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Abstract. We consider a stochastic partial differential equation involv-
ing a second order differential operator whose drift is discontinuous. The
equation is driven by a Gaussian noise which behaves as a Wiener process
in space and the time covariance generates a signed measure. This class
includes the Brownian motion, fractional Brownian motion and other re-
lated processes. We give a necessary and sufficient condition for the exis-
tence of the solution and we study the path regularity of this solution.
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1. Introduction

In this paper we consider the stochastic partial differential equation (SPDE)

0 .
Eu(t, x) = Lu(t,x) + W(t, z) (1)
where t > 0, z € £ = R? with vanishing initial condition u(0,z) = 0 for every
x € & and u(t,-)/OE = 0 for every t > 0.

In (1), L denotes the operator defined by

L =CA+2CqisV 2)

with A the Laplacian on R?, S is the hyperplane S = {(z1,22,...,74) €
R?; x4 = 0}, C is a strictly positive constant, ¢ is some constant such that
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| ¢ |< 1 and 65 is a generalized function on R the action of which onto basic
functions reduces to integration over S, i.e.

p(x)ds(x)de = | o(x)do (3)
/]Rd /S

where ¢ : R? — R is any real-valued continuous function of compact support
defined on R?, and the integral on the right is a surface integral.

The notation W in (1) refers to the formal derivative of a Gaussian noise
W that behaves as a Wiener process with respect to the space variable (it
is “white in space”) and it is a process that admits a covariance measure
structure (in the sense of [3]) in time. In particular, W may behave as a
Brownian motion, fractional Brownian motion, bifractional Brownian motion
or other related processes with respect to the time variable.

The study of diffusion processes with generalized drift has been initiated
by Portenko. A complete exposition of this field can be found in the monograph
[10]. They appeared as natural models for extremely irregular motions (for
example, the velocity in the liquid) that can be very large at some points
of space or at some times. Operators with a singular first-order differential
term appeared at the end of the 1970s in [8] and [9] as an interesting way
to model some permeable barrier. In these papers, the author constructed a
continuous Markov process in R? whose infinitesimal generator has a singular
drift concentrated on an hyperplane, orthogonal to some unit vector. The
operator L given by (2) has been analyzed in many references due to the fact
that it generates the so-called skew Brownian motion. We refer to [7] for the
fundamental solution of the equation (& — L)u = 0 and to the survey [5]
and the references therein for its connection with the skew Brownian motion.
Moreover, as noted in [8,9], solving (& — L)u = 0 with L given by (2) is also
equivalent in solving a transmission problem.

Our purpose is to solve the stochastic counterpart of this equation, namely
the SPDE (1). This can be seen as a generalization of the deterministic model
to a random perturbation and it also represents a natural extension of the sto-
chastic heat equation driven by Gaussian noises, such as fractional Brownian
motion (which has been widely studied recently, see [11] and the references
therein). We prove a necessary and sufficient condition for the existence of the
mild solution to (1) for a general class of Gaussian noises, including fractional
Brownian motion, bifractional Brownian motion and other related process.
Our findings extend the results obtained recently and less recently for the case
of the heat equation with fractional noise in time. We also study the Holder
continuity of the solution when the noise is fractional in time.

Our paper is organized as the following way: in Sect. 2 we describe the
basic elements related to the operator L (2) and the fundamental solution
associated to (1), together with the random noise in this SPDE. Section 3
focuses on the necessary and sufficient condition for the existence of a mild
solution to (1) while in Sect. 4 we regard some important particular cases. In
the last section we study the pathwise regularity of the solution when the noise
behaves as a fractional Brownian motion with respect to the time variable.
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2. Preliminaries

In this preliminary paragraph we introduce the operator L that appears in (1),
we describe the solution to (E — L)u = 0 and we present the random noise
that drives the SPDE (1).

2.1. The PDE with constant and generalized drift coefficients

On the Euclidien space R?, d > 2, let us consider two domains
Dy = {(z1,22,...,24) € R 24 < 0} and Dy = {(z1,22,...,24) € R 24 > 0},
and the hyperplane

S ={(z1,22,...,24) € Rd;xd =0}

In this paragraph, we will study the second-order parabolic partial dif-

ferential equation
0
L—— = 4
(2-5)u=o (4)

d 92
Lu(z,t) = CY %(53, t) + 2Cq0s(x)Vu, (5)
i=1 i

where L is defined by

C' is a strictly positive constant, ¢ is some constant such that | ¢ |[< 1, dg(x)
is a generalized function satisfying (3).

Here, the operator L is generalized in the sense that for all couple of
functions u and g, of class C*° and with compact supports,

/ Lu(x)g(z)dx = C Au( da:+20/ (x)dg(dx).
Rd

One fundamental interest in our study is the expression of the funda-
mental solution associated to the SPDE (1). The following result is due to

7).

Theorem 1. There exists a unique fundamental solution p(x—y, t, s)=p(s, z,t,y)
of the partial differential equation Lu:%”;‘. It can be explicitly expressed as, for

ref,0<s<t
exp [ - |z —y[?
4C(t — s)

<x—£«Hy—gD%wf—gP>
4C(t — s)

1

A= 0) = Gare — ope

+ sign(y)q exp ( -

(6)
where I denotes the orthogonal projection of x on S, and sign(y)

[+lifyeD
o —1if yeD,.
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2.2. The random noise

Let R be a covariance function on [0, T]?. It defines naturally a finite additive
measure ip = 4 on the algebra R of finite disjoint rectangles included in the
set [0,7]? by

u(l) = AR

where AjR denotes the rectangular increment of R over the rectangle I given
by

A[R = R(bl,bg) — R(ah bz) — R(CLQ, bl) + R(al,ag)

if I = [al,bl) X [ag,bg).

We will say that the process (X¢)¢c[o,7] generates a covariance measure if

v can be extended to a signed sigma-finite measure on B([0, T]?). An example

of a class of processes with covariance measure structure is the set of processes
whose covariance satisfies

0’R

0sot

In this case the measure p generated by R admits a density with respect to

the Lebesque measure on [0, T]? given by %.

We give few examples of processes with covariance measure structure.

c LY([0,T%).

Example 2. Suppose that X is a fractional Brownian motion B¥ with Hurst
parameter H € (%, 1). That is, X is a centered Gaussian process with covari-
ance

1
EX, X, = §(t2H + 2 — |t — 52H)

for every s,t € [0,T]. Then X admits a covariance measure structure on [0, 72
which has a density given by

H(2H — 1)|t — s]*H 72,

Ezxample 3. If X is a Wiener process, then X defines a covariance measure p
given by u(du,dv) = §p(u — v)dudv, where dy is the Dirac measure.

Ezample 4. Let us denote by M = {MF (a,b);t > 0} = {M/;t > 0} the
mixed-fractional Brownian motion (mfBm, see [13]) of parameters a,b and H
such that 0 < H < 1, (a,b) € R?\{(0,0)}; that is the centered Gaussian
process, starting from zero, with covariance

2
RIab(t 5) .= R(t,s) = a®(t N s) + %(RH + 2t s P ) (7)

1
Wheret/\s:ﬁ(t—&—s—|t—s|).Whena=0&ndb:L M*t(0,1) = BH

is a fractional Brownian motion. When a = 1 and b = 0, M*(1,0) = B is a
Brownian motion. So the mfBm is clearly an extension of the fractional Brown-
ian motion and of the Wiener process. We refer to [13] for further information
on this process.
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If (a,b, H) € RxR* x (%, 1) or (a,b) € R*x{0}, M* (a,b) admits a covariance
structure on [0,7]? which has a density given by

a?do(u —v) + bV*H(2H — 1)|u — v|*H 2,
where dg is the Dirac measure and R* is the set R\{0}.

Ezample 5. The bifractional Brownian motion (B™%);5 is a centered Gauss-
ian process, starting from zero, with covariance
1
R (t,5) 1= R(t,5) = oz (87 + )5 [ 1 — s |21 (8)
with H € (0,1) and K € (0, 1].

Clearly BH:1 is a fractional Brownian motion with Hurst parameter H €
(0,1). The bifractional Brownian motion admits the following decomposition
(see [4]).

Note that the covariance of the bifractional Brownian motion can be
written as

1
RH’K(t,s) _ 27 ((tQH JrSQH)K o tQHK o SQHK)
1
+27(t2HK +52HK o |t7 S|2HK)
= R (t,s) + R (¢, 9). (9)

The function denoted by Rg’)K is, modulo a constant, the covariance of the

fractional Brownian motion with Hurst parameter H K. The function —Rg’)K
is also a covariance function, see [3] or [12]. Actually, we have

PRy !
W(f, 8) = 27(2H)2K(K — 1)(t2H + SQH)K72(t3)2H71 (10)
and
62RH,K
Tg)(t, s) =2 KoOHK(2HK — 1)|t — s|2HE -2 (11)
S

92RHE g2 pHK
for every s,t € [0, T]. It has been proved in [3] and [12] that —552—, —552

are integrable over [0,7]? when 2HK > 1 and thus the bifractional Brownian
motion generates a covariance measure if 2HK > 1.

Let us now introduce the random noise that drives the parabolic equa-
tion (16). On a complete probability space (£2, F,P), we consider a zero-mean
stochastic process W = {W (t, A);t € [0,T], A € B,(R%)} with covariance:

E(W (t, A)W (s, B)) = R(t, s)\(AN B) (12)

where A is the Lebesgue measure, and R is the covariance of a stochastic
process that generates a covariance measure.

To the Gaussian field W we can associate a Hilbert space that will be
called the canonical Hilbert space of W and will be denoted by H. Consider
& the set of linear combinations of elementary functions 1p 4 x A, t € [0,T],
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A € By(R%), and let H be the Hilbert space defined as the closure of £ with
respect to the inner product
< 1[O,t] x A, 1[0,5] X B >y = E(W(t,A)W(S,B))

We have the following expression of the scalar product in H:

T T
<odzn= [ [ pawdo) [ dgty i) (13)

which holds in particular for any f, g € H such that

T T
/ / 1l (du, o) / dylg(y,w)||h(y,v)]| < oo. (14)
0 0 R4

It is possible to define Wiener integrals with respect to the process W whose
covariance is given by (12). This Wiener integral will act as an isometry be-
tween the Hilbert space H and L?(Q2) in the sense that

E/OT /Rdsﬁ(u,y)W(duydy) /OT Rdz/f(u, y)W (du, dy)
= [ [ wtawae) [ o) (1)

for any function ¢, satisfying (14).

3. Stochastic PDE with generalized drift: existence of the
solution

In this paragraph we will consider the stochastic counterpart of PDE (4).
Namely, we discuss the stochastic partial differential equation with generalized
drift
Lu(t,z) = W(t,z), te[0,T], zcR? (16)
with vanishing initial condition u(0,z) = 0 for every = € R%.
The notion of solution to (16) is defined in the mild sense. We call a mild
solution to (16) the stochastic process

u(t,z) = /0 /]Rd p(t —s,x —y)W(ds,dy), tc[0,T], zeR? (17)

where W is the Gaussian noise with covariance given by (12), p denotes the
fundamental solution (6) and the integral in (17) is a Wiener integral with
respect to the Gaussian noise W. The solution exists when this Wiener integral
is well-defined.

Let us now give the necessary condition for the existence of the mild
solution (17). Recall that p is the measure generates by R from (12) and by
|| we denote its variation measure. For z € R we introduce the complementary
error function

fe()= = [ e
eric(z) = — e Uu.
7.
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Proposition 6. If

/t /t |l (du, dv) (2t — u — v)~9/2 < 4o (18)
0 0

for every t € [0,T], then the mild solution (17) is well-defined for every t €
[0,T] and = € R%. Moreover, its covariance is given by

1 t ps .
(4770)d/2/0/0ﬂ(du,dv)(t+s_u_v) /2

- sion(x erfc |$L'd‘\/m
1+(q q g(d)) f<\/40(tu)(8v)>

+qs'&gn(l'd) exp — m

E(u(t, z)u(s,z)) =

X

(19)

for every x € R and for every s,t € [0,T7].
Proof. Let p be the fundamental solution (6). We will decompose it as follows

p(t,x —y) = pi(t,x —y) + gsign(y)p2(t,x — y)

where
_ 1 lz—y|?
it =y) = oy <P ( T 4C(t—s)
and
1 (Jz—2|+|y—g)2*+|a—7
P2t —y) = (4nCt)4/2 eXp( ACt - (20)

Note that p; above is the fundamental solution of the heat equation.

The solution (17) exists when the function p(t — -,z — -) belongs to the
Hilbert space H from Sect. 2.2 since Eu(t, z)? = ||p(t — -,z — ) ||3,.

Fix s,t € [0,7] and x € R%. We will calculate

EU(LI)U(S, I) - <p(t - L= ')7p(5 EEE )>'H
with the scalar product in H given by (13). So,

Bttt = [ [ wldnd) [ = - ot -
+q /Ot /O p(du, dv) /Rd dyp1(t — u,x — y)sign(y)p2(s — v,z — y)
+q /Ot /0 p(du, dv) /Rd dysign(y)p2(t —w,z — y)p1(s — v,z — y)

t s
+q2/ / pu(du, dv) / dypo(t —u,x — y)pa(s — v,z —y)
0 Jo R
= Ay (t,s,2) + qAs(t, s,x) + qAs(t, s, ) + > Au(t, s, ). (21)
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Let us start by calculating the first term denoted by A; (¢, s, x). Since p;
is the Green associated to the heat equation, the computation of A; follows
closely the computation in Chapter 1 in [11]. We will have

sy = [ [Cutdudo) [ de = w = ppils - v )
[ 1 |z —y[?
‘Auﬂ“““*”édMMXmeWQ“p<40@—w>
1 EXs
8 (4nC(s —v))d/2 P <_ 4C(s—v)>

1 1
= /0 /0 p(du, dv) (4nC(t — u))3/2 (4nC(s — v))4/2 x I (z,u,v),

where we used the notation

_ 2~y o=y
I (z,u,v) —/Rddyexp (—m> exp<—40(sv)>.

By using the change of variables

Ti—vY; [t+s—u—wv
Voo \| (t—u)(s—v)’

it is easy to check that

(,u,v) H/ exp ( 4é:i;;£$__vv)> (i — yi) dy;
—d/2
_ t+s—u—w
N <4C7r(tu)(sv)) '
So,

Ai(t, s, @) = (47TC’1)‘1/2/0 /OS p(du, dv)(t + s —u —v) Y2, (22)

The terms denoted by As and Aj are symmetric. We will calculate As.
We can write

(1,5, 7) /“/ mtmz/ dypr (t — u, 7 — y)sign(y)pa(s — v,z — 1)

= [ [ wanio [ ot ( e 5)

x sign(y)

zZ; =

i=1,..

*

(4nC(s —v))d/2

(g4 ly—gD+ -9
X eXp( 1005 — ) dy
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t s 1 1
:/o / e 00) G G = )72 (in (s — )72

X Io(Z,u,v) X Iy(zq,u,v),

and

T — |2 - 2
Ir(zq,u,v) = /Rexp <— |4C’d(t E/du|) )sign(yd)exP (_ (I 4dc(j:_12d) ) )dyd.

Exactly as in the calculation of I1(Z, u,v) we get:

, ~(d-1)/2
- +s—u—v
La(#, u,v) = <4C7r(t —u)(s — v))

To calculate I(z4, u,v), we start by writing:

e | 2a — ya |? (I za | +ya)*
Ir(za,u,v) = /O exp (— T Rl G e dya
0 2 2
B | wa—ya | ~(lza|—vya) o
/_oo P ( 00— ) P\ Tac e W= T

We discuss separately the cases z4 > 0 and z4 < 0.
If z4 < 0, then

_ oo (xqg — yd)2 (g — yd)2
h _/0 exp (‘ 4C(t—u)>eXp (‘ 4C(s—v)>dyd

+oo
= / exp ( — B(xq — yd)2> dyaq
0

t+s—u—v

where B = U —w)(s —v)° By the change of variable: u = vV B(yq — xq) we
get,
1 Foo 2 VT
hn=— e “du= erfc(—z,V B).
VB J-2,vB 2vVB

Let us calculate T5. We get

0 (x4 — ya)® (za + ya)®

= /,Oo b ( 45@ —du) ) P ( 45(3 —dv) )dyd
+oo T 2 T — 2

- /0 P (‘ (zxcd(j—ydi) ) P (‘ Excd(s f‘?) )dyd

—+o0
= exp(—xle)/ exp ( — By + C'yd> dyq
0
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zq(t —u+v—s)
20(t —u)(s —v)

/ +oo / 2
Ty = exp(—z3B) exp (fB) / exp (— (yd\ﬁ — 2\6}5> )dyd

/

2B

where C’ = . So,

Now, by the change of variable u = yd\/> — we get

C/2 5
Ty = exp(—z2B) exp ( ) \F/ e " du = exp(—z3B)

y C/Q \F C’
exp 5 f 2 /B .

We deduce that

J
2VB

\/WC(tu)(sv) orfel — x t+s—u—v
N t+s—u—v ¢ 4C(t —u)(s —v)

et
2/C(t—u)(s —v)({t+s—u—v)
t+s—u—wv

exp <_x§4C(t—u)(s—v)>
23t —u+v—s)?
o exp <4C(t—§)(s—v)(t+s—u—v)>]

\/WC(tu)(sv)[erfc<_x\/ t+s—u—v )
N t+s—u—v ¢ 4C(t — u)(s —v)

zq(t —u+v—s) )
2/C(t—u)(s—v)({t+s—u—v)

xexp<x2 ! )
1Ct+s—u—0v))

If x4 > 0, then
e (a4 — ya)? (za + ya)?
T, = e I _d T Id) Vg
! /0 P ( 4C (t — u) xp 4C (s —v) vd
+oo
= eXp(—xiB)/ exp ( — Byj — O’yd> dya
0

where C’ and B are the same as those of the case z4 < 0.

Ig(ﬂ?d,U,'U) =

\/» 5 0/2 C/
erfc(—x4V B) — exp(—x3B) exp E)erfc( b

- erfc( —
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It is clear that T} has the same form as that of T5 of the case x4 < 0.
The only difference is that here, we have —C” in place of C”. So,

Ty = exp(—23B) exp (C/ ) \/>/ e du = exp(—x3B)

012 ﬁ C’
X exp <4B> ﬁerfc (2\/§> .
Concerning 715,
0 _ _
T, = / exp ( JUd Yd) ) ( (g ydz) )dyd
e (33d + Ya) (xd + ya)?
- / o ( 4C(t - )) o ( 4C(s —v) )dyd’

and we see that 75 has the same form as that of T3 of the case x4 < 0. The
only difference is that here, we have x4 in place of —x4. So,

[ R
= — e du = VT erfc(zq4VB).

VB JeuvB 2B
We conclude that
ﬁ 9 012 Cf/
Iy(xg,u,v) = exp(—22B)exp | — |erfc| — | — erfe(zyVB

_\/TK’C(t—U)(S—U) = orfel 2 t+s—u—v
N t+s—u—v ¢ 4C(t — u)(s —v)

gt —u+v—23) )
2,/C(t —u)(s—v)(t+s—u—v)

+ erfc (

t+s—u—wv

XexP(‘””?lw(tu)(sv))

22t —u+v—s)?
XeXp<4C(t—i)(s—v)(t+s—u—v)>]
7 C(t —u)(s —v) t+s—u—v
_\/ t+s—u—v l_erfc<xd\/4C(tu)(sv)>

zq(t —u+v—s) )
2/C(t—u)(s—v)({t+s—u—v)

9 1
SR T e s o) )|

+ erfc (
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Hence,

As(t,s,z) = ac) d/2/ / (du, dv)(t + s — u — v) "V 2sign(zq)

~ erfe |zg | VEt+s—u—v ext x;
f<\/40(t—u)(s—v)>Jr p( C(t—u—|—s—v))

xerfc( [2al(tZutv—s) )] (23)

X

VAC(t —u+ s —v)(t —u)(s —v)

Similarly, we obtain the expression of the term As(¢, s, x)
t s
4%@ﬁw>:/ /uwmmo/ dypa(t — . — y)sign(y)ps (s — v,z ~ )

4C (4Cm)d/2 / / (du, dv)(t + 5 — u — v)~"?sign(za)
7T

"~ orfe |zg | VI+s—u—v o z2
f<\mcu—mw—v)>+ep( o ))

|zg| (s—v+u—1t)
Xerfc<\/40(t—u—i—s—v)(t—u)(s—v))] (24)

X

Concerning the last summand A4(¢, s, x),

tittosa) = [ [ ttude) [ dypate — .~ yppats vz )
= [ i

(- +ly-g)+ -5
exp ( 40 — u)

L (z—F |+ y—gD*+ 7§
x (4rC (s —v))4/2 P ( a 4C(s —v) >dy

t s 1 1
- /O /0 puldu, dv) (4nC(t — )42 (4nC(s — v)) 4/

X 14(.;1:',“,1}) X I4(J}d,u7 U))

with

o . ERds ik
Iy(%,u,v) = /}Rdi1 dj exp (— 40(tu)> exp (‘ 40(50)>

- t+s—u—v - (d-1)/2
= 5w) = (g a6 =) -
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and
_ (| za|+|yal)? (Izal+|yal)?
Ii(xg,u,v) = /Rexp ( — 40(75_@) exp ( - 46’(s—v))dyd
[T (la| +ya)*(s —v+t—u)
=2 [ e (R
_ \/4C7T(S_U>(t_u)erfc ™ Vs—v+it—u
Vs—v+t—u VAC (s —v)(t —u)
Then,

1 t S J
- o — ) —d/2
Ay(t,s,x) = e /0 /0 p(du, dv)(t +s —u —v)
Vs—v+t—u
x erfc| |xzq | .
\/40(3 —v)(t —u)

By Egs. (21), (22), (23), (24) and (25) we get the formula of the covariance

(19). By taking s = ¢, we have

E(u(t,z)?) = (47rCl)d/2/0 /0 p(du, dv) (2t — u — v) =2

(25)

o | za |V~ =0
<14 (q _ qugn(xd))erfc< 4dC(t —u)(t = ”)>
+ gsign(aa) exp ( - C(Qtduu)ﬂ ' "

By majorizing the complementary error function by /2 and the exponential
n (26), by 1, we easily get

t et
Eu(t,z)? < c/ / || (du, dv) (2t — u — v) ™42
0 Jo

and this implies that u(t,z) is well-defined as a random variable in L?({2)
under condition (18). We obtain the conclusion of Proposition 6. O

Remark 7. Relation (19) shows that the covariance of the solution in time
depends on the space variable z € R? through its last component. So this
solution is not stationary with respect to the space variable (as happens in the
case of the heat equation, i.e. ¢ = 0). This is due to the “part” ps (20) of the
fundamental solution.

When the covariance R from (12) of the random noise with respect to
the time variable generates a positive measure p, it is possible to obtain a
necessary and sufficient condition for the existence of the mild solution (17).

Theorem 8. Assume that p is a positive measure. Then the solution (u(t,z),t €
[0,T),z € RY) is well-defined and satisfies

sup Eu(t,z)? < oo (27)
t€[0,T)
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if and only if
t ot
/ / p(du, dv) (2t —u — v)_% < oo (28)
0o Jo
for every t € [0,T].

Proof. The implication (28) = (27) is an immediate consequence of the proof
of Proposition 6.

If —1 < ¢ <0, then for every t € [0,T] and x € Dy, we have Eu(t, z)? <
00. On the other hand, by using the formula (26)

t ot
oo > Eu(t,r)? = c/ / p(du, dv) (2t — u — v) =2
0 Jo

5 | zg | V2t —u—wv
X <1+ (q —q)erfc( 4C(t—u)(t—v)>

22
+qexp <_ C(2t —du—v))>

t ot
> c/ / p(du, dv)(2t — u — v) =2,
0 Jo

Thus, relation (28) is obtained.

If 0 < g < 1, then for every t € [0,T] and = € Dy, we have Eu(t, r)? < co.
On the other hand, by using the formula (26)

t ot
oo > Bu(t,z)? = c/ / p(du, dv) (2t — u — v) =2
o Jo

9 | zq | V2t —u—v
X <1+(q +q)erfc< 4C(t—u)(t—v)>

Taexp <_ C(2t —du—v)>>

t ot
= c/ / p(du, dv) (2t — u — v) =2
o Jo

| zg | V2t —u—v
X (1 —q [(—q - 1)erfc< T v))

-]

Since —¢ — 1 < 0 we have

2| VI —u— o
4C(t—u)(t—v)> +exp C(2t—u—v))

(—q— 1)erfc<

2
Sexp(—ﬁ)ﬂ
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Then, since g > 0,

| xg | V2t —u—v x?
o [(_q B Derfc( 100 —w)(t - v)) +exp (- Ot == v))] S

and consequently

oo > Bu(t,z)* > 1—q// (du, dv)(2t — u — )d/g.
So here also, relation (28) is obtained. O

Remark 9. The condition (28) extends the findings in [2], [1] or [12] for the
cases of Brownian, fractional Brownian or bifractional Brownian motion.

4. Examples

We obtained in Theorem 8 an “iff” condition for the existence of the solution to
the SPDE with generalized drift (16) by assuming that the covariance measure
of the noise with respect to the time variable is positive.

The processes X such that their covariance R satisfies 22 € LY([0,T)?)

Dsot
and a;;i((;f) > 0 for every s,t € [0,T] generate a positive covariance measure

. The typical example is the fractional Brownian motion with Hurst index
bigger than one half.

Ezample 10. Suppose that the noise is a fractional Brownian motion with
respect to the time variable with H > % Then its covariance (see Example 2)

9 aligts) H(2H —1)|t — s|?=2 is positive and integrable. By Theorem 8, the

solution exists and satisfies (27) if and only if for every ¢ € [0, T7,

//\u v]2H=( u—v)f%dudv<oo (29)

which is equivalent (see [1] or [11])
d < 4H.

Consequently the mild solution u exists in dimension 1,2 or 3. Notice that the
same condition (29) appears in the case of the heat equation with white noise
in space and fractional noise in time.

Let us discuss now the cases of the Wiener process and of the mixed-
fractional Brownian motion. These processes generate positive covariance mea-
sures.

Ezxample 11. The Wiener process also generates a positive measure since
w(du, dv) = dp(u — v)dudv (see Example 3). In this case (28) becomes

t
/ (2t — 2u)7%du < 00
0

which is equivalent to d = 1.



53 Page 16 of 23 C. A. Tudor and M. Zili NoDEA

Ezample 12. Theorem 8 can be also applied to the mixed-fractional Brownian
motion from Example 4. In this case, the solution exists if and only if

t t ot
/ (t—u)_%du—i—/ / |u—v|2H_2(2t—u—v)_%dudv<oo
0 0 Jo

which is true if and only if d = 1.

The covariance measure generated by the bifractional Brownian motion
is not necessarily positive, therefore Theorem 8 cannot be applied to it. Never-
theless, from the calculations contained in the proof of Proposition 6, we can
deduce an “iff” condition for the existence of the solution.

Example 13. If the noise W from Sect. 2.2 behaves in time as a bifractional
Brownian motion with 2H K > 1, then the covariance measure p generated by
RHK exists and it admits a density with respect to the Lebesgue measure on
[0,T)? given by

92RHK x
W(Svt)fQ (2HK)
(2H(K = D7 + 252 1)21 70 4 QHE —1) | 1= s 21572,

(30)

where in the last equation we have used (9), (10) and (11). From (30) we see
that p is not necessarily positive. But using the proof of the above theorem 8
and Proposition 4.2 in [12], we can prove the necessary and sufficient condition
for the existence of the solution.

Indeed, by using (30), the formula (26) for squared mean of u(¢,z) be-
comes

2~ KoK bt
2\ 2HK—2 —d/2
E(u(t,z)?) = GO ((QHK —1) /0/0 dudvlu — v| (2t —u— )~

72
+ gsign(zq) exp ( — m)

t oot
—2H(1—K)// dudv(u?H 402K )E=2 (y)2H =1 (2t —y — ) ~4/2
00

| zq | V2t —u—w
4C(t —u)(t —v)

X

1+ (q2 - qsign(xd))erfc<

+gsign(za) exp ( - C(Qtf?i“_”))D
=T = Ts.

The conclusion will follows from the following facts: when d < 4HK we can
show that both T} and T, are finite and thus E(u(t,x)?) is finite. When d >
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4HK, we show that T} is infinite and dominates 75 (which can be finite or
infinite). Indeed, the proof of Theorem 8 shows that T} is finite if and only if
d < 4H K and moreover

T > /t /t lu — v|2HE=2(2t — 4 — )~ 2 dudv
0o Jo
= C1t_%+2HK /1 u e T2HE=1g,, (31)
0
Also, again from Proposition 4.2 in [12], T5 is finite if d < 2HK + 2 and
Ty < co /t dudv((uv)TE =1 (2t — u — v)~Y/?
0

1

_ CQt—g+2HK/ u—g+KH(1 _u)HK—l' (32)
0

Therefore if d < 4AHK < 2HK + 2, both T} and T3 are finite and obviously

E(u(t,z)?) < oo while for d > 4HK, from (31) and (32),

E(u(t,z)?) =T, — Ty >t~ #+2HK

1 1
d da
X (cl/ u_5+2HK_1du—02/ duu_2+KH(1—u)HK_1>
0 0

and as in [12], Proof of Proposition 4.2, we can show that the right-hand side
above is infinite when d > 4H K. Indeed,

1 1
_d _ _d _
01/ 8 T2HK 1du—02/ duu 2+KH(1_u)HK 1
0 0

1 1

. _d—a —_ _d—a _

= lim cl/ w2 P2HK 1du—02/ u” oz PR ) HE=1 gy,
N—co 1/N 1/N

. d—a _ d—a _ —
~lim(e N2 2K _ o) N2 T HESL
N

which converges to infinity when N — oo when d > 4HK (above ~ means
that the sides have the same behavior as N — o0).

Therefore, if the noise is given by a bifractional Brownian motion with
2HK > 1 in time, the “iff” condition for the existence of the solution is
d<4HK.

5. The regularity of the solution

The purpose of this section is to give a sharp estimate for the regularity of
the solution to the stochastic partial differential equation (16) with fractional-
white noise. Assume that W has the covariance (12) and the time covariance
R is he covariance of the fBm, see Example 2.

We have the following result.
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Proposition 14. Assume (18) holds and let u be the mild solution to (16). For
any s,t € [Ty, T) and for any x = (21, ...,74) € R, |q| <1 such that

q* — gsign(zq) <0 (33)

we have
E|u(t,z) — u(s,z)|* < Calt — s|2H 2.

In particular, under (33), the process t — u(t, z) is Holder continuous of order
§ with0 <6< H—4.

Proof. Let us denote by R, the covariance of the process u with respect to the
time variable for fixed z € R?

R, (t,s) = Eu(t, z)u(s, z).
for every s,t € [Ty, T.
By (19) we have

1 tors 2H -2 —d/2
Ru(t,s):W/O/OH(2H—1)|u—v| (t+s—u—v)Y

x |14+ (q2 — qsign(a:d)>erfc < \ j;igm)
Fame (- caqfisv))] (34)

for every x € R? and for every s,t € [0,7]. Thus

H(H - 1) ,
Ryu(t,s) = “ArC)ar (Rl,u(t7 s) + (¢" — gsign(zq)) Ra,u(t, s)
+gsign(xq)Rs . (t, s))
where
t S
Riu(t,s) :/ / lu— 0PH2(t 45—y — v) =92 (35)
o Jo

s) = t SU—U2H72 S*U*’demerc |$d|\/m
fault:s) /0 /0 S e ( VAC(t —u)(s — v) )
(36)

and
2

t s
_ . 12H-2 L \—d/2 - Tta
Ryt s) /O/O|U WPt A s —u—) EXP( C(t—u+sfv)>
(37)
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So, we can write
E |u(t,z) — u(s,z)|* = Ry(t,t) — 2Ry (t, s) + Ry(s, s)

= W ((Rl,u(t,t) — 2Ry 4, (t,8) + Ry (s, 5))

+ (q2 — gsign(xq)) (Rg’u(t, t) — 2R 4 (t,8) + Ra (s, s))

+ gsign(za) (Rg,u(t, #) — 2Rs.u(t, s) + Rau(s, s))>
(38)

By the proof of Theorem 2.2 in [11], we know that there exists two strictly
positive constants Cj, Cy such that for any #,s € [0,7] and for any = € R?,

Cilt — 52772 < Ry(t,t) — 2Ry u(t,s) + Ruu(s,s) < Colt — s|?1—2  (39)
Let us analyze the part R, from (38) of the covariance R,. Some parts

of its estimation are related to the proof of the inequality (39) in [6] but the
increments of the exponential function will also be involved. We have

R3u t t _2R3u(t 8)+R3u(8 8)
/ / dudv|u — v|2H 2( ufv)*%e—ﬁ

+2/ du/ dv|u — v|*H =2

22
{(Qt—u—v) 2e m —(t—|—s—u—v)ge_c(t+sﬁu—v>}
22

S S
+/ du | dvju —v*H~2 [(Zt—u—v)_ge_cmdu'v)
0 0
d _ Tczi d _ I?i
_2(t_|_3 _u_v)—ie CliFs—u—v) 4 (28 —u _v)_§€ C(Zs—u—v)
= A+ B+ D.

The first term A is the easiest to handle. Indeed,

t et
AS/ / dudv|u—v|2H_2(2t—u—v)_%

<clt— s|2H_%

where the last bound follows from the successive change of variables u =
t—u, 0 =t—vand u=;,0 = ;. Let us look to the term denoted by B

We can express it as
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2/ du dv 2H2
s 0

d “3

><[(2t—u—v)_§—(t—&—s—u—v)_%]efwdu*v)
+2/ du/ dv(u — v)*1= Q(t—l—s—u—v)_%

2
X {e c(m 4= v — e C(t+9du U)]

= Bl + Bg.

Note that Bj is negative, so B < Bs. Thus it suffices to estimate By. In order
to do this, notice that

e cE e~ G < |t — s (40)
for every u, v, x4. Indeed, the function
J‘2 .Z'
fly) = ot — ek (41)
defined on [0, c0) satisfies f(0) = 0 and
22 2
"(y) = ¢~ Ty — 4
() Claty)?

It is easy to see that |f/'(y)] < M for every y with some M > 0. Using the
bound (40), we get

c|t—s|/ du(u — s)*1~ 2/(t+s—u—v)_%dv
0
< (t—s)/ du(u — s)2H~ 2’(t7u+5)7%+1—(t—u)7%+1

<t — 8)/ du(u — s)*7=2(t — u)_%"‘l

=c(t— )P 2
t

since du(u — s)2H72(t — u)*%Jrl < et — s)zH*% by using the successive

S
change of variable & = u—s and @ = -, where c denotes a universal constant.
Concerning the summand D, it can be written as

D:/ du/ dvlu —v*2g(t — 5, a4.,)
0 0

where, for fixed u and v, ay,, = 2s —u — v and ¢g(., a,, ,) denotes the function
_d I B _d N
g(.’ auﬂ)) Y — (2y + a, v) 2 CQCutau,w) — 2(y + a/uﬂ)) 2¢ Clytau,v)

d md
+au se T,
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It is clear that ¢(0,a,,,) =0, and by an easy calculus we get

2 2
g'(y,au v) —_ | _ d(2y+ auv)_d/2_1+2xd(2y+auv)_d/2_2 exp | — Ty
’ ’ C ’ C(2y+a)
22 x?
+ ldy + ay. —d/2=1 _ “Ld ., 4 . —d/2—-2 . d 7
v+ aus) Ay + au) S e
and

2d(d/2 +1)(2y + @y )~V 72

//( ) = - 1'3
g \Y,0yn) = €Xp C(2y+a)

2 4 4
— (4 +8) 2y + )2+

C? (2y + au,v)_d/2_41

o < B c(; 3 a)> [d(dﬂ + 1)y + aup)

4
2z,

2
x2 —d/2—3 —d/2—4
- O(2d+4>(y+au,v> / + 2 (Y + auv) / ‘|

Since, for every k € {2,3,4},

2
2y + ayo) Y F ex ———"d ) < (Cte
(2y + au,w) L e o—

and

2
—d/2—k _ L < Ct
) eXp( 0<y+au,v>>— -

where C'te denotes a positive real constant, independent of u,v,s and ¢, we
easily get ¢'(0,ay,») = 0and | ¢ (y, au) |< M, where M is a positive constant,
independent of u, v, s and t. Thus

| g(t - 57au7v) |§ M(t - 3)27

and consequently

qDS|Q\X\D\SC(th)2/du/ do [ u— v P2
0 0

c(t —s)?

C(t _ S)QH*d/Q’

where the last inequality is due to the fact that 2—2H+d/2 > 0 and (t—s) < T.
Therefore,

<
<

Rs . (t,t) — 2R3 4 (t,s) + Rsu(s,8) < c(t — s)ZH_%. (42)
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The proof of Proposition 6 shows that Ry, (t,s) is the covariance of the
process

t
us(t,z) = / / pa2(t — s, @ — y)W(ds, dy)
0 JRre
up to a multiplicative constant, with
Rou(t,t) — 2Ro 4, (t, 8) + Rau(s, s) = Elua(t,z) — ua(s,z)[* > 0.
Thus, if under the condition (33) we have
(q* — gsign(zq) (Rau(t,t) — 2R, (t,8) + Rau(s,s)) < 0. (43)
O

Remark 15. We notice that under Condition (33), the process u solution to (1)
keeps the same Holder regularity in time as the solution to the heat equation
with fractional -white noise (see [6,11]). This means that the part of L given
by the second summand in the right-hand side of (2) does not perturb too
much the paths of the process.
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