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Null controllability in large time
of a parabolic equation involving the Grushin
operator with an inverse-square potential
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Abstract. We prove the null controllability in large time of the following
linear parabolic equation involving the Grushin operator with an inverse-
square potential

ur — Agu — |:p|2Ayu — #u =vl,

in a bounded domain = Q1 x Q> C RM x RNZ(Nl > 3,N, > 1)
intersecting the surface {x = 0} under an additive control supported in
an open subset w = w1 X Q2 of Q.
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1. Introduction and statement of the main result

Let Q = O x Qo € RNt x RN2_ N; > 3, N, > 1, be a bounded domain with
Oy, € Q1 and 09 is smooth enough. We study the null controllability of the
following problem

w — Agu — |x|25Ayu — ﬁu =vl, for (z,y,t) € Qx(0,T),
T

u=20 for (z,y,t) € 00 x (0,7T),

u(0) = u® for (z,y) € Q,

(1.1)

where 1, denotes the characteristic function of the open subset w of €2, and
p < pt = p*(Ny) with p*(Ny) = (N7 — 2)%/4 is the best constant in the
following Hardy inequality for the Grushin operator (see [1, Theorem 3.3]):
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/ (IVaoul® + [2**|Vyul?) dedy > p* / =z |2da:dy (1.2)

Here, because we are considering the case of internal singularity, the assump-
tion N7 > 3 is made to ensure that the best constant p* = p*(Ny) in the
above Hardy inequality is strictly positive.

We say that problem (1.1) is null controllable in time 7' if for every
up € L?(Q) given, there exists a control v € L*(Q x (0,7)) such that the
solution u(x,y,t) of (1.1) satisfies u(-,-,T") = 0.

The aim of this paper is to prove the following result.

Theorem 1.1. Let w = wy X Qs be an open subset of Q such that Ogn, ¢ wy. If
w < p* and s =1, then there exists a time T* > 0 such that problem (1.1) is
null controllable in any time T > T™.

We first review some existing controllability results related to degener-
ate/singular parabolic equations. The controllability for degenerate parabolic
equations in dimension one has been studied widely in recent years by many
authors (see e.g., [2,7-11,18,19]). The null controllability of parabolic equa-
tions involving the Grushin operator has been studied first in dimension two
[4], and then in some multi-dimensional domains [3,5]. On the other hand, the
controllability results of parabolic equations with an inverse-square potential
were obtained in [14,19] for the case of internal singularity, and in [13] for the
case of boundary singularity. Recently, in the dimension two, the approximate
controllability of the parabolic Grushin operator with a singular potential has
been studied in [17] thanks to the unique continuation of the corresponding
operator. Moreover, in [12], the authors also proved the null controllability
in large time of the parabolic Grushin operator involving a singular potential
when s = 1 and spatial domain is (0,1) x (0,1), that is, with the boundary
degeneracy and singularity. As mentioned in [12,17], the null controllability
problem is completely open when the degeneracy of the diffusion coefficient
and singularity of the potential occur at the interior of the domain. This paper
is an attempt to partly solve this open question by proving the null controllabil-
ity for this operator when s = 1 in the multi-dimensional domains intersecting
the surface {z = 0}.

We now explain the method used in the paper. By the Hilbert Unique-
ness Method (HUM) introduced by J.-L. Lions, it is well-known that the null
controllability of problem (1.1) is equivalent to the observability of the adjoint
problem. To get the observability of the adjoint problem, the classical method
is to construct a global Carleman inequality for the solutions to the adjoint
system of (1.1). However, up to now, there is no existing way for constructing
such a Carleman inequality for the parabolic problem involving the Grushin
operator. Here to prove the main result, we exploit the ideas introduced in [4]
for proving the null controllability problem of the parabolic problem involving
the Grushin operator in dimension two. More precisely, thanks to the Fourier
decomposition for the solution of the equation, the observability of the adjoint
problem can be reduced to the uniform observability with respect to Fourier
frequencies, and the later is proved by using a suitable Carleman inequality
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and a dissipation speed of the Fourier components. This approach, however,
requires that the control domain must have the form w = wy x Q. It is noticed
that if we apply the Carleman inequality in [14] directly, we only obtain an
observability constant as exp(C (T)%z,,/ 3)7 which is not enough for our purpose
while we need an observability constant as exp(C/7,T). To construct the new
necessary Carleman inequality, a basic tool of the proof, we follow the general
lines of the approach in [14] and consider the potential 7, |z|? in the principal
part of the operator to follow precisely the dependence on +,. Because of the
results in [4], the null controllability for the parabolic Grushin operator with
singular potential is only expected to hold in the case 0 < s < 1. However, in
the present paper (and also [12]) we only can prove the null controllability in
large time in the case s = 1. The reason is that although we can prove the
dissipation speed for any s > 0 (see the remark after Proposition 2.2), we are
only able to prove the Carleman inequality in the case s = 1 (see Theorem
2.5). This is also the situation for the case of boundary degeneracy and singu-
larity in [12]. It is also noticed that the assumption p < p* is needed to ensure
that the constant C in Proposition 2.2 is positive due to the classical Hardy
inequality, while the smoothness of {2; is needed to construct the Carleman
inequality.

In order to study the problem (1.1), we use the function space S} (£2)
defined as the completion of C§°(2) in the norm

1/2
”“HS}L,O(Q) = (/Q (|Vgcu|2 + \x|25\vyu\2 — #ﬁ)daydy) .

By the Hardy inequality (1.2), we know that S}L’O(Q), u < p*, is a Banach
space endowed with the above norm, and when pu < p*,

max{0, yu} min{0, p}
(1= 228l < bty o < (1 20 ) iy,

where S3(Q) is the completion of C§°(€2) in the norm

lullst) = (/Q <|VxUI2 + IxIQSIVqu)dxdy)l/Q.

This means that when p < p*, the two spaces S}, ((Q) and S§(Q) are equal.
Therefore, the embedding S, ;(Q) < L*(Q) is compact if p < p* (see e.g., [15]
for more details). However, in the critical case p = p*, the space S}L*,O(Q) is
strictly larger than S(Q). As in the case without potential [4, Sect. 2.1], using
the Galerkin approximation method or the standard theory of semigroups,
one can prove that for any ug € L*(Q) and v € L?(0,T; L*(f)) given, problem
(1.1) has a unique weak solution u satisfying

u e C([0,T]; L*(2)) N L*(0,T; S, o(Q2)).

The rest of the paper is organized as follows. In Sect. 2, due to the Hilbert
Uniqueness Method, we prove Theorem 1.1 by showing that the adjoint system
is observable. The proof relies on uniform observability estimates with respect
to Fourier frequencies and this is proved using a new Carleman estimate and
a dissipation speed of the Fourier components. For clarity of the presentation,
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the long and technical proof of our new Carleman inequality is given later in
the last section.

2. Proof of the main result

2.1. Fourier decomposition and dissipation speed

Let (yn)nen+ be the nondecreasing sequence of eigenvalues of the operator
—A, in H2(Q) N H}(Q2) and the associated eigenfunctions (¢n,(y))nen+, that

is,

—Ayon(y) = men(y), vy € Qo
Qon(y) =0, Yy e 0.

For any weak solution u(z,y,t) of (1.1) and any control v(x,y,t), we set

wn () = /Q w9, Don(y)dy, va(z,t) = /Q o(e, g, en(w)dy,  (21)

then by substituting (2.1) into (1.1), we obtain the following

Proposition 2.1. Let ug € L?(S2) be given and let u be the corresponding unique
weak solution of (1.1) with pn < p* and s = 1. Then, for every n € N*, the
function u,(x,t) is the unique weak solution of the problem

ou, .

B Aty + Yo lr|?u, — #u" =vply, () in Q1 x (0,7),

Up, =0 on 0 X (O,T), (22)
Un (2,0) = ug n(x) n Q,

where U, (x) = f92 uo (2, y)pn(y)dy.

Proof. The proof is very similar to the one of Proposition 2 in [12], see also
the original proof in [4, Prop. 2], so we omit it here. O

N

We know that the smallest eigenvalue of —Ap(z) +7,|z|%¢(z) — PE o(x)

in H2(Q1) N HE(Q4) is given by

I
I, (|w<x>|2+(%|x|2—|ﬂ) w) ds
Jo, lel?da

Ap,u i=min

’ pEHF (), ¢ #0yp.

Proposition 2.2. For any N1 > 3 and p < p*, there exist Cy, = C.(p) > 0 and
C* = C*(u) > 0 such that

C’*%% <Au < C*%% Vn e N*. (2.3)
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Proof. The proof is an adaptation of [12, Prop. 4]. We first prove the lower
N N
bound. By the change of variable ¢(x) = ’ynTl ¢(7711/41:) = 'ynTl o(y), we get

Ay = inf 2 B 2 M 2) 4
o ity (] (5o (- ) o)

HS"HLZ(Ql):l

—AY2 g {/ (|v¢<y>|2+(y|2—“2)|¢<y>|2)dy}
bpeCe(v/101) Wy, |y

=1
112140,
1/2
2 C*’Yn/ )

where

Cy = inf 2 2_u> 2>d}
ey U (9000 (1 = ) P

HQD”LZ(]RNl)Zl

is positive via the classical Hardy inequality (see e.g., [6]).

We now prove the upper bound for A, , by choosing suitable test func-
tions. For every k > 1 large enough such that Ez/k(o) C 4, we consider the
function

kx| if |z| <1/k,
or(r) =<2 —klz| if 1/k<|z| <2/k
0 if |z| > 2/k.

One can see that ¢ belongs to H} () for each k > 1. We have

/ lon () P = l<:2/ Io2de +/ (2 — Klz|)2da
o jal<1/k 1 /k<le|<2/k

:4/ daz—4k:/ |:Jc|d:1:+k:2/ |z|?dzx.
1/k<|z|<2/k 1/k<|z|<2/k |z|<2/k

Using the change of variables in spherical coordinates, we have

42N —1)C
4/ dx = —( ~ ) Nl,
1/k<|a|<2/k ke
where
ﬂ.Nl/Q
T for even Ny,
Ny = Ni+1 Ny—1
2z for odd N
N or o 1,
and

—4k‘/ |z|dz = ]1\1 wcm’
1/k<|z|<2/k kAN N +1

1 2Mit2
k2/ z|2dx = —Cny,
‘I|§2/k ‘ | k/’Nl N1 + 2 N1




20 Page 6 of 26 C. T. Anh and V. M. Toi NoDEA

where

Cn, = 7T/ sin’* "2 ¢y - - sin p, _odprdes - - - dpn, —a.
(O’ﬂ.)lez

Hence
Yde=C L
o |§Ok(l’)‘ T = 17N1W7
1
where
4(2N1+1 _ 1) 9N1+3
=402M —1)Cy, — — 0.
Cin, o= 4( )CnN, ( N1 N3 Cn, >

Similarly, we have

]{?2
/Q Vor(@)[de = 2™ CleTl
1
and
2|2 | (z)Pdx = C _1

a, ¥k =LaniNre
where

oN1+2 _q oN1+3 _ 1 oN1+2

Comy =4 - Cx, >0
. ( Ny +2 Ni+3 +N1+4> N, > U,
and
1 9 k2
T de =C Ik

/szl |510|2|<pk(x)| * NN

where
2N172 -1 (2N171 _ 1)
= 2N 4 _
CS,N1 CN1 + CNl ( N1 —2 ]\f1 -1 )
Thus,
oM —
Anp < hn”u(k) — C]\él 1Cs B2 4 ,ynCZNl -2
1,N, 1N,
for all k£ > 1.
We note that 2M1Cy, — uCs n, > 0 for g < p*(Ny). Then since b

/4

attains its minimum at k& = C(u)y»’ ", we have

App < hn,u@) = C*V}Lmv

where

1/2
OF = (CQ,N1 )

Ci,nv,

2 (2N10N1 — ,LLC37N1)1/2
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Remark 2.3. By a similar method, one can prove the dissipation speed result
for any s > 0. More precisely, we have

_1
C*’Yﬁ+5 < Ansp < C* ™ Vn e N,
where A, s, is the smallest eigenvalue of —Ap(z) + v, |z[**p(z) — ?go(a:) in
H?(Q1) N HE ().

2.2. Uniform observability of the adjoint system

By duality, the null controllability of problem (1.1) is equivalent to an observ-
ability inequality for the adjoint problem of problem (1.1):

wy + Ayw + |22, w—|—| E w=0 (z,y,t) € Qx(0,T),
w=0 (x,y,t) € 02 x (0,T),
w(z,y,T) = wr(z,y) (z,y) € Q.

(2.4)

We say that the adjoint problem (2.4) is observable in w in time T if there
exists C' > 0 such that for every wy € L?(Q), the solution w of (2.4) satisfies

w0 <€ [ o0 dedyar.
wx(0,T)
Using (2.1), we get adjoint problem of (2.2) as follows

Owy, + Agwy, — Ynlz2w, + ﬁwn =0, (z,t)€Q x(0,7),
x

wn = 0, (2,1) € 90, % (0,T),
wp(z,T) = wr,(x), x € Qy,
(2.5)
where w,, (z,t) fQ w(z,y, t)pn(y)dy and wr , (z sz wr(z,y)en(y)dy.

Therefore by the Bessel Parseval equality, in order to prove the observ-
ability of problem 2.4 it is sufficient to prove that the adjoint problem (2.5)
is observable in w; uniformly with respect to n € N*, that is, for w; C Qq,
there exists C' > 0 (independent of n) such that for any n € N* and any
wr., € L?(), the solution w,, of (2.5) satisfies

[[wn(-,0 ||L2(Q y < // |w, (z,t)|* dadt.
le(OT

We now prove the following uniform observability result, which will imply
Theorem 1.1 due to the above reasons.

Theorem 2.4. Let wy C Q4 such that Ogn, ¢ W1 and p < p*. Then there exists
T* > 0 such that for every T > T*, problem (2.5) is observable in wy uniformly
with respect to n € N*,

Proof. The proof relies on a new Carleman estimate for the solutions of (2.5)
(Theorem 2.5 below) and the dissipation speed (see (2.3)).
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In order to construct our Carleman inequality, we consider the following
weight function as in [14]:

(62)\sup’l/) _ 1|x‘2 _ ekw(w))
ol t) = 2 __ B
’ GEETIE =T -0

where \ is a positive parameter aimed at being large, and 1 is a smooth
function such that

¢(z) = In(|z]/d), x € Bs(0),
07 S 691,
Y(x) >0, x € Q1\Bs(0),
and there exist an open set &) satisfying @; C w; and m, > 0 such that
V()| > ma, € Q\d1. (2.6)
_Here the fixed number 0 < § <1 is chosen such that the ball Bs(0) C 4
and Ba(O) Nwy = 0.

As explained in [14], we can choose ¥ such that the weight function § is
at least of class C* when A is large enough and this is enough for our purpose.
We refer the reader to [14] for more discussions on choosing of the weight
function.

We have the following Carleman inequality whose long and technical
proof is postponed in the Sect. 3. O

Theorem 2.5. Let wy C € such that Ogny, € Wy. If u < p*, then there is
a positive constant Ao such that for X > Ao, there exist K1 = K1(\, 8) and
Ko = Ka(A, B) such that for any w € C([0,T]; L?(21)) N L%(0,T; H} (1)), the
following inequality holds

M
// e 2Me 3 |Vwl|? dedt + // e Mo
91\35 0)%(0,T) (HT —1))® Q1 %(0,T)

\ |2 // —2M M? \x|2 2
S R Ll e e 2o dudt
(t(T —t))% |a| B5(0)x(0,T) (T —1))?

3

M
+// e Mo — |w|? dadt
Q1\Bs(0)x(0,T) (T —1))?

MS
e 2Mo deacdt—i—// e Moq, w|?dxdt.
//wlx(OT) (T - ))9| | Q1><(0T) el
(2.7)

Here
M= M\T,v,,0) = Komax{T? +T* + T° + T \ /3, 7%},
and

G pw=w + Aw — Y|P 4 %w
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We now continue the proof of Theorem 2.4. The following arguments are
inspired from the proofs of Propositions 5 and 6 in [5].

Applying the Carleman inequality (2.7) for solution w, (z,t) of (2.5), we
have

72MU 3
// M ‘“’”' dadt <// eMo _ MT O dadt.
a1 x(0,1) ( T —1))3 | w1 %(0,T) (KT —1))°
(2.8)

Noting that
Me=?Mo(t) 1 64M  _12s5%
— > T 277® V(x,t) € Q x (T/4,3T/4),
HT —1)3 |2] = RngGe 2T (2,1) 1 x (T/ /4)

where R, := sup |z| and
xeﬁl

MS
672MU(I’t)W S K3M3 V(:C,t) € wy X (O,T)

Here K3 = K3(3) := max{e 2%¢¢3 : ¢ € Ry} with 8* = max{83(z) : z €
2} and B, = min{B(z) : z €wi}.
Hence (2.8) implies that

3T/4 1288* M
/ / |w, (z,t)|? dedt < KsTSM?e 27 76 // lw,, (x,t)|* dedt,
Q1 le(O,T)

(2.9)
where K3 := K3Rq, /(64K4).
Now, multiplying (2.5) by —w,, then integrating over €, we obtain

1d ,
33 A |wn (2, t)|*dx
+/ [|an(a:,t)2 i (%W - |52> |wn(x,t)|2} de = 0. (2.10)
Q1

Using (2.3), we get from (2.10) that

d
(2o [P as) 20 vezo.
dt Q1

Hence

toh)
Integrating from T'/4 to 3T /4, we obtain

/ |wn(x,0)|2dxge*20*ﬁbt/ o (2, D)2dz Yt > 0.
(921

3T /4

2
/ lwy, (z,0)|?dr < Zem T VT / lwy, (2, ) dadt. (2.11)
on T T/ Jo,
Substituting (2.9) into (2.11) to get
5 1283* M
/ |wy, (x,0)|*dx < 2KC3T° M? exp ( 28%6 76~ c. x/ynT>
Q

X // |wy, (z,t)|? dadt.
UJ1><(0,T)
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We consider two cases:

1 1 1
oIf,/“yn<1—&—T-4-T2 T3,thenM Ko (T3 +T*+T°+T5), and thus

/ [wy, (x,0)|?de < 2KC3K3T™ (1 + T + T% 4+ T3)?
(951

84" 1 2
xexp( Ko 1+T—|—T2+— WIXOT\wnth dxdt.

1 1 1 6
o If /4, >1+ = T + —= T2 + T3 then M = Ko,/7,T°, and thus
128C M C, 1285* C.
- — T = — T ) V/7m
o gV ( Kem3 )
. L 25687ICy
SO, 1fT > T = W, then

1283* "
/ |w (z,0)|?de < 2KC3KC3T 7y, exp {( 2876 Ko — CQT) ,/yn}
Q
< 2K K2TVK, / / o (2, )2 davdt,
w1 X(O T)

Cr) o] - cem.)

The proof of Theorem 2.4 is complete. 0

where 4 = max {(exp [(128ﬁ Ko —

3. Proof of the Carleman inequality

3.1. Some properties of weight functions

1
Let us define a smooth positive radial function n(z) = n(|z]),0 < n(z) < N
1
such that
) 1 1
W) =0, ol <50 and n(e) = 5 el =
We have the following properties of the weight function .
Proposition 3.1. Denote by O the open set Q1\(Bs(0) Uo1). We have
(1) On 0%, we have
0 R
98 >0 for A>—2 (3.1)
ov My

where v denotes the outward normal vector and m. is the constant in
(2.6).
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(2) There is a number Ao > 0 such that for X > Ay, there exist two positive
constants Cy and Cy such that

—n(x)AB(x)|Z)? — 2D*B(x)(Z, Z) > C1|Z*, VZ e RNz e O\@y,

(3.2)
n(x)AB(x)|VB(z)|? — 2D?*B(x)(VB(x), VB(x)) > Cyy, Yz e O, (3.3)
n(z)AB(x)|VB(x)|* — 2D*B(x)(VB(x), VB(x)) > |z, VY € Bs(0), )
3.4

where the constant Cy can be taken such that
Ci1>nN1+2 as X large enough. (3.5)

It is the noticed that from the proof below, we can give the precise value
of Ag; but this does not play any role, so we omit it.

Proof. The proof is quite elementary and similar to that of Proposition 13 in
[5], but we give it for the completeness.

(1) We can see that on 0§y,

% =—x-v—AVY-v>—Rq, + A\|V¢| > —Rq, + Am,.

Hence, we get (3.1).
(2) From the definition of 4 outside the ball Bs(0), we get a positive constant
m* such that

|Vap(z)], |Ap(x)|, |D?*y(z)| <m* for €@ UQ\Bs(0).
Proof of (3.2). We see from the definition of 8(x) in £1\Bs(0) that
VB(x) = = AVye” —
D?B(x) = —~(N*V(z) ® Vi(z) + AD*(x)e*” — I,
AB(z) = —(N2|VY|? + ANAp)er — Ny, (3.6)

where Iy, denotes the unit matrix order Ny and a ® b = (a;b;)n, xn, for
a=(ay,...,an,),b=(b1,...,bn,).
So, for any x € O, we have

— nAB(x)|Z? - 2D*5(x)(Z, Z)
= n(VVY1? + AAY)M | Z)? + Ny | Z)?
+2(N(VY - 2)? + AD*Y(Z, Z)) ™ +2|Z|?
= X mIVePIZ]P +2(Ve - 2)%) M
+ A (nAY|Z|? +2D*¢(Z, Z)) e + (nN1 + 2)|Z)?
> (nmf/\Q —(n+2)m*\+nNy + 2) |Z|?
> C1|ZP, (3.7)

where C] can be chosen to satisfy (3.5) if A large enough, for instance,
when A so that

nm2\% — (n 4 2)m*\ > 0.
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1
Now, in the ball Bs(0), we have that §(z) = e*M¥ll~ — §\m|2 — |z

Hence, for A > 4, we have

VB(x)  =—x(1+Nz[*7?),
D?B(x) =— (IN1 + My 2P AN -2)(z ® x)\x|)‘74) , (3.8)
AB(x) =Ny — (ANy + A\ —2)) [z} 2.

So,

—nAB|Z]> —2D*3(Z, Z)
= [nN1 + 24 {2X + n(ANy + A(A = 2))} z[* 2] |2
+ 220\ = 2)(x - Z2)2|z|* % > (nNy + 2)|Z)2.

Combining this with (3.7) we obtain (3.2) with C; > nN; + 2.
Proof of (3.3). After some computations, we get from (3.6) that

nABIVA? - 2D?5(V B, V1)
= (2 )| VY[l
+ X[ = (VY 4 20 Tyl T2
+ AV - 2e 4 2DV, i) |
+ 22| = (|22 VP + 20 - TpApe + Ny T[22
+ 2|V 4 4D (Vip, 2)e + 2(Te - )2
+ A=n (|zPAver + 2Nz - Vyer?) + (2D*Y(z, 2) + 4a - Vib) V]
+ (2= Nz
> A2 —p)mie — A3+ 2)(1 4 2Rq, ) (m*)3e3M
— N (n(RY, +2Ra, + N1)(m")* + 4Rg,m") eV
— A((RY, +2N1Rq,) + 2(R3, + 2Rq,)) m*e**Y — (2 — nN1)R§ >
> C5 > 0, when ) is large enough.
Proof of (3.4). In the ball Bs(0), using (3.8) we have
nABIVBI* = 2D*B(VB, V)
= (2= aN)[VAR + A A2 = 1) =2+ 02 = N o (1 + A2 *2)°
> (2—-nN)|VBP > |z> as A >2.

3.2. Proof of Theorem 2.5

We will follow the general lines of the proof in [14] and consider the potential
Yn|z|? in the principal part of the operator to follow precisely the dependence

on p.
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To prove our Carleman inequality, we will use the following improved
Hardy inequality.

Lemma 3.2. For any bounded domain €y of RN (N1 > 3), there exists a
positive constant Cy > 0 such that

2 2
/Q |Vz|2d:cfu*(N1)/Q ||;||2de00/9 12 Tdx, Vze Hi (). (3.9)

=l

Proof. Applying Corollary 3 in [16, Section 2.1.6] with m = Ny,n = 0,p =
2,2<q<(2N1)/(Ny —2),y= -1+ Ny(27t — ¢~ !), we have

2
z ~
t/|V4%$*#%Nﬂ/mL%dzzdmmﬂﬁumy ¥z € Hy()
o Q) ||

Choosing ¢ = 2N /(N; — 1) so that v = —1/2 and noting that L7(Qy) —
L?(2y) since q > 2, we get

> N
22000,y = Clll2l 201220, = C/ e da.
Q1 |$|
Combining these two inequalities, we get the desired inequality (3.9). O

Now, we prove Theorem 2.5. By a density argument, we can assume that
w e H'Y([0,T); L* (1)) N L*(0, T5 H*(Q1) N Hg (1))
Let
z(x,t) = exp(—Mo(x,t))w(x,t),
where M = M(\, T, 7y, 3) > 0 will be chosen later on. We can see that
2(T) = 2(0) = 0 in H}(Q4)
due to the assumptions on ¢. One has the identity
e MG, w = Giz + Gaz + Gsz, (3.10)
where

Gi1z = Az + (Mo + M?|Vo|?)z + Wz Yol 2,

Goz =2z +2MNVo -Vz+ MAoz(1+1n),
G3z = —MnzAo.
From (3.10), we deduce that

// G12Gozdxdt — = // |G32|? dadt
1x(0,T) Q1 x(0,T)

< // le= MG, ,w|* dadt. (3.11)
=3 Q1% (0,T)

. 1
Step 1. Computation of folX(O7T) G12Goz dzdt — 3 folx((),T) |Gs 2|2 dadt.
Term concerning Az: Integrating by parts and using the fact that
zt(,t) =0 on 0O; 2(.,0)=2(.,T)=0 in ,
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we have

. . T .
// Azz dxdt = —// Vz-Vz dedt = 1/ i/ |Vz\2dwdt=O.
Jay x(0,1) Ja, x(0,1) 2/ dt Jg,

(3.12)

0z
Using Green’s formula and noticing that Vz = —wv on 0, we get

ov
" 92\° 9o
2M AzVo -Vzdxdt = 2M — | —=—dsdt
JJayx(0,T) JJoaq, x(0,T) ov ov
—|—M// (|Vz|2Aa —2D%0(Vz, Vz)) dzdt.
J Q1 x(0,T)
(3.13)

Also by Green’s formula, we have

M// AzAoz(1+n)dedt = —M // Vz-V(zAc(1+n))dxdt
QlX(O,T) le(O,T)

Ao 9
=M |z|*(1+1n) — Ac|Vz|*(1 4+ n) | dzdt
Qx(0,7) \ 2

1
+ M// |2|(Vn - VAc + = Ao An) dxdt. (3.14)
Q1 x(0,T) 2
Term concerning (Mo + M?|Vo|?)zz;: Integrating by parts, we have
// (Mo+M?|Vo|?) 2z dmdt:fl// (Mo, + M*|Vol|?), |2|? dadt.
Q1% (0,T) Q1 x(0,T)
(3.15)

Using Green’s formula, then
2M / / (Mo, + M?|Vo|*) 2VoVz dudt
Q1 x(0,T)
= -M // div [(Moy + M?|Vo|*)Vo] [2|* dudt. (3.16)
Q1 % (07T)

And the last term is

M // (Mo + M?|Val*)Ac(1 + n)|2|* dzdt. (3.17)
QlX(O,T)

Term concerning —vyn|x|?z : integrating by parts and using the fact that
z(T) = z(0) = 0, we get

— Tn // 2?2 (2t + 2M Vo - Vz + MzAo(1 + 1)) dzdt
QlX(O,T)
_ M%// (div(2]Vo) — [ePAc(l + 7)) |2 dedt.  (3.18)
Q1 x(0,T)

Term concerning %z : integrating by parts, we get

|z
K _
// g2z drdt =0, (3.19)
01 x(0,1) |7
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and

2MM// —QVJ Vzdzdt = —pM
Q1 %(0,7) \1‘|

2
// V2P Ao da + 2 M// |Z|38 o dwdt, (3.20)
Q1%(0,T) |$| Q1 %(0,T) |z|

where 0,0 = — - Vo. And the final term is

le

2
// 2MAJZ(1 +n) dxdt = pM // |2AJ(1 + n) dzdt.
Q1% (0,T) |93| Q1% (0,T) ||
(3.21)

Combining from (3.12) to (3.21), then (3.11) becomes

2M// <*) 99 gsdt — M// (2D°0(V2,Vz) + nAc|Vz|?) dudt
o x(o.r) \OV /) OV Q1%(0,T)

2
pM// 27)Aadmdt+2,uM// 2L . 6 daat
Q1 %x(0,T) || Q1 x(0,T) |[3

+ // {f + M, [div(|z[*Vo) — [z[?PAc (L + )]} |2|* dedt
Q1 x(0,T)

<1 / / e MG, wf? dad, (3.22)
2 JJa,xo,1m

f= %A%(l +1) — %(Mat + M?|Vol|*), — Mdiv [(Moy + M?|Vo|*)Vo]
M?n?(Ac)? + M (Mo + M?|Val?)Ac(1 + 1)

M (Vn - VAo + ;AaAn) .
Step 2. Estimation of the terms in (3.22). We can see that

1 2
I =t —gp (M BIVAPAS —2D6(V5, V)

02 (T = 20T — 1)) (61951 — 395) - T - D) (a8
+M[( +”A25+vn VAS + AﬂAn>(( — 1))

— 3(2T% — TTt + T (T — t))‘%} )

Hence, using (3.2)—(3.3) and the C*—regularity of 3 on €y, the definition of
1, we get positive constants C3 = C3(8), Cy = Cy4(8), ¢ = ¢(8) such that

—nAB|Vz|? - 2D%*0(V2,Vz) > CiM|Vz?, V(x,t) € 0\&n x (0,T),
(3.23)

| = nAB|Vz? = 2D%0(V2,V2)| < CsM|Vz|?, V(x,t) €@ x (0,T), (3.24)
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and

f= ﬁ [CoM? —e(T® + T®)M? —c(T°+T°)>M] , V (z,t) € Ox(0,T),
1fl < ﬁ [CaMP 4+ e(TP +TO)M* +-(T° +T%)2 M| , ¥ (x,t) €01 % (0, T).

Thus, there exist positive constants m; = mq(5),Cy = C4(B),Cy = CL(6)
such that for M > My (T, 3) :== my(B)(T° + T°), we have

CHM3 —
[z Wr =) V(z,t) € Ox(0,T),
I A3
fl < @g“ﬁ))g YV (x,t) € D1 x (0,7). (3.25)
la _

Now, we consider f in Bs(0). In B;(0) we have §(x) = e*M¥lle —

|z|*. Thus, by (3.8) with note that n(x) vanishes in Bj/(0), there exists ¢(), 6)
such that for A > 4,

(T —20)(H(T — 1))* (9[VB*30BAB) — 1 (H(T —1))*(AB)?
> —e(T° +T%|x*, V(x,t) € Bs(0) x (0,7). (3.26)

Using (3.4) and (3.26), we obtain

f—fi> @(Tu_'t))g [M? —2(T° + T®)M?], V(z,t) € B5(0) x (0,T),
(3.27)
where
fi= (t(T]‘f ik [(1 ; TA?B 4+ vy vAB+ éAﬁAn) (H(T —1))?

—3(27?% — 7Tt + 7t2)ﬁ] .

From (3.27), there exist a positive constant 71 = M1 (A, d) such that for M >
My (T, \) :=my(T° + T°), we have

M3|z|?
f—f122 il

AT — D) V (x,t) € B5(0) x (0,7). (3.28)

Using the definition of § and 7 in Bs(0), we get the positive constant
¢(A\,m) such that

M

@ e @ T, V(@ € B(0) x (0.7). (3.29)

fi>—

By (3.1), (3.23), (3.24), (3.25), (3.28) and (3.29) then for M > My (T, 3, \),
we get from (3.22) that
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aiM |2 il
7|Vz| dzdt+ uMnAJ—Q—&-Q M —50r0| dzdt
onar 1) HT=1))? Q1 x(0,T) | ||

=2 4 2
_// wpfdxdt—i—// Lj‘/[dzfdxdt
Bs()x(0,7) T —1)) Bs(0)x(0,7) 2((T — 1))

3
// CQM ER dxdtJr// My,
Ox(0, T) ) Q1 \@1 x(0,T)

[dlv(\:c| Vcr) — (14 n)|z| Acr] |2 dzdt

//WoT ( 0%4;)) - Mo [diV(MQVU)_(1+77)\30|2SAU])|z|2d:rdt

// 3 |V2|* dzdt + = // Mg, wwl? dedt,
51 x(0,1) ( —t)) Q1 %(0, T)
(3.30)

where My = My(T, 3, X) := 1 (B8, \)(T° +T°) with mq(3,\) = max{m1,m1}.
Step 2.1. Estimation of the degeneracy. There exists constant Cs = C5(5)
> 0 such that
Cf)M,Y’I’L
(T —1)*
Y (z,t) € (21\Bs(0)) x (0, 7). (3.31)

Let M3 = M3(T, vy, 3) be defined by Mz = M3 (T, vy, 8) := /(2C5)/C5(T/2)°
V- So, for M > Ms, we deduce from (3.31) that

| My, [div(|z[*Ve) — (1+n)|z[*Ac]| <

LM
= Sem -y
¥ (x,1) € (Q\Bs(0)) x (0,T). (3.32)

| M, [div(|z[*Ve) — (1 + n)|z[*Ac]

On the other hand, in the ball Bs(0), we can see that there exists Cg(\) such
that

|M7n [div(\x|2VU) (1+ n)\x|2Aa] ‘ < T = t))3 ;

V (z,t) € Bs(0) x (0,T).

(3.33)
Let M3 = M3(\, T,7,) be defined by M3z = Mz(\, T, 7,) := 2v/Cs(T/2)8\/7m.
So, for M > M3, we deduce from (3.33) that

| My, [div(|z]*Ve)—(1+n)|z]|*Ac]| _m, V (z,t) € Bs(0)x (0,7T).
(3.34)

Taking M = M(\, T, v, 8) := Ko max{T° + T6, /7, T°} with

/ / /
KQ = Imax {ﬁll, 205/02, 326 } )

64
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then M > My, M3 and M3. So, from (3.32) and (3.34), then (3.30) becomes

// Clng\Vz\dedt-i-//
@\@1 x(0,7) (H(T = 1)) Q1 x(0,7)
~ 2 4
- AL TOM o
JIBsyx0,1) (T —1))
M3 |z|? 2 CoM3 2
+// —_— da:dt-l—// —= —|z|* dzdt
By (0)x(0,1) 4(t(T t))9| i 0x(0,T) 2 t(T—t))g‘ |
// 077M9| 12 dedt + // 07M|Vz|2da:dt
@1 x0,1) (T —1)) @1x(0,) (T —1))3

1
+ 7// le= MG, yw|? dzdt, (3.35)
2 JJaix (1)

where C7 = C7 (06, A) := C} + C4/2.
We add the same quantity to both sides of (3.35) to obtain

C1 Els Els
— V2 dacdt—i—// {,uMnAU— + 2uM —=0ro | dxdt
I, oy v - EE EE
~ 2 4
— // w‘zf dadt
Bs()x(0,r) T —1))
M?|z|? 2 CyM? 2
+// Ml dxdt+// _GM e
%mwwn4uT—ww" cmmﬂ2MT—ww'
// |z| dz:dt—|—// |Vz| dzdt
oy x(0,1) ( —t sy x(0,1) ( —t))

+ // le= M@, ywl|* dadt, (3.36)
2 Q1 x(0,T)

where Cg = C1 + Cs.
Step 2.2. Estimation of the singular potential: we consider

CiM |2l |2
7|Vz| da:dt—|—// {uMnAcrf + 2uM —=0rc| dxdt
//le(o,T) (t(T —1))3 Q1 %(0,7) |[2 |[3

- I’Ln + Iout,

I i
uMnAo + 2uM

o2 B |36 dxdt

where

M
I;n ::// 7|Vz|2 dzdt
Bs(0)x(0,7) (LT —=1))3

2
+// [uMnAUZ +2u M| |38 0] dxdt
B5(0)x(0.T) || ||

and

M
I, ::// ——_|Vz|* dzdt
' Q:\Bs(0)x(0,7) (T — ))3‘ |

2 2
+// [uMnAa'ZQ—i-Q M| |38 ] dzxdt.
Q1\B5(0)x(0,T) |z Edk
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1
We first consider I;,. Recall that in the ball Bs(0), B(z) = ¥l — §|x\2 -

|z|* and
VB(x) =—a(1+Nz[*7?),
AB(x) =Ny — (AN; + AA — 2)) |22,
Hence
2
// [uMnAa'Q—i-Q M| |38 dxdt
Bs(0)x(0,T) | |z|f
M |2P
:fu// INy +2)—— Lt
B(;(O)X(O,T)( ! )(t(T —1))3 |z]?
M A—4 2
—u// AN+ N1 —2) + 2] —— | z|* daxdt
o) fea -y
M P
- _gﬂ// B
Bs)x 0,1y (T —1))* |z
1
—ﬂ// ([n)\(A+N1 —2) +2A]|x|*—4+nN12>
B5(0)x(0,T) ||
M 2
—_— dxdt. .
X(t(T—t))3|Z| x (3.37)

We note that since 7 vanishes in Bj/2(0), then when A > 4, there exists
Cy(A,d) > 0 such that

1
pIAN + Ny = 2) + 2|22 4 N1 —5 < Gy, VY € B;(0).

||

Therefore, from (3.37) with note that Cy > nN; +2 > 2 and (3.5), then

M 22
Im22// (VQ—M )dwdt
oo G —DF VA~ Hgp2

M

—Co |2|? dadt. (3.38)
3
Bs(0)% (0, T) ))

Now we consider I,,;. For x € Q;\Bs(0) then

2
// {uMnAUU—i—Z M| |38 U:| dxdt
Ql\Bé(O)X(O,T) | | ‘ |

_ 7/!// (N1 +2)M |2*
an\Bs)x (01 (T —1)3 |z

AAY + A2 1
] (n< RV | gy, L )
Q1\B5(0)x(0,T) |z |z|

M
X e/\w73|z|2 dxdt.

(T —1))

dxdt
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Hence, there exists a positive constant C11(8, i, d) such that

2 2
// [,uMnAa| 2—}—2/1M‘ |38 O':| dxdtZ—u//
21\ B5(0)x (0,T) 7| || Q1\B5(0)x (0,T)
(nN1 +2)M |Z|2

M 2
AT ) [off Cm//gl\géwm Ty
(3.39)

So, using (3.5) once again, then we have from (3.39) that

M
S B =
Q1\Bs (0)x (0,1) (T —1)) | | Q1\Bs(0)% (0,T)

CiiM // nN1 M 2
Xi dxdt + —— _|Vz|° dxdt. 3.40
aEnd o\ a0y (o) T — D) V7 (3-40)

Combining (3.38), (3.40) and using the improved Hardy inequality (3.9), we
have

// CiM\vz\ dxdt+// {uMnA |—+2 2 o] drar
a1 xo,r) T —1))? Q1x(0,T) |2 |3

2
T i Pwas [ 20,
a\Bs(0)x(0,7) (LT —1)) o xr T —1))3 ||
- // _OuM 2 gy (3.41)
a1 x (o, (H(T —1))

with Cll = maX{Cg; 010}.
From (3.36) and (3.41), we deduce

2
//91\35(0)><(0,T) (t(r —t))3|vz|2 dgcdt"k//glX o) ( 200_ nyE Z|| dadt
2 | 4
N //BJ(O)X(O,T)MI |2dxdt_//ﬂlx(o:r)(t(CT’H—]\f))3|z|2dxdt
3 2
+ //Bém)x(m)mlzdeH//oX o G%_t))gld{zdwdt
//MX(OT C7M))9| z|? dxdt+//@lx(0’T) ((16:8))3|V2|2 dudt

+3 / / le=M°G,, ,w|* dadt. (3.42)
le(O,T)
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1 2
Now, by the inequality ab < gag + §b3/2 (a,b > 0), we have

dT*+TYYM | // CuM 5
_ = dxdt + —_— dxdt
//135(0)><(0,T) T 1)) & aux0,1) (T — ))3| g

C 16) (T2 +THM
< // (c+Cu/16)( :_ ) |z|2dxdt
B (0)x(0,T) (T —1))

CuM 9
7 T
Q:\Bs(0)x (0,7) (T — t))?" |
- M / / (&+ O /16) (T2 + TH)|a/%)2*/°
Bs(0)x(0,T) C2B3 (T —1))3
02/3| |4/3 Cy M
X | ———= d:cdt+// ———|z|* dxdt
((t(T DEFEE o530y 0:1) (HT — )

200 |2:|2
< —_— dxdt
//BL;(O)X(O,T) 3(HT — 1)) ||

(61 Cru/16)° (T2 + T M]af?,
+ z|? dxdt
//BS@ o) 3C2(T — 1)) 1

+ / / LM?J |? dzdt. (3.43)
01\Bs(0)x(0,1) (T —1))

From now on, if we take

M = M\ T,v,, ) := Ko max{T? + T* + T° 4+ T%; /v, T°},

A

where

Ky = K2(3,6) := max {\/8(5 + C11/16)3/(3C3); C“ /(32) } ,

then

(&+ C11/16)° (T2 +T4)3M
302

Thus, from (3.43), (3.42) becomes

M 2 // 4CoM |z\2
——|V2z|" dadt + _ dxdt
//f21\35<0>x<0,T> G —oF V7 o0 0.1 3T —DF [a]
" ]\43|$|2 CQMS
+ // z d:rdt—i—// z|* dxdt
oo SAT— 0P oo o 1T =P
// C”’M |2|? d:cdt+// CSM V2|2 dadt
w1><(OT) @1 % (0, T) ))

+5 / / le M"Gn aw|? dxdt, (3.44)
Q1 x(0,T)

where C13 = C7 + C% /2.

MS
< —.
- 8
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Since z = e"M7y, by the Cauchy inequality, we have

M , oM
aa—op VT —opl

—2Mo M cLM?
ZGMJ(u@—>ﬁww‘M““m2+M%WT—mﬂMﬂ

oMo CisM CyM? wl?
= e (MT oy Vel 8wT—m“'>’
Y (z,t) € Q1\Bs(0) x (0,7), (3.45)

where C13 = C13(3) = C5/(4]|VB||% + C5), and

_ GsM
G
ot (_20M_ O 2CVAIRMY
= <MT e Vel T e ")’
¥ (2,t) € &1 x (0,T). (3.46)

7‘V |2 —2]%:7 |V’LU M(V )U}‘Z

Hence, from (3.45) and (3.46) then (3.44) becomes

CisM
/ / e—QMf’i“” \Vw|? dedt
Q1\Bs(0) x (0,T) (T —1))?
_|_// e—zm%@ drdt
Q1 % (0,T) 3T —1))3 ||
- M3|z|? 2
—|—// e 2M‘Ti\ud dxdt
B3 (0)x(0,T) 8(t(T — ))9

CLM
+// €_2MU27 w|? dzdt
Q1\B5(0)x (0,T) 8(t(T — ))9‘ |

2 3
< // o 672MU(2C8||Vﬁ”oo+012)M \w|? dedt
wi X

COEDE

M
+// (272]V[0CL3|V10|2 dzdt
&1 %(0,T) T —1))

1
+z // e M@, w]? dadt. (3.47)
2 Q1 %(0,T) '

Here 014 = 208

o CiaM
Step 3. Estimat ; N GT R
ep 5. Estimation of [[, 1€ (t(T —t))3

oM
is to prove that the term ffolx(o BD 62M”(t(§2t))3|Vw| dzdt can be ab-

sorbed by the other terms. This proof is similar to the proof of Cacciopoli’s
type inequality (see [20]). To end this, we consider the function & : Q3 — R

5 |Vw|? dxdt. This step
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such that

0<&(x) <1, zely,
&(z) =1, T € W,
&(z) =0, x ¢ w.

By the definitions of ¢ and £, we integrate by parts to obtain

—2Mo
// n W~ wge dzxdt
Q1 x(0,T) (T —1¢))*
I w5672MU
= —wt — Aw — —=w + Yn|T )7da:dt
[/ (- pp kel ) G
5672]Wo' 5 // 2 5672
= —————|Vw|” dzdt + n x| —= |w|” dadt
[ = oo @y

_ // Ll e ™ (e 4MVE - Vo + & (IM?Vof? — 2MAe)] dadt
a1 x (o) 2T —1))3

B |w|?e=2Me {Mcr B T —2t }d i
//le(D,T)g(t(T_t))S ' 32(t(T—t)) +\ 2 vt

Hence
M M —2Mo
// 5014783|vw‘ dzdt < — // "’Mw% drdt
aix,1) T —1)) Q1 %(0,T) (T -1))
2
+ // GuaMiwlTe "7 e T ameerI [A§ — 4MVE - Vo + p (AM?|Vo|? — 2MAc)] dadt
axor) 2T - t))
2 _
N // CraMé|w|*e~2Mo { u2 oMoy — 3T72t4 dudt
Q1 %(0,T) (T —t))3 || (T — 1)

C MS —2Mo
< 7// e Mo d:cdt+// GisMTe 72 dadt
2 JJa, x(0,1) wix(,1) (T —1))

for some positive constant Cq5 = C15(0,&). Here, we have used the fact that
Opn; ¢ @1 and supp(§), supp(AS), supp(VE) C wi. So,

o—2Mo ChaM // £C1aMe™?
Vwl|® dedt < 7Vw dxdt
//MOT) aa—opver oo, @@=y Ve

3
< —// le= MGy, wl? dmdt—l—// %Mi\w\ daxdt.
2 JJa,x,1) wix(o,ry (T —1))°

(3.48)
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Combining (3.48) with (3.47), we get
Ci3M
// e Mo 13 3 |Vw|? dedt
01\ B (0)x (0,T) (T —t))
4Co M 2
+ / / e-2mo__AC0M - [l
oo AT 0P o
M3|I|2
+ // e Mo 1|y dadt
Bs(0)x(0,T) 8(t(T —1t))?
/M3
+ // 672MUC279|w|2dxdt
Q1\Bs (0)x (0,T) 8(t(T — 1))

—2Mo Cl6M3 2 —Mo 2
< e g (W] drdt + e G, pwl|” dedt
w1 x(0,T) (t(T — 1)) Q1 %x(0,T)

with 016 = 016 (ﬁ) = 208||Vﬂ||go + 012 + 015. Then the Carleman inequality
(2.7) holds with
min{C’lg, 40()/3, 1/8, 05/8}

max{L 016} ’

K1 =Ki(B) =
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