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Abstract. In this paper, we consider the large-time dynamics of weak so-
lutions to a class of compressible fluids with nonlinear constitutive equa-
tions in a bounded domain Ω ⊆ R

3, the global existence of such solutions
has been showed by Feireisl et al. (Math Methods Appl Sci 38:3482–3494,
2015). We study the large time behavior of such solutions after discussing
the uniqueness of solutions to the stationary problem.
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1. Introduction

Recently, for T > 0, a bounded domain Ω ⊆ R
3, Feireisl et al. [1] showed

the large-data existence result of weak solutions to a class of non-Newtonian
compressible fluids:

∂�

∂t
+ div (�u) = 0, (1.1)

∂(�u)
∂t

+ div (�u ⊗ u) = divT + �b, (1.2)

with T = −p(�)I + 2μ(|Dd|2)Dd +
b divu

(1 − ba|divu|a)1/a
I, (1.3)

where t ∈ (0, T ) is time, x ∈ Ω is the spatial coordinate, �(t, x),u(t, x) =
(u1, u2, u3) represent the density, velocity of the fluid, respectively; μ : R →
(0,∞) is the viscosity function, and a, b are positive model parameters.
b(t, x) = (b1, b2, b3) stands for the density of external body forces. In (1.3),
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symbol T stands for the cauchy stress tensor, and D denotes the symmetric
part of the velocity gradient ∇u, we also use D

d for the deviatoric (traceless)
part of D, that is Dd = D− 1

3 (divu) I. In general case, for any tensor quantity
Q, we set Q

d = Q − 1
3 (trQ) I.

In what follows, we shall assume the external force

b = b(x) = ∇F

where F is a potential and is assumed to be locally Lipschitz continuous on
Ω; and the scalar pressure p(�) depends on the density �, satisfying

p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(�) > 0 for � > 0. (1.4)

We impose the homogeneous Dirichlet boundary condition on the velocity

u|∂Ω = 0, (1.5)

and the initial conditions

�(0, ·) = �0 and (�u)(0, ·) = m0 in Ω, (1.6)

where �0 is the initial density, positive, and m0 is the initial momentum.
Note that, in the constitutive Eq. (1.3), the relation between T and D is

nonlinear even if μ does not depend on D
d. More precisely, we assume that

μ(|Dd|2) = μ0(1 + |Dd|2)(r−2)/2 with μ0 > 0 and r ∈ [11/5,∞), (1.7)

according to [2,3], the monotonicity method applies if

r ≥ 3n + 2
n + 2

,

specifically, when n = 3, we have the lower bound 11
5 for r.

The system we consider in this paper has both nonlinear constitutive
equations and a nonlinear pressure law. As we know, there are few studies con-
cerning compressible fluids with nonlinear relation between the cauchy stress
and the velocity gradient, for example [1,4–6], from which, Zhikov and Pas-
tukhova [6] considered the solvability of the Navier–Stokes equations for a
compressible Non-Newtonian fluid with general nonlinear constitutive equa-
tions and a state equation p(�) = �γ , (γ > 1). Feireisl et al. [1] showed that
for any data fulfilling certain natural conditions concerning their integrability,
there exists a weak solution to the problem (1.1)–(1.7) that admits the strictly
positive density in (0, T ) × Ω whenever �0 > 0 in Ω.

In the work of Feireisl and Ptzeltová [7], it is showed that, with some
basic hypotheses, any weak solution converged to a fixed stationary state as
time goes to infinity. Following the argument of Feireisl and Ptzeltová [7], with
the global existence showed by Feireisl et al. [1], we consider the large time
behavior of the non-Newtonian fluid. For more results on the problem of large
time behavior, see for instance [8–13] and the reference cited there in.

The stationary problem for u= 0{
∇p(�) = �∇F (�),
� > 0,

∫
Ω

�(x) = m
(1.8)
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where the parameter m > 0 represents the total mass conserved by the flow,
plays an important role in solving problems of Navier–Stokes equations. From
the results such as [14–16], we get that, the uniqueness for (1.8) is of particular
interesting, as in that case, the global trajectory of the Navier–Stokes equations
for compressible isentropic flow, will converge to the single stationary state.
Besides, there are many other contributions about the problem of existence and
the uniqueness of a solution of steady compressible flow, for example [14,17–
20], and reference therein. In fact, da Veiga [17] obtained a necessary and
sufficient conditions for the existence of the rest state, with a positive density.
Feireisl and Peteltová [14] showed the optimal condition for the uniqueness of
the nonnegative stationary solution.
Hypotheses By Lp(Ω) and W k,p(Ω), 1 ≤ p, k ≤ ∞, we denote the Lebesgue
and Sobolev spaces, respectively, equipped with the standard norm.

We consider the stress tensor T as

T = −p(�)I + S(u) + η(divu)divu I, (1.9)

where

1. the deviatoric part of the Cauchy stress tensor S is specified through

S(u) : = 2μ(|Dd|2)Dd

= 2μ0(1 + |Dd(u)|2)(r−2)/2
D

d(u), μ0 > 0 constant, r ∈ [11/5,∞);
(1.10)

2. the bulk viscosity coefficient η is a continuous function of div u, η(divu) :
(− 1

b , 1
b ) → [0,∞), such that there is a convex potential Λ : R → [0,∞],⎧⎪⎪⎨

⎪⎪⎩
Λ(0) = 0,
Λ′(z) = zη(z),
Λ(z) → ∞ if z → ± 1

b ,
Λ(z) = ∞ if |z| ≥ 1

b ;

(1.11)

3. the pressure p = p(�) and the Helmholtz free energy ψ = ψ(�) satisfy

p = �2ψ′(�), p ∈ C[0,∞) ∩ C1(0,∞), p(0) = 0, p′(�) > 0 for � > 0.
(1.12)

Remark. In the following part, we need to introduce a function P by P (�) :=
�ψ(�). Using (1.12), it is easy to get that P ′′(�) = p′(�)

� , when � > 0, P ′′(�) > 0,
which means P is strictly convex on (0,∞).

Let b = ∇F , where we shall always assume the potential F satisfies

F ∈ L∞(Ω) and Lipschitz continuous on Ω. (1.13)

our main result is stated in the following theorem:

Theorem 1.1. Let Ω ⊆ R
3 be a bounded domain with a compact and Lipschitz

boundary. Let the potential F satisfy (1.13). Assume, the pressure p = p(�)
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satisfy (1.12). Then for any weak solution �,u of the problem (1.1)–(1.7), there
exists a stationary state �s such that

�(t) → �s in Lq(Ω), q ∈ [1,∞), ess sup
τ>t

∫
Ω

�(τ)|u(τ)|2dx → 0, as t → ∞.

(1.14)

The paper is organized as follows. In Sect. 2, we state the global existence
results of the weak solutions. Section 3 includes all estimate needed for the
convergence of the weak solutions. In Sect. 4, we state some known results
about the stationary problem. Section 5 contains the proof of the main result.

2. Global-in-time weak solutions

In this part, we will state the definition of weak solutions of the problem
(1.1)–(1.7), which has been established in the work of [1].

Definition 2.1. Let Ω ⊆ R
3 be a bounded domain with a Lipschitz boundary.

Suppose that the pressure p = p(�) and the Helmholtz free energy ψ = ψ(�)
satisfy (1.12) and that the hypotheses (1.9)–(1.13) hold, let the initial data
(�0,m0) satisfy

0 < � ≤ �0(x) ≤ �, for a.e x ∈ Ω, m0 ∈ (L2(Ω))3.

Then, for any T > 0, a pair of functions (�,u) is called a weak solution of the
problem (1.1)–(1.7) if:

(1)

� ∈ C([0, T ];L1(Ω)) ∩ L∞((0, T ) × Ω), �(0) = �0,√
�u ∈ L∞([0, T ]; (L2(Ω))3), u ∈ Lr([0, T ]; (W 1,r

0 (Ω))3),

η(divxu)|divxu|2 ∈ L1((0, T ) × Ω);

(2) the equation of continuity (1.1) holds in the following sense:∫ τ

0

∫
R3

(�ϕt + �u · ∇ϕ) dxdt =
[∫

R3
�ϕdx

] ∣∣∣τ
0

(2.1)

for any τ ∈ [0, T ], for all ϕ ∈ D((0, T ) × R
3) provided u is prolonged by

zero outside Ω. And the renormalized equation

∂t[b(�)] + divx[b(�)u] + (b′(�)� − b(�))divxu = 0 (2.2)

holds in the sense of distributions, for any

b ∈ C1(R), |b′(z)z| ≤ c|z|1/2;



NoDEA Large-time behaviour of solutions Page 5 of 18 23

(3) the following weak formulation of the momentum equation holds∫ τ

0

∫
Ω

Λ(divxϕ) − Λ(divxu) dxdt ≥
[∫

Ω

�|u|2dx

] ∣∣∣τ
0

−
[∫

Ω

�u · ϕdx

] ∣∣∣τ
0

+
∫ τ

0

∫
Ω

(
�u · ∂tϕ + (�u ⊗ u) : ∇ϕ + S(u) : Dd(u − ϕ)

)
dxdt

+
∫ τ

0

∫
Ω

p(�)div (ϕ − u) dxdt +
∫ τ

0

∫
Ω

�u · (ϕ − u) dxdt,

for a.e τ ∈ [0, T ], for all ϕ ∈ D((0, T ) × Ω).

3. Energy estimates and local convergence

Firstly, under the assumption that both u and � are smooth, we will derive
the energy estimates. Taking the scalar product of (1.2) with u, we have

�t|u|2 + �

(
1
2
|u|2

)
t

+ |u|2div (�u) + �u · ∇
( |u|2

2

)
= udivT + �∇F · u,

with the help of (1.1), it is easy to get(
1
2
�|u|2

)
t

+
|u|2
2

div (�u) + �u · ∇
( |u|2

2

)
= udivT + �∇F · u,

it follows that
1
2

[
(�|u|2)t + div (�|u|2u)

]
+ T · D = div (Tu) + �∇F · u,

integrating over Ω, using boundary condition (1.5) and the Transport Theorem
“ d

dt

∫
Ω

F dx =
∫
Ω

Ft + div (Fu) dx′′, we have

d

dt

∫
Ω

(
1
2
�|u|2 − �F

)
dx +

∫
Ω

T · D dx = 0. (3.1)

On the other hand, without the thermal effects, the dynamics of the process
are often carried on by the so-called thermodynamic identity

T · D − �ψ̇ = ξ (3.2)

where ψ = ψ(�) is the Helmholtz potential, ξ denotes the rate of dissipation,
and ψ̇ means the material derivative of ψ,

ψ̇ =
∂ψ

∂t
+

3∑
k=1

∂ψ

∂xk
uk.

Combining (1.1) and the material derivative, we get

�ψ̇ = �ψ′(�)�̇ = −�2ψ′(�)divu = −p divu (3.3)

where p =: �2ψ′(�) := �2 dψ(�)
d� . With easy computation, we observe

T · D = T
d · Dd +

1
3

(trT) divu. (3.4)
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Plugging (3.3) (3.4) into (3.2), one gets

ξ = T
d · Dd +

(
1
3

trT + p(�)
)

divu.

Besides, from (1.9), we have the following relation,
1
3

trT = −p(�) + η(divu)divu,

T
d = 2μ(|Dd|2)Dd,

then,
ξ = 2μ0(1 + |Dd(u)|2)(r−2)/2|Dd(u)|2 + η(divu)|divu|2. (3.5)

Putting (3.2) and (3.5) into (3.1), we have the energy equation,

d

dt
E(t)+

∫
Ω

(
2μ0(1+|Dd(u)|2)(r−2)/2|Dd(u)|2+η(divu)|divu|2

)
dx = 0, (3.6)

where

E(t) =
∫

Ω

(
1
2
�(t)|u(t)|2 + �(t)ψ − �(t)F

)
dx.

Remark. If �, u are weak solutions, the “ =′′ in (3.6) turns to “ ≤′′.

Proposition 3.1. Under the hypotheses of Theorem 1.1, let �,u be a weak so-
lution of the problem (1.1)–(1.7) on the time interval (0,∞), and satisfying
Definition 2.1.

Then the mass m[�(t)] is time invariant, i.e

m0
def====

∫
Ω

�(t) dx =
∫

Ω

�(s) dx for a.e. 0 < s ≤ t. (3.7)

Further more, there exist a constant E0 such that

ess sup
t>1

(‖�ψ‖L1(Ω) + ‖�‖L1(Ω) + ‖√
�u‖L2(Ω)

)
+

∫ ∞

1

∫
Ω

(|Dd(u)|r + |divu|2) dxdt ≤ E0. (3.8)

Proof. From the energy inequality (3.6), we know, �|u|2 ∈ L∞
loc((0,∞);L1(Ω)),

using Hölder inequality,∫
Ω

�|u| dx =
∫

Ω

�
1
2 �

1
2 |u| dx ≤

(∫
Ω

� dx

) 1
2

(∫
Ω

�|u|2 dx

) 1
2

,

we have �|u| ∈ L∞
loc((0,∞);L1(Ω)). Choose function ψ ∈ D(0,∞) and a se-

quence φn ∈ D(R3) satisfying{
0 ≤ φn(x) ≤ 1, |∇φn(x)| ≤ 1,

φn(x) → 1, |∇φn(x)| → 0, as n → ∞,
for all x ∈ R

3.

Taking ϕn = ψ(t)φn(x) as the test function in∫ ∞

0

∫
Ω

(�ϕt + �u · ∇ϕ) dxdt = 0,
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we have ∫ ∞

0

∫
Ω

(�ψ′(t)φn + ψ(t)�u · ∇ϕn(x)) dxdt = 0.

Let n → ∞, with the Lebesgue dominance convergence theorem, we observe∫ ∞

0

∫
Ω

�ψ′(t) dxdt = 0

for any ψ ∈ D(0,∞), yielding (3.7). Combining (3.7), (1.13) and the energy
inequality (3.6), we get (3.8). �

Further, we have the following Lemma.

Lemma 3.1. Under the hypotheses of Theorem 1.1, we have

lim
τ→∞

∫ τ+2

τ−1

‖∇u‖r
Lr(Ω) + ||�|u|2‖

L
r
2 ∩L1(Ω)

+ ‖�|u|‖2
Lr(Ω) dt = 0. (3.9)

Proof. The desired conclusion follows from Definition 2.1 and the results ob-
tained in Proposition 3.1. �

Analogy of Lemma 4.1 in [7], we have

Lemma 3.2. Let φ ∈ C∞(Ω) such that

suppφ ⊂ Ω, 0 ≤ φ ≤ 1, |∇φ| ≤ M in Ω.

Let b ∈ C1(R) satisfy

b, b′ ≥ 0, b(z) = 0 for z ≤ 0, zb′(z) ≤ czθ for z ≥ 0,

where

0 < θ < min
{

1
4
,
1
3

− 1
r

}
. (3.10)

Then, under the hypotheses of Theorem 1.1, there exists a constant Y (b) such
that

lim sup
τ→∞

∫ τ+1

τ

∫
Ω

p(�)b(�)φ2 dxdt

≤ Y (b)

(
lim sup

τ→∞

∫ τ+2

τ−1

∫
Ω

p(�)|∇φ| dxdt + ess sup
x∈suppφ

|∇F (x)|
)

.

(3.11)

Proof. At first, let us consider the operators

Ai[v] = Δ−1[∂xi
v], i = 1, 2, 3

where Δ−1 stands for the inverse of the Laplace operator on R
3. To be more

specific, the Fourier symbol of Ai is

Âj [ξ] =
−iξj

|ξ|2 , j = 1, 2, 3.
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Notice that divA[v] = v and ΔAi = ∂i, recall the Riesz operators Rij =
∂xi

Aj , and the Fourier symbols Rij(ξ) = ξiξj

|ξ|2 . The classical Mikhlin multiplier
theorem yields (see [21])⎧⎪⎨

⎪⎩
‖Ai[v]‖W 1,s(Ω) ≤ C(s,Ω)‖v‖Ls(R3), 1 < s < ∞,

‖Ai[v]‖Lq(Ω) ≤ C‖Ai[v]‖W 1,s(Ω) ≤ C(s, q,Ω)‖v‖Ls(R3),
1
q ≥ 1

s − 1
3 ,

‖Ai[v]‖Lq(Ω) ≤ C(s,Ω)‖v‖Ls(R3), s > 3.

(3.12)
Taking the test functions of the form

ϕi(t, x) = ψ(t − τ)φ(x)Ai[φb(�)], i = 1, 2, 3

where
ψ ∈ D(−1, 2), 0 ≤ ψ ≤ 1, ψ|(0,1) = 1, |ψ′| ≤ 2.

Since b(�) satisfies the renormalized equation,

b(�)t + div (b(�)u) + (b′(�)� − b(�))divu = 0,

we observe,

φb(�)t = φ(b′(�)� − b(�))divu − div (φb(�)u) + b(�)u · ∇φ,

it follows that
ϕi

t = ψ′(t − τ)φ(x)Ai[φb(�)] + ψ(t − τ)φ(x)Ai[φb(�)t]

= ψ′(t − τ)φ(x)Ai[φb(�)]

+ ψ(t − τ)φ(x)Ai[φ(b′(�)� − b(�))divu

− div (φb(�)u) + b(�)u · ∇φ], i = 1, 2, 3.

Also, we can get,

∂jϕi = ψ(t − τ) (φ∂jAi[φb(�)] + (∂jφ)Ai[φb(�)]) , i, j = 1, 2, 3.

Especially, since
3∑

i=1

φ∂iAi[φb(�)] =
3∑

i=1

φ2b(�),

we have
3∑

i=1

∂iϕi = ψ(t − τ)

(
φ2b(�) +

3∑
i=1

(∂jφ)Ai[φb(�)]

)
. (3.13)

Next, taking ϕi as test function for (1.2), integrating by parts, we get∫
Ω

p(�)∂iϕ
i dx =

∫
Ω

(
− �uiϕ

i
t − �uiu · ∇ϕi + (S(u) : Ddϕ)i

+η(divu)divu ∂iϕ
i − �∂iFϕi

)
dx. (3.14)

From (3.13), we know
3∑

i=1

p(�)∂iϕ
i = p(�)ψ(t − τ)b(�)φ2 +

3∑
i=1

p(�)ψ(t − τ)(∂iφ)Ai[φb(�)]. (3.15)
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We observe that (3.14) and (3.15) lead to∫ τ+1

τ

∫
Ω

p(�)b(�)φ2 dxdt

≤
∫ τ+2

τ−1

∫
Ω

p(�)b(�)φ2 dxdt

≤
3∑

i=1

∫ τ+2

τ−1

∫
Ω

(
− �uiϕ

i
t − �uiu · ∇ϕi + Si(u) · ∇ϕi

− p(�)ψ(t − τ)(∂iφ)Ai[φb(�)] + η(divu)divu ∂iϕ
i − �∂iFϕi

)
dxdt.

(3.16)
To estimate the first term on the right-hand side of (3.16), we compute∫ τ+2

τ−1

∫
Ω

�uiϕ
i
t dxdt

=
∫ τ+2

τ−1

∫
Ω

(
�uiψ

′(t − τ)φ(x)Ai[φb(�)]

+ �uiψ(t − τ)φ(x)Ai[(φb(�) − b′(�)�)divu

+ b(�)u · ∇φ − div (φb(�)u)]
)

dxdt.

(3.17)

In the next, we will consider some estimates. From the conditions, we
find that there is a constant c satisfying

b(z) ≤ czθ, for z ≥ 0,

naturally,

b(�)
1
θ ≤ c�, for � > 0.

By virtue of Proposition 3.1,

‖φb(�)‖
L

1
θ (R3)

≤ C

∫
Ω

� dx = Cm0.

In particular, as b′ is bounded, we have∫
Ω

b(�) dx ≤ sup
z∈R

b′(z)
∫

Ω

� dx = m0 sup
z∈R

b′(z),

hence,
ess sup

t>1
‖φb(�)‖

L1∩L
1
θ (R3)

≤ Y1(b), (3.18)

with the help of the classical Miklin multiplier theorem (3.12), we get

ess sup
t>1

‖∂jAiφb(�)‖Lr1 (R3) ≤ C(r1)‖φb(�)‖Lr1 (R3)

≤ ess sup
t>1

‖φb(�)‖
L1∩L

1
θ (R3)

≤ Y2(r1, b), r1 ∈
(

1,
1
θ

)
,

(3.19)
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and∫ ∞

1

‖Ai[div (φb(�)u)]‖2
Lr2 (R3) dt =

∫ ∞

1

‖φb(�)u‖2
Lr2 (R3) dt

≤
∫ ∞

1

‖φb(�)‖2

L1∩L
1
θ (R3)

‖u‖2
Lr(Ω) dt

≤ ess sup
t>1

‖φb(�)‖2

L1∩L
1
θ (R3)

∫ ∞

1

‖∇u‖2
Lr(Ω) dt,

(3.20)
where

1
r2

=
1
r

+ θ.

As 0 < θ ≤ 1
4 , the relation (3.12)2 and (3.18) yield:

ess sup
t>1

‖Ai[φb(�)(t)]‖Lr3 (R3) ≤ C(r3)ess sup
t>1

‖φb(�)(t)‖Lp1 (R3)

≤ ess sup
t>1

‖φb(�)(t)‖
L1∩L

1
θ (R3)

≤ Y4(r3, b), for any r3 >
3
2
.

(3.21)

Further, using the classical Sobolev embedding theorem, from (3.19) and (3.21),
we get

ess sup
t>1

‖Ai[φb(�)(t)]‖L∞(R3) ≤ Y5(b), i = 1, 2, 3. (3.22)

In the same way,∫ ∞

1

‖Ai[b(�)u · ∇φ]‖2
Lr4 (R3) dt ≤ C(r4)

∫ ∞

1

‖b(�)u · ∇φ‖2
Lp2 (R3) dt

≤ C(r4)M2

∫ ∞

1

‖b(�)‖2

L1∩L
1
θ (R3)

‖u‖2
Lr(Ω) dt

≤ C(r4)M2ess sup
t>1

‖b(�)‖2

L1∩L
1
θ (R3)∫ ∞

1

‖∇u‖2
Lr(Ω) dt

≤ Y6(r4, b),

with
3
2

< r4 < ∞ as 0 < θ ≤ 1
3

− 1
r
.

Similarly as before, by virtue of

b′(�)� ≤ C�θ,

using Proposition 3.1, we observe

‖b′(�)�‖
L

1
θ (Ω)

≤ Cm0,

and ∫
Ω

b′(�)� dx ≤ sup
z∈R

b′(z)
∫

Ω

� dx = m0 sup
z∈R

b′(z),
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analogously, we get

ess sup
t>1

‖b′(�)�‖
L1∩L

1
θ (Ω)

≤ Y7(b).

Observe from (3.8), with easy computation,∫ ∞

1

‖Ai[divuφ(b(�) − b′(�)�)]‖2
Lr5 (R3) dt

≤
∫ ∞

1

‖divuφ(b(�) − b′(�)�)‖2
Lp2 (R3) dt

≤ ess sup
t>1

(
‖b(�)φ‖2

L1∩L
1
θ (R3)

+ ‖b′(�)�φ‖2

L1∩L
1
θ (R3)

) ∫ ∞

1

‖divu‖2
L2(Ω) dt

≤ Y8(r5, b),

where
3
2

< r5 ≤ 6
6θ + 1

.

Combining (3.9) and (3.22) with Hölder inequality, we deduce∫ τ+2

τ−1

∫
Ω

|�uiψ
′(t − τ)φAi[φb(�)]| dxdt

≤ Mess sup
t>1

‖Ai[φb(�)]‖L∞(R3)

∫ τ+2

τ−1

|�ui| dxdt

≤ MY5(b)
∫ τ+2

τ−1

(∫
Ω

� dx

) 1
2

(∫
Ω

�|ui|2 dx

) 1
2

dt

≤ MY5(b)
∫ τ+2

τ−1

‖√
�ui‖

1
2
L2(Ω) dt → 0, as τ → ∞.

Also, using Hölder inequality, we get∫ τ+2

τ−1

∫
Ω

|�uiψ(t − τ)φAi[(φb(�) − b′(�)�)divu

+ b(�)u · ∇φ − div (φb(�)u)]| dxdt

≤ ‖�‖L∞((0,∞)×Ω)

∫ τ+2

τ−1

‖u‖Lr(Ω)‖Ai[(φb(�) − b′(�)�)divu

+ b(�)u · ∇φ − div (φb(�)u)]‖
L1− 1

r (R3)
dt

≤ ‖�‖L∞(Q)

( ∫ τ+2

τ−1

‖∇u‖2
Lr(Ω) dt

) 1
2

× ( ∫ τ+2

τ−1

‖Ai[· · · ]‖ dt
) 1

2

Lr2∩Lr4∩Lr5 (R3)
→ 0, as τ → ∞.

Similarly, we have that∫ τ+2

τ−1

∫
Ω

(
−�uiu·∇ϕi−(S(u) : Ddϕ)i+η(divu)divu ∂iϕ

i
)

dxdt → 0, as τ → ∞.
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In the end, combining (3.7) and (3.22), we obtain∫ τ+2

τ−1

∫
Ω

|∂iF�ϕi| dxdt =
∫ τ+2

τ−1

∫
Ω

|∂iF�ψ(t − τ)φ(x)Ai[φb(�)]| dxdt

≤ ess sup
t>1

‖Ai[φb(�)‖L∞(R3)

∫ τ+2

τ−1

∫
Ω

|∂iF�| dxdt

≤ Y5(b) ess sup
t>1

|∇F |
∫ τ+2

τ−1

∫
Ω

� dxdt

= m0Y5(b) ess sup
t>1

|∇F |,

in the same way, we get∫ τ+2

τ−1

∫
Ω

|p(�)ψ(t − τ)(∂iφ)Ai[φb(�)]| dxdt

≤ ess sup
t>1

‖Ai[φb(�)‖L∞(R3)

∫ τ+2

τ−1

∫
Ω

|p(�)∇φ| dxdt

≤ Y5(b)
∫ τ+2

τ−1

∫
Ω

p(�)|∇φ| dxdt.

Hence, from above, we get (3.11). �

Consider a sequence τn → ∞ and denote

�n(t, x) def==== �(t + τn, x), t ∈ (0, 1), x ∈ Ω.

Proposition 3.2. Under the hypotheses of Theorem 1.1, any sequence τn → ∞,
contains a subsequence such that

�n(t, x) = �(t + τn) → �s in Lq((0, 1) × Ω), q ∈ [1,∞) (3.23)

where �s is a solution of the stationary problem in D ′(Ω), moreover,∫
Ω

�s dx ≤
∫

Ω

�(t) dx = m0.

Proof. From the definition of weak solution, we know �,u satisfy

� ∈ C([0, T ];L1(Ω)) ∩ L∞((0, T ) × Ω), �(0) = �0,√
�u ∈ L∞([0, T ]; (L2(Ω))3), u ∈ Lr([0, T ]; (W 1,r

0 (Ω))3).

Hence, choosing a subsequence if necessary, we can obtain that (see [22])

�n(t, x) → �s in C((0, 1);Lq
weakΩ), q ∈ [1,∞),

un(t, x) ⇀ us weakly in Lr([0, 1]; (W 1,r
0 (Ω))3).

Furthermore, ∫
Ω

�s dx ≤ lim inf
τn→∞

∫
Ω

�n(t) dx = m0.

Since, �,u are solutions to (1.1) in the sense of normalized solution, in partic-
ular

�t + div (�u) = 0 in D ′((0, T ) × Ω). (3.24)
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Taking test function ϕ(x, t) = η(t)φ(x) in (3.24), where

η(t) ∈ D(0, 1), φ ∈ D(Ω),

integrating by parts∫ 1

0

(∫
Ω

�nφ dx

)
η′(t) dt +

∫ 1

0

∫
Ω

�nun∇φη dxdt = 0.

Then, by Lemma 3.1, we get

lim
τn→∞

∫ 1

0

(∫
Ω

�nφ dx

)
η′(t) dx = − lim

τn→∞

∫ 1

0

∫
Ω

�nun∇φη dxdt

≤ C lim
τn→∞

∫ 1

0

(∫
Ω

�n dx

) 1
2

(∫
Ω

�n|un|2 dx

) 1
2

dt

≤ Cm0 lim
τn→∞

∫ 1

0

‖√
�nun‖L2(Ω) dt → 0,

that is ∫ 1

0

(∫
Ω

�sφ dx

)
η′(t) dt = 0.

Since the arbitrariness of η, we have, �s must be independent of t.
By the definition of the pressure p = p(�) and (1.12), passing to the limit

in (1.2) and using Lemma 3.1 again, we have

∇p = ∇F�s in D ′(Ω),

where the symbol p(�) denotes a weak limit of the sequence p(�n).
On the other hand, repeat the procedure in [1], we have∫ 1

0

∫
Ω

p(�)divus − p(�)divu dxdt ≤ 0. (3.25)

Taking P (�) = ψ(�)�, from (1.12), we know that, P (�) is a strictly convex
function. Making use of the renormalized Eq. (2.2), one has the form

∂t[P (�s)] + divx[P (�s)us] + p(�s)divxu = 0.

Noting that, we also have

∂t[P (�)] + divx[P (�)us] + p(�)divxu = 0,

considering (3.25), we conclude that[∫
Ω

(P (�) − P (�s) dx)
] ∣∣1

0
= −

∫ 1

0

∫
Ω

(p(�)divu − p(�s)divus) dxdt

≤ −
∫ 1

0

∫
Ω

(p(�) − p(�s))divus dxdt.

(3.26)

Using the convexity of P , we have∫
Ω

(P (�) − P (�s))divu dx ≥ d lim sup
τn→∞

∫
Ω

|ρn − �s|2 dx, for a certain d > 0,
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while ∫ 1

0

∫
Ω

(P (�) − P (�s))divu dxdt

= − lim
τn→∞

∫ 1

0

∫
Ω

(p(�n) − p(�s))divu dxdt

+ C lim sup
τn→∞

∫ 1

0

∫
Ω

|�n − �s|2 dxdt.

≤ −
∫ 1

0

∫
Ω

(p(�) − p(�s))divu dxdt.

(3.27)

Combining (3.26) and (3.27), and by virtue of Gronwall’s inequality, we observe
that

p(�) = p(�s),
where we have used the fact

[p(�) − p(�s)](0, ·) = 0.

In particular,

�n → �s in L2((0, 1) × Ω), p(�) = p(�s),

this yields the strong convergence in (3.23). �

4. Stationary solutions

In this part, we give the well-know results on the stationary problem (1.8). In
the work of da Veiga [17], they proved the necessary and sufficient conditions
for the solutions existence of the stationary problem for an arbitrary F ∈
L∞(Ω). Further, Feireisl and Petzeltová [14] showed the optimal condition in
terms of F for the problem to possess a unique nonnegative solution �.

Let p be a continuously differentiable real function defined on R
+ = {s ∈

R : s > 0}, such that p′(s) > 0, ∀s ∈ R
+. Assume,

0 < ess inf
x∈Ω

�(x), ess sup
x∈Ω

�(x) < +∞, (4.1)

and, for a fixed m > 0
1

|Ω|
∫

Ω

�(x) dx = m. (4.2)

Define

π(s) =
∫ s

m

p′(t)
t

dt ∀s ∈ R
+, (4.3)

we denote by [a, b] the range of π, π(R+) = [a, b]. Since π(m) = 0, one has
−∞ ≤ a < 0 < b ≤ +∞. We define Φ = π−1, clearly, Φ([a, b]) = R

+, we set
Φ(a) = 0, Φ(b) = +∞.

Definition 4.1. Let F ∈ L∞(Ω), a function � is called an equilibrium solution
of (1.8), if � ∈ L∞(Ω), and if

π(�(x)) = F (x) + C, a.e in Ω,

and (4.1), (4.2) hold.
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We set m0 = ess inf F in Ω, M0 = ess sup F in Ω, one has the following
result.

Theorem 4.1. Let F ∈ L∞ be given. There exists an equilibrium solution �(x)
if and only of there exists a constant

C ∈ [a − m0, b − M0], (4.4)

such that
1

|Ω|
∫

Ω

Φ(C + F (x)) dx = m. (4.5)

If such a constant exists then the (unique) equilibrium solution is given by

�(x) = Φ(C + F (x)), ∀x ∈ Ω. (4.6)

Theorem 4.2. Under the assumption of Theorem 4.1, there exists an equilib-
rium solution �(x) if and only if

a − m0 < b − M0,

and
1

|Ω|
∫

Ω

Φ(a − m0 + F (x)) dx < m <
1

|Ω|
∫

Ω

Φ(b − M0 + F (x)) dx.

In this case the equilibrium solution �(x) is given by (4.6), where C is the
(unique) solution of (4.4)–(4.5).

The proof of Theorems 4.1 and 4.2 have been given by da Veiga [17].

5. The proof of Theorem 1.1

In this part, we will prove the main result.
We know that for every sequence τn → ∞, the time shifts �n = �(t + τn)

converges to the stationary state �s, more accurately,

�n → �s strongly in Lq((0, 1) × Ω), q ∈ [1,∞).

Energy inequality implies converge of the energy E(t) for t → ∞ to some finite
number

E∞ := ess sup
t→∞

E(t).

Further, Lemma 3.1 shows that

lim
τ→∞

∫ τ+1

τ

∫
Ω

1
2
�|u|2 dxdt = 0.

Thus,

E∞ = lim
τn→∞

∫ τn+1

τn

∫
Ω

(P (�) − �F ) dxdt =
∫

Ω

P (�s) − F�s dx = E[�s].

Moreover, using the continuity Eq. (1.1) and Lemma 3.1, one has easily
observe that

�(t) → �s weakly in Lq(Ω) as t → ∞, q ∈ [1,∞).
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Then, we have

E∞ =
∫

Ω

(P (�s) − F�s) dx

≤ lim inf
t→∞

∫
Ω

(P (�(t)) − F�(t)) dx

≤ lim sup
t→∞

∫
Ω

(P (�(t)) − F�(t)) dx

≤ ess lim sup
t→∞

∫
Ω

(
1
2
�(t)|u(t)|2 + P (�(t)) − F�(t)

)
dx

= ess lim
t→∞ E(t) = E∞.

Hence,

ess sup
τ>t

∫
Ω

�(τ)|u(τ)|2 dx → 0,

�(t) → �s strongly in Lq(Ω), q ∈ [1,∞).
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