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Abstract. The goal of this paper is to establish singular Adams type in-
equality for biharmonic operator on Heisenberg group. As an application,
we establish the existence of a solution to
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in Ω, u|∂Ω = 0 =
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where 0 ∈ Ω ⊆ H
4 is a bounded domain, 0 ≤ a ≤ Q, (Q = 10). The special

feature of this problem is that it contains an exponential nonlinearity and
singular potential.
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1. Introduction

In this article, we are interested to establish Adams type inequality for bihar-
monic operator on Heisenberg group. We also establish Adams type inequality
with singular potential. As an application of Adams type inequality, we prove
the existence of a solution to the following biharmonic equation with Dirichlet’s
boundary condition on Heisenberg group:

Δ2
Hnu =

f(ξ, u)
ρ(ξ)a

in Ω,

u|∂Ω = 0 =
∂u

∂ν

∣
∣
∣
∣
∂Ω

,
(1.1)

where 0 ∈ Ω ⊆ H
4 is a bounded domain, 0 ≤ a < Q, Q = 10 is the homo-

geneous dimension of H
4 and f : Ω × R → R satisfies either subcritical or

critical exponential growth condition. It is interesting to observe that in case
of Ω ⊆ H

n, n ≥ 5, by the Sobolev embedding theorem, the nonlinearity cannot
exceed the degree 2Q

Q−4 , while the Adams’ inequality allows the nonlinearities to
have exponential growth when n = 4. Therefore Adams’ inequality motivates
us to discuss the above problem with exponential growth in Ω ⊆ H

4.
Problem (1.1), in bounded domains of R4 has been discussed by Macedo

[40]. Macedo established the existence of a solution to the following problem
with the aid of singular version of Adams’ inequality and by variational argu-
ments:

Δ2u =
f(x, u)

|x|a in Ω,

u|∂Ω = 0 =
∂u

∂ν

∣
∣
∣
∣
∂Ω

,
(1.2)

where 0 ∈ Ω ⊆ R
4 is a bounded domain, 0 ≤ a < 4. de Souza [19] established

the existence of solution for the critical problem with singular potential
1

|x|a
in the case of n-Laplace operator in whole R

n, using variational techniques.
do Ó et. al. [20] established the existence of a critical point to the following
functional

J(u) =
1
n

∫

Rn

(|∇u|n + |u|n)dx −
∫

Rn

F (u)
|x|a , (1.3)

where n ≥ 2, F : Rn → R is of class C1 and 0 ≤ a < n. For the related works,
see the references cited in [19,20,40].

For the Trudinger–Moser type inequality in unbounded domains of R2,
and further generalizations in unbounded domains in R

n, we refer to [39,48].
For more details about Moser–Trudinger inequality, we refer to a survey by
Chang and Wang [12]. Several existence results have been proved for problems
involving Laplace and n-Laplace operator with exponential nonlinearities, see
for instance [3,4,7,16–18,21,22,47] and references cited therein.

Let us recall the developments on Trudinger–Moser inequality. Let Ω ⊆
R

n, n ≥ 2 be a bounded domain. The Sobolev embedding theorem says that
for p < n, W 1,p

0 (Ω) ↪→ Lq(Ω), 1 ≤ q ≤ np
n−p . For the limiting case p = n, we
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have

W 1,n
0 ↪→ Lq(Ω), 1 ≤ q < ∞

but it is well known (see, Example 4.43 [2]) that

W 1,n
0 (Ω) 	↪→ L∞(Ω).

Then there is a natural question that what is the smallest possible space
in which, we have embedding of W 1,n

0 (Ω)? This question was answered by
Trudinger [49]. Trudinger proved that W 1,n

0 (Ω) is embedded into Orlicz space
LA(Ω), where

A(t) = exp
(

t
p

p−1

)

− 1

is an N function. Inequality by Trudinger [49], which was later sharpened by
Moser [43] is as follows:

Theorem 1.1. Let Ω ⊆ R
n be a bounded domain, u ∈ W 1,n

0 (Ω), n ≥ 2 and
∫

Ω

|∇u(x)|ndx ≤ 1,

then there exists a constant C, which depends on n only such that
∫

Ω

exp(αup)dx ≤ Cm(Ω),

where

p =
n

n − 1
, α ≤ αn = nω

1
n−1
n , m(Ω) =

∫

Ω

dx

and ωn−1 is the (n − 1)-dimensional surface area of the unit sphere.
The integral on the left actually is finite for any positive α, but if α > αn

it can be made arbitrarily large by an appropriate choice of u.

In order to deal with problems involving higher order elliptic operators
with exponential type nonlinearities, Adams [1] extended the sharp inequality
by J. Moser to higher order Sobolev spaces. Adams proved the following:

Theorem 1.2. Let Ω be a bounded and open subset of Rn. If m is a positive
integer less than n, then there exists a constant C0 = C(m,n) such that for all
u ∈ Cm(Rn) with support contained in Ω and ‖∇mu‖p ≤ 1, p = n

m , we have

1
|Ω|

∫

Ω

exp(β|u(x)| n
n−m )dx ≤ C0

for all β ≤ β(n,m) where

β(n, m) =

⎧

⎪⎨

⎪⎩

n
wn−1

[
πn/22mΓ( m+1

2 )

Γ( n−m+1
2 )

]p′

, when m is odd,

n
wn−1

[
πn/22mΓ( m

2 )

Γ( n−m
2 )

]p′

, when m is even,
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p′ = p
p−1 . Furthermore, for any β > β(n,m), the integral can be made as large

as desired, where

∇mu =
{�m

2 u, for m even,

∇ �m−1
2 u, for m odd.

For applications of Adams’ inequality to polyharmonic equations involv-
ing exponential type nonlinearities, we refer to [23,31,33,42]. A version of
Moser–Trudinger inequality with singular potential was established by
Adimurthi and Sandeep [5]. They proved the following:

Theorem 1.3. Let Ω be an open and bounded subset of R
n. Let n ≥ 2 and

u ∈ W 1,n
0 (Ω). Then for every α > 0 and β ∈ [ 0, n) ,

∫

Ω

exp
(

α|u| n
n−1

)

|x|β dx < ∞.

Moreover,

sup
‖u‖≤1

∫

Ω

exp
(

α|u| n
n−1

)

|x|β dx < ∞

if and only if
α

αn
+

β

n
≤ 1, where ‖u‖ =

(∫

Ω
|Δu|n)

1
n .

Motivated by this singular version of Moser–Trudinger inequality several
authors studied the following problem

−Δnu + λu|u|n−2 = γ f(x,u)
|x|β + kh(x, u) in Ω ⊆ R

n,

u = 0 on ∂Ω,
(1.4)

in bounded as well as unbounded domains. See for instance, [5,6,19,34] and
references cited therein. Lam and Lu [32] established a version of singular
Adams’ inequality on bounded domains. More precisely, they proved that:

Theorem 1.4. Let 0 ≤ α < n and Ω be a bounded domain in R
n. Then for all

0 ≤ β ≤ βα,n,m =
(

1 − α
n

)

β(n,m), we have

sup
u∈W

m, n
m

0 (Ω), ‖∇mu‖ n
m

≤1

∫

Ω

eβ|u|
n

n−m

|x|α dx < ∞. (1.5)

When β > βα,n,m, the supremum is infinite. Moreover, when m is an even
number, the Sobolev space W

m, n
m

0 (Ω) in the above supremum can be replaced
by a larger Sobolev space W

m, n
m

N (Ω) .

In case of Heisenberg group H
n, Cohn and Lu [15] established a Moser–

Trudinger type inequality on bounded domains of H
n. They proved the fol-

lowing result:
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Theorem 1.5. Let Hn be a n-dimensional Heisenberg group, Q = 2n + 2, Q′ =
Q

Q−1 , and αQ = (2πnΓ( 1
2 )Γ(Q−1

2 )Γ(Q
2 )−1Γ(n)−1)Q′−1. Then there exists a con-

stant C0 depending only on Q such that for all Ω ⊆ H
n, |Ω| < ∞,

sup
u∈W 1,Q

0 (Ω),‖∇Hnu‖
LQ(Ω)≤1

1
|Ω|

∫

Ω

exp
(

αQ|u(ξ)|Q′)

dξ ≤ C0 < ∞. (1.6)

If αQ is replaced by any larger number, the integral in (1.6) is still finite for
any u ∈ W 1,Q(Hn), but the supremum is infinite.

Lam et. al. [35] established the Moser–Trudinger type inequality with a
singular potential. Their result reads as follows:

Theorem 1.6. Let H
n be a n-dimensional Heisenberg group, Ω ⊆ H

n, |Ω| <

∞, Q = 2n + 2, Q′ = Q
Q−1 , 0 ≤ β < Q, and αQ = Qσ

1
Q−1
Q ,

σQ =
∫

ρ(z,t)=1
|z|Qdμ. Then there exists a constant C0 depending only on Q

and β such that

sup
u∈W 1,Q

0 (Ω),‖∇Hnu‖
LQ(Ω)≤1

1

|Ω|1− β
Q

∫

Ω

exp
(

αQ(1 − β

Q
)|u(ξ)|Q′

)

dξ ≤ C0 < ∞.

(1.7)
If αQ

(

1 − β
Q

)

is replaced by any larger number, then the supremum is infinite.

Motivated by the above research works, in order to obtain the existence
of a solution to (1.1) on Heisenberg group which involves exponential and
singular nonlinearity, it is natural to establish singular Adams type inequality
on Heisenberg group. In fact, in this article, we first establish Adams type
inequality for biharmonic operator on Heisenberg group and also establish the
singular Adams type inequality. We, then prove existence of a solution to (1.1)
as an application to Adams type inequality, where f : Ω×R → R is a function
satisfying either subcritical or critical exponential growth condition.

We point out that very little research works are available for the exis-
tence of solution to singular elliptic equations on Heisenberg group even for the
Laplacian, see for instance [13,41,50]. For existence results related to Laplace
equation without singularity, we refer to [8–11,14,27–30,36–38,45,51,52]. For
existence result concerning biharmonic operator on Heisenberg group, we re-
fer to [53] and for qualitative questions related to biharmonic operator on
Heisenberg group, we refer to [24].

Next, we define subcritical and critical growth for f(ξ, u).
We say that a function f : Ω ×R → R has subcritical growth on Ω ⊆ H

4

if

lim
|u|→∞

|f(ξ, u)|
exp(αu2)

= 0, uniformly on Ω, ∀α > 0. (1.8)

We say that f has critical exponential growth if there exists α0 > such that

lim
|u|→∞

|f(ξ, u)|
exp(αu2)

= 0, uniformly on Ω, ∀α > α0 (1.9)
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and

lim
|u|→∞

|f(ξ, u)|
exp(αu2)

= +∞, uniformly on Ω, ∀α < α0. (1.10)

We define

Λ = inf
0 	=u∈W 2,2

0 (Ω)

‖u‖2

∫

Ω
|u|2

ρ(ξ)a

> 0, (1.11)

where ξ = (z, t) and ρ(ξ) = (|z|4 + t2)
1
4 , 0 ≤ a < Q = 10.

We assume the following conditions on the nonlinearity f :
(H1) f : Ω̄ × R → R is continuous, f(ξ, u) ≥ 0 on Ω × [ 0,∞ ) , f(ξ, u) ≤ 0

when u ≤ 0.
(H2) There exists R0 > 0, M > 0 such that, ∀u ≥ R0, ∀ξ ∈ Ω

0 < F (ξ, u) ≤ Mf(ξ, u),

where F (ξ, u) =
∫ u

0
f(ξ, s)ds.

(H3) There exist R0 > 0, θ > 2 such that ∀ |u| ≥ R0, ∀ξ ∈ Ω,

θF (ξ, u) ≤ uf(ξ, u).

(H4) lim sup
u→0+

2F (ξ, u)
|u|2 < Λ, where Λ is defined by (1.11).

(H5) lim
u→∞ uf(ξ, u) exp(−α0|u|p′

) ≥ β1 >
(Q − a)AQ

Qα0RQ−aM , where p′ = Q
Q−2 , M

and AQ are defined in Sect. 2.
We remark that Problem (1.1) has the following special features, which

makes it challenging to study:
(i) It contains the nonlinearity f, which is of exponential growth and potential

1
ρ(ξ)a

, 0 ≤ a ≤ Q, which has singularity at ξ = 0. This problem is handled

by the use of singular version of Adams type inequality.
(ii) The case a = Q, is critical in the potential. Since we do not have the

singular Adams type inequality in case of a = Q, therefore, we use the
approximation method. More precisely, we approximate the Problem (1.1)
with a sequence of problems which are subcritical in potential, i.e. a < Q
and then, we pass the limit to conclude that Problem (1.1) has a nontrivial
solution in case a = Q.

Next, we state our main results, which we will prove in next sections.

Theorem 1.7. Let Ω be a bounded domain in H
n, n = 4, p = Q

2 , p′ = Q
Q−2 ,

where Q = 2n + 2 is homogeneous dimension of Hn. Then there exists a con-
stant C(Ω) such that for all u ∈ C∞

0 (Ω) and ‖ΔHnu‖p ≤ 1,
∫

Ω

exp
(

AQ|u(ξ)|p′) ≤ C0 < ∞, (1.12)

where

AQ =
Q

c0γ
p′
n

,
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c0 =
∫

Σ

dμ, Σ = {ξ ∈ H
n : |ξ| = 1} (1.13)

and

γn =
(

n(n + 1)
∫

Hn

|z|2(|z|4 + t2 + 1)− n+4
2 dξ

)−1

. (1.14)

Furthermore, if we choose any number greater than AQ then inequality fails to
hold.

Theorem 1.8. Let Ω be a bounded domain in H
n, n = 4 and 0 ≤ a < Q, where

Q = 2n + 2 is homogeneous dimension of Hn. Then there exists a constant
C0(Ω) such that for all u ∈ C∞

0 (Ω) and ‖ΔHnu‖Q/2 ≤ 1,

∫

Ω

exp
(

AQ

(

1 − a
Q

)

|u(ξ)|Q/(Q−2)
)

ρ(ξ)a
≤ C0 < ∞,

where ρ(ξ) =
√

(|z|4 + t2)
1
4 , AQ =

Q

c0γ
p′
n

and γn and c0 are as defined by

(1.13) and (1.14), respectively. Furthermore, if we choose any number greater
than AQ(1 − a

Q ) then inequality fails to hold.

Theorem 1.9. Assume that f satisfies the subcritical growth condition (1.8)
and (H1)–(H5) hold, then Problem (1.1) has a weak solution for 0 < a < Q.

Theorem 1.10. Assume that f satisfies the critical growth condition (1.9),
(1.10) and (H1)–(H5) hold, then Problem (1.1) has a weak solution for 0 <
a < Q.

We say (1.1) has a critical potential case when a = Q. In this case there
is no singular adams type inequality. In critical potential case, we establish the
following:

Theorem 1.11. Assume that f satisfies the subcritical growth condition (1.8)
and (H1)–(H5) hold, then Problem (1.1) has a weak solution for a = Q.

Theorem 1.12. Assume that f satisfies the critical growth condition (1.9),(1.10)
and (H1)–(H5) hold, then Problem (1.1) has a weak solution for a = Q.

The plan of the article is as follows. In Sect. 2, we give important pre-
liminaries on Heisenberg group and auxiliary results, which are used to prove
the main theorems. In Sect. 3, we prove Theorem 1.7 and 1.8. In Sect. 4, we
prove Theorems 1.9–1.12.

2. Preliminaries and auxiliary results

First, let us recall the briefs on the Heisenberg group H
n. The Heisenberg

group H
n = (R2n+1, ·), is the space R

2n+1 with the non-commutative law of
product

(x, y, t) · (x′, y′, t′) = (x + x′, y + y′, t + t′ + 2(〈y, x′〉 − 〈x, y′〉)),
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where x, y, x′, y′ ∈ R
n, t, t′ ∈ R and 〈·, ·〉 denotes the standard inner product

in R
n. This operation endows H

n with the structure of a Lie group. The Lie
algebra of Hn is generated by the left-invariant vector fields

T =
∂

∂t
, Xi =

∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
, i = 1, 2, . 3, . . . , n.

These generators satisfy the non-commutative formula

[Xi, Yj ] = −4δijT, [Xi,Xj ] = [Yi, Yj ] = [Xi, T ] = [Yi, T ] = 0.

Let z = (x, y) ∈ R
2n, ξ = (z, t) ∈ H

n. The parabolic dilation

δλξ = (λx, λy, λ2t)

satisfies

δλ(ξ0.ξ) = δλξ.δλξ0

and

|ξ| = (|z|4 + t2)
1
4 = ((x2 + y2)2 + t2)

1
4

is a norm with respect to the parabolic dilation which is known as Korányi
gauge norm N(z, t). In other words, ρ(ξ) = (|z|4 + t2)

1
4 denotes the Heisen-

berg distance between ξ and the origin. Similarly, one can define the distance
between (z, t) and (z′, t′) on H

n as follows:

ρ(z, t; z′, t′) = ρ((z′, t′)−1 . (z, t)).

It is clear that the vector fields Xi, Yi, i = 1, 2, . . . , n are homogeneous of
degree 1 under the norm | · | and T is homogeneous of degree 2. The Lie
algebra of Heisenberg group has the stratification H

n = V1 ⊕ V2, where the
2n-dimensional horizontal space V1 is spanned by {Xi, Yi}, i = 1, 2, . . . , n,
while V2 is spanned by T. The Korányi ball of center ξ0 and radius r is defined
by

BHn(ξ0, r) = {ξ : |ξ−1.ξ0| ≤ r}
and it satisfies

|BHn(ξ0, r)| = |BHn(0, r)| = rd|BHn(0, 1)|,
where |.| is the (2n + 1)-dimensional Lebesgue measure on H

n and d = 2n + 2
is the so called the homogeneous dimension of Heisenberg group H

n. The
Heisenberg gradient and Heisenberg Laplacian or the Laplacian–Kohn operator
on H

n are given by

∇Hn = (X1, X2, . . . , Xn, Y1, Y2, . . . , Yn)

and

ΔHn =
n∑

i=1

X2
i + Y 2

i

=
n∑

i=1

(
∂2

∂x2
i

+
∂2

∂y2
i

+ 4yi
∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4(x2

i + y2
i )

∂2

∂t2

)

.
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Folland [25] proved the existence of fundamental solution for the sublapla-
cian −ΔHn on the Heisenberg group H

n. Using Corollary 1 [25], we have the
following representation formula for each u ∈ C∞

0 (Ω),

u(ξ) = −γn

∫

Hn

ΔHnu(η)|ξ · η−1|2−Qdη, (2.1)

where Q = 2n + 2 is the homogeneous dimension of the Heisenberg group H
n

and

γn =
(

n(n + 1)
∫

Hn

|z|2(|z|4 + t2 + 1)− n+4
2 dξ

)−1

, ξ = (z, t). (2.2)

Next, we define convolution on H
n, see [26] for details.

Definition 2.1. (Convolution) If f and g are measurable functions on H
n, then

their convolution f ∗ g is defined as

(f ∗ g)(ξ) =
∫

Hn

f(η)g(η−1 · ξ)dη =
∫

Hn

f(ξ · η−1)g(η)dη,

provided the integrals converge.

Definition 2.2. (D1,p(Ω) and D1,p
0 (Ω) Space) Let Ω ⊆ H

n be open and
1 < p < ∞. Then we define

D1,p(Ω) = {u : Ω → R such that u, |∇Hnu| ∈ Lp(Ω)}.

D1,p(Ω) is equipped with the norm

‖u‖D1,p(Ω) =
(

‖u‖Lp(Ω) + ‖∇Hnu‖Lp(Ω)

) 1
p

.

D1,p
0 (Ω) is the closure of C∞

0 (Ω) with respect to the norm

‖u‖D1,p
0 (Ω) =

(∫

Ω

|∇Hnu|pdzdt

) 1
p

.

Definition 2.3. (D2,p(Ω) and D2,p
0 (Ω) Space) Let Ω ⊆ H

n be open and
1 < p < ∞. Then we define

D2,p(Ω) = {u : Ω → R such that u, |∇Hnu|, |ΔHnu| ∈ Lp(Ω)}.

D2,p(Ω) is equipped with the norm

‖u‖D2,p(Ω) =
(

‖u‖Lp(Ω) + ‖∇Hnu‖Lp(Ω) + ‖ΔHnu‖p
) 1

p

.

D2,p
0 (Ω) is the closure of C∞

0 (Ω) with respect to the norm

‖u‖D2,p
0 (Ω) =

(∫

Ω

|ΔHnu|pdzdt

) 1
p

.

Theorem 2.4. (Embedding Theorem) Let k ∈ N and p ∈ [ 1,∞ ) .

(i) If k < Q
p , then Dk,p

0 (Ω) is continuously embedded into Lp∗
(Ω),

for
1
p∗ =

1
p

− k

Q
.
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(ii) If k = Q
p , then Dk,p

0 (Ω) is continuously embedded into Lr(Ω), for r ∈
[ 1,∞ ) .

(iii) If k > Q
p , then Dk,p

0 (Ω) is continuously embedded into C0,γ(Ω̄), for all
0 ≤ γ < k − Q

p .

Now, we define the Adams functions. Let B := B(0, 1) denote the unit
ball in H

4 and B
 = B(0, �) denotes the ball with center 0 and radius �. We
have the following result.

Lemma 2.5. [31] For all � ∈ (0, 1) there exists U
 ∈ D := {u ∈ D2,2
0 (B) :

u |B�
= 1}, such that

‖U
‖ = C(B
, B) ≤ AQ

Q log
(

1



) ,

where C(K,E) denote the conductor capacity of K in E, whenever E is an
open set and K a relatively compact subset of E, which is defined as follows:

C(K,E) := inf{‖ΔHnu‖2
2 : u ∈ C∞

0 (E), u |K= 1}.

Let 0 ∈ Ω and R ≤ dist(0, ∂Ω), the Adams function is defined as follows:

Ãr(ξ) =

⎧

⎨

⎩

√

Q log(R
r )

AQ
Ur/R

(
ξ
R

)

, |ξ| < R;

0, |ξ| ≥ R,
(2.3)

where 0 < r < R. It is easy to check that
∥
∥
∥Ãr

∥
∥
∥ ≤ 1 and we denote

M = lim
k→∞

∫

1
k ≤|ξ|≤1

exp
(

Q log k|UR/k(ξ)|)dξ.

We have M > 0, for the details, we refer to [31].
Next, we recall decreasing rearrangement of functions on Heisenberg

group. For the details about rearrangement on Heisenberg group, we refer
to [26]. Let Ω be a bounded and measurable subset of Hn. Let f : Ω → R be
a measurable function. For t ∈ R, the level set {f > t} is defined as

{f > t} = {ξ ∈ Ω : f(ξ) > t}.

Sets {f < t}, {f ≥ t} and {f = t} can be defined in an analogous way.

Definition 2.6. (Distribution Function) Let f : Ω → R be a measurable func-
tion then distribution function of f is given by

λf (t) = |{f > t}|,
where |A| denotes the Lebesgue measure of the set A.

It is easy to see that distribution function is a monotonically decreasing
function of t and

λf (t) =

{

0, t ≥ ess sup(f),
|Ω|, t ≤ ess inf(f).

Thus the range of λf is the interval [0 , |Ω|].
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Definition 2.7. (Decreasing Rearrangement) Let Ω ⊂ H
n be bounded and let

f : Ω → R be a measurable function. Then the decreasing rearrangement of f
is defined as

f∗(0) = ess sup(f),

f∗(s) = inf{t : λf (t) < s}, s > 0.

Lemma 2.8. Let Ω ⊂ H
n be bounded and let f : Ω → R be a measurable

function. Then for 0 < p < ∞,
∫

Ω

|f(ξ)|pdξ =
∫ |Ω|

0

|f∗(t)|pdt.

Proof. For a proof, we refer to Chapter 1 [26]. �

Lemma 2.9. (Hardy–Littlewood inequality) Let Ω ⊂ H
n be bounded and let

f, g : Ω → R be a measurable functions. Then
∫

Ω

|f(ξ)g(ξ)|dξ ≤
∫ |Ω|

0

f∗(t)g∗(t)dt.

Proof. For a proof, we refer to Chapter 1 [26]. �

The function f∗∗ on (0,∞) is defined as

f∗∗(t) =
1
t

∫ ∞

0

f∗(s)ds.

Next, we state Vitali’s convergence theorem. We refer to [46] for the proof.

Theorem 2.10. (Vitali’s convergence theorem) Let (X,F , μ) be a measure space
such that μ(X) < ∞. Suppose
(i) {fn} is uniformly integrable,
(ii) fn(x) → f(x) a.e. as n → ∞,
(iii) |f(x)| < ∞, a.e. in X,

then f ∈ L1(X,μ) and

lim
n→∞

∫

X

|fn − f |dμ = 0.

Theorem 2.11. (Converse of Vitali’s theorem) Let (X,F , μ) be a measure space
such that μ(X) < ∞. Let fn ∈ L1(X,μ) and

lim
n→∞

∫

E

fndμ

exists for every E ∈ F , then {fn} is uniformly integrable.

Let

J : D2,2
0 (Ω) −→ R

be a functional defined by

J(u) =
1
2

∫

Ω

|ΔHnu|2dx −
∫

Ω

F (ξ, u)
ρ(ξ)a

dx, (2.4)
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where F (ξ, u) =
∫ u

0
f(ξ, s)ds. Throughout this article, we denote ‖·‖D2,2

0 (Ω) by
‖·‖ and || · ||p denotes the standard Lp-norm.

3. Proof of Theorem 1.7 and Theorem 1.8

In order to prove Theorems 1.7 and 1.8, we need the following results. In this
paper C is some generic constant which may vary from line to line. Kohn and
Lu [15] proved the following theorem:

Theorem 3.1. Let 0 < α < Q, Q − αp = 0, p′ =
Q

Q − α
and let

(Iα ∗ f)(ξ) =
∫

Hn

|ξ · η−1|α−Qf(η)dη. (3.1)

Then there exists a constant C such that for all Ω ⊆ H
n, |Ω| < ∞, and for all

f ∈ Lp(Hn) with support in Ω,

1
|Ω|

∫

Ω

exp

⎛

⎝
Q

c0

∣
∣
∣
∣
∣

(Iα ∗ f)(ξ)
‖f‖Lp(Hn)

∣
∣
∣
∣
∣

p′⎞

⎠ dξ ≤ C,

where c0 =
∫

Σ
dμ, Σ = {ξ ∈ H

n : |ξ| = 1}. Furthermore, if Q/c0 is replaced by
a greater number, then the statement is false.

In particular, for α = 2, we get the following corollary:

Corollary 3.2. Let p = Q
2 , p′ =

Q

Q − 2
and (I2 ∗f)(ξ) =

∫

Hn |ξ ·η−1|2−Qf(η)dη.

Then there exists a constant C such that for all Ω ⊆ H
n, |Ω| < ∞, and for all

f ∈ Lp(Hn) with support in Ω,

1
|Ω|

∫

Ω

exp

⎛

⎝
Q

c0

∣
∣
∣
∣
∣

(I2 ∗ f)(ξ)
‖f‖Lp(Hn)

∣
∣
∣
∣
∣

p′⎞

⎠ dξ ≤ C,

where c0 =
∫

Σ
dμ, Σ = {ξ ∈ H

n : |ξ| = 1}. Furthermore, if Q/c0 is replaced by
a greater number, then the statement is false.

Lemma 3.3. Let 0 < α < 1, 1 < p < ∞ and b(s, t) be a non-negative measurable
function on (−∞,∞) × [0,∞). such that almost everywhere,

b(s, t) ≤ 1, when 0 < s < t,

sup
t>0

(∫ 0

−∞
+
∫ ∞

t

b(s, t)p′
ds

) 1
p′

= b < ∞.

Then there is a constant C(p, α) such that if for φ ≥ 0
∫ ∞

−∞
φ(s)pds ≤ 1,

then
∫ ∞

0

exp(−Fα(t))dt ≤ C,
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where

Fα(t) = αt − α

(∫ ∞

−∞
b(s, t)φ(s)ds

)p′

.

Proof. In case of α = 1, this lemma was proved by Adams [1], which was later
modified for the case 0 < α ≤ 1 by Lam and Lu [32]. We refer to [1,32] for the
details. �

Let U = f ∗g denote the convolution on H
n. Then O’Neil [44] proved the

following lemma:

Lemma 3.4.

U∗(t) ≤ U∗∗(t) ≤ tf∗∗(t)g∗∗(t) +
∫ ∞

t

f∗(s)g∗(s)ds.

Now, we are ready to prove Theorem 1.7.
Proof of Theorem 1.7 Using (2.1), we get

|u(ξ)| ≤ γn

∫

Ω

ΔHnu(η)|ξ · η−1|2−Qdη

≤ γn|(I2 ∗ ΔHnu)(ξ)| (by (3.1) with α = 2)

|u(ξ)|p′ ≤ γp′
n |(I2 ∗ ΔHnu)(ξ)|p′

. (3.2)

Using Corollary 3.2 and Eq. (3.2), we get
∫

Ω

exp
(

AQ|u(ξ)|p′)

dξ ≤
∫

Ω

exp
(

AQγp′
n |(I2 ∗ ΔHnu)(ξ)|p′) ≤ C0,

provided Aγp′
n ≤ Q

c0
, i.e. , A ≤ Q

c0γ
p′
n

. This completes the first part of the

proof.
The proof of sharpness of the constant has similar lines as pp. 393 [1], so

we omit the details.
In order to prove Theorem 1.8, first we prove auxiliary lemmas, which

are used in the proof.

Lemma 3.5. Let g(ξ) = ρ(ξ)2−Q, then

g∗(t) =
(

c0

Qt

) 1
p′

,

and
g∗∗(t) = pg∗(t),

where ρ(ξ) = |ξ| = (|z|4 + t2)
1
4 , p = Q

2 , p′ = Q
Q−2 and c0 is defined in (1.13).

Proof. We have

g∗(t) = inf{s > 0 : λg(s) ≤ t},

where

λg(s) = |{ξ ∈ Ω : g(ξ) > s}|.
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Now,

|{ξ ∈ Ω : g(ξ) > s}| = |{ξ ∈ Ω : |ξ|2−Q > s}|
= |{ξ ∈ Ω : |ξ| < s− 1

Q−2 }|. (3.3)

By using polar coordinates (Proposition 1.15 [26]), from (3.3), we obtain

λg(s) =
∫

Σ

∫ s
− 1

Q−2

0

rQ−1drdμ, where Σ is defined in (1.13)

=
c0

Q
s− Q

Q−2 . (3.4)

From (3.4), we see that, for any t > 0,

λg(s) < t ⇒ c0

Q
s− Q

Q−2 < t

⇒ s− Q
Q−2 <

Q

c0
t

⇒ s >

(
c0

Qt

)Q−2
Q

=
(

c0

Qt

) 1
p′

. (3.5)

From (3.5), we obtain

g∗(t) ≥
(

c0

Qt

) 1
p′

. (3.6)

Now, for s =
(

c0
Qt

) 1
p′

,

λg(s) = t. (3.7)

From (3.7), we obtain

g∗(t) ≤
(

c0

Qt

) 1
p′

. (3.8)

From (3.6) and (3.8), we conclude that

g∗(t) =
(

c0

Qt

) 1
p′

.

Next, we compute g∗∗(t).

g∗∗(t) =
1
t

∫ t

0

g∗(s)ds

=
1
t

∫ t

0

(
c0

Qs

) 1
p′

ds

=
1
t

(
c0

Q

) 1
p′ ∫ t

0

s− 1
p′ ds
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= p
1
t

(
c0

Q

) 1
p′

t
1
p

= pg∗(t).

This completes the proof. �

Lemma 3.6. Let Ω ⊆ H
n, n = 4 be a bounded domain, p = Q

2 , p′ =
Q

Q − 2
, 0 ≤

a < Q and (I2 ∗ f)(ξ) =
∫

Hn |ξ · η−1|2−Qf(η)dη. Then there exists a constant
C > 0 such that for all f ∈ Lp(Hn) with support in Ω,

1
|Ω|

∫

Ω

exp
(

Q
c0

(

1 − a
Q

) ∣
∣
∣

(I2∗f)(ξ)
‖f‖Lp(Hn)

∣
∣
∣

p′)

ρ(ξ)a
≤ C,

where c0 =
∫

Σ
dμ, Σ = {ξ ∈ H

n : |ξ| = 1}. Furthermore, if Q
c0

(

1 − a
Q

)

is
replaced by a greater number, then the statement no longer holds.

Proof. Let

u(ξ) = (g ∗ f)(ξ), where

g(ξ) = ρ(ξ)2−Q.

Then by definition

u(ξ) = (I2 ∗ f)(ξ)

and by Lemma 3.5, we get

g∗(t) =
(

c0

Qt

) 1
p′

, g∗∗(t) = pg∗(t). (3.9)

By Lemma 3.4, we get

u∗(t) ≤ u∗∗(t) ≤ tf∗∗(t)g∗∗(t) +
∫ |Ω|

t

f∗(s)g∗(s)ds

= t.
1
t
pg∗(t)

∫ t

0

f∗(s)ds +
∫ |Ω|

t

f∗(s)
(

c0

Q

) 1
p′

s− 1
p′ ds (by (3.9))

=
(

c0

Q

) 1
p′
(

pt−
1
p′
∫ t

0

f∗(s)ds +
∫ |Ω|

t

s− 1
p′ f∗(s)ds

)

. (3.10)

Now, using the change of variables,

φ(s) = |Ω| 1
p f∗(|Ω|e−s)e− s

p , (3.11)

we get
∫

Ω

(f(x))pdx =
∫ |Ω|

0

(f∗(t))pdt

=
∫ ∞

0

(φ(s))pds. (3.12)



58 Page 16 of 32 G. Dwivedi and J. Tyagi NoDEA

Let h(ξ) = 1
ρ(ξ) , then h∗(ξ) = CQ

t

a
Q , where CQ is volume of unit ball in H

n.

By the Hardy–Littlewood inequality (Lemma 2.9), we obtain

∫

Ω

exp
((

1 − a
Q

)
Q
c0

|u(ξ)|p′
)

ρ(ξ)a
dξ ≤ (CQ)

a
Q

∫ |Ω|

0

exp
((

1 − a
Q

)
Q
c0

(u∗(t))p′
)

t
a
Q

.

(3.13)
Let us introduce the change of variable

t = |Ω|e−s, then dt = −|Ω|e−sds

and using this change of variable, we get

(CQ)
a
Q

∫ |Ω|

0

exp
((

1 − a
Q

)
Q
c0

(u∗(t))p′
)

t
a
Q

dt

= (CQ)
a
Q

∫ ∞

0

exp
(

1 − a
Q

)
Q
c0

(u∗(|Ω|e−s))p′

(|Ω|e−s)
a
Q

|Ω|e−sds

≤ (CQ)
a
Q |Ω|1− a

Q

∫ ∞

0

exp

[(

1 − a

Q

){

p(|Ω|e−s)− 1
p′
∫ |Ω|e−s

0

f∗(z)dz

+
∫ |Ω|

|Ω|e−s

f∗(z)z− 1
p′ dz

}p′

−
(

1 − a

Q

)

s

⎤

⎦ ds (by (3.10))

= (CQ)
a
Q |Ω|1− a

Q

∫ ∞

0

exp

[(

1− a

Q

){

pe
s
p′
∫ ∞

s

φ(w)e− w
p′ dw+

∫ s

0

φ(w)dw

}p′

−
(

1 − q

Q

)

s

]

ds (by using the value of f∗(z) from (3.11))

= (CQ)
a
Q |Ω|1− a

Q

∫ ∞

0

exp
[

−F(1− a
Q )(s)

]

ds, (3.14)

where F1− a
Q

(s) is as in Lemma 3.3 with

b(s, t) =

⎧

⎪⎨

⎪⎩

0 −∞ < s ≤ 0,

1 0 < s < t,

pe
t−s
p′ t < s < ∞.

Since u(ξ) = (I2 ∗ f)(ξ), therefore in view of (3.13), it is enough to show that

∫ ∞

0

φ(s)pds ≤ 1 implies
∫ ∞

0

exp
(

−F(1− a
Q )(s)

)

ds ≤ C. (3.15)

(3.15) follows by using Lemma 3.3. This completes the proof. �
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Proof of Theorem 1.8 Using the Formula (2.1), we get

|u(ξ)| ≤ γn

∫

Ω

ΔHnu(ξ)|ξ · η−1|2−Qdη

≤ γn|(I2 ∗ ΔHnu)(ξ)| (by (3.1) with α = 2)

|u(ξ)|p′ ≤ γp′
n |(I2 ∗ ΔHnu)(ξ)|p′

. (3.16)

Using Lemma 3.6 and (3.16), we get

∫

Ω

exp
(

AQ

(

1 − a
Q

)

|u(ξ)|p′
)

ρ(ξ)a

≤
∫

Ω

exp
(

AQ

(

1 − a
Q

)

γp′
n |(I2 ∗ ΔHnu)(ξ)|p′

)

ρ(ξ)a
≤ C0,

provided AQ

(

1 − a

Q

)

γp′
n ≤ Q

c0
.

For the sharpness of the constant, we refer to [1]. This completes the
proof.

4. Proof of Theorems 1.9–1.12

In order to prove Theorems 1.9–1.12, we obtain mountain pass geometry of the
associated functional. The following lemmas deal with the geometric require-
ments of mountain pass theorem. We have p = Q

2 and p′ = Q
Q−2 throughout

the section.

Lemma 4.1. Assume that f satisfies (1.8) and suppose (H1)–(H5) hold. Then
there exists ρ > 0 such that

J(u) > 0, if ‖u‖ = ρ.

Proof. By (H4), we have that

lim sup
s→0+

2F (ξ, s)
|s|2 < Λ,

which by definition is same as

inf
β>0

sup
{

2F (ξ, s)
|s|2 : 0 < s < β

}

< Λ. (4.1)

Since (4.1) is strict inequality, therefore, we can choose a number τ > 0 such
that

inf
β>0

sup
{

2F (ξ, s)
|s|2 : 0 < s < β

}

< Λ − τ. (4.2)

Since in (4.2) infimum is strictly less than Λ − τ, therefore there exists δ > 0
such that

sup
{

2F (ξ, s)
|s|2 : 0 < s < δ

}

< Λ − τ. (4.3)
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Thus for |s| < δ

2F (ξ, s)
|s|2 < Λ − τ,

or

F (ξ, s) <
1
2
(Λ − τ)|s|2. (4.4)

Since f has subcritical exponential growth therefore there exist constants C >
0 and γ > 0 such that

|f(ξ, t)| ≤ C exp(γtp
′
), ∀ξ ∈ Ω, ∀t ∈ R. (4.5)

Thus we have

|F (ξ, s)| =
∣
∣
∣
∣

∫ s

0

f(ξ, t)dt

∣
∣
∣
∣

≤
∫ s

0

|f(ξ, t)|dt

≤ C

∫ s

0

exp(γtp
′
)dt (by (4.5))

≤ C exp(γsp′
). (4.6)

Now for |s| ≥ δ and q > 2, there exists a constant K(δ, q) such that

|F (ξ, s)| ≤ K|s|q exp(γsp′
), ∀ |s| ≥ δ. (4.7)

On using (4.4) and (4.6), we get

F (ξ, s) ≤ 1
2
(Λ − τ)|s|2 + K exp(γ|s|p′

)|s|q, (4.8)

for all ξ ∈ Ω, s ∈ R and for some γ, τ > 0 and q > 2.

Now consider r and r′ such that
1
r

+
1
r′ = 1, then by Hölder’s inequality,

we have
∫

Ω

exp(γ|u|p′
)|u|q

ρ(ξ)a
dξ ≤

(
∫

Ω

exp(γr|u|p′
)

ρ(ξ)ar
dx

) 1
r (∫

Ω

|u|qr′
dξ

) 1
r′

≤

⎛

⎜
⎜
⎝

∫

Ω

exp
(

γr ‖u‖p′ ( |u|
‖u‖

)p′)

ρ(ξ)ar

⎞

⎟
⎟
⎠

1
r

(∫

Ω

|u|qr′
dξ

) 1
r′

.

(4.9)

Now, if we choose r > 1 sufficiently close to 1, so that ar < Q and ‖u‖ ≤ σ

such that γrσ2 < AQ

(

1 − a
Q

)

. Then by Theorem 1.8 and (4.9), we get

∫

Ω

exp(γ|u|p′
)|u|q

ρ(ξ)a
dx ≤ C

(∫

Ω

|u|qr′
dx

) 1
r′

. (4.10)
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Therefore, we get

J(u) ≥ 1
2

‖u‖2 − Λ − τ

2

∫

Ω

|u|2
ρ(ξ)a

dx − C

(∫

Ω

|u|r′q
) 1

r′
. (4.11)

Now, we have

Λ = inf
0 	=u∈D2,2

0 (Ω)

‖u‖2

∫

Ω
|u|2

ρ(ξ)a

. (4.12)

(4.12) implies that

Λ ≤ ‖u‖2

∫

Ω
|u|2

ρ(ξ)a

∀0 	= u ∈ D2,2
0 (Ω)

or ∫

Ω

|u|2
ρ(ξ)a

≤ 1
Λ

‖u‖2
. (4.13)

On using (4.13) in (4.11), we get

J(u) ≥ 1
2

‖u‖2 − Λ − τ

2Λ
‖u‖2 − C ‖u‖q

r′q . (4.14)

Since by Theorem 2.4, D2,2
0 (Ω) is continuously embedded into Ls(Ω), for all

1 ≤ s < ∞. Therefore, in particular, for s = r′q, we get

‖u‖r′q ≤ C ‖u‖ . (4.15)

On using (4.15) in (4.14), we get

J(u) ≥ 1
2

(

1 − Λ − τ

Λ

)

‖u‖2 − C ‖u‖q
.

Since τ > 0 and q > 2, choose ρ > 0 such that

1
2

(

1 − Λ − τ

Λ

)

ρ − Cρq−1 > 0,

then, we have

J(u) ≥ ‖u‖
(

1
2

(

1 − Λ − τ

Λ

)

‖u‖ − C ‖u‖q−1

)

> 0,

whenever ‖u‖ = ρ. This completes the proof. �

Lemma 4.2. There exists e ∈ D2,2
0 (Ω) with ‖e‖ > ρ such that

J(e) <

∫

‖u‖=ρ

J(u).

Proof. Let 0 	= u ∈ D2,2
0 (Ω) and u ≥ 0. By (H2) and (H3), there exist c > 0

and d > 0 such that

F (ξ, s) ≥ csθ − d, ∀ (ξ, s) ∈ Ω × R
+, where θ > 2. (4.16)

For t > 0, we have

J(tu) ≤ t2

2

∫

Ω

|ΔHnu|2dξ − ctθ
∫

Ω

uθ

ρ(ξ)a
dx + d

∫

Ω

1
ρ(ξ)a

dξ. (4.17)
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Since θ > 2, (4.17) implies that J(tu) → −∞ as t → ∞. By setting e = tu
with t large enough, we get ‖e‖ > ρ and

J(e) < inf
‖u‖=ρ

J(u).

This completes the proof. �

Lemma 4.3. Assume that f satisfies subcritical growth condition (1.8). Then
the functional J satisfies Palais–Smale condition at level c, for all c ∈ R.

Proof. Let {uk} ⊆ D2,2
0 (Ω) ba a PS sequence at level c, that is,

J(uk) =
1
2

‖uk‖2 −
∫

Ω

F (ξ, uk)
ρ(ξ)a

dξ → c, as k → ∞ (4.18)

and

|DJ(uk)v| =
∣
∣
∣
∣

∫

Ω

ΔHnukΔHnvdξ −
∫

Ω

f(ξ, uk)v
ρ(ξ)a

∣
∣
∣
∣
≤ εk ‖v‖ , (4.19)

where εk → 0 as k → ∞. On taking v = uk in (4.19), we get

|DJ(uk)uk| =
∣
∣
∣
∣

∫

Ω

|ΔHnuk|2dξ −
∫

Ω

f(ξ, uk)uk

ρ(ξ)a

∣
∣
∣
∣
≤ εk ‖uk‖ , (4.20)

On multiplying (4.18) with θ and subtracting (4.20) from it, we get
(

θ

2
− 1

)

‖uk‖2+
∫

Ω

1
ρ(ξ)a

(f(ξ, uk)uk−θF (ξ, uk))dx ≤ O(1)+εk ‖uk‖ . (4.21)

By (H6), there exist R0 > 0 and θ > 2 such that, for ‖u‖ ≥ R0,

θF (ξ, u) ≤ uf(ξ, u). (4.22)

On using (4.22), in (4.21), we get
(

θ

2
− 1

)

‖uk‖2 ≤ O(1) + εk ‖uk‖ . (4.23)

Since θ > 2, (4.23) shows that {uk} is bounded, therefore, up to a subsequence

uk ⇀ u0 in D2,2
0 (Ω)

uk → u0 in Lp(Ω), ∀p ≥ 1
uk(ξ) → u0(ξ) a.e. in Ω.

Since f has subcritical growth on Ω, therefore there exists a constant Ck > 0
such that

f(ξ, s) ≤ Ck exp
(

AQ

2k2
|s|p′

)

, ∀ (ξ, s) ∈ Ω × R. (4.24)
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Thus
∣
∣
∣
∣

∫

Ω

f(ξ, uk)
ρ(ξ)a

(uk − u)dξ

∣
∣
∣
∣
≤
∫

Ω

|f(ξ, uk)|
ρ(ξ)a

|(uk − u)|dx

≤
∫

Ω

Ck

exp
(

AQ

2k2 |uk|p′
)

ρ(ξ)a
|uk − u|dξ

≤ C

⎛

⎜
⎜
⎝

∫

Ω

exp
(

rAQ‖uk‖p′

k2
|uk|p′

‖uk‖p′

)

ρ(ξ)ar

⎞

⎟
⎟
⎠

1
r

(∫

Ω

|uk − u|r′
) 1

r′
,

(where r > 1 and such that ar < Q and
1
r

+
1
r′ = 1)

≤ C ‖uk − u‖r′ (by Theorem 1.8 )

→ 0 as k → ∞. (4.25)

Similarly, we can show that
∫

Ω

f(ξ, u)
ρ(ξ)a

(uk − u)dξ → 0 as k → ∞. (4.26)

Also, we have

〈DJ(uk) − DJ(u), uk − u〉 → 0, as k → ∞.

Thus uk → u in D2,2
0 (Ω). This completes the proof. �

4.1. Subcritical growth. Proof of Theorem1.9

Using Lemmas 4.1, 4.2 one can show that J satisfies the geometric requirements
of mountain pass theorem. Also Lemma 4.3, shows that J satisfies Palais–
Smale conditions. Therefore, we conclude the proof of Theorem 1.9 by applying
mountain pass theorem.

4.2. The critical growth

In this case, we need the following lemma to establish the existence of solution.

Lemma 4.4. Assume that f satisfies critical exponential growth condition (1.9)
and (1.10) and suppose (H1)–(H5) hold. Then there exists k > 0 such that

max{J(tAk) : t ≥ 0} <

(
Q − a

2Q

)
AQ

α0
,

where Ak = ÃR/k is defined by (2.3).

Proof. We shall prove this result by method of contradiction. Suppose that for
all k, we have

max{J(tAk) : t ≥ 0} ≥
(

Q − a

2Q

)
AQ

α0
. (4.27)

Therefore for all k there exists a tk > 0 at which maximum is attained and

J(tkAk) =
t2k ‖Ak‖2

2
−
∫

Ω

F (ξ, tkAk)
ρ(ξ)a

dx ≥
(

Q − a

2Q

)
AQ

α0
(4.28)
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and

t2k ‖Ak‖2 =
∫

Ω

tkAkf(ξ, tkAk

ρ(ξ)a
dξ. (4.29)

Since F (ξ, s) ≥ 0 and ‖Ak‖2 ≤ 1, therefore from (4.28), we get

t2k ≥
(

Q − a

Q

)
AQ

α0
. (4.30)

Also for a given τ > 0, there exists Rτ > 0 such that for all u ≥ Rτ , we have

uf(ξ, u) ≥ (β1 − τ) exp(α0|u|p′
). (4.31)

On using (4.31) in (4.29), we get

t2k ≥ (β1 − τ)
∫

BR/k

exp(α0|tkAk|p′
)

ρ(ξ)a
dx

= (β1 − τ)
wQ−1

Q − a

(
R

k

)Q−a

exp

(

α0t
p′
k

(
Q log k

AQ

)p′)

= (β1 − τ)
wQ−1R

Q−a

Q − a
exp

[

α0t
p′
k

(
Q log k

AQ

)p′

− (Q − a) log(k)

]

1 ≥ (β1 − τ)
w3R

Q−a

Q − a
exp

[

α0t
p′
k

(
Q log k

AQ

)p′

− (Q − a) log(k) − 2 log(tk)

]

.

(4.32)

(4.32) shows that {tk} is a bounded sequence, otherwise up to a subsequence
right hand side of (4.32) tends to ∞ as k → ∞. Also, we have

t2k →
(

Q − a

Q

)
AQ

α0
as k → ∞ (4.33)

and
‖Ak‖ → 1 as k → ∞.

Also observe that, by definition of Ak, as k → ∞, we have,

Ak(ξ) → 0, a.e. ξ ∈ Ω.

Let

Xk = {ξ ∈ Ω : tkAk ≥ Rτ}
and

Yk = Ω\Xk,

then the characteristic function of Yk, χYk
→ 1, a.e. ξ ∈ Ω. By Lebesgue

dominated convergence theorem, we get
∫

Yk

tkAk
f(ξ, tkAk)

ρ(ξ)a
dξ → 0 (4.34)

and ∫

Yk

exp(α0|tkAk|2)
ρ(ξ)a

dx → w3R
Q−a

Q − a
, as k → ∞. (4.35)
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Since t2k ≥ Q−a
Q

AQ

α0
, therefore

∫

BR

exp(α0|tkAk|2)
ρ(ξ)a

dξ ≥
∫

BR

exp
(

Q−a
Q AQ|Ak|2

)

ρ(ξ)a
dξ

=
∫

|x|≤ R
k

exp
(

Q−a
Q AQ|Ak|2

)

ρ(ξ)a
dξ +

∫

R
k ≤|x|≤R

exp
(

Q−a
Q AQ|Ak|2

)

ρ(ξ)a
dξ

=
∫

|x|≤ R
k

exp Q−a
Q (AQ|Ak|2)
ρ(ξ)a

dξ +
∫

R
k ≤|x|≤R

exp
(

Q−a
Q AQ|Ak|2

)

ρ(ξ)a
dξ

=
w3R

Q−a

Q − a
+ RQ−aM (4.36)

Since

t2k ≥ (β1 − τ)
∫

|x|≤R

exp(α0|tkAk|2)
ρ(ξ)a

dξ +
∫

Yk

tkAkf(ξ, tkAk)
ρ(ξ)a

dξ

−(β1 − τ)
∫

Yk

exp(α0|tkAk|2)
ρ(ξ)a

dξ,

therefore
Q − a

Q

AQ

α0
≥ (β1 − τ)RQ−aM

or

β1 ≤ AQ

RQ−aMα0

Q − a

Q
,

which is a contradiction to (H5). This completes the proof. �

Lemma 4.5. Assume that f satisfies critical exponential growth condition (1.9)
and (1.10). Let {uk} ⊆ D2,2

0 (Ω) be a Palais–Smale sequence. Then {uk} has a
subsequence, still denoted by {uk}, and u ∈ D2,2

0 (Ω) such that

(i) uk ⇀ u in D2,2
0 (Ω)

(ii)
f(ξ, uk)
ρ(ξ)a

→ f(ξ, u)
ρ(ξ)a

in L1(Ω).

Proof. Let {uk} be a Palais–Smale sequence, then

J(uk) =
1
2

‖uk‖2 −
∫

Ω

F (ξ, uk)dξ → c, as k → ∞ (4.37)

and

|J ′(uk)v| =
∣
∣
∣
∣

∫

Ω

ΔHnukΔHnvdξ −
∫

Ω

f(ξ, uk)vdξ

∣
∣
∣
∣
≤ τk ‖v‖ . (4.38)

Also by Lemma 4.4,

c <
Q − a

2Q

AQ

α0
.
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From (4.37) and (4.38), we get

C + τn ‖uk‖ ≥
(

θ

2
− 1

)

‖uk‖2 −
∫

Ω

(θF (ξ, uk) − f(ξ, uk)uk)
ρ(ξ)a

dξ

≥
(

θ

2
− 1

)

‖uk‖2
, (4.39)

which implies that
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖uk‖ ≤ C,
∫

Ω

f(ξ, uk)uk

ρ(ξ)a
dξ ≤ C,

∫

Ω

F (ξ, uk)
ρ(ξ)a

dξ ≤ C.

(4.40)

Since D2,2
0 (Ω) is a reflexive Banach space, therefore by (4.40), up to a subse-

quence
⎧

⎪⎨

⎪⎩

uk ⇀ u in D2,2
0 (Ω),

uk −→ u in Lq(Ω), ∀ 1 ≤ q < ∞,

uk(ξ) −→ u(ξ), a.e. ξ ∈ Ω.

Furthermore, using the arguments similar to Lemma 2.1 [16], we get

f(ξ, un)
ρ(ξ)a

→ f(ξ, u)
ρ(ξ)a

in L1(Ω). (4.41)

This completes the proof. �

4.3. Proof of Theorem1.10

By Lemmas 4.1, 4.2, we can find a Palais–Smale sequence {uk} at the level c

and by Lemma 4.4, 0 < c <
Q − a

2Q

AQ

α0
. Thus, we have

J(uk) =
1
2

‖uk‖2 −
∫

Ω

F (x, uk)dξ −→ c (4.42)

and

|J ′(uk)v| =
∣
∣
∣
∣

∫

Ω

ΔHnukΔHnvdx −
∫

Ω

f(ξ, uk)v
ρ(ξ)a

dξ

∣
∣
∣
∣
≤ εk ‖v‖ . (4.43)

By Lemma 4.5, there exists u ∈ D2,2
0 (Ω) such that

(i) uk ⇀ u in D2,2
0 (Ω).

(ii) f(ξ,uk)
ρ(ξ)a → f(ξ,u)

ρ(ξ)a strongly in L1(Ω).

Therefore by (4.43), with the aid of Lebesgue dominated convergence theorem,
one can pass the limit and get

J ′(u)v = 0

for all v ∈ C∞
c (Ω). Since C∞

c (Ω) is dense in D2,2
0 (Ω), therefore u is a weak

solution to (1.1).
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Now, we show that u is non trivial. On the contrary, let if possible u ≡ 0,
then by (H2) and Lebesgue dominated convergence theorem,

∫

Ω

F (ξ, uk)
ρ(ξ)a

dξ → 0 in L1(Ω) as k → ∞. (4.44)

From (4.42), we get

‖uk‖2 → 2c <
Q − a

Q

AQ

α0
. (4.45)

Choose q > 1, sufficiently close to 1 such that

Q

Q − a
qα0 ‖uk‖Q/(Q−2)

< AQ

for k large. Now, since f has critical exponential growth, therefore by Theorem
1.8,

∫

Ω

|f(ξ, uk)
ρ(ξ)a

dξ ≤ C

∫

Ω

exp

(

qα0 ‖uk‖Q/(Q−2)

∣
∣
∣
∣

uk

‖uk‖
∣
∣
∣
∣

Q/(Q−2)
)

dξ

≤ O(1), as k → ∞.

Thus, by taking v = uk in (4.42), we obtain

‖uk‖2 → 0 as k → ∞,

which is a contradiction. This completes the proof.

4.4. The critical potential case a = Q

In this section, we consider the borderline problem with respect to potential,
i.e., a = Q

Δ2
Hnu =

f(ξ, u)
ρ(ξ)Q

in Ω,

u|∂Ω = 0 =
∂u

∂n

∣
∣
∣
∣
∂Ω

,

(4.46)

where 0 ∈ Ω ⊆ H
n, n = 4 is a bounded domain and f satisfies the exponential

growth condition at subcritical and critical level. This case is delicate in the
sense that Theorems 1.9 and 1.10 fail when a = Q.

In order to establish the existence of solution to the problem (4.46), we
consider the approximate problem which has subcritical potential

Δ2
Hnun =

f(ξ, un)
ρ(ξ)Q− 1

n

in Ω,

un|∂Ω = 0 =
∂un

∂n

∣
∣
∣
∣
∂Ω

,
(4.47)

The solutions to (4.47) are the critical points of the functional

Jn : D2,2
0 (Ω) → R

defined as
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Jn(un) =
1
2

∫

Ω

|ΔHnun|2dξ −
∫

Ω

F (ξ, un)
ρ(ξ)Q− 1

n

dξ, (4.48)

where F (ξ, un) =
∫ un

0

f(ξ, s)ds.

Lemma 4.6. Suppose (H1)–(H4) hold. Then there exists ρ > 0 such that

Jn(un) > 0, if ‖un‖ = ρ.

Proof. The proof has the similar lines as the proof of Lemma 4.1, for the sake
of brevity, we omit the details. �

Lemma 4.7. There exists en ∈ D2,2
0 (Ω) with ‖en‖ > ρ such that

Jn(en) <

∫

‖un‖=ρ

Jn(un).

Proof. The proof has similar lines as the proof of Lemma 4.2 and therefore we
omit the details for the sake of brevity. �

Lemma 4.8. The functional Jn satisfies Palais–Smale condition at level c, for
all c ∈ R.

Proof. Let {u
(m)
n } ⊆ D2,2

0 (Ω) ba a (PS) sequence at level c, that is,

Jn(u(m)
n ) =

1
2

∥
∥
∥u(m)

n

∥
∥
∥

2

− F (ξ, u(m)
n )

ρ(ξ)Q− 1
n

dξ → c, as m → ∞ (4.49)

and

|DJn(u(m)
n )v| =

∣
∣
∣
∣
∣

∫

Ω

ΔHnu(m)
n ΔHnvdξ −

∫

Ω

f(ξ, u(m)
n )v

ρ(ξ)Q− 1
n

∣
∣
∣
∣
∣
≤ εm ‖v‖ , (4.50)

where 0 < εm < 1 and εm → 0 as m → ∞. On taking v = u
(m)
n in (4.50), we

get

|DJn(u(m)
n )u(m)

n | =

∣
∣
∣
∣
∣

∫

Ω

|ΔHnu(m)
n |2dξ −

∫

Ω

f(ξ, u(m)
n )u(m)

n

ρ(ξ)Q− 1
n

∣
∣
∣
∣
∣
≤ εm

∥
∥
∥u(m)

n

∥
∥
∥ ,

(4.51)
On multiplying (4.49) with θ and subtracting (4.51) from it, we get

(
θ

2
− 1

)∥
∥
∥u(m)

n

∥
∥
∥

2

+
∫

Ω

1
ρ(ξ)Q− 1

n

× (f(ξ, u(m)
n )u(m)

n − θF (ξ, u(m)
n ))dξ ≤ O(1) + εm

∥
∥
∥u(m)

n

∥
∥
∥ . (4.52)

By (H6), there exist R0 > 0 and θ > 2 such that, for ‖un‖ ≥ R0,

θF (ξ, un) ≤ unf(ξ, un). (4.53)

On using (4.53), in (4.52), we get
(

θ

2
− 1

)∥
∥
∥u(m)

n

∥
∥
∥

2

≤ O(1) + εm

∥
∥
∥u(m)

n

∥
∥
∥ . (4.54)
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Since θ > 2, (4.54) shows that {u
(m)
n } is bounded for each fixed n ∈ N, that is,

∥
∥
∥u

(m)
n

∥
∥
∥ ≤ Kn, for some Kn > 0 and therefore, up to a subsequence, we have

u(m)
n ⇀ wn in D2,2

0 (Ω) as m → ∞.

u(m)
n −→ wn in Lp(Ω), as m → ∞ for all p ≥ 1.

u(m)
n (ξ) −→ wn(ξ) a.e. in Ω, as m → ∞.

Since f has subcritical growth on Ω, therefore there exists a constant CKn
> 0

such that

f(ξ, s) ≤ CKn
exp

(
βn

2K2
n

|s|Q/(Q−2)

)

, ∀ (ξ, s) ∈ Ω × R, (4.55)

where βn = AQ

(

Q − a + 1
n

)

. Thus
∣
∣
∣
∣
∣

∫

Ω

f(ξ, u(m)
n )

ρ(ξ)Q− 1
n

(u(m)
n − wn)dξ

∣
∣
∣
∣
∣
≤
∫

Ω

|f(ξ, u(m)
n )|

ρ(ξ)Q− 1
n

|(u(m)
n − wn)|dξ

≤
∫

Ω

CKn

exp
(

βn

2K2
n
|u(m)

n |2
)

ρ(ξ)Q− 1
n

|u(m)
n − wn|dξ

≤ C

⎛

⎜
⎜
⎜
⎜
⎝

∫

Ω

exp

(

rβn‖u(m)
n ‖p′

K2
n

|u(m)
n |p′

∥
∥
∥u

(m)
n

∥
∥
∥

p′

)

ρ(ξ)(Q− 1
n )r

⎞

⎟
⎟
⎟
⎟
⎠

1
r

(∫

Ω

|u(m)
n − wn|r′

) 1
r′

(

where r > 1 and such that
(

a − 1
n

)

r > Q

and
1
r

+
1
r′ = 1

)

≤ C
∥
∥
∥u(m)

n − wn

∥
∥
∥

r′

→ 0 as m → ∞. (4.56)

Similarly, we can show that
∫

Ω

f(ξ, u(m)
n )

ρ(ξ)Q− 1
n

(u(m)
n − wn)dξ → 0 as m → ∞. (4.57)

Also, we have

〈DJ(u(m)
n ) − DJ(wn), u(m)

n − wn〉 → 0, as m → ∞.

Thus u
(m)
n → wn in D2,2

0 (Ω). This completes the proof. �

4.5. Proof of Theorem1.11

Lemmas 4.6, 4.7 show that the functional Jn satisfies the geometric conditions
required in mountain pass theorem. Lemma 4.8 shows that Jn satisfies Palais–
Smale condition and therefore by mountain pass theorem, we conclude that
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Problem (4.47) has a weak solution un, for each n, that is,
∫

Ω

ΔHnunΔHnvdξ =
∫

Ω

f(ξ, un)
ρ(ξ)Q− 1

n

vdx, for all v ∈ D2,2
0 (Ω). (4.58)

Since 0 < εm < 1 therefore from Eq. (4.54), we have ‖un‖ ≤ C, for some
constant C independent of n. Since D2,2

0 (Ω) is reflexive Banach space therefore,
up to a subsequence

un → u0 in D2,2
0 (Ω)

un → u0 in Lp(Ω), ∀p ≥ 1
un(ξ) → u0(ξ) a.e. in Ω.

From (4.54) and the arguments used in Lemma 4.5, we also have the following
∫

Ω

f(ξ, un)un

ρ(ξ)Q− 1
n

dξ ≤ C (4.59)

and ∫

Ω

F (ξ, un)
ρ(ξ)Q− 1

n

dξ ≤ C. (4.60)

Observe that
f(ξ, un)
ρ(ξ)Q− 1

n

→ f(ξ, u0)
ρ(ξ)Q

, a.e. in Ω. (4.61)

Using (4.61) and Vitali’s convergence theorem in (4.58), we get that u0 is a
weak solution of (4.46). This completes the proof in the subcritical case.

Now, we establish the existence of solution to (4.46), when f satisfies
critical exponential growth condition (1.9) and (1.10).

4.6. Proof of Theorem1.12

Since for each n ∈ N, Q − 1
n < Q, therefore by Theorem 1.10, (4.47) has a

weak solution un. Moreover, since 0 < εm < 1 therefore by (4.40), there exists
C > 0 independent of n such that ‖un‖ ≤ C, therefore, up to a subsequence

un → u0 in D2,2
0 (Ω).

un → u0 in Lp(Ω), ∀p ≥ 1.

un(ξ) → u0(ξ) a.e. in Ω.

From (4.54) and the arguments used in Lemma 4.5, we also have the following
∫

Ω

f(ξ, un)un

ρ(ξ)Q− 1
n

dξ ≤ C (4.62)

and ∫

Ω

F (ξ, un)
ρ(ξ)Q− 1

n

dξ ≤ C. (4.63)

Observe that
f(ξ, un)
ρ(ξ)Q− 1

n

→ f(ξ, u0)
ρ(ξ)Q

, a.e. in Ω. (4.64)

Using (4.64) and Vitali’s convergence theorem in (4.58), we get that u0 is a
weak solution of (4.46). This completes the proof in the critical case.
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