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Abstract. We consider a stochastic functional delay differential equation,
namely an equation whose evolution depends on its past history as well
as on its present state, driven by a pure diffusive component plus a pure
jump Poisson compensated measure. We lift the problem in the infinite
dimensional space of square integrable Lebesgue functions in order to
show that its solution is an L2-valued Markov process whose uniqueness
can be shown under standard assumptions of locally Lipschitzianity and
linear growth for the coefficients. Coupling the aforementioned equation
with a standard backward differential equation, and deriving some ad
hoc results concerning the Malliavin derivative for systems with memory,
we are able to derive a non-linear Feynman–Kac representation theorem
under mild assumptions of differentiability.
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1. Introduction

During recent years, an increasing attention has been paid to stochastic e-
quations whose evolution depends not only on the present state, but also on
the past history. In particular, it has been shown that memory effects can-
not be neglected when dealing with many natural phenomena. As examples,
let us mention the coupled atmosphere–ocean models, see, e.g., [9], and their
applications in describing climate changes in the environmental sciences set-
ting, or the effect of time delay considering population dynamics, when suitable
growth models are considered, see, e.g., [2]. Nevertheless, assumptions that will
be made throughout the work are mainly taken into account having in mind
concrete financial applications. For instance, in [39,52] the authors pointed
out how delay arises in commodity markets and energy markets, when it is
necessary to take into account the impact of production and transportation,
whereas in [5,11] the authors provide applications to option pricing in market-
s with memory. Similarly, delay naturally arises when dealing with financial
instruments as, e.g., Asian options or lookback options, as studied in, e.g. [16]
and references therein.

For the mathematical foundations of the theory of stochastic functional
delay differential equations (SFDDEs) we refer to [40], as well as to [41] to
many motivating examples concerning the treatment of equations with delay.
In particular the monograph [40] represents an early and deep treatment of
SFDDE’s, where several results concerning existence and uniqueness of solu-
tions to SFDDE’s as well as regularity results are derived. The theory of delay
equations has seen a renewed attention recently, in particular in [13,14] an ad
hoc stochastic calculus, known as functional Itô’s calculus, has been derived,
based on a suitable Itô’s formula for delay equations. Also, in past few years
several different works have appeared deriving fundamental results on delay
equations based on semigroup theory and infinite dimensional analysis, see,
e.g. [30,31], or based on the calculus via regularization, see, e.g. [22,33]. Even-
tually, in [22,30], it has been shown that SFDDE’s, path-dependent calculus
and delay equations via semigroup theory, are in fact closely related.

Having in mind possible financial applications, the aim of the present
work is to extend some results concerning the non-linear Feynman–Kac for-
mula for a forward–backward system with delay, where the driving noise is a
non Gaussian Lévy process, using the theory of SFDDE’s first introduced in
[40]. It is worth to mention that, particularly during last decades, asset price
dynamics and, more generally, financial instruments processes, have been wide-
ly characterized by trajectories showing sudden changes and ample jumps. It
follows that the classical Black and Scholes picture has to be refined by allow-
ing to consider random components constituted by both diffusive and jump
components.

We thus consider the following R-valued SFDDE with jumps

dX(t) = μ(t,X(t + ·),X(t))dt + σ(t,X(t + ·),X(t))dW (t)

+
∫
R0

γ(t,X(t + ·),X(t), z)Ñ(dt, dz),
(1.1)



NoDEA A nonlinear Kolmogorov equation for SFDDE with jumps Page 3 of 35 16

where W (t) is a standard Brownian motion, Ñ(dt, dz) is a compensated Pois-
son random measure with associated Lévy measure ν. Also the notation X(t+·)
means that the coefficients μ, σ and γ, at time t, depend not only on the present
state of the process X but also on its past values. Exploiting the concept of
segment of a process X, see, e.g., [40,41], we will lift the finite dimensional
R-valued process solution to (1.1) to an infinite dimensional stochastic process
with values in a suitable path-space. More precisely, in what follows we will
denote by r > 0 the maximum delay taken into account and T < ∞ a fixed
finite time horizon. Thus, for an R-valued stochastic process X, we indicate
with X(t) the value in R at time t ∈ [0, T ] and with Xt the corresponding seg-
ment, i.e. the trajectory in the time interval [t−r, t], that is Xt(·) : [−r, 0] → R

is such that Xt(θ) := X(t + θ) for all θ ∈ [−r, 0].
Then Eq. (1.1) can be rewritten as s

⎧⎨
⎩

dX(t) = μ(t,Xt,X(t))dt + σ(t,Xt,X(t))dW (t)
+

∫
R0

γ(t,Xt,X(t), z)Ñ(dt,dz)
(X0,X(0)) = (η(θ), x)

, (1.2)

for all t ∈ [0, T ], θ ∈ [−r, 0], x ∈ R and η a suitable R-valued function on
[−r, 0].

Remark 1.1. In what follows we will only consider the 1-dimensional case, the
case of a R

d-valued stochastic process, perturbed by a general Rm-dimensional
Wiener process and a R

n-dimensional Poisson random measure, with d > 1,
m > 1 and n > 1, can be easily obtained from the present one.

In order to take into account the delay component, we study the Eq. (1.2)
in the Delfour–Mitter space defined as follows M2 := L2 ([−r, 0];R) × R, en-
dowed with the scalar product

〈(Xt,X(t)), (Yt, Y (t))〉M2
= 〈Xt, Yt〉L2 + X(t) · Y (t),

and norm

‖(Xt,X(t))‖2M2
= ‖Xt‖2L2 + |X(t)|2, (Xt, ,X(t)) ∈ M2, (1.3)

where ·, resp. | · |, stands for the scalar product in R, resp. the absolute value,
and 〈·, ·〉L2 , resp. ‖ · ‖L2 , is the scalar product, resp. norm, in L2([−r, 0];R) =:
L2. Note that the space M2 is a separable Hilbert space, see, e.g., [6]. The
Delfour–Mitter space can be generalized to be a separable Banach space if we
consider p ∈ (1,∞), equipped with the appropriate norm. In this work we will
consider the case p = 2.

Alternatively, we could have considered the space of càdlàg functions,
i.e. right–continuous functions with finite left limit, on the interval [−r, 0],
D := D ([−r, 0];R) called Skorokhod space; in particular D is a non separable
Banach space if endowed with the sup norm ‖·‖D = supt∈[−r,0] |·|. We also have
that D ⊂ M2 with the injection being continuous, see, e.g., [6]. Nevertheless,
choosing M2 as state space we cannot deal with the case of discrete delays,
see, e.g., [6, p. 3], or [40].
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The choice of considering the Hilbert space M2 instead of the Skorokhod
space D has two main motivations. First, the separability of the Hilbert s-
pace M2 allows us to prove a fundamental property for the SFDDE under
investigation, that is we will show that although exhibiting delay, the SFDDE
(1.2) is a M2-Markov process. The same, primary due to the fact that the
Skorokhod space D is not a separable Banach space, does not hold if one con-
siders D as state space. One can nevertheless avoid this problem considering
weaker topologies on D, such as the so-called Skorokhod topology, under which
D can be shown to be separable, see, e.g [45]. For the sake of simplicity we
will address here the simpler case of an M2-valued process, leaving the more
technical case of D-process to future investigations.

Second reason we are choosing here the Hilbert space M2 is the exten-
sive use we will do of Malliavin calculus. In fact Malliavin calculus provides a
powerful tool to study general regularity properties of a process or, as in the
present case, to obtain representation theorem under mild regularity assump-
tions for the process. Nevertheless its generalization to the infinite dimensional
setting, mostly when the driving noise is a general Lévy process, is rather tech-
nical and the theory, even if promising results have been obtained, see [4] and
references therein, is still not completely developed. For these reasons, in the
present work, we will employ an approach similar to the one used in [25] for
backward stochastic differential equations with time-delayed generator and in
[33] for SFDDE with a Brownian noise. We will in fact exploit the fact that the
original Eq. (1.2) has value in a finite dimensional space, so that one can use
standard results in Malliavin calculus. This will imply that, exactly as in [33],
we will not use a purely infinite dimensional formulation for our problem, such
as for instance the one first formulated in [12] and subsequently used in [35].
In fact the M2-setting will be mainly used to prove existence and uniqueness
of a solution and most important, as mentioned above, we are able to prove
that the SFDDE (1.2) is a M2-Markov process.

We have already mentioned that, despite the fact that the process (1.2)
exhibits memory effects, lifting the problem to consider a M2-value solution
leads to obtain a solution which is a Markov process. Taking in mind latter
result and in order to derive the Kolomogorov equation associated to equation
(1.2), we will consider, following [33–35], a classical R-valued backward sto-
chastic differential equation (BSDE), coupled with the forward equation (1.2),
which evolves according to⎧⎪⎨

⎪⎩
dY (t) = ψ

(
t,Xt,X(t), Y (t), Z(t),

∫
R0

U(t, z)δ(z)ν(dz)
)

dt

+Z(t)dW (t) +
∫
R0

U(t, z)Ñ(dt,dz)
Y (T ) = φ(XT ,X(T ))

, (1.4)

where ψ and φ are given suitable functions to be specified later on. We recall
that a solution to Eq. (1.4) is a triplet (Y,Z, U) , where Y is the state process,
while Z and U are the control processes.

It is well known that, when the delay is not involved, there exists a
Feynman–Kac representation theorem that connects the solution of the cou-
pled forward–backward system (1.2) and (1.4), to a deterministic semi-linear
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partial integro-differential equation, see, e.g., [24, Chapter. 4] or [7] for fur-
ther details. When the delay is taken into consideration, previous result has
been recently proved in the Brownian case in [33,35]. In the present paper we
extend latter result taking into consideration a non Gaussian Lévy noise. In
particular, exploiting notations already introduced, we will consider the follow-
ing coupled forward–backward stochastic differential equation (FBSDE) with
delay, for t ∈ [τ, T ] ⊂ [0, T ],

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dXτ,η,x(t) = μ(t,Xτ,η,x
t ,Xτ,η,x(t))dt + σ(t,Xτ,η,x

t ,Xτ,η,x(t))dW (t)
+

∫
R0

γ(t,Xτ,η,x
t ,Xτ,η,x(t), z)Ñ(dt,dz)

(Xτ,η,x
τ ,Xτ,η,x(τ)) = (η, x) ∈ M2

dY τ,η,x(t) = ψ
(
t,Xτ,η,x

t ,Xτ,η,x(t), Y τ,η,x(t), Zτ,η,x(t), Ũτ,η,x(t)
)

dt

+Zτ,η,x(t)dW (t) +
∫
R0

Uτ,η,x(t, z)Ñ(dt,dz)
Y τ,η,x(T ) = φ(Xτ,η,x

T ,Xτ,η,x(T ))

,

(1.5)

where we have denoted for short by

Ũτ,η,x(t) :=
∫
R0

Uτ,η,x(t, z)δ(z)ν(dz).

Moreover we have denoted by Xτ,η,x the value of the process with starting time
τ ∈ [0, T ] and initial value (η, x) ∈ M2. In what follows we will often omit the
dependence on the initial value point (η, x) and we assume that the process
starts at time τ = 0, i.e. X0,η,x

t =: Xt. Also, in order to simplify notation,
most of the results will be proved for τ = 0, the extension to the general case
of τ 	= 0 being straightforward.

We are going to connect the solution to the FBSDE (1.5) to the solution
of the following partial integro-differential Hilbert–space valued equation
{

∂
∂t

u(t, η, x)+Ltu(t, η, x)=ψ (t, η, x, u(t, η, x), ∂xu(t, η, x)σ(t, η, x), J u(t, η, x))

u(T, η, x)= φ(η, x), t∈[0, T ], (η, x)∈M2.
(1.6)

where Lt is the infinitesimal generator of the forward M2-valued process in
Eq. (4.1), ∂x is the derivative with respect to the present state X(t) and J is
the operator

J u(t, η, x) :=
∫
R0

[u(t, η, x + γ(t, η, x, z)) − u(t, η, x)]δ(z)ν(dz).

In particular, we will consider a mild notion of solution to Eq. (1.6), so
that we say that a function u : [0, T ] × M2 → R is a mild solution to Eq. (1.6)
if there exist C > 0 and m ≥ 0, such that, for any t ∈ [0, T ] and any (η1, x1),
(η2, x2) ∈ M2, u satisfies

|u(t, η1, x1) − u(t, η2, x2)| ≤ C|(η1, x1) − (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m,

|u(t, 0, 0)| ≤ C,
(1.7)
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and the following equality holds true

u(t, η, x) = Pt,T φ(η, x) +
∫ T

t

Pt,s[ψ(·, u(s, ·), ∂xu(s, ·)σ(s, ·),J u(s, ·)](η, x)ds,

(1.8)

for all t ∈ [0, T ], and (η, x) ∈ M2, Pt,s being the Markov semigroup related to
the Eq. (1.2). In particular we would like to stress that we require the solution
u to Eq. (3.5) to be locally Lipschitz continuous with respect to the second
variable with at most polynomial growth, so that the derivative appearing in
the right–hand–side of Eq. (1.8) is to be defined in a mild sense, to better
specified later on.

We thus define⎧⎪⎪⎨
⎪⎪⎩

Y τ,η,x(t) := u(t,Xτ,η,x
t ,Xτ,η,x(t))

Zτ,η,x(t) := ∂xu(t,Xτ,η,x
t ,Xτ,η,x(t)) σ(t,Xτ,η,x

t ,Xτ,η,x(t))
Uτ,η,x(t, z) := u (t,Xτ,η,x

t ,Xτ,η,x(t) + γ(t,Xτ,η,x
t ,Xτ,η,x(t), z))

−u (t,Xτ,η,x
t ,Xτ,η,x(t))

then the triplet (Y τ,η,x, Zτ,η,x, Uτ,η,x) is the unique solution to the backward
equation (1.4), where ∂x is the derivative with respect to the R-valued present
state X(s) of (Xs,X(s)), u being the mild solution to the Kolmogorov equation
{

∂
∂tu(t, η, x)+Ltu(t, η, x)=ψ (t, η, x, u(t, η, x), ∂xu(t, η, x)σ(t, η, x),J u(t, η, x))
u(T, η, x) = φ(η, x), t ∈ [0, T ], (η, x) ∈ M2.

As regard the notion of mild solution for the Kolmogorov equation (1.6), we
have to mention that different notions can be chosen. Our choice is due main-
ly to the fact that, since we do not require for differentiability assumptions,
it seems to be the most suitable for financial applications. As an example, in
option pricing one usually have that the terminal payoff of a given claim is Lip-
schitz continuous, without being differentiable. Moreover, mild differentiability
assumptions and the use of delayed coefficients, allow the above notion to be
particularly suited to price exotic options, as in the case of Asian options, see
[16]. Furthermore, the notion of mild solution we have chosen well emphasize
the intrinsic stochastic nature of the problem, also providing an immediate
connection to BSDE theory, hence allowing to treat general semilinear PIDE.
We refer to [24] for a comprehensive treatment of BSDE’s with general Lévy
noise, see also [15] and references therein for a more financially oriented study
of the topic.

We would also like to recall that different notions of mild solution for par-
tial integro-differential already exist in literature, mostly considering Volterra-
type equations, allowing also to exhibit delays, we refer the interested reader
to [10,36,38]. Also, in a setting similar to the present one, a notion of mild
solution for SPDE’s driven by α-stable noise can be found in [49,50], where the
authors study mild solutions of semilinear parabolic equations in an infinite
dimensional Hilbert space, in order to obtain the associated Hamilton–Jacobi–
Bellman equation with applications to the stochastic optimal control problems.
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Last but not least, rather recently a further notion of mild solution to
delay equations has appeared in literature. This is an ad hoc generalization
of the standard notion of viscosity solution. In particular first in [27], and
then in [28,29], a new notion of viscosity solution to PDE with delays, called
path-dependent PDE, has been formulated, based on the newly developed func-
tional Itô calculus mentioned above. Latter notion has been also exploited to
treat path-dependent PDE with delayed generator, see, e.g., [21], or [17] for an
application to mathematical finance.

The paper is organized as follows: in Sect. 2 we introduce necessary nota-
tions and formalize the tools necessary to treat delay equations in the Hilbert
space M2. In particular Sect. 2 is devoted to the characterization of funda-
mental results on SFDDE, such as existence and uniqueness, as well as the
Markov property of the forward process. Thus subsection 2.1 is devoted to
results concerning Malliavin calculus for delay equations which will be needed
in order to prove the main representation theorem. In Sect. 3 we prove the
main result based on Malliavin calculus, which is related to the study of the
joint quadratic variation of the forward equation and a suitable function; in
Sect. 4 we give the non-linear Feynman–Kac theorem that is later used to
derive a deterministic representation to the FBSDE. Finally in Sect. 5 we give
an application of obtained result to optimal control.

2. Forward stochastic functional differential equation with delay

In this section we introduce the notation used throughout the paper, also p-
resenting basic definitions and main results related to the mathematical tech-
niques involved in our approach. Some results are already established in litera-
ture, such as existence and uniqueness of solutions, whereas others are proved
here for the first time.

Let us consider a probability space (Ω,F , (Ft)t∈[0,T ] ,P), where (Ft)t∈[0,T ]

is the natural filtration jointly generated by the random variables W (s) and
N(ds, dz), for all z ∈ R\{0} =: R0 and for all s ∈ [0, T ], augmented by
all P-null sets, W being a 1-dimensional Brownian motion, while N is a 1-
dimensional Poisson random measure, independent from W , with associated
Lévy measure ν(dz), satisfying∫

R0

min{1, z2}ν(dz) < ∞; (2.1)

also we define the compensated random measure Ñ(dt, dz) := N(dt, dz) −
ν(dz)dt.

We will further assume in what follows that the Lévy measure ν satisfies∫
R0

|z|2ν(dz) < ∞. (2.2)

We underline that condition (2.1) is a standard assumption in the defini-
tion of a Lévy measure ν, whereas Assumption (2.2) implies that the process
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has a finite second moment, which is a natural assumption if one has in mind
financial applications.

In the following, we fix a delay r > 0 and we will use the notation X(t)
to denote the present state at time t of the real valued process X, whereas
we use Xt to denote the segment of the path described by X during the time
interval [t − r, t] with values in a suitable infinite dimensional path space. In
particular, we refer to the couple(

(X(t + θ))θ∈[−r,0] ,X(t)
)

=: (Xt,X(t)).

From now on, we define M2 := L2 × R := L2([−r, 0];R) × R, endowed with
the scalar product

〈(Xt,X(t)), (Yt, Y (t))〉M2
= 〈Xt, Yt〉L2 + X(t) · Y (t),

and norm

‖ (Xt,X(t)) ‖2M2 = ‖Xt‖2L2 + |X(t)|2, (2.3)

namely the Delfour–Mitter space, which is a separable Hilbert space, see, e.g.,
[40] and reference therein for details.

Furthermore, for any p ∈ [2,∞), we denote by Sp(t) := Sp([0, t];M2) and
we say that a M2-valued stochastic process (Xs,X(s))s∈[0,t] belongs to Sp(t)
if

‖X‖p
Sp(t) := E

[
sup

s ∈ [0,t]

‖(Xs,X(s))‖p
M2

]
< ∞.

We denote for short Sp := Sp(T ). For the sake of simplicity, the following
notation is used throughout the paper: | · |2 denotes the norm in M2 and | · |
the absolute value in R.

Remark 2.1. Let us stress that we will consider here a R-valued stochastic
process X, nevertheless any result that follows can be easily generalized to
the case of an R

d- valued stochastic process. In particular we would have
considered the Delfour–Mitter space M2([−r, 0];Rd) := L2([−r, 0];Rd) × R

d,
see, e.g. [6].

As briefly said in Sect. 1, the main goal of this work is to study a stochastic
functional delay differential equation (SFDDE) of the form⎧⎨

⎩
dX(t) = μ(t,Xt,X(t))dt + σ(t,Xt,X(t))dW (t)

+
∫
R0

γ(t,Xt,X(t), z)Ñ(dt,dz),
(X0,X(0)) = (η, x) ∈ M2

(2.4)

for all t ∈ [0, T ]. We will assume the functionals μ, σ and γ to fulfil the
following assumptions.

Assumption 2.2. (A1) the coefficients

μ : [0, T ] × M2 → R, σ : [0, T ] × M2 → R, γ : [0, T ] × M2 × R0 → R

are continuous.
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(A2) There exists K > 0 such that for all t ∈ [0, T ] and for all (η1, x1),
(η2, x2) ∈ M2,

|μ(t, η1, x1) − μ(t, η2, x2)|2 + |σ(t, η1, x1) − σ(t, η2, x2)|2

+
∫
R0

|γ(t, η1, x1, z) − γ(t, η2, x2, z)|2ν(dz)

≤ K|(η1, x1) − (η2, x2)|22(1 + |(η1, x1)|22 + |(η2, x2)|22).

Throughout the paper, we will look for strong solution to Eq. (2.4) in the
following sense.

Definition 2.3. We say that X := (Xt,X(t))t∈[0,T ] is a strong solution to E-
q. (2.4) if for any t ∈ [0, T ] X is indistinguishably unique and (Ft)t∈[0,T ]-
adapted and it holds P-a.s.

X(t) = x +
∫ t

0

μ(s,Xs,X(s))ds +
∫ t

0

σ(s,Xs,X(s))dW (s)

+
∫ t

0

∫
R0

γ(s,Xs,X(s), z)Ñ(ds, dz),

X0 = η.

In what follows we will denote by (Xτ,η,x
t ,Xτ,η,x(t)) the M2-value of the pro-

cess at time t ∈ [τ, T ], with initial value (η, x) ∈ M2 at initial time τ ∈ [0, T ].
However, for the sake of brevity, in most of the results, we will avoid to state
the dependence on the initial value (τ, η, x) writing for short (Xt,X(t)) instead
of (Xτ,η,x

t ,Xτ,η,x(t)).
Now we provide an existence and uniqueness result for Eq. (2.4).

Theorem 2.4. Suppose that μ, σ and γ satisfy conditions (A1) − (A2) in As-
sumptions 2.2. Then, for all t ∈ [0, T ] and (η, x) ∈ M2, there exists a unique
strong solution to the SFDDE (1.2) in Sp and there exists C1 := C1(K,L, T, p)
such that

‖Xη,x‖p
Sp ≤ C1(1 + |(η, x)|p2). (2.5)

Moreover, the map (η, x) �→ Xη,x is Lipschitz continuous from M2 to Sp and
it exists C2 := C2(K,L, T ) such that

‖Xη1,x1 − Xη2,x2‖p
Sp ≤ C2|(η1, x1) − (η2, x2)|p2. (2.6)

Proof. Existence and uniqueness of the solution to Eq. (2.4), as well as the
estimate in Eq. (2.5), are proved in [6, Th. 2.14].

As regards Eq. (2.6), exploiting the Burkholder-Davis-Gundy inequality,
see, e.g. [3, Section 4.4.], we have that, for any t ∈ [0, T ], denoting for short
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by C several positive constants,

|Xη1,x1 − Xη2,x2 |pSp

= E sup
t∈[0,T ]

|(Xη1,x1
t ,Xη1,x1(t)) − (Xη2,x2

t ,Xη2,x2(t))|p2
≤ C|(η1, x1) − (η2, x2)|p2

+ C

[∫ t

0

|μ(s,Xη1,x1
s ,Xη1,x1(s)) − μ(s,Xη2,x2

s ,Xη2,x2(s))|pds

+
(∫ t

0

|σ(s,Xη1,x1
s ,Xη1,x1(s)) − σ(s,Xη2,x2

s ,Xη2,x2(s))|2ds

) p
2

+
∫ t

0

∫
R0

|γ(s,Xη1,x1
s ,Xη1,x1(s), z) − γ(s,Xη2,x2

s ,Xη2,x2(s), z)|pν(dz)ds

]
,

so that from the Lipschitz continuity in Assumption 2.2 (A2), it follows

E sup
t∈[0,T ]

|(Xη1,x1
t ,Xη1,x1(t)) − (Xη2,x2

t ,Xη2,x2(t))|p2

≤ C|(η1, x1) − (η2, x2)|p2 +
∫ T

0

sup
s∈[0,q]

|(Xη1,x1
s ,Xη1,x1(s))

− (Xη2,x2
s ,Xη2,x2(s))|p2ds,

and the claim follows from Grownall’s inequality. �

Remark 2.5. We want to stress that a result analogous to Thm. 2.4 can be
obtained by replacing the Delfour–Mitter space M2 with the space D of càdlàg
functions, with the corresponding sup norm ‖ · ‖D = supt ∈ [−r,0] | · |, see e.g.
[6,45].

One of the major results, when one is to lift the delay equation into
an infinite dimensional setting exploiting the notion of segment, is that one
is able to recover the Markov property of the driving equation, see, e.g [41,
Theorem II.1]. Similarly also Eq. (2.4) results to be an M2-valued Markov
process.

Proposition 2.6. Let X = ((Xt,X(t)))t∈[0,T ] be the strong solution to Eq. (2.4),
then the process X is a Markov process in the sense that

P((Xt,X(t)) ∈ B|Fs) = P((Xt,X(t)) ∈ B|(Xs,X(s)) = (η, x)), P − a.s.,

for all 0 ≤ s ≤ t ≤ T and for all Borel sets B ∈ B(M2).

Proof. See, e.g. [6, Th. 3.9], or also, see, e.g., [45, Prop. 3.3] or [43, Sec.9.6].
�

Having shown in Proposition 2.6 that X is a M2-valued Markov process,
we can therefore introduce the transition semigroup Pτ,t, acting on the space
of Borel bounded function on M2, denoted by Bb(M2), namely, we define

Pτ,t : Bb(M2) → Bb(M2), Pτ,t[ϕ](x) := E[ϕ(Xτ,η,x
t )], ϕ ∈ Bb(M2).

(2.7)
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Concerning the infinitesimal generator Lt of Eq. (2.4), following [33–35],
we will not enter in further details concerning its explicit representation or the
characterization of its domain, since this goes beyond the aim of the present
work and it is not necessary in order to prove the main results. Nevertheless
let us mentioned that its form can be derived from a direct application of Itô’s
formula, see, e.g. [6, Th. 3.6].

2.1. Malliavin calculus for jump processes with delay

In this subsection we recall some definitions and main results concerning Malli-
avin operator and Skorokhod integral for jump processes. We will give funda-
mental definition in order to fix the notation and to recall the most effective
results, we refer to [26,44] for further references and proofs of some results, or
to [23,25] for application of Mallavin calculus to delay equations.

In particular we stress that very few results concerning Malliavin calculus
for jump processes in infinite dimension exist, where also the most simple
case of jumps processes having values in an infinite dimensional Hilbert space
is difficult to treat, we refer the interested reader to [4]. In order to avoid
problems coming with the Hilbert space setting we will, in the present section,
exploit the same ideas used in [25]. Using the fact that the original SDE has
finite dimensional realizations. This will allow us to exploit standard results
in Malliavin calculus for jumps processes with values in R

d. Also, in order to
be able to do so, as in [25], we must work with delay of integral type, which
motivates the choice of the Hilbert space M2.

In order to keep the present paper as much as self contained as possible,
we will first recall definitions and fundamental results for Malliavin calculus
for jumps processes mainly taken from [26]. Eventually we state the main
result of the present subsection, that is, as done in [25] exploiting the finite
dimensional nature of the SFDDE, we prove a Malliavin differentiability result
for SFDDE. Also, for the sake of brevity, we will state the results just for the
jump component and we refer to [35,41] for the diffusive part.

Let us denote by In(f) the n-fold iterated stochastic integral w.r.t. the
random measure Ñ , as

In(fn):=

∫
([0,T ]×R0)n

f((t1, z1), . . . , (tn, zn))Ñ(dt1, dz1) . . . Ñ(dtn, dzn) ∈ L2(Ω),

(2.8)

where

f ∈ L2 (([0, T ] × R0)n) = L2 (([0, T ] × R0)n),⊗ν(dz)dt) ,

is a deterministic function.
Thus, every random variable F ∈ L2(Ω) can be represented as an infinite

sum of iterated integrals of the form (2.8). This representation is known as
chaos expansion, see, e.g.[26, Def. 12.1] or [44, Th. 1].

Theorem 2.7. The stochastic Sobolev space D
1,2 consists of F-measurable ran-

dom variable F ∈ L2(Ω) such that, for (fn)n≥0, with fn ∈ L2 (([0, T ] × R0)n) ,
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it holds

F =
∞∑

n=0

In(fn), (2.9)

with the following norm

‖F‖2 =
∞∑

n=0

nn!‖In(fn)‖2L2(([0,T ]×R0)n).

Given the chaos expansion in Eq. (2.9), we can introduce the Malliavin
derivative Dt,z and its domain D

1,2, see, e.g. [26, Def. 12.2].

Definition 2.8. Let us consider a random variable F ∈ D
1,2, the Malliavin

derivative is the operator D : D1,2 ⊂ L2(Ω) → L2(Ω × [0, T ] × R0) defined as

Dt,zF =
∞∑

n=1

nIn−1(fn(·, t, z)), F ∈ D
1,2, z 	= 0. (2.10)

Since the operator D is closable, see, e.g., [26, Thm. 3.3 and Thm 12.6],
we denote by D

1,2 the domain of its closure.
The following result represents a chain rule for Malliavin derivative.

Theorem 2.9. Let F ∈ D
1,2 and let φ be a real continuous function on R.

Suppose φ(F ) ∈ L2(Ω) and φ(F + Dt,zF ) ∈ L2(Ω × [0, T ] × R0). Then,
φ ∈ D

1,2 and

Dt,zφ(F ) = φ(F + Dt,zF ) − φ(F ). (2.11)

Proof. See, e.g. [26, Thm. 12.8]. �
Once the Malliavin derivative has been defined, we are able to introduce

its adjoint operator, the Skorokhod integral, in particular next definition is
taken from [26, Def. 11.1], see, also [44, Sec. 3] for details.

Definition 2.10. Let δ : L2(Ω × [0, T ] × R0) → L2(Ω) be the adjoint operator
of the derivative D. The set of processes h ∈ L2(Ω × [0, T ] × R0) such that∣∣∣∣∣E

∫ T

0

∫
R0

Ds,zF ht(z) ν(dz)ds

∣∣∣∣∣ ≤ C‖F‖,

for all F ∈ D
1,2, forms the domain of δ, denoted by dom δ.

For every h ∈ dom δ we can define the Skorokhod integral as

δ(h) :=
∫ T

0

∫
R0

ht(z)Ñ(d̂t, dz),

for any F ∈ D
1,2.

Definition 2.11. We denote by L
1,2 the space of F-adapted processes h : Ω ×

[0, T ] × R0 → R such that ht ∈ D
1,2 and

E

∫ T

0

∫
R0

|ht(z)|ν(dz)dt < ∞

E

∫
([0,T ]×R0)

2
|Dt,zhs(ζ)|ν(dζ)dsν(dz)dt < ∞.
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From Definitions 2.10–2.11 above, we have that L1,2 ⊂ dom δ. If h ∈ L
1,2

and Dt,zh ∈ dom δ, then δ(h) ∈ D
1,2 and

Dt,zδ(h) = h(z) + δ(Dt,zh), (2.12)

see, e.g. [37]. Notice also that L
1,2 � L2([0, T ];D1,2).

Proposition 2.12. Let ht be a predictable square integrable process. Then, if
h ∈ D

1,2, we have, for a.e. (s, z) ∈ [0, t] × R0,

Ds,z

∫ t

0

hτdτ =
∫ t

s

Dτ,zhτdτ,

Ds,z

∫ t

0

hτdW (τ) =
∫ t

s

Dτ,zhτdW (τ),

Ds,z

∫ t

0

∫
R0

hτ Ñ(dτ, dz) = hs +
∫ t

s

∫
R0

Dτ,ζhτ Ñ(dτ, dζ).

Proof. ee, e.g. [44, Prop. 6]. �

Next result is the chain rule for SFDDE, that is the generalization of
Theorem 2.9 to the case of delay equations, that will be needed in the proof
of the main result of the present section as well as in subsequent sections.

Theorem 2.13. Let F and ψ ∈ D
1,2, let also φ be a real valued continuous

function on M2 Suppose φ(ψ,F ) ∈ L2(Ω) and φ(ψ + Dt,zψ,F + Dt,zF ) ∈
L2(Ω × [−r, T ] × R0). Then, φ ∈ D

1,2 and it holds

Dt,zφ(ψ,F ) = φ(ψ + Dt,zψ,F + Dt,zF ) − φ(ψ,F ). (2.13)

Proof. Following [42, Proposition 6.2], let us define a partition of [−r, 0],

Πk : −r ≤ s1 < · · · < sk ≤ 0,

with

‖Πk‖ := max
2≤i≤k

(si − si−1) → 0, as k → ∞.

Let Ik : Rk → L2([−r, 0],R) be the continuous linear embedding associ-
ated to the partition Πk as

Ik(x1, . . . , xk)(t) :=
k∑

i=1

xiI(si−1,si](t),

and set sk the tuple (s1, . . . , sk). Let us also define

Qsk(ψ) :=

(
1

s1 − s0

∫ s1

s0

ψ(t)dt, . . . ,
1

sk − sk−1

∫ sk

sk−1

ψ(t)dt

)
,

the L2 projection for ψ ∈ L2([−r, 0],R). Finally, we define a linear map T k :
L2([−r, 0],R) → L2([−r, 0],R) as

T k : ψ �→ ψk := T kψ := Ik ◦ Qsk(ψ);

in particular it holds that T kψ → ψ in L2([−r, 0],R) as k → ∞, see, e.g. [42,
Lemma 5.1].
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We thus define the function φk : Rk ×R → R, so that, from the classical
chain rule Theorem 2.9 applied to φk we have

Dt,zφ(ψk, F ) = Dt,zφ
k
(
Qsk(ψ), F

)
= φk(Qsk (ψ + Dt,zψ) , F + Dt,zF ) − φk(Qsk (ψ) , F )

= φ(Ik ◦ Qsk (ψ + Dt,zψ) , F + Dt,zF ) − φ(Ik ◦ Qsk (ψ) , F ).

Then the claim follows taking the limit as k → ∞ together with [42,
Lemma 5.1], the continuity of φ and the Dominated Convergence Theorem.

�

We are finally able to prove next theorem, which is the main result of the
current subsection concerning Malliavin differentiability of the SFDDE (2.4).

Theorem 2.14. Let us suppose that Assumptions 2.2 (A1)–(A2) hold and X =
(X(t))t∈[−r,T ] is the solution to Eq. (2.4). Then, X ∈ L2

(
[−r, T ];D1,2

)
and,

for every s ∈ [0, T ] and z ∈ R0, the stochastic process {Ds,zX(t) : t ∈ [s, T ]}
satisfies

E

[∫ T

0

∫
R0

sup
t∈[s,T ]

|Ds,zX(t)|2ν(dz)ds

]
< ∞. (2.14)

In particular, for any t ∈ [0, T ], X(t) ∈ D
1,2 and it holds⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ds,zX(t) = γ(s, Xs, X(s), z)

+
∫ t
s (μ (Xu + Ds,zXu, X(u) + Ds,zX(u)) − μ(Xu, X(u))) du

+
∫ t
s (σ (Xu + Ds,zXu, X(u) + Ds,zX(u)) − σ(Xu, X(u))) dW (u)

+
∫ t
s

∫
R0

(γ (Xu + Ds,zXu, X(u) + Ds,zX(u)) − γ(Xu, X(u))) Ñ(du, dζ),

Ds,zX(t) = 0, t ∈ [−r, s),

,(2.15)

Moreover, for any z ∈ R0, there exists a measurable version of the two-
parameter process

Ds,zXt = {Ds,zXt(θ) : s ∈ [0, T ], θ ∈ [−r, 0]}.

Proof. We will use a standard Picard’s approximation scheme, see, e.g. [26,
Th. 17.2]. Let X0(t) = x and X0

t = η, then set, for n > 0,

Xn+1(t) = x +
∫ t

0

μ(s,Xn
s ,Xn(s))ds +

∫ t

0

σ(s,Xn
s ,Xn(s))dW (s)

+
∫ t

0

∫
R0

γ(s,Xn
s ,Xn(s), z)Ñ(ds, dz),

Xn+1
0 = η,

where we use the notation Xn
s := (Xn(s + θ))θ∈[−r,0].

We are going to prove by induction over n that Xn(t) ∈ D
1,2 for any

t ∈ [0, T ], Ds,zX(t) is a predictable process and that

ξn+1(t) ≤ C1 + C2

∫ t

−r

ξn(s)ds,
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where C1, C2 are some suitable constants and

ξn(s) := sup
0≤s≤t

E

∫
R0

sup
s≤τ≤t

|Ds,zX
n(τ)|2ν(dz) < ∞.

For n = 0 the above claim is trivially satisfied. Let us thus assume that
the previous assumptions hold for n, we have to show that they hold also for
n+1. Indeed we have that

∫ t

0
μ(s,Xn

s ,Xn(s))ds,
∫ t

0
σ(s,Xn

s ,Xn(s))dW (s) and∫ t

0
γ(s,Xn

s ,Xn(s), z)Ñ(ds, dz) ∈ D
1,2, and Proposition 2.12 guarantees that

Ds,z

∫ t

0

μ(τ,Xn
τ ,Xn(τ))dτ =

∫ t

s

Dτ,zμ(τ,Xn
τ ,Xn(τ))dτ

Ds,z

∫ t

0

σ(τ,Xn
τ ,Xn(τ))dW (τ) =

∫ t

s

Dτ,zσ(τ,Xn
τ ,Xn(τ))dW (τ)

and

Ds,z

∫ t

0

γ(τ,Xn
τ ,Xn(τ), z)Ñ(dτ, dz) = γ(s,Xn

s ,Xn(s), z)

+
∫ t

s

∫
R0

Dτ,ζγ(τ,Xτ
s ,Xn(τ), ζ)Ñ(dτ, dζ)

for s ≤ t. Consequently, for any t ∈ [0, T ], Xn+1(t) ∈ D
1,2 and

Ds,zX
n+1(t) = γ(s,Xn

s ,Xn(s), z) +
∫ t

s

Dτ,zμ(τ,Xn
τ ,Xn(τ))dτ

+
∫ t

s

Dτ,zσ(τ,Xn
τ ,Xn(τ))dW (τ)

+
∫ t

s

∫
R0

Dτ,zγ(τ,Xτ
τ ,Xn(τ), ζ)Ñ(dτ, dζ), (2.16)

and the representation in Eq. (2.15) immediately follows from the chain rule
Th. 2.13.

By squaring both sides of Eq. (2.16), we have

∣∣Ds,zX
n+1(t)

∣∣2 ≤ 4 |γ(s,Xn
s ,Xn(s), z)|2 +

∣∣∣∣
∫ t

s

μτ,z(τ,Xn
τ ,Xn(τ))dτ

∣∣∣∣
2

+ 4
∣∣∣∣
∫ t

s

στ,z(τ,Xn
τ ,Xn(τ))dW (τ)

∣∣∣∣
2

+ 4
∣∣∣∣
∫ t

s

∫
R0

γτ,z(τ,Xτ
s ,Xn(τ), ζ)Ñ(dτ, dζ)

∣∣∣∣
2

. (2.17)
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By exploiting Doob maximal inequality, stochastic Fubini’s theorem and
Itô isometry, we get

E

∫
R0

sup
s≤τ≤t

∣∣Ds,zX
n+1(t)

∣∣2 ν(dz) ≤ C

[
E

∫
R0

|γ(s,Xn
s ,Xn(s), z)|2 ν(dz)

+ E

∣∣∣∣
∫ t

s

μτ,z(τ,Xn
τ ,Xn(τ))dτ

∣∣∣∣
2

+ E

∣∣∣∣
∫ t

s

στ,z(τ,Xn
τ ,Xn(τ))dW (τ)

∣∣∣∣
2

+ E

∣∣∣∣
∫ t

s

∫
R0

γτ,z(τ,Xτ
s ,Xn(τ), ζ)Ñ(dτ, dζ)

∣∣∣∣
2
]

≤ C

[
E

∫
R0

|γ(s,Xn
s ,Xn(s), z)|2 ν(dz)

+ E

∫ t

s

|μτ,z(τ,Xn
τ ,Xn(τ))|2 dτ + E

∫ t

s

|στ,z(τ,Xn
τ ,Xn(τ))|2 dτ

+ E

∫ t

s

∫
R0

|γτ,z(τ,Xτ
s ,Xn(τ), ζ)|2 ν(dz)dτ

]
,

(2.18)

where we denote for short by C > 0 a suitable constant.
Exploiting Assumptions 2.2 together with Theorem 2.9, we get

E

∫
R0

sup
s≤τ≤t

|Ds,zXn+1(τ)|2ν(dz)

≤ C1

∫ t

s

E

∫
R0

| (Ds,zXn
τ , Ds,zXn(τ)) |22ν(dz)dτ + C2

(
1 + E| (Xn

τ , Xn(τ)) |22
)

≤ C1

(
E

∫ t

s

∫ 0

−r

∫
R0

|Ds,zXn(τ + θ)|2 ν(dz)dθdτ + E

∫ t

s

∫
R0

|Ds,zXn(τ)|2 dν(dz)τ

)

+ C3(1 + λ)

≤ C1

(
E

∫ 0

−r

∫ t+θ

s

∫
R0

|Ds,zXn(p)|2 ν(dz)dpdθ + E

∫ t

s

∫
R0

|Ds,zXn(τ)|2 ν(dz)dτ

)

+ C3(1 + λ)

≤ C4E

∫ t

s

∫
R0

|Ds,zXn(τ)|2 ν(dz)dτ + C3(1 + λ),

(2.19)

where C1, C2, C3 and C4 denote some suitable constants and λ is such that

λ = sup
n

E sup
−r≤s≤T

|Xn(s)|22 < ∞.

Also, we obtain

Xn+1 =
(
Xn+1(t)

)
t∈[−r,T ]

∈ L2(Ω × [−r, T ]),

and for any t, Xn+1(t) ∈ D
1,2, so that Xn+1 ∈ L2(Ω × [−r, T ];D1,2) and, for

p ≤ s, Ds,zX
n+1(p) = 0.

It follows that, for any z ∈ R0, it exists a measurable version of the
two-parameter process

Ds,zX
n+1
t =

{
Ds,zX

n+1
t (θ) : s ∈ [0, T ], θ ∈ [−r, 0]

}
,

such that Ds,zX
n+1
t ∈ L2(Ω × [0, T ] × [−r, 0]), see, e.g. [41, Sec. 4].
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Therefore, the inductive hypothesis is fulfilled by Xn+1 and

E sup
s≤T

|Xn(s) − X(s)|2 → 0 as n → ∞.

Finally, thanks to a discrete version of Gronwall’s lemma, see, e.g. [8,
Lemma 4.1] or [26, Th. 17.2], and applying Eq. (2.19), we have

sup
n≥0

E

∫ T

−r

|Ds,zX
n(τ)|2dτ < ∞,

so that X(t) ∈ D
1,2.

By repeating the same reasoning as before, we have

X = (X(t))t∈[−r,T ] ∈ L2(Ω × [−r, T ]), X(t) ∈ D
1,2,

for any t, so that X ∈ L2(Ω×[−r, T ];D1,2). The proof is complete by observing
that, for any z ∈ R0, there exists a measurable version of the two-parameter
process

Ds,zXt = {Ds,zXt(θ) : s ∈ [0, T ], θ ∈ [−r, 0]} ,

such that Ds,zXt ∈ L2(Ω × [0, T ] × [−r, 0]). �

3. Joint quadratic variation

In order to prove the main result of this work, which consists in giving an
explicit Feynman–Kac representation formula for a coupled forward–backward
system with delay, we need first to prove a joint quadratic variation result.
The main advantage of such an approach is to overcome difficulties that may
arise in dealing with the Itô formula in infinite dimension, since, in general,
the process Xt fails to be a semi-martingale, so we cannot rely on standard
Itô calculus. Furthermore, with the present approach, we are able to relax
hypothesis concerning the differentiability of the coefficients.

Following [33,35], we introduce a generalized covariation process. The
definition of joint generalized quadratic variation we consider in the present
paper has been first introduced in [47], see also [46,48], with the only difference
that they consider the limit to hold uniformly on compacts sets in probability.
We have chosen here, following [33,35], to consider the limit in probability
because the limiting procedure is easier with a stronger notion of convergence,
such as the convergence in probability. Also, it is shown in [47, Prop. 1.1] that
the standard definition of joint quadratic variation, see, e.g. [3, Section 4.4.3],
coincides with the quadratic variation defined below.

Definition 3.1. Given a couple of R-valued stochastic processes (X(t), Y (t)),
t ≥ 0, we define their joint quadratic variation on [0, T ], to be

〈X(t), Y (t)〉[0,T ′] := P − lim
ε↓0

Cε
[0,T ′](X(t), Y (t)),
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where P − lim denotes the limit to be taken in probability and

Cε
[0,T ′](X(t), Y (t)) :=

1
ε

∫ T ′

0

(X(t + ε) − X(t))(Y (t + ε) − Y (t))dt, ε > 0,

(3.1)

with 0 ≤ T ′ + ε < T .

Before stating our main result we are to better introduce a mild notion of
derivative we will use throughout the paper. In what follows we will consider
a function u : [0, T ] × M2 → R, such that there exist C > 0 and m ≥ 0, such
that, for any t ∈ [0, T ] and any (η1, x1), (η2, x2) ∈ M2, u satisfies

|u(t, η1, x1) − u(t, η2, x2)| ≤ C|(η1, x1) − (η2, x2)|2(1 + |(η1, x1)|2
+|(η2, x2)|2)m, |u(t, 0, 0)| ≤ C. (3.2)

that is we require the function u to be Lipschitz continuous without requir-
ing any further regularity concerning differentiability. Nevertheless, in what
follows, we will use the notation of ∂σ

x . In particular following [35] we will
introduce a mild notion of derivative, called generalized directional gradient
∂σ

xu. When u is sufficiently regular, it can be shown that the generalized di-
rectional gradient, in the direction σ(t, η, x), of a function u, coincides with
∂xu(t, η, x)σ(t, η, x).

The definition, as well as the characterization of several properties, for
the generalized directional gradient has been provided in [35]. We will only
state here the definition of generalized directional gradient, whereas we refer
to [35] to a complete treatment of the topic.

In particular it has been shown in [35] that the following holds

〈u(·,X·,X(·),W (·)〉τ,t =
∫ t

τ

ζ(s,Xs,X(s))ds, (3.3)

where 〈 ·, ·〉τ,t denotes the joint quadratic variation defined above and ζ :
[0, T ] × M2 → R is a suitable measurable map, see also [33–35] for details.
Under suitable hypothesis of regularity, in [35] the authors show that

〈u(·,X·,X(·),W (·)〉τ,t =
∫ t

τ

∂xu(t,Xs,X(s))σ(t,Xs,X(s))ds, P − a.s.,

(3.4)

where we denote by ∂x the derivative w.r.t. the present state. Hence, Eq. (3.3)
can be considered as the definition of the generalized directional gradient of
the function u along the direction σ. We say that the map ζ : [0, T ] × M2 →
R belongs to the directional gradient of u, or equivalently that ζ ∈ ∂σ

xu, if
Eq. (3.3) holds. Therefore, we use for short the notation ∂σ

xu to represent an
element of the generalized directional gradient. Since this topic lies outside our
goals, having been deeply studied in a more general setting in [35], we skip
every technicality and invite the interested reader to [35].

The following result represents the core of this paper.
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Theorem 3.2. Let us assume that u : [0, T ]×M2 → R is locally Lipschitz w.r.t.
the second variable and with at most polynomial growth, namely, there exist
C > 0 and m ≥ 0, such that, for any t ∈ [0, T ] and any (η1, x1), (η2, x2) ∈ M2,
u satisfies

|u(t, η1, x1) − u(t, η2, x2)| ≤ C|(η1, x1) − (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m,

|u(t, 0, 0)| ≤ C.
(3.5)

Then, for every (η, x) ∈ M2 and 0 ≤ τ ≤ T ′ ≤ T, the process

{u(t,X(τ,η,x)
t ,Xτ,η,x(t)), t ∈ [τ, T ′]}

admits a joint quadratic variation on the interval [τ, T ′] with

J(t) :=
∫ t

0

∫
R0

zÑ(ds, dz),

given by

〈u(·, Xτ,η,x
· , Xτ,η,x(·)), J(·)〉[τ,T ′] =

∫ T ′

τ

∫
R0

z [u(s, Xτ,η,x
s , Xτ,η,x(s)

+γ(s, Xτ,η,x
s , Xτ,η,x(s), z) − u(s, Xτ,η,x

s , Xτ,η,x(s))] N(ds, dz).

(3.6)

Remark 3.3. An analogous of [35, Prop. 4.4] is valid in the present case, that
is the following representation holds

〈u(·,Xτ,η,x
· ,Xτ,η,x(·)),W (·)〉[τ,T ′] =

∫ T ′

τ

∂σ
xu(s,Xτ,η,x

s ,Xτ,η,x(s))ds,

where ∂σ
xu is the generalized directional gradient. The claim follows from [35]

by observing that the Poisson random measure does not affect the result and
the proof follows exactly the same steps as in [35].

Proof. Without loss of generality, we prove the result for τ = 0, as the case
of a general initial time τ 	= 0 can be proved using the same techniques. Fix
(η, x) ∈ M2 and a time horizon T ′ ∈ [0, T ] and denote for brevity X0,η,x by
X. In what follows we will denote with Ñ(d̂t, dz) the Skorokhod integral.

In order to shorten the notation set

vt := (u(t + ε,Xt+ε,X(t + ε)) − u(t,Xt,X(t))1[0,T ′](t),

and

Aε := {(t, s) ∈ [0, T ′] × [0, T ′] : 0 ≤ t ≤ T ′, t ≤ s ≤ t + ε}.

From Eq. (3.5) and Theorem 2.14, we have vt ∈ L
1,2, so that, for any t,

vt ∈ D
1,2 and then vt1Aε(t, ·) ∈ L2(Ω× [0, T ]). Furthermore, Eq. (2.12) implies

that vt is Skorokhod integrable and from [26, Th. 12.11] we have
∫ T ′

0

∫
R0

zvt1Aε(t, s)Ñ(d̂t, dz) = vt

∫ T ′

0

∫
R0

z1Aε(t, s)Ñ(d̂t, dz)

−
∫ T ′

0

∫
R0

zDs,zvt1Aε(t, s)N(ds, dz) =: zt,

(3.7)
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which holds since z ∈ L2(Ω× [0, T ]). Also, Eq. (3.7) implies, for a.a. t ∈ [0, T ′],

u(t + ε,Xt+ε,X(t + ε)) − u(t,Xt,X(t))(Jt+ε − Jt)

= u(t + ε,Xt+ε,X(t + ε)) − u(t,Xt,X(t))
∫ t+ε

t

∫
R0

zÑ(ds, dz)

=
∫ t+ε

t

∫
R0

zDs,z (u(t + ε,Xt+ε,X(t + ε)) − u(t,Xt,X(t))) N(ds, dz)

+
∫ t+ε

t

∫
R0

z (u(t + ε,Xt+ε,X(t + ε)) − u(t,Xt,X(t))) Ñ(ds, dz).

(3.8)

Let us integrate the right-hand side of Eq. (3.8) in [0, T ′] w.r.t. t. By
noticing that the left-hand side equals to εCε, we write the right-hand side as
follows
∫ T ′

0

∫ t+ε

t

∫
R0

zDs,z (u(t + ε, Xt+ε, X(t + ε)) − u(t, Xt, X(t))) N(ds, dz)dt

+

∫ T ′

0

∫ t+ε

t

∫
R0

z (u(t + ε, Xt+ε, X(t + ε)) − u(t, Xt, X(t))) Ñ(d̂s, dz)dt

=

∫ T ′

0

∫ t+ε

t

∫
R0

zDs,z (u(t + ε, Xt+ε, X(t + ε)) − u(t, Xt, X(t))) N(ds, dz)dt

+

∫ T ′+ε

0

∫
R0

∫ s∧T ′

(s−ε)+
z (u(t + ε, Xt+ε, X(t + ε)) − u(t, Xt, X(t))) dtÑ(d̂s, dz).

(3.9)

It remains to verify that
∫ T ′

0
zvt1Aε(t, ·)dt appearing in Eq. (3.9) is Sko-

rokhod integrable. From the definition of Skorokhod integral, by using Eq. (3.7)
for G ∈ D

1,2 and the duality formula, see e.g. [26, equation (12.14)], we have

E

[∫ T

0

∫
R0

∫ T

0

zvt1Aε(t, s)dtDs,zGν(dz)ds

]

=
∫ T

0

E

[∫ T

0

∫
R0

zvt1Aε(t, s)Ds,zGν(dz)ds

]
dt

=
∫ T

0

E

[
G

∫ T

0

∫
R0

zvt1Aε(t, s)Ds,zÑ(d̂s, dz)

]
dt = E

[
G

∫ T

0

ztdt

]
,

so that
∫ T ′

0
vt1Aε(t, ·)dt is Skorokhod integrable. Hence,

∫ T

0

∫ T

0

∫
R0

zvt1Aε(t, s)dtÑ(d̂s, dz)

=
∫ T

0

ztdt =
∫ T

0

∫ T

0

∫
R0

zvt1Aε(t, s)Ñ(d̂s, dz)dt.
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Exploiting again Eq. (3.7) we have
∫ T

0

∫ T ′

0

∫
R0

zvt1Aε(t, s)dtÑ(d̂s, dz)

=
∫ T

0

zvt(Jt+ε − Jt)1[t,T ](t)dt

−
∫ T ′

0

∫ T

0

∫
R0

zDs,zvt1Aε(t, s)N(ds, dz)dt,

and then Eq. (3.9) is proved.
On the other hand, thanks to the chain rule Theorem 2.13 and from

Theorem 2.14 together with the adeptness property of the Malliavin derivative,
i.e. Ds,zX(t) = 0 if s > t, we have that, for a.a. s ∈ [t, t + ε],

Ds,zvt = Ds,z[u(t + ε,Xt+ε,X(t + ε)) − u(t,Xt,X(t))]

= Ds,z[u(t + ε,Xt+ε,X(t + ε))]

= u(t + ε,Xt+ε + Ds,zXt+ε,X(t + ε) + Ds,zX(t + ε))

− u(t + ε,Xt+ε,X(t + ε)).

Now, we apply Eq. (3.9) to get

Cε =
1

ε

∫ T ′

0

∫ t+ε

t

∫
R0

z
[
u (t + ε, Xt+ε + Ds,zXt+ε, X(t + ε) + Ds,zX(t + ε)) N(d̂s, dz)dt

− 1

ε

∫ T ′

0

∫ t+ε

t
u (t + ε, Xt+ε, X(t + ε))] N(d̂s, dz)dt

+
1

ε

∫ T ′+ε

0

∫
R0

∫ s∧T ′

(s−ε)+
z (u(t + ε, Xt+ε, X(t + ε)) − u(t, Xt, X(t))) dtÑ(d̂s, dz).

Let us consider separately the two terms

Iε
1 :=

1

ε

∫ T ′

0

∫ t+ε

t

∫
R0

z
[
u (t + ε, Xt+ε + Ds,zXt+ε, X(t + ε) + Ds,zX(t + ε)) N(d̂s, dz)dt

− 1

ε

∫ T ′

0

∫ t+ε

t
u (t + ε, Xt+ε, X(t + ε))] N(d̂s, dz)dt,

Iε
2 :=

1

ε

∫ T ′+ε

0

∫
R0

∫ s∧T ′

(s−ε)+
z (u(t + ε, Xt+ε, X(t + ε)) − u(t, Xt, X(t))) dtÑ(d̂s, dz).

As regards Iε
2, the proof proceed as in [35, Prop. 4.4.], see also [33, Th. 3.1].

We report in what follows its main steps for the sake of completeness. We have
to show that

1
ε

∫ T ′

0

vt1Aε(t, s)dt → 0,

in L
1,2, since this implies Iε

2 → 0 in L2(Ω), together with the boundedness of
the Skorokhod integral. Thus, for a general y ∈ L

1,2, we have

T ε(y)s =
1
ε

∫ T ′

0

(yt+ε − yt)1Aε(t, s)dt =
1
ε

∫ s∧T

(s−ε)∨t

(yt+ε − yt)dt,

so that we have to show that T ε(y) → 0 in L
1,2.
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Let us recall the isomorphism

L2
(
[0, T ];D1,2(R)

) � L
1,2.

Following [35], we have to prove that ‖T ε‖L1,2(R) is bounded uniformly
w.r.t. ε. In fact, we have

‖T ε(y)s‖2D1,2(R) ≤ 1
ε2

∫ T ′

0

1Aε(t, s)dt

∫ T ′

0

|yt+ε − yt|2D1,2(R)1Aε(t, s)dt

≤
∫ T ′

0

|yt+ε − yt|2D1,2(R)1Aε(t, s)dt,

‖T ε(y)s‖2L1,2(R) =
∫ T ′

0

‖T ε(y)s‖2D1,2(R)ds

≤
∫ T ′

0

|yt+ε − yt|2D1,2(R)

∫ T ′

0

1Aε(t, s)ds dt

≤
∫ T ′

0

|yt+ε − yt|2D1,2(R)dt ≤ 2‖y‖2
L1,2(R),

and thus the claim follows by [35, Prop. 4.4.], or [33, Th. 3.1].
As regards Iε

1, we have

Iε
1 =

1
ε

∫ T

0

∫ t+ε

t

∫
R0

z u(t + ε,Xt+ε

+ Ds,zXt+ε,X(t + ε) + Ds,zX(t + ε))N(d̂s,dz)dt

− 1
ε

∫ T

0

∫ t+ε

t

∫
R0

z u(t + ε,Xt+ε,X(t + ε))]N(d̂s,dz)dt := Kε
1 − Kε

2.

Let us first prove that

Kε
2 →

∫ T ′

0

∫
R0

zu(t,Xt,X(t))N(d̂t,dz), P − a.s. (3.10)

as ε → 0.
From Assumption (3.5) on the function u, the right-continuity of X, and

exploiting the Lebesgue differentiation theorem together with the dominated
convergence theorem, it follows that

1
ε

∫ T ′

0

∫ t+ε

t

∫
R0

zu(t + ε,Xt+ε,X(t + ε))N(d̂s,dz)dt

=
∫ T ′+ε

0

∫
R0

z
1
ε

∫ (s+ε)∧T ′

s∨ε

u(t,Xt,X(t))dtN(d̂s, dz)

→
∫ T ′

0

∫
R0

zu(s,Xs,X(s))N(d̂s,dz),

(3.11)

P-a.s., as ε → 0.
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Let us now prove that

Kε
1 →

∫ T ′

0

∫
R0

zu(t,Xt,X(t) + γ(t,Xt,X(t), z))N(d̂t,dz). (3.12)

Theorem 2.14 assures that

Ds,zX(t + ε) = γ(s,Xs,X(s), z) +
∫ t+ε

s

Ds,z[μ(q,Xq,X(q))]dq

+
∫ t+ε

s

Ds,z[σ(q,Xq,X(q))]dW (q)

+
∫ t+ε

s

∫
R0

Ds,z[γ(q,Xq,X(q), ζ)]Ñ(dq, dζ).

(3.13)

Proceeding as above, we get

1
ε

∫ T

0

∫ t+ε

t

∫
R0

zu(t + ε,Xt+ε + Ds,zXt+ε)N(d̂s,dz)dt

=
∫ T ′+ε

0

∫
R0

z
1
ε

∫ s∧T ′

(s−ε)+
u (t + ε,Xt+ε + Ds,zXt+ε,X(t + ε)

+Ds,zX(t + ε)) dtN(d̂s, dz).

(3.14)

The continuity of u, together with the right-continuity of X, and the
Lebesgue differentiation theorem provide that

∫ T ′+ε

ε

∫
R0

z
1
ε

∫ (s+ε)∧T ′

s∨ε

u(t,Xt + Ds,zXt,X(t) + Ds,zX(t))dtN(d̂s, dz)

→
∫ T ′

0

∫
R0

zu(t,Xt + Dt,zXt,X(t) + Dt,zX(t))N(d̂t,dz),

(3.15)

P-a.s. as ε → 0.
Moreover, Theorem 2.14 implies that

Ds,zX(t + θ) = γ(s,Xs,X(s), z) +
∫ t+θ

s

Ds,z[μ(q,Xq,X(q))]dq

+
∫ t+θ

s

Ds,z[σ(q,Xq,X(q))]dW (q)

+
∫ t+θ

s

∫
R0

Ds,z[γ(q,Xq,X(q), ζ)]Ñ(dq, dζ), θ ∈ [−r, 0],

Ds,zX(t + θ) = 0, s > t + θ,

and exploiting the adaptedness of the Malliavin derivative, namely

Dt,zXt(θ) = Dt,zX(t + θ) = 0, for θ ∈ [−r, 0),

Dt,zX(t) = γ(t,Xt,X(t), z),
(3.16)

and substituting (3.16) into eq. (3.15), we obtain the claim and (3.12) is proved.
Equation (3.6) thus follows and the proof is then complete. �
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4. Existence of mild solutions of Kolmogorov equation

The main goal of this section is to prove an existence and uniqueness result of
a mild solution, in a sense to be specified later, of a non-linear path-dependent
partial integro-differential equation. Such a solution is connected to a forward–
backward system with delay of the form⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dXτ,η,x(t) = μ(t,Xτ,η,x
t ,Xτ,η,x(t))dt + σ(t,Xτ,η,x

t ,Xτ,η,x(t))dW (s)
+

∫
R0

γ(t,Xτ,η,x
t ,Xτ,η,x(t), z)Ñ(dt,dz)

(Xτ,η,x
τ ,Xτ,η,x(τ)) = (η, x) ∈ M2

dY τ,η,x(t) = ψ
(
t,Xτ,η,x

t ,Xτ,η,x(t), Y τ,η,x(t), Zτ,η,x(t), Ũτ,η,x(t)
)

dt

+Zτ,η,x(t)dW (t) +
∫
R0

Uτ,η,x(t, z)Ñ(dt,dz)
Y τ,η,x(T ) = φ(Xτ,η,x

T ,Xτ,η,x(T ))

,

(4.1)

where we have set for short

Ũτ,η,x(t) :=
∫
R0

Uτ,η,x(t, z)δ(z)ν(dz).

In particular the solution to the forward–backward SFDDE (4.1) is the
quadruple (X,Y,Z, U) taking values in M2 × R × R × R. We refer to [24] for
a detailed introduction to forward–backward system with jumps.

Let us assume the following assumptions to hold:

Assumption 4.1.

(B1) The map ψ : [0, T ] × M2 × R × R × R → R is continuous and there
exists K > 0 and m ≥ 0 such that

|ψ(t, η1, x1, y1, z1, u1) − ψ(t, η2, x2, y2, z2, u2)| ≤ K|(η1, x1) − (η2, x2)|2
+ K(|y1 − y2| + |z1 − z2| + |u1 − u2|);

|ψ(t, η1, x1, y, z, u) − ψ(t, η2, x2, y, z, u)|
≤ K(1 + |(η1, x1)|2 + |(η2, x2)|2 + |y|)m

· (1 + |z| + |u|)(|(η1, x1) − (η2, x2)|2);
|ψ(t, 0, 0, 0, 0, 0)| ≤ K,

for all (t, η1, x1, y1, z1, u1), (t, η2, x2, y2, z2, u2) ∈ [0, T ] × M2 × R
3;

(B2) the map φ : M2 → R is measurable and there exist K > 0 and m ≥ 0
such that

|φ(η1, x1) − φ(η2, x2)| ≤ K(1 + |(η1, x1)|2 + |(η2, x2)|2)m|(η1, x1) − (η2, x2)|2,
for all (η1, x1), (η2, x2) ∈ M2;

(B3) there exists K > 0 such that the function δ : R0 → R satisfies

|δ(z)| ≤ K|(1 ∧ |z|), δ(z) ≥ 0, z ∈ R0.

Remark 4.2. Following [24], we have chosen this particular form for the gener-
ator ψ of the backward component in Eq. (4.1), due to the fact that it results
to be convenient in many concrete applications.
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Remark 4.3. We want to stress that Assumptions 4.1 imply that there exists
a suitable constant C > 0 such that

|ψ(t, η, x, y, z, u)| ≤ C(1 + |(η, x)|m+1
2 + |y| + |z| + |u|),

|φ(η, x)| ≤ C(1 + |(η, x)|m+1
2 ).

In what follows we will denote by K([0, T ]) the space of all triplet (Y,Z, U)
of predictable stochastic processes taking value in R × R × R and such that

‖(Y,Z, U)‖2
K

:= E

[
sup

t ∈ [0,T ]

|Y (t)|2
]

+ E

[∫ T

0

|Z(t)|2dτ

]

+ E

[∫ T

0

∫
R0

|U(t, z)|2ν(dz)dt

]
< ∞. (4.2)

The following Proposition ensures the existence and the uniqueness of the
solution to the system (4.1), under suitable properties of the coefficients.

Proposition 4.4. Let us consider the coupled forward–backward system (4.1)
which satisfies Assumptions 2.2 and 4.1.

Then, the coupled forward–backward system admits a unique solution

(Xτ,η,x, Y τ,η,x, Zτ,η,x, Uτ,η,x) ∈ Sp × K([0, T ]).

Eventually we have that the map

(τ, η, x) �→ (Xτ,η,x, Y τ,η,x, Zτ,η,x, Uτ,η,x),

is continuous.

Proof. The existence and uniqueness of the solution to the forward componen-
t follows from Theorem 2.4, since Assumptions 2.2 hold true by hypothesis,
whereas the existence and uniqueness of the backward component under As-
sumptions 4.1 follows [7, Cor. 2.3] or [24, Thm. 4.1.3] .

The continuity of the map (τ, η, x) �→ Xτ,η,x is guaranteed by Theo-
rem 2.4, whereas the continuity of (τ, η, x) �→ (Y τ,η,x, Zτ,η,x, U (τ,η,x) follows
from [7, Prop. 1.1]. �

Theorem 4.5. Let us consider the coupled forward–backward system (4.1) which
satisfies Assumptions 2.2 and 4.1. Let us define the function u : [0, T ]×M2 →
R,

u(t, η, x) := Y t,η,x
t ,

with t ∈ [0, T ] and (η, x) ∈ M2,.
Then, there exist C > 0 and m ≥ 0, such that, for any t ∈ [0, T ] and any

(η1, x1), (η2, x2) ∈ M2, the function u satisfies

|u(t, η1, x1) − u(t, η2, x2)| ≤ C|(η1, x1)

− (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m, |u(t, 0, 0)| ≤ C.
(4.3)



16 Page 26 of 35 F. Cordoni et al. NoDEA

Moreover, for every t ∈ [0, T ] and (η, x) ∈ M2 we have P-a.s. and for
a.e. t ∈ [τ, T ]

Y τ,η,x(t) = u (t,Xτ,η,x
t ,Xτ,η,x(t)) ,

Zτ,η,x(t) = ∂σ
xu (t,Xτ,η,x

t ,Xτ,η,x(t)) ,

Uτ,η,x(t, z) = u(t,Xτ,η,x
t ,Xτ,η,x(t) + γ(t,Xτ,η,x

t ,Xτ,η,x(t), z))
−u(t,Xτ,η,x

t ,Xτ,η,x(t)), (4.4)

where ∂σ
x is the generalized directional gradient in the sense of Eq. (3.3).

Remark 4.6. Let us recall that, if u is sufficiently regular, then

Z(τ,η,x)(t) = ∂xu(t,Xτ,η,x
t ,Xτ,η,x(t))σ(t,Xτ,η,x

t ,Xτ,η,x(t)).

Proof. The fact that u(t, η, x) := Y t,η,x
t satisfies (4.3) immediately follows from

the continuity of the map

(τ, η, x) �→ (Xτ,η,x, Y τ,η,x, Zτ,η,x, Uτ,η,x),

proved in Proposition 4.4 together with Assumptions 2.2.
The representation of Y and Z follow from [33, Cor. 4.3].
As regards the process U, using the standard notion of joint variation we

have

〈Y τ,η,x(·), J(·)〉[τ,T ] =
∫ T

τ

∫
R0

z Uτ,η,x(s, z)N(ds, dz). (4.5)

On the other hand, Theorem 3.2 implies

〈u(·,Xτ,η,x
· ,Xτ,η,x(·)), J(·)〉[τ,T ]

=
∫ T

τ

∫
R0

z [u(s,Xτ,η,x
s ,Xτ,η,x(s) + γ(s,Xτ,η,x

s ,Xτ,η,x(s), z))] N(ds, dz)

−
∫ T

τ

∫
R0

z [u(s,Xτ,η,x
s ,Xτ,η,x(s))] N(ds, dz). (4.6)

Comparing now Eqs. (4.5) and (4.6), the representation for U in Eq. (4.4)
follows. �

4.1. The non-linear Kolmogorov equation

The present section is devoted to prove that the solution to the forward-
backward system (4.1) can be connected to the solution of a path-dependent
partial integro-differential equation with values in the Hilbert space M2.

More precisely, let us consider the Markov process (Xτ,η,x
t ,Xτ,η,x(t)) de-

fined as the solution of Eq. (2.4), and the corresponding infinitesimal generator
Lt.

The path-dependent partial-integro differential equation we want to in-
vestigate has the following form{

∂
∂tu(t, η, x) + Ltu(t, η, x) = ψ (t, η, x, u(t, η, x), ∂σ

x u(t, η, x),J u(t, η, x)) ,

u(T, η, x) = φ(η, x),

(4.7)
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for all t ∈ [0, T ], and (η, x) ∈ M2, where u : [0, T ] × M2 →,R is an unknown
function, ψ and φ are two given functions such that ψ : [0, T ] × M2 ×R×R×
R → R and ψ : M2 → R, ∂σ

xu is the generalized directional gradient and J is
a functional acting as

J u(t, η, x) =
∫
R0

(u(t, η, x + γ(t, η, x, z)) − u(t, η, x) ) δ(z)ν(dz).

In particular, we want to look for a mild solution of Eq. (4.7), according
to the following definition.

Definition 4.7. A mild solution to Eq. (4.7) is a function u : [0, T ] × M2 → R

such that there exist C > 0 and m ≥ 0, such that, for any t ∈ [0, T ] and any
(η1, x1), (η2, x2) ∈ M2, u satisfies

|u(t, η1, x1) − u(t, η2, x2)|
≤ C|(η1, x1) − (η2, x2)|2(1 + |(η1, x1)|2 + |(η2, x2)|2)m|u(t, 0, 0)| ≤ C

(4.8)

and the following identity hold true

u(t, η, x) = Pt,T φ(η, x) +
∫ T

t

Pt,s[ψ(·, u(s, ·), ∂σ
x u(s, ·),J u(s, ·)](η, x)ds,

(4.9)

for all t ∈ [0, T ], and (η, x) ∈ M2 and where Pt,s is the Markov semigroup
for Eq. (1.2) introduced in Eq. (2.7).

Theorem 4.8. Assume that Assumptions 2.2 and 4.1 hold true. Then, the path-
dependent partial integro-differential Eq. (4.7) admits a unique mild solution
u, in the sense of Definition 4.7. In particular, the mild solution u coincide
with the function u introduced in Theorem 4.5.

Proof. In what follows, as above, we will denote for short

Ũτ,η,x(s) :=
∫
R0

Uτ,η,x(s, z)δ(z)ν(dz),

Let us consider the backward stochastic differential equation in Eq. (4.1),
namely,

Y t,η,x(t) = φ(Xt,η,x
T ,Xt,η,x(T ))

+
∫ T

t

ψ
(
Xt,η,x

s ,Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)
)

ds

+
∫ T

t

Zt,η,x(s)dW (s) +
∫ T

t

∫
R0

U t,η,x(s, z)Ñ(ds,dz).

Taking the expectation and exploiting equation (4.4), then Y satisfies
equation (4.9).
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In order to show the uniqueness let u(t, η, x), 0 ≤ τ ≤ t ≤ T, be a mild
solution of Eq. (4.7), so that

u(t, η, x) = E
[
φ(Xt,η,x

T ,Xt,η,x(T ))
]

+ E

[∫ T

t

ψ
(
Xt,η,x

s ,Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)
)

ds

]
.

By recalling that (Xτ,η,x
t ,Xτ,η,x(t))t∈[0,T ] is a M2-Markov process, and

denoting by E
t the conditional expectation w.r.t. the filtration Ft, we can

write

u(t,Xt,η,x
t ,Xt,η,x(t))

= E
t
[
φ(Xt,η,x

T ,Xt,η,x(T ))
]

+ E
t

[∫ T

τ

ψ
(
Xt,η,x

s ,Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)
)

ds

]

− E
t

[∫ t

τ

ψ
(
Xτ,η,x

s ,Xτ,η,x(s), Y τ,η,x(s), Zτ,η,x(s), Ũτ,η,x(s)
)

ds

]
.

We set, for short,

ξ := φ(Xt,η,x
T ,Xt,η,x(T ))

+
∫ T

τ

ψ
(
Xt,η,x

s ,Xt,η,x(s), Y t,η,x(s), Zt,η,x(s), Ũ t,η,x(s)
)

ds.

Thanks to the martingales representation theorem, see, e.g.,
[3, Thm. 5.3.5], there exist two predictable processes Z̄ ∈ L2(Ω × [0, T ]) and
Ū ∈ L2(Ω × [0, T ] × R0) such that

u(t,Xτ,η,x
t ,Xτ,η,x(t))

= u(τ, η, x)

+
∫ t

τ

Z̄τ,η,x(s)dW (s) +
∫ t

τ

∫
R0

Ūτ,η,x(s, z)Ñ(ds,dz)

−
∫ t

τ

ψ
(
Xτ,η,x

s ,Xτ,η,x(s), Y τ,η,x(s), Zτ,η,x(s), Ũτ,η,x(s)
)

ds.

Applying Theorem 3.2, we have

u(t,Xτ,η,x
t ,Xτ,η,x(t)) = φ(Xτ,η,x

T ,Xτ,η,x(T ))

−
∫ T

t

∂σ
xu(s,Xτ,η,x

s ,Xτ,η,x(s))dW (s)

−
∫ T

t

∫
R0

[u(s,Xτ,η,x
s ,Xτ,η,x(s) + γ(s,Xτ,η,x

s ,Xτ,η,x(s), z))

− u(s,Xτ,η,x
s ,Xτ,η,x(s))] Ñ(ds,dz)

+
∫ T

t

ψ
(
Xτ,η,x

s ,Xτ,η,x(s), Y τ,η,x(s), Zτ,η,x(s), Ũτ,η,x(s)
)

ds.
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By comparing last equation with the backward component of Eq. (4.1),
we note that (Y τ,η,x(t), Zτ,η,x(t), Uτ,η,x(t, z)) and the following three functions

(u(t,Xτ,η,x
t ,Xτ,η,x(t)), ∂σ

x u(t,Xτ,η,x
t ,Xτ,η,x(t)),

u (t,Xτ,η,x
s ,Xτ,η,x(s) + γ(s,Xτ,η,x

s ,Xτ,η,x(s), z)) − u(t,Xτ,η,x
s ,Xτ,η,x(s))),

solve the same equation. Therefore, due to the uniqueness of the solution, we
have that

Y τ,η,x(t) = u(t,Xτ,η,x
t ,Xτ,η,x(t)).

Setting τ = t, we obtain Y τ,η,x(t) = u(t, η, x) and the proof is complete. �

5. Application to optimal control

We are to apply previously derived results to a general class on non-linear
control problem. The present section closely follows in [35, Section. 7], in par-
ticular we will consider weak control problems, we refer to [32] for a general
treatment of the present notion of control, or [18,19,49,50].

Let us therefore consider the following R-valued controlled delay equa-
tion, ⎧⎨

⎩
dX(t) = (μ(t,Xt,X(t)) + F (t,X(t), α(t))) dt

+σ(t,X(t))dW (t) +
∫
R0

γ(t,X(t), z)Ñ(dt, dz),
(Xt0 ,X(t0)) = (x, η),

(5.1)

where we have denoted by α : Ω × [0, T ] → A a (Ft)t≥0-predictable process
representing the control, being A ⊂ R

N a convex set, N ∈ N.
In what follows we assume μ, σ and γ to satisfy Assumptions 2.2, we

also require that it exists a constant Cσ > 0 such that, for any t ∈ [0, T ] and
x ∈ R,

|σ−1(t, x)| ≤ Cσ.

We remark that a possibly choice for the coefficient μ in Eq. (5.1) is of
the form

μ(t,Xt,X(t)) =
∫ 0

−r

X(t + θ)�(dθ),

for � a Borel measure of bounded variation on the interval [−r, 0].
Following [35, Section 7], we will say therefore that an admissible control

system (acs) is given by U = (Ω,F ,P,W, ν, α,X), where (Ω,F ,P) is a complete
probability space, with an associated filtration satisfying usual conditions, W is
a Wiener process whereas ν is a Lévy measure also satisfying usual assumptions
introduced in previous sections, α is the control defined above and X is the
unique solution to Eq. (5.1). Then we wish to minimize, over all control α ∈ A,
the following functional

J (t0, (x, η) ,U) =
∫ T

0

h(s,X(s), α)ds + g(X(T )). (5.2)

We thus assume the following to hold.



16 Page 30 of 35 F. Cordoni et al. NoDEA

Assumption 5.1. (i) let F : [0, T ]×R×A → R be measurable and such that
there exist CF > 0 and m ≥ 0 such that, for any t ∈ [0, T ], x, x1, x2 ∈ R

and α ∈ A,

|F (t, x, α)| ≤ C,

|F (t, x1, α) − F (t, x2, α)| ≤ CF (1 + |x1| + |x2|)m|x1 − x2|.
(ii) let h : [0, T ] × R × A → R ∪ {+∞} be measurable and such that there

exist Ch > 0 and m ≥ 0 such that, for any t ∈ [0, T ], x, x1, x2 ∈ R and
α ∈ A,

h(t, 0, α) ≥ −Ch, inf
α∈A

h(t, 0, α) ≤ Ch,

|h(t, x1, α) − h(t, x2, α)| ≤ Ch(1 + |x1| + |x2|)m|x1 − x2| + h(t, x2, α).

(iii) let g : R → R be measurable and such that there exist Cg > 0 and m > 0
such that, for any x, x1, x2 ∈ R it holds

|g(x1) − g(x2)| ≤ Cg(1 + |x1| + |x2|)m|x1 − x2|.
The particular form for Eq. (5.1) leads to consider an associated

Hamilton-Jacobi-Bellman (HJB) equation which is a semilinear partial integro-
differential equation of the form of Eq. (4.7) studied in previous sections. No-
ticed that the particular form for Eq. (5.1), in particular the presence of the
control in the drift, is imposed by the techniques we will use.

Then the controlled equation (5.1), together with the functional J intro-
duced in Eq. (5.2), lead to define in a classical way the Hamiltonian associated
to the above problem as

ψ(t, x, z) = − inf
α∈A

{
h(t, x, α) + zσ−1(s, x)F (s, x, α)

}
,

Γ(t, x, z) =
{
α ∈ A : ψ(t, x, z) + h(t, x, α) + zσ−1(s, x)F (s, x, α) = 0

}
.

Let us stress that under above assumptions we have that ψ satisfies As-
sumptions 4.1. Eventually we can formulate the HJB equation associated to
the above stated non-linear control problem to be{

∂
∂tu(t, η, x) + Ltu(t, η, x) = ψ(t, x, ∂σ−1F

x u(t, η, x)),
u(T, η, x) = g(x),

(5.3)

where the notation is as above introduced. From Theorem 4.8, it follows that
Eq. (5.3) admits a unique solution in the sense of generalized direction gradient.

Eventually, from [34, Theorem 7.2] or [35, Theorem 7.2] which follow in
a straightforward manner in the present case, we have that an acs system is
optimal if and only if

α(t) ∈ Γ (t,X(t), ζ(t,Xt,X(t))) ,

being ζ : [0, T ] × M2 → R an element of the directional generalized gradient.

Theorem 5.2. Let u be a mild solution to the HJB equation (5.3), and choose
ζ to be an element of the generalized directional gradient ∂σ−1F

x u. Then, for
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all acs, we have that J(t0, x, η,U) ≥ u(t0, x, η), and the equality holds if and
only if

α(t) ∈ Γ (t,X(t), ζ(t,Xt,X(t))) , P − a.s. for a.a. t ∈ [t0, T ].

Moreover, if there exists a measurable function ς : [0, T ] × R → A with

ς(t, x, z) ∈ Γ(t, x, z),

then there also exists at least one acs such that

ᾱ(t) = ς(t,Xα(t), ζ(t,Xα
t ,Xα(t))), P − a.s. for a.a. t ∈ [t0, T ],

where (Xα
t ,Xα(t)) is the solution to equation

⎧⎪⎪⎨
⎪⎪⎩

dXα(t) = μ(t,Xα
t ,Xα(t))dt

+F (t,Xα(t), ς(t,Xα(t), ζ(t,Xα(t))))dt

+σ(t,Xα(t))dW (t) +
∫
R0

γ(t,Xα(t), z)Ñ(dt, dz),(
Xα

t0 ,X
α(t0)

)
= (x, η) ,

Proof. See [35, Th. 7.2] or also [49, Th. 4.7, Cor. 4.8]. �
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