈ ∂Ω × (0, T ). We also fix η > 0 and take the functions
φ± in (A3). We further fix ε > 0 and define v±(x, t) := ±εt + φ±(x). Then v+

and v− are, respectively, a viscosity supersolution and a viscosity subsolution
of (DB) provided that 0 < β < ε/L±, where L± are the constants in (A3)-
(iv). Indeed, the equation (1.1) is easy to check by (A3)-(iii). If ((p, τ),X) ∈
P2,−v+(x, t) for x ∈ ∂Ω, then we have τ = ε and |pn| <= L+. Therefore
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τ − βpn >= ε − βL+ > 0

by the choice of β. Accordingly, the boundary condition (1.2) is satisfied. The
proof for v− is similar.

Since v−(·, 0) <= u0 <= v+(·, 0) in Ω by (A3)-(i), the comparison prin-
ciple implies that v− <= uβ <= v+ in Ω × (0, T ). Taking lim sup∗

β→0 in these
inequalities and then sending ε → 0, we obtain φ− <= u <= φ+ in Ω × (0, T ). In
particular, using (A3)-(ii), we have

u0(x0) − η <= φ−(x0) <= u(x0, t0) <= φ+(x0) <= u0(x0) + η.

Since η > 0 is arbitrary, this shows that u(x0, t0) = u0(x0). The proof is
complete. �

As a consequence of Proposition 6.3, we obtain

Theorem 6.4. (Convergence) Assume u0 ∈ Ca(Ω) and (A3). Assume (F5). Let
uβ and u be the unique viscosity solutions of (DB) and (DI) respectively. Then
uβ converges to u locally uniformly in Ω × [0, T ) as β → 0.

Proof. Since u and u are, respectively, a viscosity subsolution and a viscosity
supersolution of (1.1) with (1.3) and since they satisfy (6.3) by Proposition 6.3,
the comparison principle for (DI) yields u <= u in Ω × [0, T ). Therefore u = u
in Ω × [0, T ), which implies the locally uniform convergence as required. �

6.4. The limit as β → 0 (II)

We provide another convergence result as β → 0. Although a comparison
principle for (DB)0 is not true in general, as is pointed out in [2, Lemma 3.2],
a Lipschitz continuous sub- and supersolution are comparable. For our problem
(DB)0, it suffices to assume Lipschitz continuity with respect to xn from the
boundary; namely (5.12).

Theorem 6.5. (Comparison principle) Let u : Ω × [0, T ) → R be a viscos-
ity subsolution of (DB)0 which is assumed to be bounded from above. Let
v : Ω × [0, T ) → R be a viscosity supersolution of (DB)0 which is assumed
to be bounded from below. Assume (3.1) and that both u and v satisfy (5.12)
with some L > 0 instead of L∗

0n. If u∗(·, 0) <= v∗(·, 0) in Ω, then u∗ <= v∗ in
Ω × (0, T ).

Proof. For ε > 0 we define uε(x, t) := u(x, t)−εLt and vε(x, t) := v(x, t)+εLt.
Then it is easily seen that uε and vε are, respectively, a viscosity subsolution
and a viscosity supersolution of (DB) with β = ε. Moreover, uε and vε satisfy
(3.1). Since (uε)∗(x, 0) = u∗(x, 0) <= v∗(x, 0) = (vε)∗(x, 0), Theorem 3.1 implies
that (uε)∗ <= (vε)∗. That is, u∗ − εLt <= v∗ + εLt. Finally, sending ε → 0 gives
the desired conclusion. �

Under the assumptions of Theorem 5.7, the solutions uβ of (DB) satisfy
(5.12) with L∗

0n being uniform in β > 0. We therefore have the following
convergence result:
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Theorem 6.6. (Convergence) Assume u0 ∈ Ca(Ω) and (A2). Assume (F5) and
(F6). Let uβ be the unique viscosity solution of (DB). Then uβ converges to
u locally uniformly in Ω × [0, T ) as β → 0, where u is the unique viscosity
solution of (DB)0 satisfying (5.12).

Proof. Since uβ satisfies (5.12) with L∗
0n independent of β > 0, the upper

and lower half-relaxed limits u and u also satisfy (5.12). Theorem 6.5 is thus
applicable to them, and so u <= u in Ω × [0, T ). This gives the result. �
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