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Abstract. We study existence and uniqueness of the invariant measure for
stochastic processes with degenerate diffusion, whose infinitesimal gener-
ators are linear subelliptic operators in the whole space R

N with possibly
unbounded coefficients. Such a measure together with a Liouville-type
theorem will play a crucial role in two applications: the ergodic prob-
lem studied through stationary problems with vanishing discount and
the long time behavior of the solution to a parabolic Cauchy problem. In
both cases, the constants will be characterized in terms of the invariant
measure.
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1. Introduction

This paper is devoted to study with pde’s methods both existence and unique-
ness of the invariant measure of stochastic processes with degenerate diffusion,
whose infinitesimal generators are linear subelliptic operators in the whole
space R

N with possibly unbounded coefficients. The invariant measures play
a crucial role in ergodicity, homogenization and large time behaviour of the
value function associated to the process. These methods, based on optimal
control theory and pde’s arguments, were introduced in the 80’s by Bensous-
san and developed until nowadays (see the monograph [11] by Bensoussan and
references therein).

We shall first tackle the case of the Heisenberg group as model problem;
after we shall extend our techniques to other subelliptic operators. In the
Heisenberg case, we consider the stochastic dynamics

dXt = b(Xt)dt +
√

2σ(Xt)dWt for t ∈ (0,+∞), X0 = x0 ∈ R
3 (1.1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-016-0401-2&domain=pdf
http://orcid.org/0000-0003-0896-2813


47 Page 2 of 26 P. Mannucci, C. Marchi and N. Tchou NoDEA

where, if x = (x1, x2, x3) ∈ R
3, the matrix σ(x) has the form

σ(x) =

⎡
⎣

1 0
0 1

2x2 −2x1

⎤
⎦ (1.2)

(in other words, the columns of σ are vectors generating the Heisenberg group)
while Wt is a two-dimensional Brownian motion.

Our principal aim is to prove, under suitable assumptions on the drift b
(see [2.7] below), existence and uniqueness of the invariant measure m associ-
ated to the process (1.1).

Let us recall from [11] that a probability measure m on R
3 is an invariant

measure for process (1.1) if, for each u0 ∈ L
∞(R3), it satisfies∫

R3
u(x, t)m(x) dx =

∫

R3
u0(x)m(x) dx (1.3)

where u(x, t) = Ex(u0(Xt)) is the solution to the parabolic Cauchy problem{
∂tu + Lu = 0 in (0,+∞) × R

3

u(0, x) = u0(x) on R
3

where
− Lu := tr(σ(x)σT (x)D2u(x)) + b(x) · Du(x) (1.4)

is the infinitesimal generator of process (1.1).
It is well known (see [11, Sect. II.4 and II.5] or [22, Section 5]) that the

density of the probability m (which, with a slight abuse of notation, we still
denote by m) solves

L∗m = 0,

∫

R3
mdx = 1 and m ≥ 0,

where L∗m is the adjoint operator to L
L∗m = −

∑
i,j

∂ij((σσT )ijm) +
∑

i

∂i(bim)

= −tr(σσT D2m) +
∑

i

∂i(bim).

In the framework of locally strongly elliptic operators, Has’minskǐı
[20, Sect. IV.4] (see also [29, Sect. 8.2]) established the existence of an in-
variant measure provided that there exists a bounded open set U with smooth
boundary such that⎧

⎨
⎩

for any x0 ∈ R
N \ U , the mean time τ at which the path of

the diffusion given in (1.1) issuing from x0 reaches U is finite
and Ex0τ is locally finite.

(1.5)

In our case this result does not apply because the matrix A := σσT with
σ given by (1.2) is

A(x) =

⎡
⎣

1 0 2x2

0 1 −2x1

2x2 −2x1 4(x2
1 + x2

2)

⎤
⎦ (1.6)
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and it is only positive semidefinite.
It is worth noticing (see [7,17,28]) that a sufficient condition for property (1.5)
is the existence of a Lyapunov-like function w which satisfies, for some positive
constants k and R0

Lw ≥ k for |x| ≥ R0 and w(x) → +∞ as |x| → +∞. (1.7)

As one can easily check the presence of the first order term is somehow ’cru-
cial’ for the existence of such a function. We will prove the existence of such
Lyapunov function under suitable assumptions on the drift b that include also
the Ornstein–Uhlenbeck case (see [29]) where the operator is of the following
type

−Lu := tr(σ(x)σT (x)D2u(x)) −
3∑

i=1

γixi∂iu(x).

For the Ornstein–Uhlenbeck operator, we obtain the existence of a Lyapunov
function when γi > 0; this condition seems to be sharp (see example 2 below).

For ergodicity results based on probabilistic methods we refer to [23,26]
and references therein. We want to quote here the book of Arapostathis,
Borkar, Ghosh [3] and the paper [9] where ergodicity is studied also for degen-
erate diffusions. The existence of a Lyapunov function is reminiscent of similar
conditions (for instance, see: [29, Sect. 8.2] and the references therein), called
“recurrence condition” in the probabilistic jargon.

Ichihara and Kunita [22] (see also [25]) proved the existence of an in-
variant measure for hypoelliptic processes as (1.1) which are constrained in a
compact set. It is worth to recall that, in unbounded set the existence of an
invariant measure may fail as it can be easily seen for (1.1) with b = 0 and
σ = I.

Dragoni, Kontis and Zegarlinski in [18] studied the ergodicity associated
to Hörmander type generators strictly related to Lie group structure, even in
the infinite dimensional case.

In this paper we want to establish existence and uniqueness of an invariant
measure for process (1.1), namely for a process with the following features:
it lies in an unbounded set and its infinitesimal generator is simultaneously
degenerate and with unbounded coefficients. To this end we shall use only
pure analytical arguments.

It is important to stress that, in the Heisenberg case, the principal part
of Lu can be written as

∑2
i=1 X2

i u where X1, X2, are the vector fields given
by the columns of σ and that they satisfy Hörmander condition: X1, X2, and
their commutators of any order span R

3 at each point (x1, x2, x3) ∈ R
3. In

this case we have that [X1,X2] = −4∂x3 . This property will play a crucial
role in this paper since, as for the uniformly elliptic case, we have regularity,
hypoellipticity, comparison and maximum principle [15].

The methods used in this work are strongly inspired by the lectures
“Equations paraboliques et ergodicité” of P. L. Lions at Collège de France
(2014–2015) [27] and by a unpublished manuscript by P. L. Lions and M.
Musiela [28] (see also the paper of Cirant [17] for similar arguments).
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Actually, we shall consider the process

dXρ
t = b(Xρ

t )dt +
√

2σρ(X
ρ
t )dWt, (1.8)

where σρ is the approximating matrix of σ in (1.2)

σρ(x) =

⎡
⎣

1 0 0
0 1 0

2x2 −2x1 ρ

⎤
⎦

such that Aρ = σρσ
T
ρ is locally strictly positive, constrained in a bounded set

On suitably chosen.
Let us stress that, in our argument, it is not enough to approximate the

matrix A with any non-degenerate matrix Aρ but we also need that Aρ can
be written as σρσ

T
ρ , where σρ is the diffusion matrix associated with a new

Brownian motion.
Let us recall from [11] that the invariant measure mn

ρ of this process
solves

L∗
ρm

n
ρ = 0 in On

coupled with a boundary condition of Neumann type, where

−Lρ(u) = tr(σρ(x)σT
ρ (x)D2u(x)) + b(x) · Du(x)

is an uniformly elliptic operator in On. Letting n → +∞, we obtain an invari-
ant measure mρ for the process (1.8) in the whole space; letting ρ → 0+, we
get the desired invariant measure for (1.1). The Lyapunov function will play a
crucial role in these limits: it will be used in order to prove that all the mρ’s
and m are really measures (in other words, that the mn

ρ and the mρ do not
“disperse at infinity”).

Moreover in this paper we also establish a Liouville type result. Similar
result for semilinear operator without the drift term can be founded in the pa-
pers [12,13,16] and references therein; in all these papers the nonlinear zeroth
order term is the key ingredient whereas, in our setting, the crucial contribu-
tion is due to the drift. After finishing this paper we became aware of [6] where
a Liouville property is studied for quasilinear hypoelliptic operators.

We shall use the invariant measure and the Liouville property in two
classical applications: an ergodic problem and the long time behaviour of a
Cauchy problem. For the former problem we consider the family of equations

δuδ − tr(σ(x)σT (x)D2uδ) − b(x)Duδ = f(x) in R
3, (1.9)

where δ > 0 and we shall prove that, as δ → 0, δuδ converges to a constant
λ, called “ergodic” constant. Let us stress that the differential operator in the
ergodic problem coincides with the infinitesimal generator L of process (1.1).

We recall that the study of ergodic problems for equations with periodic,
uniformly elliptic, operators has been addressed in [4,10] while, for periodic,
possibly degenerate (still satisfying the Hörmander condition) operators, we
refer the reader to the papers [1,2].

The main difficulties in our problem are the lack of periodicity and the
degeneracy of the operator. We shall overcome these issues using some tech-
niques introduced by [7] for an elliptic operator on the whole space. Moreover,
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we shall give an explicit formula for the ergodic constant λ in terms of the
invariant measure for (1.1).

In the latter application we consider the following Cauchy problem:

ut + Lu = 0 in (0,+∞) × R
3, u(0, x) = f(x) on R

3,

where L is the operator defined in (1.4). We will prove that, as t → +∞, the
solution u converges to a constant Λ which will be characterized in terms of
the invariant measure.

Finally, we shall show how to extend our previous results to other de-
generate operators satisfying Hörmander condition with possibly unbounded
coefficients.

Our future purpose [30] is to use the ergodic problem to study the ho-
mogenization problem

− ε tr
(
σ

(x

ε

)
σT

(x

ε

)
D2uε

)
− b

(x

ε

)
· Duε + f

(
x,

x

ε

)
+ auε = 0 in R

3,

(1.10)
where σ has the form (1.2). In this case the approximated cell problem formally
coincides with the problem (1.9).
For the study of homogenization problems for periodic, possibly nonlinear,
degenerate (still satisfying the Hörmander condition) operators, we refer the
reader to the papers [1,14,31].

This paper is organized as follows: Sect. 2 contains the main result of the
paper: we find conditions on the drift b such that a Lyapunov function does
exist and by means of this function we prove existence and uniqueness of an
invariant measure associated to our process. In Sect. 3, we establish a Liouville
type result assuming the existence of a Lyapunov-like function. Section 4 is
devoted to our applications: in Sect. 4.1 we study the ergodic problem through
stationary problems with vanishing discount, while in Sect. 4.2 we consider the
long time behaviour of a Cauchy problem. In Sect. 5 we generalize the previous
results to a more general class of subelliptic operators, encompassing e.g. the
Grushin one. The Appendix contains a condition equivalent to (1.7) which will
be useful to manage the Lyapunov function founded in Sect. 2.

2. Existence and uniqueness of the invariant measure

This section is devoted to the invariant measure for process (1.1). Let us re-
call (see [28] or Proposition 2.1 below) that, when the matrix associated to
the infinitesimal generator L is a strictly definite positive matrix, a sufficient
condition for the existence of an invariant measure is given by: there exists a
Lyapunov-like function such that

w ∈ C∞(BC
0 ) ∩ C0(R3)

Lw ≥ 1, in BC
0

w ≥ 0 in BC
0 , w = 0 on ∂B0, (2.1)

where B0 is a ball centered in 0 with suitable radius (for less regular functions
w, we refer to [28]).
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In our case, the matrix A = σσT in (1.6) is degenerate at any point and
its rank is 2. In order to overcome this issue, for ρ > 0, we introduce the
approximating operators

Lρw := −tr(Aρ(x)D2w) − b(x)Dw, (2.2)

where

Aρ(x) =

⎡
⎣

1 0 2x2

0 1 −2x1

2x2 −2x1 4(x2
1 + x2

2) + ρ2

⎤
⎦ = σ(x)σT (x) +

⎡
⎣

0 0 0
0 0 0
0 0 ρ2

⎤
⎦ .

(2.3)
In the following lemma we collect some useful properties of Lρ.

Lemma 2.1. The matrix Aρ(x) is locally strictly positive definite (namely, for
any compact K ⊂ R

3, there holds λAρ(x)λT ≥ ν(x)|λ|2 for any x ∈ K, with
ν(x) ≥ a(K, ρ) > 0) and it is positive definite in R

3.
Moreover, the matrix

σρ(x) =

⎡
⎣

1 0 0
0 1 0

2x2 −2x1 ρ

⎤
⎦ (2.4)

fulfills
Aρ(x) = σρ(x)σT

ρ (x). (2.5)

Proof. Set α = 4(x2
1 + x2

2) + ρ2 + 1. The eigenvalues of Aρ are

λ1 = 1, λ2,3 =
α ±

√
α2 − 4ρ2

2
.

It is easy to remark that λ2 ≥ 1
2 .

The last eigenvalue is λ3 = 2ρ2

α+
√

α2−4ρ2
> ρ2

α hence, for any fixed R > 0, if

x2
1 + x2

2 ≤ R2, α ≤ 4R2 + ρ2 + 1 and λ3 > ρ2

4R2+ρ2+1 > 0.
The last part of the statement follows by a simple computation, so we shall
omit its proof. �

Remark 2.1. From (2.5), beside being uniformly elliptic, the operator −Lρ is
also the infinitesimal generator of the stochastic process

dXρ
t = b(Xρ

t )dt +
√

2σρ(X
ρ
t )dW̃t, (2.6)

where σρ is defined in (2.4) and W̃t is a three-dimension Brownian motion
whereas our starting process (1.1) contains a two-dimension Brownian motion.

Now, we want to prove that, for some classes of drifts b, there exists a
function w satisfying (2.1) with L replaced by Lρ. To this end, we consider a
continuous drift b = (b1, b2, b3) such that

bi(x) = bi(xi),

{
bi(xi) ≤ − Ci

|xi|1−α for xi ≥ R

bi(xi) ≥ Ci

|xi|1−α for xi ≤ −R
(2.7)

for some constants α ≥ 0, R > 0 and Ci > 0 (i = 1, 2, 3).
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Note that Lemma 2.2 below holds also for ρ = 0 then we have a Lyapunov-
like function w (i.e. satisfying condition [2.1]) also for the degenerate starting
problem where L is given by (3.1).
Conditions similar to (2.7) were obtained in [28] with σ = I the identity matrix.

Lemma 2.2. Assume σ as in (1.2) and b as in (2.7). Then the function

w(x) :=
(x4

1 + x4
2)

12
+

x2
3

2
(2.8)

satisfies

Lρw ≥ 1 in B(0, R0)
C

, w ≥ 0 in B(0, R0)
C

, lim
|x|→∞

w = ∞ (2.9)

for R0 sufficiently large, ρ sufficiently small and

(i) either α > 0
(ii) or α = 0 and sufficiently large Ci.

Proof. Using (2.8), we obtain

Lρw = −5(x2
1 + x2

2) − ρ2 − 1
3
(b1x3

1 + b2x
3
2) − b3x3.

We denote Ki := maxxi∈[−R,R] |bi(xi)|.
Case (i). Assume α > 0. We want to prove that there exists R0 such that Lρw >

1 in B(0, R0)
C

for ρ sufficiently small. To this end, we split the arguments in
several cases.

(I) If |xi| ≥ R for any i ∈ {1, 2, 3}, then

Lρw ≥ x2
1(−5 + C1|x1|α/3) + x2

2(−5 + C2|x2|α/3) + C3|x3|α − ρ2.

Hence, for |x1|, |x2| > R1 := max{(15/C1)1/α, (15/C2)1/α, R}, |x3| ≥
R3 := max{C

−1/α
3 , R}, we get: Lρw ≥ 1 for ρ sufficiently small.

(II) If |x1|, |x2| ≤ R1 and |x3| ≥ R, then

Lρw ≥ −10R2
1 − ρ2 − R3(K1 + K2)/3 + C3|x3|α

(here, we used the relation: −bix
3
i ≥ 0 for |xi| ∈ [R,R1], i = 1, 2). Hence,

for |x3| ≥ R̃3 with R̃3 sufficiently large, taking ρ sufficiently small, we
get Lρw ≥ 1.

(III) If |x1| ≤ R1, |x2| ≥ R1 and |x3| ≥ R (and similarly, for |x1| ≥ R1,
|x2| ≤ R1 and |x3| ≥ R), then

Lρw ≥ −5R2
1 + x2

2(−5 + |x2|α/3) − ρ2 − K1R
3/3 + C3|x3|α.

Hence, for |x3| ≥ R̃3, we get Lρw ≥ 1 for ρ sufficiently small.
(IV) If |x1| ≤ R1, |x2| > R, |x3| < R̃3 (and similarly for |x1| > R, |x2| ≤ R1,

|x3| < R̃3), then

Lρw ≥ |x2|2(−5 + C2|x2|α/3) − 5R2
1 − ρ2 − K1R

2/3 − K3R.

Hence, for |x2| > R1, we get Lρw ≥ 1 for ρ sufficiently small.
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In conclusion, gluing together all these cases, we accomplish the proof for
α > 0.
Case (ii). Assume α = 0; we want to prove that there exist some constants Ci

and a radius R0 such that Lρw ≥ 1 in B(0, R0)
C

.
(I) If |xi| > R for any i = 1, 2, 3, then Lρw ≥ x2

1(−5 + 1
3C1) + x2

2(−5 +
1
3C1) + C3 − ρ2; hence, for C1, C2 > 15, C3 > 1, we have Lρw > 1 for ρ
sufficiently small.

(II) If |xi| < R for i = 1, 2 and |x3| > R, then Lρw ≥ −10R2 − R3(K1 +
K2)/3 − ρ2 + C3; hence, for C3 > 10R2 + R3(K1 + K2)/3 + 1, we have
Lρw > 1 for ρ sufficiently small.

(III) If |x1| < R, |x2| > R and |x3| > R (and similarly, for |x1| ≥ R, |x2| ≤ R
and |x3| ≥ R), then Lρw ≥ −5R2 + x2

2(−5 + C2/3) − R2K1/3 − ρ2 + C3,
hence, for C2 > 15, C3 sufficiently large and ρ sufficiently small, we have
Lρw > 1.

(IV) If |x1| ≤ R, |x2| > R, |x3| < R (and similarly for |x1| > R, |x2| ≤ R,
|x3| < R), then Lρw ≥ −5R2 + x2

2(−5 + C2/3) − K1R
2 − ρ2 − K3R;

hence, for C2 > 15, |x2| sufficiently large and ρ sufficiently small, we have
Lρw > 1.

�
Remark 2.2. Stronger sufficient condition on bi for the existence of a Lyapunov-
like function w satisfying condition (2.1) could be found using w(x) := log((x2

1+
x2
2)

2 + x2
3)).

Example 2.1 The Ornstein–Uhlenbeck drift.
Let b(x) = −γx, γ = (γ1, γ2, γ3), this is the model Ornstein–Uhlenbeck case
(for further properties of this operator see [29]). In the model case (non
degenerate operator with bounded coefficients) of the Laplace operator i.e.
Lu = −Δu + γx · Du, there exists a natural Lyapunov function r2 :=

∑
i x2

i if
all the γi are positive (see also [6, Corollary 2.3] for Hamilton–Jacobi–Bellman
operators).

In the complete degenerate case Lu = γx · Du, the function r2 =
∑

i x2
i

is a Lyapunov function if all the γi are positive. But r2 is a Lyapunov function
for the Heisenberg operator (1.4) only if γ1 > 4, γ2 > 4, γ3 > 0. The choice of
w in (2.8) as a Lyapunov function for the operator (1.4) allows us to apply our
results to a much more general Ornstein–Uhlenbeck drift, i.e. to the case where
all the γi are positive. Let us also remark that in other strongly elliptic case
with unbounded coefficients (still with linear growth at infinity) we cannot
find, in general, so weak assumptions on the γi.

In the next proposition we will establish the existence of an invariant
measure mρ of the approximating process (2.6). This measure will be used in
the main theorem of this paper when the invariant measure for the process
(1.1) will be obtained as the limit of mρ as ρ → 0.

Proposition 2.1. Let σρ(x) be defined by (2.4) and b(x) be a Lipschitz function.
Assume that

(i) either b satisfies (2.7) with α > 0,
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(ii) or b is smooth and satisfies (2.7) with α = 0 and Ci sufficiently large.

Then, there exists a unique invariant probability measure mρ on R
3 for

the process (2.6).

Proof. As proved in Lemma 2.1 the operator Lρ is uniformly elliptic in each
bounded set (but the ellipticity constant degenerates in the whole R

3). We
adapt some techniques introduced by [28] (see also [17] for similar arguments),
by considering approximate problems in domains On such that On ↗ R

3 as
n → +∞.

We claim that, in both cases, there exists a function w such that

w ∈ C∞(R3), Lρw + χw = φ in R
3, lim

|x|→+∞
w = ∞ (2.10)

where χ ∈ C∞
0 and φ ∈ C∞ are suitable functions such that, χ > 0 on

B0, suppχ = B̄0 (B0 is a suitable bounded open set) and lim|x|→∞ φ = ∞.
Actually, in case (i), the function w defined in (2.8) satisfies (2.10). Moreover,
let us recall (see [27] or Lemma A.1 in the Appendix) that, for b smooth,
condition (2.9) is equivalent to condition (2.10); in particular, by Lemma 2.2,
we deduce the existence of a function w as in (2.10) also in case (ii). Hence,
our claim is completely proved.

Fix a function w as in (2.10) and define On := {x ∈ R
3| w(x) < Mn}

where Mn → +∞ if n → +∞ and Mn is not a critical value of w. Since
w → +∞ if x → +∞ then On are bounded and smooth and On ↗ R

3.
Fix ρ > 0 and n, the results by Bensoussan [11, Section 4] ensure that there
exists an unique invariant measure mn

ρ associated to the diffusion process Xρ
t

in On with reflecting boundary whose infinitesimal generator is Lρ in On with
boundary conditions

∑
i,j

(aρ)ij

∂u

∂νj
= 0 on ∂On

where ν denotes the unit outward normal to ∂On and the matrix Aρ = (aρ)ij =
σρσ

T
ρ as in Lemma 2.1.

The invariant measure mn
ρ satisfies the problem

L∗
ρm

n
ρ := −

∑
i,j

∂2((aρ)ijm
n
ρ )

∂xi∂xj
+

∑
i

∂(bim
n
ρ )

∂xi
= 0 in On, (2.11)

∑
ij

νi

(
∂((aρ)ijm

n
ρ )

∂xj
− bim

n
ρ

)
= 0 on ∂On

∫

On

mn
ρ = 1, mn

ρ > 0. (2.12)
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We have to prove that, as n → +∞, mn
ρ converges in some sense to mρ

invariant measure to the process with generator Lρ, i.e. mρ solves

L∗
ρmρ := −

∑
i,j

∂2((aρ)ijmρ)

∂xi∂xj
+

∑
i

∂(bimρ)
∂xi

= 0 in R
3

∫

R3
mρ = 1, mρ ≥ 0. (2.13)

From Prohorov Theorem and the fact that
∫

On
mn

ρ = 1 we know that mn
ρ ⇀ mρ

as n → +∞ (possibly passing to a subsequence). We prove now that
∫
R3 mρ =

1. Multiplying Eq. (2.11) by w defined in (2.10), integrating on On and taking
into account (2.12) we obtain

0 =
∫

On

L∗
ρm

n
ρw =

∫

On

mn
ρLρw +

∫

∂On

mn
ρ

∑
i,j

(aρ)ij

∂w

∂xi
νj .

Since w = Mn on ∂On and w < Mn on On, we have ∂w
∂xi

= ∂w
∂ν νi and ∂w

∂ν ≥ 0
on ∂On. Then, there holds

0 =
∫

On

mn
ρLρw +

∂w

∂ν

∫

∂On

mn
ρ

∑
i,j

(aρ)ijνiνj ,

and, since
∑

i,j (aρ)ijνiνj ≥ 0, we obtain
∫

On
mn

ρLρw ≤ 0. Hence, there holds
∫

On

mn
ρLρw =

∫

On

(φ − χw)mn
ρ ≤ 0,

and ∫

On

φmn
ρ ≤

∫

suppχ

χwmn
ρ ≤ C

where C is a positive constant independent of n. Let us extend mn
ρ by zero

outside On, and still call it mn
ρ , then

∫

R3
φmn

ρ ≤ C (2.14)

where C is a positive constant independent of n.
Since lim|x|→+∞ φ(x) = +∞, for any N there exists a RN such that

φ(x) > N on BC
RN

. Hence, from (2.14), we infer
∫

BC
RN

mn
ρ ≤ C

N
. (2.15)

Since
∫

R3
mn

ρ = 1, then from (2.15) we deduce
∫

BRN

mn
ρ ≥ 1 − C

N

and from the weak convergence of mn
ρ to mρ, we have

∫

BRN

mρ ≥ 1 − C

N
;
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hence, letting N → +∞, we obtain that
∫
R3 mρ = 1.

Moreover from the local regularity W 2,p for any p > 1 of mn
ρ since mn

ρ

solves Eq. (2.11), passing to the limit we easily obtain that mρ solves Eq.
(2.13). �
Remark 2.3. Under the hypotheses of Proposition 2.1, the condition of strict
ellipticity in the compact subsets of RN is sufficient to deduce from (2.9) the
existence of the invariant measure mρ (see [20, Theorem IV.4.1] under their
assumption B.1). Nevertheless we gave the proof of Proposition 2.1 because it
is purely analytic and for the sake of completeness.

Now we want to prove that, as ρ → 0+, mρ converges in some sense to
m, invariant measure to the process (1.1), solving

L∗m = 0,

∫

R3
m = 1 and m ≥ 0. (2.16)

Theorem 2.1. Let σ be defined by (1.2) and b be a Lipschitz function. Assume
that either b satisfies (2.7) with α > 0 or b is smooth and satisfies (2.7) with
α = 0 and Ci sufficiently large. Then, there exists a unique invariant probability
measure m on R

3 for the process (1.1).

Proof. The existence of the invariant measure it is obtained proving that, as
ρ → 0+, the invariant measure mρ of Proposition 2.1 converges to the measure
m associated to the process (1.1). We proceed analogously to Proposition 2.1.
The measure mρ satisfies the following conditions:

L∗
ρmρ = 0 in R

3,

∫

RN

mρ = 1, mρ ≥ 0. (2.17)

We know that mρ ⇀ m as ρ → 0 (at least for a subsequence) where m is a
measure. We have to prove that m is an invariant measure to the process (1.1)
i.e. that m solves (2.16).
From condition (2.9), arguing as in the proof of Proposition 2.1 to get (2.10),
we know that there exist smooth functions χ and φ such that w satisfies
Lρw+χw = φ, in R

3, w and φ diverge to +∞ if |x| → +∞ and χ has compact
support.

Multiplying Eq. (2.13) by such w and integrating on R
3 we obtain

0 =
∫

R3
L∗

ρmρw =
∫

R3
Lρwmρ =

∫

R3
(φ − χw)mρ,

hence ∫

R3
φ mρ =

∫

supp χ

χw mρ ≤ C, (2.18)

where C is a positive constant independent of ρ. From (2.18), since

1 =
∫

BRN

mρ +
∫

BC
RN

mρ ,

then ∫

BRN

mρ ≥ 1 − C

N
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and from the convergence of mρ∫

BRN

m ≥ 1 − C

N
,

hence letting N → +∞ we obtain
∫
R3 m = 1.

To prove that L∗m = 0 we have, for any ψ smooth,

0 =
∫

R3
(L∗

ρmρ)ψ =
∫

R3
(Lρψ)mρ →

∫

R3
Lψm =

∫

R3
L∗mψ,

where we take account that Lρψ → Lψ strongly and that mρ ⇀ m.
We observe that, for b ∈ C∞, the uniqueness of the invariant measure

comes from the results of Arnold, Klieman [5], or Ichihara, Kunita [22] by
probabilistic methods. Under our assumptions, and using only analytical tools,
the uniqueness of the invariant measure is established in Corollary 4.1 below.

�
Proposition 2.2. Assume the hypotheses of Theorem 2.1 and also b ∈ C∞.
Then the density m of the invariant measure is a C∞ function. Moreover
m > 0 in R

3.

Proof. We observe that m satisfies

0 = L∗m = −
∑
i,j

∂ij((σσT )ijm) +
∑

i

∂i(bim)

= −tr(σσT D2m) +
∑

i

∂i(bim)

= −tr(σσT D2m) +
∑

i

bi∂im +

(∑
i

∂ibi

)
m.

From the regularity of the solutions of the hypoelliptic operators (see [21]) we
get m ∈ C∞.
Let us now prove that m > 0, to this end we shall follow the arguments in
[22, Prop. 6.1]. We assume by contradiction that ∃x0 such that m(x0) = 0
then −m attains the maximum value 0. Then we can invoke Bony’s Maximum
Principle; indeed even though in [15, Corollary 3.1] the coefficient of the zeroth
order term must be nonnegative, in our case this condition is not necessary
because the maximum value is zero. Therefore we get −m = 0 which gives the
desired contradiction. �

3. A Liouville type result

In this section, we establish a Liouville type result, which holds true not only
in the Heisenberg setting but also for σ whose columns satisfy the general
Hörmander condition. This result will be stated in Proposition 3.1. Although
in the proof of Theorems 4.1 and 4.2 below it will be applied to the particular
case of a regular solution, Proposition 3.1 contains a general statement which
has its own independent interest.

Let us first recall from [21] the definition of Hörmander condition.
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Definition 3.1. The vector fields Xj ∈ C∞(RN ), j = 1, . . . m, satisfy the
Hörmander condition if X1, . . . Xm and their commutators of any order span
R

N at each point of RN .

Proposition 3.1. Consider the problem

LV = −tr(σ(x)σT (x)D2V ) − b(x) · DV = 0, x ∈ R
N (3.1)

where b is a globally Lipschitz continuous function in R
N and the vector fields

Xj = σj ·∇, j = 1, . . . m satisfy the Hörmander condition as in Definition 3.1.
Assume that there exist w ∈ C∞(RN ) and R0 > 0 such that

Lw ≥ 0 in B(0, R0)
C

, w(x) → +∞ as |x| → +∞. (3.2)

Then:
(i) every viscosity subsolution V ∈ USC(RN ) to (3.1) such that

lim sup|x|→+∞
V
w ≤ 0 is constant;

(ii) every viscosity supersolution V ∈ LSC(RN ) to (3.1) such that
lim inf |x|→+∞ V

w ≥ 0 is constant.

Proof. The proof uses the same arguments as in [28] (see also [7, Lemma 4.1 and
remark 4.1]). For the sake of completeness, we shall give the proof of case (i);
being similar, the proof of case (ii) is omitted.

Let us first observe that if ψ ∈ C2(A) (A is any open set A ⊂ B(0, R0)
C

)
is a classical supersolution in A, i.e.

Lψ ≥ 0 in A

then w + ψ is a viscosity supersolution in A, i.e.

L(w + ψ) ≥ 0 in A.

Define for each η > 0:

Vη(x) := V (x) − ηw(x).

We claim that Vη is a viscosity subsolution in B(0, R0)
C

i.e.

L(Vη) ≤ 0 in B(0, R0)
C

. (3.3)

Indeed, let us assume by contradiction that there exists ψ ∈ C2(B(0, R0)
C

)

such that Vη − ψ attains a strict maximum in some point x ∈ B(0, R0)
C

,
V (x) = ηw(x) + ψ(x), and that there holds

L(ψ)(x) > 0.

By the the continuity of the coefficients of L, and the regularity of ψ there
exists a r0 > 0 such that

L(ψ)(x) > 0 in B(x, r0) ⊂ B(0, R0)
C

. (3.4)

As remarked above ηw+ψ is a supersolution in B(x, r0). Moreover there exists
α > 0 such that V (x) < ηw(x) + ψ(x) − α for any x ∈ ∂B(x, r0). Then by a
local comparison principle (see [8]), V (x) ≤ ηw(x) + ψ(x) − α in B(x, r0) and
for x = x we get a contradiction; hence our claim (3.3) is proved.
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Thanks to Vη → −∞ as |x| → +∞, there exists R1(η) = R1 > R0 such
that

Vη(x) ≤ sup
|z|=R0

Vη(z), ∀|x| ≥ R1;

then, using the weak maximum principle applied to Vη,

max
B(0,R1)\B(0,R0)

Vη = max
∂B(0,R0)

Vη

and this implies that

Vη(x) ≤ max
∂B(0,R0)

Vη, ∀x ∈ B(0, R0)
C

.

Letting η → 0 in the preceding inequality:

V (x) ≤ max
∂B(0,R0)

V, ∀x ∈ B(0, R0)
C

.

Therefore V attains its global maximum so it is a constant by the strong
maximum principle established by Bardi and Da Lio [8, Corollary 3.2]. �

Remark 3.1. Note that, in the Heisenberg group, the function w introduced
in Lemma 2.2 satisfies assumptions (3.2).

Remark 3.2. Let us stress that the above arguments work for any linear oper-
ator L satisfying a strong maximum principle.

Remark 3.3. Note that conditions on the sub and super solutions in (i) and
(ii) imply the boundedness of the sub and super solutions.

4. Applications

In this section we provide two applications of the previous results. In both cases
we will use the existence of the invariant measure for the process (1.1) proved
in Sect. 2 and the Liouville type property obtained in Sect. 3. Summarizing,
we shall prove that

lim
δ→0+

δuδ(x) = lim
t→+∞ u(t, x) = lim

t→+∞
v(t, x)

t
=

∫

R3
fdm,

where m is the invariant measure of Sect. 2 and uδ, u and v are the solutions
respectively of

δuδ + Luδ = f(·), in R
3,

ut + Lu = 0 in (0,+∞) × R
3, u(0, ·) = f(·) on R

3,

vt + Lv = f(·) in (0,+∞) × R
3, v(0, ·) = 0 on R

3,

and L is the infinitesimal generator of the process (1.1), i.e. the operator
defined in (1.4).
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4.1. The ergodic problem

In this section we tackle the following ergodic problem. We consider the family
of problems

δuδ(x) − tr(σ(x)σT (x)D2uδ) − b(x)Duδ = f(x) in R
3, (4.1)

where δ > 0 and we investigate about the convergence as δ → 0 of δuδ to a
constant λ called the ergodic constant. Throughout this section, we assume
(A1) σ is defined in (1.2);
(A2) b ∈ C∞(R3) and satisfies the hypotheses of Lemma 2.2;
(A3) f ∈ C0(R3) ∩ L∞(R3).
The next two Lemma contain several properties of uδ which will be used later
on.

Lemma 4.1. Under Assumptions (A1)–(A3), there exists an unique smooth
viscosity solution uδ of the approximating problem (4.1) such that

|uδ(x)| ≤ C

δ
, ∀x ∈ R

3, (4.2)

for some positive constant C independent of δ.

Proof. The uniqueness follows from the comparison principle proved in [15].
By Assumption (A3) it is easy to see that w± = ±C

δ with C sufficiently
large is respectively a supersolution and a subsolution for problem (4.1). In
conclusion, applying Perron’s method, we infer the existence of a solution
to (4.1) verifying (4.2). Finally, the regularity of uδ follows from hypoellipticity.

�
Lemma 4.2. Under Assumptions (A1)–(A3), the functions vδ := δuδ, where
uδ is the solution of problem (4.1), are locally uniformly Hölder continuous.
Namely, there exists α ∈ (0, 1) such that for every compact K ⊂ R

3 there
exists a constant N such that

|vδ(x1) − vδ(x2)| ≤ N |x1 − x2|α, ∀x1, x2 ∈ K, ∀δ ∈ (0, 1). (4.3)

The constant N only depends on K and on the data of the problem (in partic-
ular is independent of δ).

Proof. The statement is a direct consequence of the result of Krylov [24]. For
the sake of completeness let us sketch how to apply Krylov’s result to our case.
From Lemma 4.1 the function vδ is uniformly bounded and smooth and solves
the following equation

δvδ − tr(σ(x)σT (x)D2vδ) − b(x)Dvδ = δf(x) in R
3. (4.4)

We observe that Eq. (4.4) can be written in the form

− L0vδ + vδ := −σik∂xi
(σjk∂xj

vδ) − BDvδ + vδ = δf + (1 − δ)vδ (4.5)

where Bj = bj − ∑
jk σik∂xi

σjk and L0 = σik∂xi
(σjk∂xj

·).
For δ fixed, consider the problem{−L0vδ,n + vδ,n = δf + (1 − δ)vδ in B(0, n)

vδ,n = 0 on ∂B(0, n).
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We observe that {vδ,n} is a equibounded family (by the same arguments of
Lemma 4.1). [24, Theorem 2.1] of Krylov ensures that there exists α ∈ (0, 1)
such that for every compact K ⊂ R

3 there exists a constant N1 (independent
of δ, n) such that

|vδ,n(x1) − vδ,n(x2)| ≤ N1|x1 − x2|α, ∀x1, x2 ∈ K. (4.6)

By Ascoli–Arzelà Theorem, letting n → +∞ (possibly passing to a subse-
quence) we get that vδ,n converges locally uniformly to a function Vδ. By the
stability and uniqueness results we infer Vδ = vδ. Moreover, passing to the
limit in n in (4.6), we get (4.3). �

In the next result we prove that δuδ converges to a constant which will
be characterize in terms of the invariant measure of the process (1.1).

Theorem 4.1. Under Assumptions (A1)–(A3), the solution uδ of problem (4.1)
given in Lemma 4.1 satisfies

lim
δ→0

δuδ =
∫

R3
f(x)dm(x), locally uniformly, (4.7)

where m is the invariant measure of process (1.1) founded in Sect. 2.

Proof. We shall proceed following some arguments of [7]. The functions vδ :=
δuδ solve (4.4) and, from estimate (4.2), satisfy

|vδ| ≤ C, in R
3, (4.8)

with C independent of δ, hence they are uniformly bounded in R
3. From

Lemma 4.2 vδ are also uniformly Hölder continuous in any compact set of
R

3. Then by the Ascoli–Arzelà theorem there is a sequence δn → 0 and a
continuous function w such that vδn

→ v locally uniformly; by stability, v is a
solution of

− tr(σ(x)σT (x)D2v) − b(x)Dv = 0, x ∈ R
3, (4.9)

hence v ∈ C∞ by the hypoellipticity of the operator (see [15]). Then by Propo-
sition 3.1, v is constant.

In conclusion, we have that, possibly passing to a subsequence, {δuδ}δ

converges locally uniformly to a constant. Now, it remains to prove that
this constant is independent of the subsequence chosen and that is has the
form (4.7). By standard arguments of optimal control theory (see [19]), the
function uδ can be written as

uδ(x) = Ex

∫ +∞

0

f(Xt)e−δt dt (4.10)

where Xt is the process in (1.1) with initial data X0 = x while E denotes the
expectation. Integrating both sides with respect to the invariant measure, we
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infer ∫

R3
uδ(x) dm(x) =

∫ +∞

0

(
Ex

∫

R3
f(Xt) dm(x)

)
e−δt dt

=
∫ +∞

0

(∫

R3
f(x) dm(x)

)
e−δt dt

=
1
δ

∫

R3
f(x) dm(x)

where the second equality is due to the definition of invariant measure. Taking
into account that every convergent subsequence of {δuδ}δ must converge to a
constant, we conclude that the whole sequence {δuδ}δ converges to

∫
R3 f dm.

�

Remark 4.1. As kindly suggested by the referee, we note that, with proba-
bilistic methods and a suitable change of variables in (4.10), arguing as in [22,
Proposition 5.1], we can obtain the result of Theorem 4.1. More precisely, from
(4.10) we have

δuδ(x) = δ

∫ +∞

0

Ex[f(Xt)]e−δt dt.

Noting that Ex[f(Xt)] is the solution of wt + Lw = 0, w(0, x) = f(x), then

δuδ(x) = δ

∫ +∞

0

∫

R3
Pt(x, y)f(y)e−δt dydt

where Pt(x, y) is the fundamental solution of the problem. Hence, by the
change of variable s = δt, we have

δuδ(x) =
∫ +∞

0

e−s

∫

R3
Ps/δ(x, y)f(y) dyds.

Finally, using [22, Proposition 5.1 and Proposition 6.1] we obtain the conver-
gence as in (4.7).

4.2. Large time behavior of solutions

This section concerns the asymptotic behavior for large time of the solution
of the parabolic Cauchy problem:{

ut + Lu = 0 in (0,+∞) × R
3,

u(0, x) = f(x) on R
3,

(4.11)

where L is the operator defined in (1.4). Let us recall that, for periodic fully
nonlinear equations, this issue was studied in [1, Theorem 4.2]. We quote here
also the results in the manuscript [28].

Theorem 4.2. Under the assumptions of Theorem 2.1 and Proposition 3.1, for
f ∈ C0(R3) ∩ L∞(R3), the solution u of problem (4.11) verifies

lim
t→+∞ u(t, x) =

∫

R3
f(x) dm(x), locally uniformly in x,

where m is the invariant measure of process (1.1) given in Sect. 2.
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Proof. Since ±‖f‖∞ are sub and supersolution of (4.11), by the comparison
principle we have that

‖u‖∞ ≤ ‖f‖∞. (4.12)
Arguing as in [1, Theorem 4.2] we get, for some c > 0, |u(t+s, x)−u(t, x)| ≤ cs,
and in particular |ut(t, x)| ≤ c. Moreover classical results on regularity of subel-
liptic operators give that u(t, ·) are locally Hölder continuous on x uniformly
in t (see [15,24]). Hence by Ascoli–Arzelà theorem for any sequence tn → +∞
there exists a subsequence tnk

such that u(tnk
, ·) → v locally uniformly for

some v ∈ C0(R3). By standard arguments (see [1, Theorem 4.2]), v is the so-
lution of Lv = 0; hence, by Proposition 3.1 (the Liouville type result), it is a
constant. Therefore, we have

u(tnk
, ·) → C, locally uniformly . (4.13)

We show now that the constant C is independent of the chosen sequence. Let
us consider an arbitrary sequence {sn} such that sn → +∞ and u(sn, ·) → C
locally uniformly. From (1.3)∫

R3
u(sn, x) dm(x) =

∫

R3
f(x) dm(x)

Using (4.12),
∫
R3 dm(x) = 1 and the dominated convergence theorem, we get

C =
∫

R3
f(x) dm(x).

�

Corollary 4.1. Under assumptions of Theorem 2.1 there exists at most one
invariant probability measure m for the process (1.1).

Proof. If, by contradiction, there are two measures m1 and m2, then from
Theorem 4.2 ∫

R3
f(x) dm1(x) =

∫

R3
f(x) dm2(x)

for any f(x) ∈ C0(R3) ∩ L∞(R3); hence, m1 = m2. �

Remark 4.2. We observe that for b ∈ C∞ the result of Theorem 4.2 it has
already been obtained in [22, Proposition 5.1] with probabilistic methods.

Remark 4.3. Let us consider the following Cauchy problems{
vt + Lv = f in (0,+∞) × R

3

v(0, x) = 0 on R
3,

(4.14)

where L is the operator defined in (1.4) and f is a function as in Theorem 4.2.
By means of the Duhamel formula and a change of variables the solution

v can be written as v(t, x) =
∫ t

0
u(τ, x)dτ where u is the solution of (4.11).

Hence the statement of Theorem 4.2 can be rephrased as

lim
t→+∞

v(t, x)
t

=
∫

R3
f(x) dm(x).
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5. The general case

In this paragraph we highlight the general method (see [27]) which we applied
so far within the framework of Heisenberg case. We address the stochastic
dynamics (1.1) under the following assumptions:⎧

⎨
⎩

σ(x) a real N × m matrix with σ ∈ C∞(RN ),
‖σ(x)‖ ≤ C(|x| + 1), for some C > 0,
the columns of σ satisfy Hörmander condition (see Definition 3.1);

(5.1)

b ∈ C∞(RN ), ‖b(x)‖ ≤ C(|x| + 1), C > 0; (5.2){
for A := σσT , there exists {Aρ(x)}ρ∈(0,1) with Aρ = σρσ

T
ρ ,

σρ ∈ C∞(RN ), Aρ → A in L∞ and Aρ is locally definite positive. (5.3)

There exists a function w which verifies (2.9) for any ρ sufficiently small.
(5.4)

The growth assumptions on σ in (5.1) and on b in (5.2) allow us to obtain the
existence of a process Xt in (1.1).
Under assumptions (5.1), (5.2), the Liouville type result contained in Proposi-
tion 3.1 still holds true. In fact the results of Bony [15] on comparison principle
and strong maximum principle hold also in this setting if we observe that

−tr(σσT D2u) =
∑

j

X2
j u − C(x) · Du,

where C(x) = Dσj · σj and σj are the columns of the matrix σ.

Theorem 5.1. Under assumptions (5.1)–(5.4) there exists an invariant proba-
bility measure m associated to the diffusion process (1.1).

Proof. We observe that, by assumptions (5.3), (5.4), there exists an unique
invariant measure mρ for the process with diffusion σρ. Then, arguing as in
the proof of Theorem 2.1, using again the function w in (5.4) we obtain the
existence of the invariant measure associated to the process (1.1). �

Corollary 5.1. Under assumptions (5.1)–(5.4) and f ∈ C0(RN ) ∩ L∞(RN ),
Theorem 4.2, Corollary 4.1 and Theorem 4.1 hold true.

Remark 5.1. We observe that, as for the Heisenberg case, in many settings it
suffices to require only b Lipschitz continuous (see for instance Example 5.1
below).

A simple application of the general result is the case of Grushin operator.

Example 5.1. The Grushin operator
For x = (x1, x2) ∈ R

2, consider the diffusion matrix

σ(x) =
(

1 0
0 x1

)
(5.5)

and observe that σ satisfies (5.1); actually, X1 = (1, 0), X2 = (0, x1) and
[X1,X2] = (0, 1) span all R2. In this case the infinitesimal generator is

LV = −Vx1x1 − x2
1Vx2x2 − b(x) · DV.
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Moreover

σρ(x) =
(

1 0 0
0 x1 ρ

)

satisfies (5.3).
We take b(x) = (b1(x1), b2(x2)) satisfying (2.7) and (5.2) and w(x) =

1
12x4

1 + 1
2x2

2. Then Lw ≥ 1 is equivalent to the following condition

− 1
3
b1(x1)x3

1 − b2(x2)x2 ≥ 2x2
1 + 1. (5.6)

We want to prove (5.6) for max{|x1|, |x2|} ≥ R̃, with R̃ sufficiently large.
Arguing as in the proof of Lemma 2.2 we consider two cases: (1) |x1| > R̃, (2)
|x1| ≤ R̃ and |x2| > R̃.

(1) If |x1| > R̃, we have two possibilities: (1a) |x2| > R, or (1b) |x2| ≤ R.
(1a) We consider x2 > R (the case x2 < −R is analogous). From (2.7),

−1
3
b1(x1)x3

1 − b2(x2)x2 ≥ C1
x1

2+α

3
+ C2x

α
2 ≥ C1

x1
2+α

3
.

Then we get (5.6) provided C1 ≥ 6
R̃α

+ 3
R̃2+α

.
(1b) If |x1| > R̃ and |x2| ≤ R, setting M2 := max|x2|≤R |b2(x2)x2|,

−1
3
b1(x1)x3

1 − b2(x2)x2 ≥ C1
x1

2+α

3
− M2.

Then we get (5.6) provided C1 ≥ 6
R̃α

+ 1+M2

R̃2+α
.

(2) If |x1| ≤ R̃ and x2 > R̃ (the case x2 < −R is analogous), we consider the
two subcases: 2a) |x1| ≤ R or (2b) R < x1 < R̃.
(2a) If |x1| ≤ R, we set M1 := max|x1|≤R[13b1(x1)x3

1 + 2x2
1 + 1]. Since −b2(x2)

x2 ≥ C2x
α
2 , then (5.6) holds true provided C2 ≥ M1

R̃α
.

(2b) If x2 > R̃ with R > 1, R < x1 < R̃, we have

−1
3
b1(x1)x3

1 − b2(x2)x2 ≥ C1
x1

2+α

3
+ C2x

α
2 .

Hence, (5.6) holds provided C1 ≥ 9 since −C1
x1

2+α

3 +2x2
1+1 becomes negative.

Remark 5.2. Lions–Musiela in [28] considered a similar degenerate case but
in their paper the elements of the matrix σ(x) are bounded in R

2, i.e. they
considered

σ(x) =

(
1 0
0 x1√

1+x2
1

)
. (5.7)

A Appendix

In the following lemma we state the equivalence between conditions (2.9)
and (2.10) when the coefficients of the operator are smooth. This property
has already been established by Lions [27]; however, for the sake of complete-
ness we shall provide the proof.
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Lemma A.1. Consider a linear operator

G(u) := −tr(ττT D2u) − β · Du

where τ is a matrix whose columns verify the Hörmander condition (see Defi-
nition 3.1), τ and β are smooth functions with

|τ(x)|, |β(x)| ≤ C(1 + |x|) ∀x ∈ R
N .

Then, conditions (2.9) and (2.10) are equivalent; namely the following prop-
erties are equivalent:

(i) there exists w ∈ C∞(RN ) such that

G(w) ≥ 1 in B(0, R0)
C

, w ≥ 0 in B(0, R0)
C

, lim
|x|→+∞

w = +∞

for some constant R0 > 0;
(ii) there exists w̄ ∈ C∞(RN ) such that

G(w̄) + χw̄ = φ in R
N , lim

|x|→+∞
w̄ = +∞

for some C∞ functions χ and φ with lim|x|→+∞ φ = +∞, χ ≥ 0 and
suppχ compact.

Proof. For completeness, we report the arguments of [27]. As one can easily
check, property (ii) obviously implies property (i) (possibly adding a constant).

Now, assuming (i), we want to prove (ii). We denote K := max
B(0,R0)

|w| and

KG := max
B(0,R0)

|G(w)|. We fix χ ∈ C∞
0 (RN ) such that χ ≥ 0, χ = 1 in B(0, R0)

and suppχ ⊂ B(0, 2R0). We claim that the function w
(x) := w(x)+K+KG+1
satisfies

G(w
) + χw
 =: f∗(x) ≥ 1 in R
N , lim

|x|→+∞
w
 = +∞. (A.1)

Indeed, the latter property is an immediate consequence of (i).
Moreover, for |x| ≤ R0, we have

G(w
) + χw
 ≥ −KG + χ(w + K + KG + 1) ≥ 1

while, for |x| ≥ R0, we have

G(w
) + χw
 ≥ G(w) ≥ 1;

hence, our claim (A.1) is proved.
Let us now consider a regular partition of unity {φi}i≥1 such that φi ≥ 0,∑∞

i=1 φi(x) = 1, supp φi ⊂ B(0, i + 1) \ B(0, i − 1).
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We claim that there exists a regular solution to

G(Wn) + χWn =
n∑

i=1

φi in R
N , 0 ≤ Wn ≤ w
. (A.2)

In order to prove this existence, it is expedient to introduce, for m ≥ n + 1
and ε > 0, the following boundary value problems

⎧
⎪⎨
⎪⎩

(G − εΔ)(W ε
nm) + χW ε

nm =
n∑

i=1

φi in B(0,m)

W ε
nm = 0 on ∂B(0,m).

(A.3)

By the non-degeneracy of the operator, the comparison principle applies to
problems (A.3). Hence, the Perron’s method ensures that there exists a unique
solution to (A.3). By standard arguments in hypoelliptic theory (see [24,32]),
as ε → 0+, W ε

nm(x) converges to Wnm(x) in B(0,m), where Wnm is the solu-
tion to

⎧
⎪⎨
⎪⎩

G(Wnm) + χWnm =
n∑

i=1

φi in B(0,m)

Wnm = 0 on ∂B(0,m),
(A.4)

where the boundary condition is attained only in the viscosity sense. We
observe that the Hörmander condition guarantees the comparison principle
for (A.4); since 0 and w
 are respectively a sub- and a supersolution, there
holds true 0 ≤ Wnm ≤ w
 in B(0,m). On the other hand, for m1 > m, still
by comparison principle, we infer W ε

nm1
(x) ≥ W ε

nm(x) for every x ∈ B(0,m);
so, as ε → 0+, we get Wnm1(x) ≥ Wnm(x) for every x ∈ B(0,m), namely,
the sequence {Wnm}m is nondecreasing and locally bounded. Passing to the
limit and using the regularity theory for hypoelliptic operators (see [15]), we
accomplish the proof of our claim (A.2).

By (A.2), the functions wi(x) := Wi(x) − Wi−1(x) solve

G(wi) + χwi = φi in R
N

and verify:
∑∞

i=1 wi(x) < ∞ in R
N .

Let us recall an elementary result: for any
∑∞

i=1 ai < +∞ with ai ≥ 0,
there exists a sequence {λi}i such that limi→+∞ λi = +∞ and

∑∞
i=1 λiai <

+∞.
Then in our case there exists a sequence {λi}i such that limi→+∞ λi =

+∞ and
∑∞

i=1 λiwi(0) = K < +∞.
Let n0 ∈ N be fixed. Let us denote by w�

n(x) :=
∑n

i=1 λiwi(x). In B(0, n0)
w�

n(x) satisfies:
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G(w�
n) + χw�

n =
n0+1∑
i=1

λiφi w�
n ≥ 0 (A.5)

and by Harnack inequality (see [15]) there exists a constant Cn0 independent
of n such that

sup
B(0,

n0
2 )

w�
n ≤ Cn0

(
inf

B(0,
n0
2 )

w�
n + sup

B(0,
n0
2 )

n0+1∑
i=1

λiφi

)

≤ Cn0

(
K + sup

B(0,
n0
2 )

n0+1∑
i=1

λiφi

)
= C∗

n0

This implies that in any bounded set w� is well defined, i.e. w�(x) :=
∑∞

i=1

λiwi(x) < ∞ for every x ∈ R
N . Moreover the function w� satisfies

G(w�) + χw� =
∞∑

i=1

λiφi =: φ, w� ≥ 0 (A.6)

with limx→∞ φ(x) = +∞.
In conclusion, by (A.1) and (A.6), the function w̄ := w
 + w� satisfies (ii). �

Remark A.1. In this proof we used the vanishing viscosity method because it
also applies to more degenerate cases. As a matter of facts, one can easily ob-
tain the existence of a continuous viscosity solution to (A.4) using the Perron’s
method and the strong Maximum Principle (see [8]).

Finally, let us stress that the smoothness of β is needed only for applying
the Harnack inequality.
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Università degli Studi di Padova
Via Trieste 63
35131 Padua
Italy
e-mail: mannucci@math.unipd.it

http://www.college-de-france.fr/site/pierre-louis-lions/course-2014-2015.htm
http://www.college-de-france.fr/site/pierre-louis-lions/course-2014-2015.htm


47 Page 26 of 26 P. Mannucci, C. Marchi and N. Tchou NoDEA

Claudio Marchi
Dipartimento di Ingegneria dell’Informazione
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