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Abstract. We introduce a model describing the dynamics and interactions
of three populations of ships (pirates ships, commercial cargos, and police
watercrafts) in a marine region. We establish well-posedness of the cou-
pled ODE-PDEs system describing the ships dynamics and we discuss a
related optimal control problem.

Mathematics Subject Classification. 35K57, 35L65, 91C99.

Keywords. Reaction-diffusion equations, Well-posedness, Optimal control,
Crime modeling, piracy.

1. Introduction and description of the model

In the last few years several mathematical models describing criminality and
police response have been introduced. For an overview, we refer to the review
paper [12], which distinguishes between models motivated by economic theories
(see, for instance [4]) and social models (see, for instance, [5–7,11,16,17,20,
21]).

In this note we take inspiration from a model introduced in [21] to
describe the criminal behavior in an urban contest. Here we want to describe
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the behavior and interactions of three populations of ships: pirates ships, com-
mercial cargos, and police watercrafts. The ships move in a given bounded
marine region, which is modeled by a set Ω ⊆ R

n, n ≥ 1, that is open, bounded,
connected, and with smooth boundary. We use a macroscopic approach to
describe the dynamics of the pirates and commercial ships and a microscopic
approach for the police watercrafts. In the following, we assume that there are
exactly M police watercrafts. Also, we denote by

ρ : [0,∞) × Ω −→ R, A : [0,∞) × Ω −→ R, �d : [0,∞) −→ ΩM ,

the density of the pirates ships, the density of the cargo ships, and the position
of the M police watercrafts, respectively. In the following paragraphs we sepa-
rately describe the evolution equations for ρ, A and �d. Moreover, we explicitly
point out that the main issue this paper addresses are the open see dynamics.
For this reason we augment our equations with the simplest possible bound-
ary conditions, which allow us to avoid the non trivial challenges arising when
balance laws satisfy non trivial boundary conditions, see for instance [3,9] for
a related discussion. However, from the modeling viewpoint, it could be inter-
esting to consider other boundary conditions, describing the evolution of the
dynamics near to the coasts, see for instance [1].

Dynamics of pirate ships. In [21], the authors model the evolution of the
criminal density by the diffusion equation

∂tρ = Δρ − div (ρ∇ ln(A(t, ·) ∗ K + ε)) − f(x, �d )ρ. (1.1)

In the previous expression and in the following, K and ε are a given smooth
positive kernel and a given positive number, respectively. Here we assume that
the evolution of the density of pirate ships is governed by the equation

∂tρ = Δρ − div
(

ρκ (|∇A(t, ·) ∗ K|) ∇A(t, ·) ∗ K
|∇A(t, ·) ∗ K|

)
− f(x, �d )ρ. (1.2)

In the previous expression, the symbol ∗ denotes the convolution with respect
to the space variable only. The function κ ∈ C∞ (R) is non decreasing and
satisfies

κ(x) =

{
0, if x < ε,

1, if x > 1.
(1.3)

Finally, the function f has the following structure:

f(x, �d(t)) =
M∑
i=1

C(|x − di(t)|), (1.4)

where the function C : R
+ → R is compactly supported, smooth, positive,

constant in a neighborhood of 0 and monotone non increasing on R
+. Note

that we could use a different cut-off Ci for every i = 1, . . . ,M , but to simplify
the notation we have used the same for every i. The rationale underpinning
equation (1.2) is the following:

• Δρ takes in account the stochastic behavior of the dynamics of pirates.
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• As in (1.1), Eq. (1.2) contains both a divergence term and a convolution
kernel K. The kernel K takes into account non-local effects. The diver-
gence term in (1.2) only depends on ∇A, while in (1.1) it also depends
on A. The rationale underpinning (1.1) is that pirates ships, if located
in areas crowded with commercial cargos, are less motivated to move
towards more attractive surroundings. Moreover, the speed towards com-
mercial cargos is not a-priori bounded in (1.1), while it is in (1.2). Note
furthermore that we introduce the cut-off function κ and the positive
threshold ε to avoid the singularities that might be generated by the
absence of commercial ships (i.e., A = 0). From the modeling viewpoint,
the presence of κ can be justified by postulating that, if the commercial
cargos density is extremely low, then it does not affect the dynamics of
pirate ships, which in this case move randomly.

• The term −f(x, �d )ρ models the effect of the anti-piracy police water-
crafts.

We augment (1.2) with homogeneous Neumann boundary conditions, prescrib-
ing that no pirate ships are leaving or entering Ω:

∇ρ · �n = 0 on (0,∞) × ∂Ω. (1.5)

In the previous expression, �n denotes the outward pointing, unit normal
vector to ∂Ω.

Dynamics of cargo ships. We model the evolution of the density of commercial
cargos by using the conservation law

∂tA + div
(
U(A)

(
�r(x) + J (x, ρ(t, ·), �d(t))

))
= 0. (1.6)

In the previous expression, the flux function U has the same properties as in
the LWR traffic model [10,15,18], namely U(A) = Av(A) for some function v
representing the speed and satisfying

v ∈ C2(R), v′ < 0, v(Amax) = 0, (1.7)

where Amax represents the maximal density of commercial cargos. Without
loss of generality, we assume that Amax = 1. The vector field �r represents the
commercial routes and satisfies the following assumptions:

�r ∈ C1(Rn;Rn), �r(x) · �n(x) ≤ 0, for every x ∈ ∂Ω. (1.8)

In the previous expression, �n is the outward pointing, unit normal vector to
∂Ω. Finally, the functional J is defined as follows:

J (x, ρ(t, ·), �d(t))

:= χ(x)

(
−

∫
Ω

ρ(t, y)(y − x)C(|x − y|)dy +
M∑
i=1

C(|x − di(t)|)(di(t) − x)

)
.

(1.9)

In the previous expression, χ is a cut-off function that is compactly sup-
ported in Ω and the function C : R+ → R is as before compactly supported,
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smooth, positive, constant in a neighborhood of 0 and monotone non increas-
ing on R

+. Note that, although the function ρ is only defined on the set Ω,
by appropriately choosing the cut-off functions C and χ we can define the
functional J for every x ∈ R

n.
In the following, we will set the equation (1.6) on the whole space-time

domain (0,∞) × R
n, but we will take an initial datum A0 which is 0 almost

everywhere outside Ω. Owing to condition (1.8), one can show (see [8, Propo-
sition 3.1]) that, for every t ≥ 0, the entropy admissible solution satisfies
A(t, x) = 0 for a.e. x ∈ R

n\Ω.
The rationale underpinning equation (1.6) is the following:

• The total amount of commercial cargos is conserved, and hence we model
the evolution of A with a conservation law.

• The commercial cargos tend to follow the commercial routes �r, but can
deviate either to be closer to the police watercrafts or to go further away
from the pirate ships: we model this possibility by introducing the non-
local term J .

• The presence of the cut-off function χ takes in account the fact that we
want to focus on the open sea dynamics and not on the dynamics close
to the boundary of Ω.

Dynamics of the police watercrafts. We model the dynamics of the police
watercrafts by using the equation

�d ′(t) = �F (�d(t), ρ(t, ·), A(t, ·), u(t)). (1.10)

The function �F attains values in (Rn)M and the i-th component Fi has the
following expression:

Fi(�d(t), ρ(t, ·), A(t, ·), u(t))

= χ(di(t))

( ∫
Ω

C(|di(t) − y|)ρ(t, y)A(t, y)(y − di(t))dy

−
∑
j �=i

C(|di(t) − dj(t)|)(di(t) − dj(t)) + ui(t)

)
− (1 − χ(di(t))�s(di(t)).

(1.11)

In the previous expression, χ and C are as before cut-off functions, the functions
ui ∈ L∞((0,∞);Rn) are bounded controls and the vector field �s satisfies

�s(x) · �n(x) ≤ 0, for every x ∈ ∂Ω.

The rationale underpinning (1.11) is the following:

• The first term in (1.11) is attractive and models the fact that police
watercrafts are attracted by the regions where pirate ships and commer-
cial cargos are simultaneously present.

• The second term in (1.11) is repulsive and models the fact that police
watercrafts tend to stay away from each other.
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• The presence of the cut-off functions χ models the fact that we want to
focus on the open sea dynamics and not on the dynamics close to the
boundary of Ω, which might be different. The vector field �s represents
the dynamics of police watercrafts close to the boundaries of the marine
region Ω.

Complete model and control problem. By combining (1.1), (1.6) and (1.10)
we arrive at the following system:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ = Δρ − div
(

ρκ (|∇A(t, ·) ∗ K|) ∇A(t, ·) ∗ K
|∇A(t, ·) ∗ K|

)
− f(x, d)ρ,

∂tA + div
(
U(A)

(
�r + J

))
= 0,

�d′ = �F (�d, ρ,A, u),

(1.12)

which is augmented with the boundary and initial conditions⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ρ · �n = 0, on (0,∞) × ∂Ω,

ρ(0, ·) = ρ0, in Ω,

A(0, ·) = A0, in R
n,

�d(0) = �d0.

(1.13)

We recall that by assumption the set Ω is open, bounded, connected and with
a smooth boundary. We prescribe the following conditions on the initial data:

ρ0 ≥ 0, ρ0 ∈ L2(Ω),

0 ≤ A0 ≤ 1, A0 ∈ BV (Rn), A0(x) = 0 for a.e. x ∈ R
n\Ω,

�d0 ∈ ΩM ,

(1.14)

and on the control function

u ∈ L∞((0,∞) ; (Rn)M ).

In the first part of the paper we rely on a fixed point argument and we establish
well-posedness of the mixed PDE-ODE system (1.12), (1.13) for every given
control u ∈ L∞((0,∞) ; (Rn)M ).

In the second part of the paper we discuss a related control problem.
More precisely, we introduce the cost functional

J(u) =
M∑
i=1

∫ ∞

0

ω(t)|d′
i(t)|dt +

∫ ∞

0

ω(t)
∫

Ω

ρ(t, x)A(t, x)dtdx (1.15)

and we focus on the problem of minimizing J . In the above expression, the
first term measures the length of the routes described by the police watercrafts,
while the second term takes in account the interactions between pirates’ and
cargo ships. Finally, ω is a measurable weight function satisfying

ω(t) ≥ 0 for every t, ω is non increasing,

lim
t→∞ exp(tα)ω(t) = 0 for some α > 1.

(1.16)

Note that the only reason why we introduce the third condition in (1.16) is
to ensure that the cost functional J is finite. Also, from the modeling point
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of view the monotonicity of ω expresses the fact that the police response is
more concerned with the close future than with the far one. Note that the case
of a finite time horizon can be taken into account by choosing a compactly
supported weight function ω. Finally, we point out that one could choose
different weights ω1 and ω2 for the first and the second term in (1.15), but
since the analysis is completely analogous to simplify the notation we assume
that the weight is the same in the two terms.

Remark 1.1. Note that in the functional (1.15) the number M of police water-
crafts is fixed. It could be interesting to consider other functionals, depending
on both u and M and taking into account the operating costs of the police
watercrafts. In this way the optimal strategy would provide information on
the optimal number of police watercrafts. However, the analysis of these func-
tionals would likely require rather different techniques than those used in the
present paper and hence we do not pursue it here.

1.1. Paper outline

The paper is organized as follows. In Sect. 2 we prove the well-posedness
of (1.12) for every given bounded control u. In Sect. 3 we discuss the control
problem for the functional J . In Sect. 4 we present some numerical examples.
For the reader’s convenience we conclude the introduction by collecting the
main notation used in the present paper.

1.2. Notation

We denote by c any constant which only depends on the coefficient of the
problem, i.e. for instance on the C0 norm on the convolution kernel K, on the
diameter of the set Ω, or on the number of police watercrafts, but does not
depend on the control u and on the initial data (ρ0, A0, �d0). The precise value
of c can vary from occurrence to occurrence.

1.2.1. Quantities introduced in the present paper.

• Ω: the marine region where the dynamics occur.
• ρ: the density of pirate ships.
• A: the density of commercial cargos.
• �d: the position of the police watercrafts.
• M : the number of police watercrafts.
• K: the convolution kernel in the equation for the pirate ships density (1.2).
• κ: the cut-off function in (1.3).
• ε: the threshold in (1.3).
• f : the repulsive term defined in (1.4).
• C: a cut-off function that is compactly supported, smooth, positive, con-

stant in a neighborhood of 0 and monotone non increasing on R
+, see (1.4)

and (1.9).
• �n: the outward pointing, unit normal vector to the boundary ∂Ω.
• U(A) = Av(A): the flux function in (1.6). The speed function v satis-

fies (1.7).
• �r: the commercial routes, see (1.6) and (1.8).



NoDEA A mathematical model for piracy control Page 7 of 22 48

• J : the functional taking into account possible deviations from the com-
mercial routes in (1.9).

• χ: a cut-off function compactly supported in Ω, see (1.9) and (1.11).
• �s: the dynamics of police watercrafts close to the boundary ∂Ω.
• J : the cost functional in (1.15).
• ω: the weight function in the cost functional J , satisfying (1.16).

2. Well-posedness of the model

In this section we fix a control function u ∈ L∞((0,∞); (Rn)M ) and we estab-
lish existence, uniqueness and stability results for the model (1.12)–(1.13)
under the assumptions (1.14).

First, we provide the precise definition of solution of (1.12)–(1.13).

Definition 2.1. Given T > 0, we term the triple (ρ,A, d) a solution of (1.12)–
(1.13) on (0, T ) × Ω if

(i) ρ ∈ C0([0, T ];L2(Ω)) ∩ L2((0, T );H1(Ω)), ρ ≥ 0 almost everywhere and
ρ is a solution in the sense of distributions of the initial-boundary value
problem obtained by coupling (1.2) with (1.13).

(ii) A ∈ C0([0, T ];L1(Ω))∩BV ((0, T )×Ω), 0 ≤ A ≤ 1 almost everywhere and
A is a Kružkov entropy solution of the system obtained by coupling (1.6)
with (1.13).

(iii) �d ∈ C0([0, T ]; ΩM ), and

di(t) = d0,i +
∫ t

0

Fi(d(s), ρ(s, ·), A(s, ·), u(s))ds,

for every t ≥ 0 and i ∈ {1, . . . , M}.

In the previous expression, BV is the space of function with bounded
total variation, see [2, Chapter 3] for the precise definition. Also, we refer
to [13] for the definition of Kružkov entropy solution of a scalar conservation
law.

The main result of this section is the following.

Theorem 2.2. Fix T > 0, u ∈ L∞((0,∞); (Rn)M ) and let (ρ0, A0, �d0) sat-
isfy (1.14). Then the initial-boundary value problem (1.12) has a unique solu-
tion (ρ,A, d) in the sense of Definition 2.1. Also, assume that (ρ,A, d) and

(ρ̃, Ã, �̃d) are the two solutions of (1.12)–(1.13) corresponding to the initial

data ρ0, A0, �d0 and ρ̃0, Ã0, �̃d0, respectively. Then

‖ρ(t, ·) − ρ̃(t, ·)‖L2(Ω) +
∥∥∥A(t, ·) − Ã(t, ·)

∥∥∥
L1(Ω)

+
∣∣∣∣�d(t) − �̃d (t)

∣∣∣∣
≤ C

(
‖ρ0 − ρ̃0‖L2(Ω) +

∥∥∥A0 − Ã0

∥∥∥
L1(Ω)

+
∣∣∣∣d0 − �̃d0

∣∣∣∣
)

, (2.1)

for every t ∈ [0, T ]. In the previous expression, the constant C only depends
on T , ‖u‖L∞((0,T );(Rn)M ), ‖A0‖L1(Ω), ‖Ã0‖L1(Ω), TotVar(A0), TotVar(Ã0),
‖ρ0‖L2(Ω), and ‖ρ̃0‖L2(Ω).
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Note that here and in the following we denote by TotVar(A0) the total
variation of the function A0, see [2, Definition 3.4] for the precise definition.
The proof of Theorem 2.2 is organized as follows:
• in Sect. 2.1 we introduce some notation and provide the proof outline;
• in Sect. 2.1.1 we establish a priori estimates on the solutions of (1.2), (1.6)

and (1.10).
• in Sect. 2.2 we conclude the existence proof by relying on the Schauder

Fixed Point Theorem. We also establish uniqueness and stability by com-
bining suitable a-priori estimates with a Gronwall Lemma argument.

Note that, to simplify the notation, in the following we always assume that
M = 1, namely that there is only one police watercraft. In this case �d attains
values in Ω ⊆ R

n and we denote it by d. The analysis of the case M > 1 does
not pose additional challenges.

2.1. Proof outline

The proof relies on a fixed point argument. More precisely, given B > 0, we
consider the domains

D =D1 × D2 × D3,

D1 =
{

ρ ∈ L2((0, T ) × Ω) :
‖ρ(t, ·)‖L2(Ω) ≤ B, for a.e. t
ρ(t, x) ≥ 0 for a.e. (t, x)

}
,

D2 =
{

A∈C0([0, T ];L1(Rn)) :
0≤A(t, x)≤1 t ∈ [0, T ], a.e. x ∈ R

n

A(t, x) = 0 t ∈ [0, T ], a.e. x ∈ R
n\Ω

}
,

D3 =
{
d ∈ C0([0, T ]) : d(t) ∈ Ω̄ for every t

}
.

(2.2)

The exact value of the constant B will be determined in the following and will
depend on ‖ρ0‖L2(Ω) and on T . On D we define the norm

‖(ρ,A, d)‖D = ‖ρ‖L2((0,T )×Ω) + ‖A‖C0([0,T ];L1(Ω)) + ‖d‖C0([0,T ];Rn)

and the operator

T : (ρ,A, d) �−→ (T1(A, d ), T2(ρ, d ), T3(ρ,A)) (2.3)

by proceeding as follows. We term T1(A, d) the unique solution of⎧⎪⎪⎨
⎪⎪⎩

∂tρ=Δρ−div
(
ρκ (|∇A(t, ·) ∗ K|) ∇A(t, ·) ∗ K

|∇A(t, ·) ∗ K|

)
−f(x, d)ρ, in (0, T )×Ω,

∂νρ(t, x) = 0, on (0, T )×∂Ω,

ρ(0, ·) = ρ0, at t = 0.

Also, we term T2(ρ, d) the unique Kružkov entropy solution of{
∂tA + div (U(A)(�r(x) + J (x, ρ(t, ·), d(t)))) = 0, in (0, T ) × R

n,

A(0, ·) = A0, at t = 0.

Finally, T3(ρ,A) is the unique solution of{
d′(t) = F (d(t), ρ(t, ·), A(t, ·), u(t)), in (0, T ),
d(0) = d0.



NoDEA A mathematical model for piracy control Page 9 of 22 48

In Sect. 2.1.1 we establish a-priori estimates on T1, T2 and T3 and in Sect. 2.2
we use them to apply a fixed point argument.

2.1.1. A-priori estimates. First, we establish a-priori estimates on T1. We
denote with H∗ (Ω) the dual space of H1(Ω).

Lemma 2.3. Under the same assumptions as in the statement of Theorem 2.2
we have that

T1(A, d) ∈ D1, for every (A, d) ∈ D2 × D3. (2.4)

In particular,

‖T1(A, d)(t, ·)‖2
L2(Ω) +

∫ t

0

‖∇T1(A, d)(s, ·)‖2
L2(Ω) ds ≤ ‖ρ0‖2

L2(Ω) ect, (2.5)

for a.e. t ∈ (0, T ) and every (A, d) ∈ D2×D3. Also, we have that ∂tT1(A, d) ∈
L2((0, T );H∗(Ω)) and

‖∂tT1(A, d)‖L2((0,t);H∗(Ω)) ≤ c ‖ρ0‖L2(Ω) ect. (2.6)

Finally,∥∥T1(A, d)(t, ·) − T1(Ā, d̄)(t, ·)
∥∥2

L2(Ω)

+
∫ t

0

∥∥(∇T1(A, d) − ∇T1(Ā, d̄))(s, ·)
∥∥2

L2(Ω)
ds

≤ cect ‖ρ0‖2
L2(Ω)

(∥∥A − Ā
∥∥2

C0([0,T ];L1(Rn))
+

∥∥d − d̄
∥∥2

C0([0,T ];Rn)

)
, (2.7)

for a.e. t ∈ (0, T ) and for every (A, d), (Ā, d̄) ∈ D2 × D3.

Proof. In the proof of this lemma we use the following notation:

ρ := T1(A, d), V := κ (|∇A(t, ·) ∗ K|) ∇A(t, ·) ∗ K
|∇A(t, ·) ∗ K| .

Since 0 ≤ A ≤ 1, then

‖V ‖C0([0,T ]×Ω), ‖div (V ) ‖C0([0,T ]×Ω) ≤ c. (2.8)

Also, by recalling (1.4) we get

0 ≤ f(x, d(t)) = C(|x − d(t)|) ≤
∣∣C(|x − d(t)|) − C(0)

∣∣ + c

≤ c|x − d(t)| + c ≤ c diameter(Ω) + c ≤ c.
(2.9)

Note that (1.2) can be written as

∂tρ = Δρ − div (ρV ) − fρ. (2.10)

Owing to (2.8) and (2.9), we can apply classical results on parabolic equations
(we refer to the book by Salsa [19, Chapter 9] for a detailed exposition). In
particular, we obtain that (2.10) has a unique solution

ρ ∈ L2((0, T );H1(Ω)), ∂tρ ∈ L2((0, T );H∗(Ω)) (2.11)

provided that V and f are fixed and the initial datum ρ0 satisfies (1.14).
Also, since the constant 0 is a subsolution of (2.10) and ρ0 ≥ 0 by (1.14), the
comparison principle for parabolic equations gives that ρ ≥ 0 (see the book
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of Ladyženskaja et al. [14, Chapter 1] for a comprehensive discussion on the
maximum principle). Also, note that, if ρ satisfies (2.11), then owing to [19,
Theorem 7.22] in the equivalence class of ρ there is a representative satisfying
ρ ∈ C0([0, T ];L2(Ω)). Thus, in the following, we will always identify ρ with its
L2-continuous representative.

We now establish (2.5) by using some formal computations, which can be
made rigorous by relying on suitable approximation arguments. We have that

d

dt

∫
Ω

ρ2

2
dx =

∫
Ω

ρ∂tρdx

(2.10)
=

∫
Ω

ρΔρdx −
∫

Ω

ρ div (ρV ) dx −
∫

Ω

f(x, d)ρ2dx

(1.5)
= −

∫
Ω

|∇ρ|2dx −
∫

Ω

ρ∇ρ · V dx −
∫

Ω

ρ2div (V ) dx −
∫

Ω

f(x, d)ρ2dx

≤ −
∫

Ω

|∇ρ|2dx +
1
2

∫
Ω

ρ2|V |2dx +
1
2

∫
Ω

|∇ρ|2dx −
∫

Ω

f(x, d)ρ2dx

(2.8),(2.9)

≤ −1
2

∫
Ω

|∇ρ|2dx + c

∫
Ω

ρ2dx.

Owing to the Gronwall Lemma, this implies (2.5) and hence that ρ ∈ D1

provided that we appropriately choose the constant B.
To establish (2.6), we use the equation for ρ, which implies that for a.e.

t ∈ (0, T )

‖∂tρ (t, ·) ‖H∗(Ω) ≤ ‖∇ρ (t, ·) ‖L2(Ω) + ‖ρ (t, ·) V ‖L2(Ω) + ‖fρ (t, ·) ‖L2(Ω)

and by combining (2.8) and (2.9) with (2.5) we eventually arrive at (2.6).
We are left to establish (2.7). We introduce the notation

V̄ := κ
(∣∣∇Ā(t, ·) ∗ K

∣∣) ∇Ā(t, ·) ∗ K∣∣∇Ā(t, ·) ∗ K
∣∣

and we point out that

‖V − V̄ ‖C0([0,T ]×Rn) ≤ c‖A − Ā‖C0([0,T ];L1(Rn)),

‖div
(
V − V̄

)
‖C0([0,T ]×Rn) ≤ c‖A − Ā‖C0([0,T ];L1(Rn)) (2.12)

and
|f(x, d) − f(x, d̄)| ≤ c‖d − d̄‖C0([0,T ];Rn). (2.13)

We now use a formal computation (which can be made rigorous by relying on
a suitable approximation argument) and we point out that

d

dt

∫
Ω

(ρ − ρ̄)2

2
dx =

∫
Ω

(ρ − ρ̄) ∂t(ρ − ρ̄)dx

=
∫

Ω

(ρ − ρ̄)Δ(ρ − ρ̄)dx −
∫

Ω

(ρ − ρ̄)div ((ρ − ρ̄)V ) dx

−
∫

Ω

(ρ − ρ̄)div
(
ρ̄(V − V̄ )

)
dx
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−
∫

Ω

f(x, d)(ρ − ρ̄)2dx −
∫

Ω

(f(x, d) − f(x, d̄))ρ̄(ρ − ρ̄)dx

= −
∫

Ω

|∇(ρ − ρ̄)|2dx −
∫

Ω

(ρ − ρ̄)∇(ρ − ρ̄) · V dx −
∫

Ω

(ρ − ρ̄)2div (V ) dx

−
∫

Ω

(ρ − ρ̄)∇ρ̄ · (V − V̄ )dx −
∫

Ω

(ρ − ρ̄)ρ̄ div
(
V − V̄

)
dx

−
∫

Ω

f(x, d)(ρ − ρ̄)2dx −
∫

Ω

(f(x, d) − f(x, d̄))ρ̄(ρ − ρ̄)dx.

By recalling (2.8), (2.9) we then get

d

dt

∫
Ω

(ρ − ρ̄)2

2
dx ≤− 1

2

∫
Ω

|∇(ρ − ρ̄)|2dx + c

∫
Ω

(ρ − ρ̄)2dx + c

∫
Ω

|∇ρ̄|2|V − V̄ |2dx

+ c

∫
Ω

ρ̄2(div
(
V − V̄

)
)2dx + c‖f(·, d) − f(·, d̄)‖C0

∫
Ω

ρ̄2dx.

Next, we use the Fundamental Theorem of Calculus and we recall that ρ and
ρ̄ have the same initial datum ρ0. By recalling (2.12) and (2.13) we obtain

‖ρ(t, ·) − ρ̄(t, ·)‖2
L2(Ω) +

∫ t

0

∫
Ω

|∇ρ − ∇ρ̄|2dxds

≤ c

∫ t

0

‖ρ(s, ·) − ρ̄(s, ·)‖2
L2(Ω) ds + c‖d − d̄‖C0([0,T ])

∫ t

0

∫
Ω

ρ̄2dxds

+ c‖A − Ā‖2
C0([0,T ];L1(Rn))

∫ t

0

∫
Ω

[
|∇ρ̄|2 + ρ̄2

]
dxds.

By using the Gronwall Lemma we eventually arrive at (2.7). �

Next, we establish a-priori estimates on T2.

Lemma 2.4. Under the same assumptions as in the statement of Theorem 2.2
we have that

T2(ρ, d) ∈ D2, for every (ρ, d) ∈ D1 × D3.

In particular,

‖T2(ρ, d)(t, ·)‖L1(Rn) ≤ ‖A0‖L1(Rn) , (2.14)

TotVar(T2(ρ, d)(t, ·)) ≤ TotVar(A0), (2.15)

0 ≤ T2(ρ, d)(t, ·) ≤ 1, (2.16)

T2(ρ, d)(t, x) = 0 for every t ≥ 0 and a.e. x ∈ R
n\Ω, (2.17)

‖T2(ρ, d)(s, ·) − T2(ρ, d)(t, ·)‖L1 ≤ cTotVar(A0)|t − s|, (2.18)

for every (ρ, d) ∈ D1 × D3 and t, s ∈ [0, T ]. Also,

‖T2(ρ, d)(t, ·) − T2(ρ̄, d̄)(t, ·)‖L1(Rn)

≤ c
√

t
(
‖ρ − ρ̄‖L2((0,T )×Ω) +

√
t‖d − d̄‖C0

)(
1 + TotVar(A0)

)
.

(2.19)

for every t ∈ [0, T ] and every (ρ, d), (ρ̄, d̄) ∈ D1 × D3.
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Proof. We fix (ρ, d) ∈ D1 ×D3 and we introduce the vector field W by setting

W (t, x) := �r(x) + J (x, ρ(t, ·), d(t)) (2.20)

and we point out that the vector field W is smooth. Also, note that, although
ρ is only defined on Ω, owing to the presence of the cut-off function χ in the
definition of J [see (1.9)] the vector field W is well defined for every x ∈ R

n.
By definition, T2(ρ, d) = A is the entropy admissible solution of the Cauchy
problem {

∂tA + div (U(A)W (t, x))) = 0,
A(0, ·) = A0,

(2.21)

where the initial datum A0 satisfies (1.14), see [13]. The by-now classical theory
by Kružkov provides existence and uniqueness results for the above Cauchy
problem, and implies that estimates (2.14), (2.15), (2.16), and (2.18) hold true.
The rigorous proof of (2.17) is given in [8, §5.3], here we provide an heuristic
justification based on a formal computation. We set Ωc := R

n\Ω, we recall
that, owing to the finite propagation speed, A(t, ·) is compactly supported for
every t > 0. We infer that

d

dt

∫
Ωc

A(t, x)dx =
∫

Ωc

∂tA(t, x)dx = −
∫

Ωc

div (U(A)W (x)) dx

=
∫

∂Ω

U(A)W (x) · �n(x) dσ ≤ 0.

To establish the third equality we have used the fact that �n is the outward
pointing, normal vector to ∂Ω. To establish the final inequality, we have used
the fact that U(A) ≥ 0 since A ≤ 1 and on the boundary ∂Ω we have W (x) =
�r(x), which satisfies (1.8). Since∫

Ωc

A0(x)dx = 0,

from the above inequality we infer that, since A ≥ 0, then A = 0 almost
everywhere on R

n\Ω.
We are left to establish (2.19). We set

W̄ (t, x) := �r(x) + J (x, ρ̄(t, ·), d̄(t)) (2.22)

and we term Ā the corresponding entropy admissible solution of the equa-
tion (2.21). We recall that Kružkov entropy solutions are limit of vanishing
viscosity approximations (see again Kružkov [13]) and we term Am and Ām a
sequence of vanishing viscosity solutions approximating A and Ā, respectively.
This implies, in particular, that the equation

∂t(Am − Ām) + div
(
WU(Am) − W̄U(Ām)

)
=

1
m

Δ(Am − Ām) (2.23)

holds in the sense of distributions. To establish (2.19), we employ some formal
computations, which can be made rigorous by introducing a smooth regulariza-
tion of the initial data. We recall that U(A) = Av(A) and that v satisfies (1.7).
This implies that
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div
(
WU(Am) − W̄U(Ām)

)
= div

(
(W − W̄ )U(Am)

)
+ div

(
W̄v(Am)(Am − Ām)

)
+ div

(
W̄ Ām(v(Am) − v(Ām))

)
.

(2.24)

Since v′ < 0, then

sign(Am − Ām) = −sign(v(Am) − v(Ām))

and hence by using (2.24) we arrive at

div
(
WU(Am) − W̄U(Ām)

)
sign(Am − Ām)

=
[
div

(
(W − W̄ )

)
U(Am) + (W − W̄ )U ′(Am)∇Am

]
sign(Am − Ām)

+ div
(
W̄v(Am)|Am − Ām|

)
− div

(
W̄ Ām|v(Am) − v(Ām)|

)
.

By recalling the expressions of W and W̄ [see (2.20) and (2.22)] and by com-
bining the explicit expression of J with the classical properties of convolution
we eventually get that

‖W (s, ·) − W̄ (s, ·)‖C0(Ω) ≤ c‖ρ(t, ·) − ρ̄(t, ·)‖L2(Ω) + c‖d − d̄‖C0 (2.25)

and that

‖div
(
(W − W̄ )(s, ·)

)
‖L1(Rn) ≤ c‖ρ(t, ·) − ρ̄(t, ·)‖L2(Ω) + c‖d − d̄‖C0 . (2.26)

By using the above formulas we get

d

dt

∫
Rn

|Am − Ām|dx =
∫
Rn

sign(Am − Ām)∂t(Am − Ām)dx

(2.23)
= −

∫
Rn

sign(Am − Ām)div
(
WU(Am) − W̄U(Ām)

)
dx

+
∫
Rn

sign(Am − Ām)
1
m

Δ(Am − Ām)dx

≤
∫
Rn

∣∣∣div
(
(W − W̄ )

)
U(Am) + (W − W̄ )U ′(Am)∇Am

∣∣∣dx

≤ c‖div
(
(W − W̄ )

)
‖L1(Rn)‖Am‖L∞(Rn) + c‖W − W̄‖L∞(Rn)‖∇Am‖L1

(2.25),(2.26)

≤ c(1 + TotVar(A0))
[
‖ρ(t, ·) − ρ̄(t, ·)‖L2(Ω) + ‖d − d̄‖C0

]
.

By applying the Fundamental Theorem of Calculus and letting m → ∞ we
eventually arrive at (2.19). �

Lemma 2.5. Under the same assumptions as in the statement of Theorem 2.2
we have that

T3(ρ,A) ∈ D3, for every (ρ, A) ∈ D1 × D2. (2.27)

In particular,

|T3(ρ,A)(t) − T3(ρ,A)(s)| ≤ c
(
B + ‖u‖L∞((0,∞);Rn) + 1

)
|t − s|, (2.28)
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for every t, s ∈ [0, T ] and (ρ, A) ∈ D1 × D2. Also,∥∥T3(ρ,A) − T3(ρ̄, Ā)
∥∥

C0([0,T ];Rn)

≤ c exp
(
cT (B + ‖u‖L∞((0,∞);Rn) + 1)

)
×

(√
T ‖ρ − ρ̄‖L2((0,T )×Ω) + T

∥∥A − Ā
∥∥

C0([0,T ];L1(Rn))

)
,

(2.29)

for every (ρ,A), (ρ̄, Ā) ∈ D1 × D2.

Proof. We recall (1.10) and (1.11) and we straightforwardly obtain (2.28). To
establish (2.29) we introduce the notation d := T3(ρ,A) and d̄ := T3(ρ̄, Ā) and
we point out that

d

dt
|d(t) − d̄(t)|

(1.10)

≤ |F (d, ρ,A, u) − F (d̄, ρ̄, Ā, u)|
(1.11)

≤ c|d(t) − d̄(t̄)|
(
B + ‖u‖L∞((0,∞);Rn) + 1

)

+ c
(
‖ρ(t, ·) − ρ̄(t, ·)‖L2(Ω)+

∥∥A(t, ·) − Ā(t, ·)
∥∥

L1(Ω)

)
.

By using the Gronwall Lemma, we arrive at (2.29). �

2.2. Conclusion of the proof

We can now provide the proof of Theorem 2.2: we first establish existence of
a solution, next we establish stability (and henceforth uniqueness).

Existence: we apply the Schauder Fixed Point Theorem to the map T .
First, we recall the definition of T and of the domain D := D1 × D2 × D3,
see (2.3) and (2.2), respectively. Note that D is convex and that T is continuous
owing to (2.7), (2.19) and (2.29). Hence, it suffices to prove that that map T
is compact, namely that the components T1, T2 and T3 are all compact:

• To show that T1 is compact it suffices to recall (2.5) and (2.6) and to
apply the Aubin-Lions Lemma.

• To show that T2 is compact we rely on the following version of the Ascoli-
Arzelà Theorem. If X is a Banach Space, a set K ⊆ C0([0, T ];X) is
compact provided that (i) K is equicontinuous (ii) there is a compact set
C such that for every t ∈ [0, T ] and every h ∈ K, h(t) ∈ C. We term C
the set of functions A ∈ L1(Ω) such that

0 ≤ A(x) ≤ 1 for a.e. x, A(x) = 0 for a.e. x /∈ Ω

and

TotVarA ≤ TotVarA0.

Note that C is compact in L1(RN ) owing to the Fréchet–Kolmogorov
Theorem. We then conclude that T2 is compact by recalling (2.14), (2.16),
(2.17), and (2.18).

• To show that T3 is compact we rely on the Ascoli-Arzelà Theorem: it
suffices to combine the fact that Ω̄ is bounded with (2.27).
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This concludes the proof of the existence part.
Stability: let (ρ,A, d) and (ρ̃, Ã, d̃) be as in the statement of Theorem 2.2.
We introduce the quantity Λ by setting

Λ(t) : = ‖ρ(t, ·) − ρ̃(t, ·)‖2
C0([0,t];L2(Ω)) + ‖A(t, ·) − Ã(t, ·)‖C0([0,t];L1(Rn))

+ ‖d − d̃‖C0([0,t];Rn).

By arguing as in the proof of (2.7), (2.19), (2.29) one can show that

Λ(t) ≤ (1 + B + ‖u‖L∞ + TotVar(A0))
∫ t

0

(
|∇ρ̄|2 + ρ̄2 + 1

)
Λ(s)ds. (2.30)

By combining (2.30) with the Gronwall Lemma we obtain (2.1), which
in particular implies uniqueness.

3. Optimization problem

In this section we discuss the optimal control problem obtained by minimizing
the functional J defined in (1.15). The main result is the following.

Theorem 3.1. Assume that ρ0, A0, d0 satisfy (1.14). Fix a constant θ ≥ 0,
then there is uθ ∈ Bθ such that

J(uθ) = min
u∈Bθ

J(u),

where
Bθ :=

{
u ∈ L∞((0,∞);Rn) : ‖u‖L∞((0,∞);Rn) ≤ θ

}
.

Proof. Since J is nonnegative, we can fix a minimizing sequence {uk}k∈N ⊆ Bθ

such that
lim

k→∞
J(uk) = inf

u∈Bθ

J(u). (3.1)

There is uθ ∈ Bθ such that, up to subsequences (which we do not relabel), we
have

uk
∗
⇀ uθ, weakly-∗ in L∞((0,+∞);Rn)).

Owing to Theorem 2.2, for every uk there is a unique solution (ρk, Ak, dk)
of (1.12). Also, by arguing as in the proof of Lemma 2.3 we get that (2.4)
and (2.6) hold with T1 replaced by ρk. Owing to the Aubin-Lions we conclude
that there exists ρθ ∈ D1 such that, up to subsequences (that we do not
relabel), we have

ρk → ρθ strongly in L2((0, T ) × Ω), for every T > 0,

∇ρk ⇀ ∇ρθ weakly in L2((0, T ) × Ω;Rn), for every T > 0.

By arguing as in the proof of Lemma 2.4, we get that Ak satisfies (2.14)–(2.18)
with T2 replaced by Ak and by combining the Ascoli–Arzelà Theorem with the
Fréchet–Kolmogorov Theorem as in the proof of Theorem 2.2 we conclude that
there is Aθ ∈ D2 such that

Ak → Aθ strongly in L1((0, T ) × Ω) for every T > 0,

TV (Aθ(t, ·)) ≤ TV (A0), for every t ≥ 0.
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Finally, by arguing as in the proof of Lemma 2.5 we infer that dk satisfies (2.28)
with T3 replaced by dk. Owing to the Ascoli–Arzelà Theorem we conclude that
there is dθ ∈ D3 such that

dk → dθ, uniformly in C0([0, T ];Rn), for every T > 0.

We recall that ω satisfies (1.16) and that dk attains values in Ω̄, which is
bounded, and we conclude that, owing to the Lebesgue Dominated Conver-
gence Theorem,

lim
k→∞

∫ +∞

0

|dk(t)|ω(t)dt =
∫ +∞

0

|dθ(t)|ω(t)dt. (3.2)

Also, we have∣∣∣∣
∫

Ω

Akρk(t, ·)dx

∣∣∣∣
Ak≤1

≤
∣∣∣∣
∫

Ω

ρk(t, ·)dx

∣∣∣∣ ≤ c‖ρk(t, ·)‖L2(Ω)

and by combining (1.16) with the Lebesgue Dominated Convergence Theorem
we get

lim
k→∞

∫ +∞

0

∫
Ω

ω(t)Akρk(t, ·)dx = lim
k→∞

∫ +∞

0

∫
Ω

ω(t)Aθρθ(t, ·)dx. (3.3)

By using analogous arguments, one can show that (ρθ, Aθ, dθ) is a solution
of (1.12) with u = uθ. By combining (3.1), (3.2) and (3.3) we eventually
conclude that

J(uθ) = inf
u∈Bθ

J(u)

and this concludes the proof of the theorem. �

4. Numerical experiments

This section is devoted to the discussion of numerical integrations of sys-
tem (1.12). We consider a two-dimensional marine region Ω = (a, b) × (α, β),
discretized by a numerical grid with Nx and Ny equi-spaced points in the
x and y direction respectively, and a discrete time sequence tn = nΔt, for
n ∈ N, with Δt > 0. Define the mesh points (xj , yk), for j ∈ {0, . . . , Nx} and
k ∈ {0, . . . , Ny}, as

xj = a + jΔx and yk = α + kΔy

where Δx = b−a
Nx

and Δy = β−α
Ny

. For every j ∈ {0, . . . , Nx − 1} and every
k ∈ {0, . . . , Ny − 1}, the cell Cj,k is defined by Cj,k = [xj , xj+1] × [yk, yk+1].

With ρn
j,k and An

j,k we denote an approximation of the densities ρ and A,
respectively, at the discrete time tn and in the cell Cj,k. Moreover with �dn ∈
ΩM , we denote an approximation of the position of the police vessels at time
tn. The solution ρn

j,k of the diffusion equation (1.2) for the evolution of pirate
ships is calculated by an explicit finite difference method using a five-point
numerical Laplacian. Here we treat the Neumann boundary conditions by using
ghost cells. The solution An

j,k of the conservation law (1.6) for the evolution
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Figure 1. The initial densities A0 (left) and ρ0 (right) for
the simulation of Sect. 4.1

of commercial cargos is obtained by using a dimensional splitting Godunov-
type finite volume method. Finally, the solution �dn for the ordinary differential
equation (1.10) is obtained through a first-order explicit Euler method.

4.1. Different control policies

We consider here the marine region Ω = (1, 6)× (0, 6), i.e. a = 1, b = 6, α = 0,
and β = 6, with only one police watercraft, i.e. M = 1, with the following
initial conditions

ρ(x, y) = χ[2,5]×[2,4](x, y),
A(x, y) = χ[1,2]×[2,4](x, y)

�d0 = (2, 3.5) ,

where χ is the characteristic function (see Fig. 1), and with the following
functions:

�r = (1, 0) , v(A) = 1 − A.

Finally, K is a standard mollifier with support contained in B (0, 0.5), while C
in (1.9) and in (1.11) are standard mollifiers with support contained in B(0, 2)
and in B(0, 1), respectively. We compare several simulations according to the
following control strategies:

1. u(t) ≡ (−0.3, 0) corresponding to the police watercrafts pointing to the
left;

2. u(t) ≡ (0.3, 0) corresponding to the police watercrafts pointing to the
right;

3. u(t) ≡ (0, 0.3) corresponding to the police watercrafts pointing to the
north;

4. u(t) ≡ (0,−0.3) corresponding to the police watercrafts pointing to the
south;

5. u(t) = (0.3 cos(t),−0.3 sin(t)) corresponding to the police watercrafts
moving along a circle.
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Table 1. The cost obtained by simulations of Sect. 4.1
according to the different control policies

Control Cost
(−0.3, 0) 424.79
(0.3, 0) 469.11
(0, 0.3) 514.25
(0,−0.3) 422.86
(0.3 cos(t),−0.3 sin(t)) 429.97

Among the selected strategies, the best one is the one where the police
watercraft moves to the south

Bold value indicates the lowest cost

Figure 2. The densities at the final time T = 5 for the com-
mercial cargos (left) and for the pirates (right). Note that
around the position of the police watercraft (the white point)
the pirate density is low. Moreover the cargo ships adjust their
positions according to the one of the police

All the simulations are done on the time interval (0, T ) with T = 5 and with
Nx = Ny = 100. The comparison is done according to the cost functional

J(u) =
∫ T

0

∣∣∣�d(t)
∣∣∣ dt +

∫ T

0

∫
Ω

ρ(t, x)A (t, x) dxdt.

In Table 1 one can find the costs obtained by the different strategies. The
optimal strategy, among those considered in this part, is the one corresponding
to the south movement of the police watercraft. Note that the north strategy
is far from optimal; indeed, if the police watercraft moves towards the north,
then it moves in a region of few ships and pirates. In Fig. 2, the densities at
time T = 5 of commercial and pirates ships are plotted.

4.2. Different number of police watercrafts

We consider here, as in Sect. 4.1, the marine region Ω = (1, 6)×(0, 6), i.e. a = 1,
b = 6, α = 0, and β = 6, with the following initial conditions for ρ and A
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Table 2. The cost obtained by simulations of Sect. 4.2

Case Cost
M = 0 1130.03
M = 1 422.86
M = 2, u1 ≡ (0,−0.3), u2 ≡ (0, 0.3) 212.78
M = 2, u1 ≡ (0,−0.3), u2 ≡ (0.3, 0) 228.99

The difference of the cost between the cases M = 0, M = 1, and M = 2 is
substantial. The two cases with M = 2 produces similar results
Bold value indicates the lowest cost

Figure 3. The density at the final time T = 5 for the pirates.
On the left the case of M = 0 police watercrafts. On the right
the case of M = 1 police watercraft

ρ(x, y) = χ[2,5]×[2,4](x, y),
A(x, y) = χ[1,2]×[2,4](x, y),

where χ is the characteristic function, and with the following functions:

�r = (1, 0) , v(A) = 1 − A.

Finally, K is a standard mollifier with support contained in B (0, 0.5), while C
in (1.9) and in (1.11) are standard mollifiers with supports contained in B(0, 2)
and in B(0, 1), respectively. We consider the following situations.

1. M = 0, i.e. no police watercraft is present.
2. M = 1 and the control is u1(t) ≡ (0,−0.3), i.e. there is one police water-

craft moving towards the south. The initial condition is �d1(0) = (2, 3.5).
3. M = 2 with initial positions �d1(0) = (2, 3.5). �d2(0) = (2, 2.5). The con-

trols are u1(t) ≡ (0,−0.3) and u2(t) ≡ (0, 0.3), i.e. one moving towards
the south and one towards the north.

4. M = 2 with initial positions �d1(0) = (2, 3.5). �d2(0) = (2, 2.5). The con-
trols are u1(t) ≡ (0,−0.3) and u2(t) ≡ (0.3, 0), i.e. one moving towards
the south and one towards the east.
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Figure 4. The density at the final time T = 5 for the pirates
with M = 2 police watercrafts. On the left, the case of one
control pointing to the north and one to the south. On the
right, the case of one control pointing to the south and one to
the east

All the simulations are done on the time interval (0, T ) with T = 5 and
with Nx = Ny = 100. The comparison is done using to the cost functional

J(u) =
M∑
i=1

∫ T

0

∣∣∣�di(t)
∣∣∣ dt +

∫ T

0

∫
Ω

ρ(t, x)A (t, x) dxdt.

In Table 2 one can find the costs obtained by the different strategies. Moreover
in Figs. 3 and 4 the final densities of the pirates ships in the different cases are
plotted.
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equations of parabolic type. Translated from the Russian by S. Smith. Trans-
lations of Mathematical Monographs, vol. 23, American Mathematical Society,
Providence, R.I (In Russian)

[15] Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow
on long crowded roads. Proc. R. Soc. London. Ser. A 229, 317–345 (1955)

[16] Nuño, J.C., Herrero, M.A., Primicerio, M.: A triangle model of criminality. Phys.
A Stat. Mech. Appl. 387(12), 2926–2936 (2008)

[17] Pitcher, A.B.: Adding police to a mathematical model of burglary. Eur. J. Appl.
Math. 21(4–5), 401–419 (2010)

[18] Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)

[19] Salsa, S.: Partial Differential Equations in Action. From Modelling to Theory.
Universitext, 2nd edn. Springer, Milan (2008)

[20] Short, M.B., D’Orsogna, M., Pasour, V., Tita, G., Brantingham, P.J., Bertozzi,
A.L., Chayes, L.: A statistical model of criminal behavior. Math. Models Meth-
ods Appl. Sci. 18, 1249–1267 (2008)

[21] Zipkin, J.R., Short, M.B., Bertozzi, A.L.: Cops on the dots in a mathematical
model of urban crime and police response. Discret. Contin. Dyn. Syst. Ser. B
19(5), 1479–1506 (2014)

http://www.paulormerod.com/pdf/CRIME42.pdf
http://www.paulormerod.com/pdf/CRIME42.pdf


48 Page 22 of 22 G. M. Coclite, M. Garavello and L. V. Spinolo NoDEA

Giuseppe Maria Coclite
Dipartimento di Meccanica, Matematica e Management
Politecnico di Bari
Via E. Orabona 4
70125 Bari
Italy
e-mail: giuseppemaria.coclite@poliba.it
URL: https://sites.google.com/site/coclitegm/

Mauro Garavello
Department of Mathematics and its Applications
University of Milano Bicocca
Via R. Cozzi 55
20125 Milan
Italy
e-mail: mauro.garavello@unimib.it
URL: http://www.matapp.unimib.it/∼garavello

Laura V. Spinolo
IMATI-CNR
Via Ferrata 1
27100 Pavia
Italy
e-mail: spinolo@imati.cnr.it
URL: http://www.imati.cnr.it/spinolo/

Received: 17 February 2017.

Accepted: 5 July 2017.


	A mathematical model for piracy control through police response
	Abstract
	1. Introduction and description of the model
	Dynamics of pirate ships
	Dynamics of cargo ships
	Dynamics of the police watercrafts
	Complete model and control problem

	1.1. Paper outline
	1.2. Notation
	1.2.1. Quantities introduced in the present paper


	2. Well-posedness of the model
	2.1. Proof outline
	2.1.1. A-priori estimates

	2.2. Conclusion of the proof

	3. Optimization problem
	4. Numerical experiments
	4.1. Different control policies
	4.2. Different number of police watercrafts

	References




