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1. Introduction

In the present paper we deal with a semilinear problem involving a singular
term of the following type:{−Δu =

(
λus−1 − ur−1

)
χ{u>0}, in Ω

u = 0, on ∂Ω (Pλ)

where Ω is a bounded domain in R
N (N ∈ N) with smooth boundary ∂Ω, 0 <

r ≤ 1 < s < 2, λ is a positive parameter and χ{u>0} the characteristic function
corresponding to the set {u > 0}.

A weak solution of (Pλ) is a function u ∈ W 1,2
0 (Ω) such that∫

Ω

∇u∇ϕ −
∫

Ω

(
λus−1 − ur−1

)
χ{u>0}ϕ = 0

for every ϕ ∈ C1
c (Ω).

A classical solution of (Pλ) is a function u ∈ C(Ω) ∩ C2(Ω) such that
(Pλ) is satisfied pointwisely.

Problems of (Pλ) type have been studied for instance in [3–5].
In [3], Dávila and Montenegro prove the existence, for every λ > 0, of a

non negative, classical solution obtained as the limit of a sequence of solutions
of perturbed problems.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-015-0329-y&domain=pdf
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The existence of a positive solution has been proved in [4] by Hernàndez,
Mancebo and Vega in

Theorem A. ([4], Theorem 3.13) There exists Λ > 0 such that, for all λ ∈
]Λ,+∞[, problem (Pλ) has a classical solution belonging to int(C1

0 (Ω)+). If
λ ∈]0,Λ[ problem (Pλ) has no positive solution.

The existence part of the above result comes from the implicit function
theorem. More precisely, if S is the set of λ’s such that (Pλ) has a positive so-
lution, then, via sub-supersolution techniques, it is shown that S is an interval
with inf S > 0.

The problem of finding multiple solutions for (Pλ) has been carried on
in [5], where Montenegro and Silva have established the following result:

Theorem B. ([5], Theorem 1.1) There exists λ0 > 0 such that for each λ ∈
]λ0,+∞[, problem (Pλ) has two distinct nontrivial nonnegative weak solutions.

Following the approach of [3], in [5] the authors consider a sequence
of ε-problems where the singularity is replaced by the “non singular” term
uq/(u + ε)q+r−1 for some 0 < q < s − 1. For big values of the parameter, the
existence of two critical points, a global minimum and a mountain pass critical
point is ensured for the associated perturbed energy functional. As ε → 0, by
employing careful estimates on the gradient of the solutions of the perturbed
problems, two nontrivial nonnegative solutions of (Pλ) are provided.

In the above result nothing is said about the positivity of the solutions,
although the authors conjecture that one of them is positive. Indeed, we can ob-
serve that this occurs if λ > max{Λ, λ0}, where Λ and λ0 are as in Theorems A
and B, respectively. Our aim, in this paper, is to show that the existence of a
positive solution for problem (Pλ) ensures the existence of a second solution,
that is to say Λ ≥ λ0. Moreover, we also prove that the positive solution is
stable, i.e. it corresponds to a local minimum point of the associated energy
functional.

Our result reads as follows:

Theorem 1. There exists Λ > 0 such that problem (Pλ) has no positive solution
for λ < Λ and two distinct nontrivial nonnegative weak solutions for λ > Λ.
One of them belongs to int(C1

0 (Ω)+) and corresponds to a local minimum point
of the energy functional associated to problem (Pλ).

We point out that the energy functional associated to (Pλ) is not Gâteaux
differentiable in the Sobolev space W 1,2

0 (Ω) and the classical critical point the-
ory does not apply. In our proof truncation techniques and variational argu-
ments are employed. More precisely, the first positive solution is obtained as
global minimum of a suitable truncated functional, while the existence of the
second solution relies on an appropriate application of the Mountain Pass The-
orem for a regularized functional in the same spirit as in [5]. We point out that
our approach, in the proof of the existence of the positive solution differs from
that of [5]: indeed, we introduce a suitable truncation involving the positive
solution given by Theorem A. The truncated functional is of class C1 and its
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global minimum turns out to be a local minimum of the energy functional and
it belongs to int(C1

0 (Ω)+).
We believe that the idea of the proof can be also carried on in the study

of the case 0 < r < s ≤ 1.

2. Preliminaries

We endow the Sobolev space W 1,2
0 (Ω) with the classical norm

‖u‖ =
(∫

Ω

|∇u|2
) 1

2

.

As usual, for every u ∈ W 1,2
0 (Ω), put u+ = max{0, u} and

u− = max{0,−u}.
Recall also that

C1
0 (Ω) =

{
u ∈ C1(Ω), u = 0 on ∂Ω

}
is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

0 (Ω), u ≥ 0 in Ω
}

which has a nonempty interior given by

intC+ =
{

u ∈ C1
0 (Ω) : u > 0 in Ω,

∂u

∂ν
< 0 on ∂Ω

}
,

where ν(·) is the outer unit normal to ∂Ω. It is also well known that if u ∈
intC+, there exists c > 0 such that u(x) ≥ cd(x) for every x ∈ Ω, being
d(x) = d(x, ∂Ω).

Define

Ψλ(u) =
1
2
‖u‖2 − λ

s

∫
Ω

us
+dx +

1
r

∫
Ω

ur
+dx for all u ∈ W 1,2

0 (Ω).

The functional Ψλ is well defined and continuous on W 1,2
0 (Ω), but not differ-

entiable because of the presence of the singular term. However, we can prove
the following result.

Lemma 1. For every λ > 0, Ψλ is Gâteaux differentiable at each point of intC+

and for every u ∈ intC+, one has

Ψ′
λ(u)ϕ =

∫
Ω

∇u∇ϕdx − λ

∫
Ω

us−1ϕdx +
∫

Ω

ur−1ϕdx

for every ϕ ∈ W 1,2
0 (Ω).

Proof. It is well known that the functionals

ψ1(u) =
1
2
‖u‖2

and

ψ2(u) =
λ

s

∫
Ω

us
+dx
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are Gâteaux differentiable in W 1,2
0 (Ω) with derivative

ψ′
1(u)ϕ =

∫
Ω

∇u∇ϕdx,

ψ′
2(u)ϕ = λ

∫
Ω

us−1
+ ϕdx,

for every ϕ ∈ W 1,2
0 (Ω).

Define ψ3 : W 1,2
0 (Ω) → R by

ψ3(u) =
1
r

∫
Ω

ur
+dx.

Let us prove that if u ∈ intC+, then

lim
t→0

ψ3(u + tϕ) − ψ3(u)
t

=
∫

Ω

ur−1ϕdx

for every ϕ ∈ W 1,2
0 (Ω). Assume first that ϕ ≥ 0 in Ω and fix a sequence

tn → 0, tn ∈]0, 1[.
Since u ∈ intC+, there exists c > 0 such that u(x) ≥ cd(x) for every

x ∈ Ω. Moreover, the function x → d(x)r−1 belongs to Lp(Ω) for every p < N
1−r .

Choose p in such a way that 2N
N+2 < p < N

1−r . Since ϕ ∈ W 1,2
0 (Ω), then,

ϕ ∈ Lp′
(Ω).

One has
ψ3(u + tnϕ) − ψ3(ϕ)

tn
=

∫
Ω

(u + tnϕ)r − ur

tn
dx

= r

∫
Ω

(u + τnϕ)r−1ϕdx

for a sequence τn → 0+. Since

(u + τnϕ)r−1ϕ → ur−1ϕ a.e. in Ω

and

(u(x) + τnϕ(x))r−1ϕ(x) ≤ u(x)r−1ϕ(x) ≤ cr−1d(x)r−1ϕ(x) ∈ L1(Ω),

from Lebesgue theorem, we deduce that

lim
n→∞

ψ3(u + tnϕ) − ψ3(ϕ)
tn

=
∫

Ω

ur−1ϕdx.

For a generic ϕ ∈ W 1,2
0 (Ω), by the equality ϕ = ϕ+ − ϕ−, it follows that

ψ′
3(u)ϕ =

∫
Ω

ur−1ϕdx.

It is also easily seen that ψ′
3(u) is linear and continuous on W 1,2

0 (Ω). The proof
is concluded. �

For the next property of Ψλ, we need an auxiliary result which we state
in a general form. Denote by A the class of all Carathèodory functions f :
Ω × R → R such that there exist C > 0 and q > 0:

|f(x, t)| ≤ C(1 + |t|q−1) for all t ∈ R, almost all x ∈ Ω
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with q ∈ [1, 2N
N−2 ] if N > 2, q ∈ [1,+∞[ if N = 2. If N = 1, A is the class of

all Carathèodory functions f : Ω × R → R such that for all s ∈]0,+∞[

sup
|t|≤s

|f(·, t)| ∈ L1(Ω).

For each f ∈ A and μ > 0, put

Iμ,f (u) = μ‖u‖2 −
∫

Ω

(∫ u(x)

0

f(x, t)dt

)
dx, for all u ∈ W 1,2

0 (Ω).

Proposition 1. Let f ∈ A and assume that there exists δ > 0 such that

f(x, t)t ≤ 0 for eacht ∈ [−δ, δ]and almost allx ∈ Ω.

Then, for every positive μ, 0 is a local minimum for Iμ,f .

Proof. Let μ > 0. Notice first that, in view of the assumption on f, Iμ,f is well
defined in W 1,2

0 (Ω). Assume, by contradiction, that 0 is not a local minimum
for Iμ,f . Then, by Theorem 1 of [2], 0 is not a local minimum for Iμ,f in the
C1(Ω) topology. So, there exists a sequence {un} in C1(Ω) with ‖un‖C1(Ω) → 0
such that Iμ,f (un) < 0 for all n ∈ N. Nevertheless, maxΩ |un| ≤ δ for n big
enough. Therefore, Iμ,f (un) ≥ 0 for n big enough, a contradiction. �

Lemma 2. There exists δ0 > 0 such that inf‖u‖=δ Ψλ(u) > 0 = Ψλ(0) = 0 for
all δ ∈]0, δ0].

Proof. Assume, by contradiction, that there exists a sequence {δn} in ]0,+∞[
such that δn → 0 and

inf
‖u‖=δn

Ψλ(u) ≤ 0 for all n ∈ N. (1)

Fix r̃ ∈]1, s[ and define

g(t) =
tr̃+

1 + tr̃+
for all t ∈ R.

It is easy to check that g(t) ≤ tr+ for all t ∈ R and g is of class C1. Therefore,
if we define f : Ω × R → R by

f(x, t) = λts−1
+ − 1

r̃
g′(t) = λts−1

+ − tr̃−1
+

(1 + tr̃+)2
for all (x, t) ∈ Ω × R,

we have f ∈ A and I 1
2 ,f (u) ≤ Ψλ(u) for all u ∈ W 1,2

0 (Ω). So,

I 1
4 ,f (u) = I 1

2 ,f (u) − 1
4
‖u‖2 ≤ Ψλ(u) − 1

4
‖u‖2 for all u ∈ W 1,2

0 (Ω).

Taking into account (1), we have

inf
‖u‖=δn

I 1
4 ,f (u) < 0 for all n ∈ N. (2)

On the other hand, f satisfies the assumptions of Proposition 1. Therefore, 0
is a local minimum for I 1

4 ,f . This is in contradiction with (2). �
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3. Proof of Theorem 1

The proof of Theorem 1 will be divided in two steps: in the first one we will
prove that the positive solution given by Theorem A can be constructed in
such way that it turns out a local minimum point for the energy functional.
In the second step, we will use this information to find a second non negative
solution.
Step 1. Variational characterization of the solution given by Theorem A.

Let Λ as in Theorem A, λ ∈]Λ,+∞[ and λ′ ∈]Λ, λ[. From Theorem A
there exists uλ′ ∈ intC+, classical solution of (Pλ′).

Consider the continuous function

f(x, t) =

⎧⎨
⎩

λuλ′(x)s−1 − uλ′(x)r−1 if x ∈ Ω and t ≤ uλ′(x)

λts−1 − tr−1 if x ∈ Ω and t > uλ′(x)

which satisfies the following estimate:

|f(x, t)| ≤ λ‖uλ′‖s−1
∞ + λ|t|s−1 + cd(x)r−1 (3)

for a.e. x ∈ Ω and every t ∈ R (being c a positive constant). Define

Ψ̃λ(u) =
1
2
‖u‖2 −

∫
Ω

(∫ u(x)

0

f(x, t)dt

)
dx for all u ∈ W 1,2

0 (Ω).

Ψ̃λ is coercive and sequentially weakly lower semicontinuous as it follows from
(3), so it admits a global minimum uλ. Moreover, since uλ′ ∈ intC+, it is easy
to prove that Ψ̃λ is differentiable in W 1,2

0 (Ω) (similar arguments as in Lemma
1). Therefore, one has Ψ̃′

λ(uλ) = 0. This means that uλ is a weak solution of
the problem ⎧⎨

⎩
−Δu = f(x, u) in Ω,

u = 0 on ∂Ω,

i.e. ∫
Ω

∇uλ∇ϕdx =
∫

Ω

f(x, uλ)ϕdx (4)

for every ϕ ∈ W 1,2
0 (Ω). Also, from Theorems 8.2 and 8.2’ of [1], uλ ∈ C1(Ω).

Let us observe that uλ ≥ uλ′ in Ω. Indeed if it was

A
def= {x ∈ Ω : uλ(x) < uλ′(x)} 
= ∅,

then, we should have⎧⎨
⎩

−Δ(uλ − uλ′) = (λ − λ′) us−1
λ′ ≥ 0 in A,

uλ − uλ′ = 0 on ∂A,

and, by the maximum principle, uλ(x) ≥ uλ′(x) in A, a contradiction. The
same argument shows that uλ 
= uλ′ (otherwise uλ′ = 0). Hence, from (4) we
infer that uλ verifies∫

Ω

∇uλ∇ϕdx =
∫

Ω

(
λus−1

λ − ur−1
λ

)
ϕdx (5)
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for every ϕ ∈ W 1,2
0 (Ω), which implies that uλ is a weak solution of problem

(Pλ) according to the definition given in the Introduction.
We also have

−Δ(uλ − uλ′) = λus−1
λ − λ′us−1

λ′ − ur−1
λ + ur−1

λ′ ≥ (λ − λ′) us−1
λ′ ≥ 0 in Ω.

Therefore, by the strong maximum principle we infer that uλ − uλ′ ∈ intC+.
Hence, uλ ∈ intC+.

uλ is a local minimum in the C1(Ω)-topology for Ψλ. Note that intC+ is
open in C1(Ω) and uλ ∈ uλ′ + intC+ is in particular a global minimum for Ψ̃λ

in the C1(Ω)-topology. Now, observe that, for each u ∈ uλ′ + intC+, one has
Ψ̃λ(u) ≥ Ψ̃λ(uλ), and

Ψλ(u) =
1
2
‖u‖2 −

∫
Ω

∫ uλ′ (x)

0

(
λts−1

+ − tr−1
+

)
dtdx

−
∫

Ω

∫ u(x)

uλ′ (x)

(
λts−1

+ − tr−1
+

)
dtdx

=
1
2
‖u‖2 −

∫
Ω

∫ uλ′ (x)

0

(
λts−1

+ − tr−1
+

)
dtdx

−
∫

Ω

∫ u(x)

0

f(x, t)dtdx +
∫

Ω

∫ uλ′ (x)

0

f(x, t)dtdx

= Ψ̃λ(u) + const.

Then, we infer that uλ is a local minimum in the C1(Ω)-topology for Ψλ as
well. Consequently, 0 is a local minimum point in the C1(Ω)-topology for the
functional

Φ̃λ(u) := Ψλ(u + uλ) − Ψλ(uλ)

=
1
2
‖u‖2 +

∫
Ω

∇uλ∇udx

−
∫

Ω

(
λ

s
(u + uλ)s

+ − λ

s
us

λ − 1
r
(u + uλ)r

+ +
1
r
ur

λ

)
dx

(by (5)) =
1
2
‖u‖2 −

∫
Ω

[
λ

(
1
s
(u + uλ)s

+ − 1
s
us

λ − us−1
λ u

)

−
(

1
r
(u + uλ)r

+ − 1
r
ur

λ − ur−1
λ u

)]
dx. (6)

The auxiliary functional Φλ. Fix ε0 ∈]0, 1[ and let G : Ω×R → R defined
as follows:

G(x, t) =
εr
0 − 1 − r(ε0 − 1)

r
uλ(x)r − r

2
εr−2
0 uλ(x)r−2 [t − (ε0 − 1)uλ(x)]2

+
(
εr−1
0 −1

)
uλ(x)r−1 [t−(ε0−1)uλ(x)] for allx ∈ Ωand t < −(1 − ε0)uλ(x);

G(x, t) =
1
r
(t + uλ(x))r

+ − 1
r
uλ(x)r − uλ(x)r−1t for all x ∈ Ωand t

≥ −(1 − ε0)uλ(x);
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We can see that G ∈ C0(Ω × R) and G(x, ·) ∈ C1(R) for all x ∈ Ω.
Moreover, one has

(i) G(x, t) ≤ 1
r (t + uλ(x))r

+ − 1
r uλ(x)r − uλ(x)r−1t for all (x, t) ∈ Ω × R

(ii) G(x, 0) = 0 for all x ∈ Ω.

Let us define also H : Ω × R → R by

H(x, t) = λ

[
1
s
(t + uλ(x))s

+ − 1
s
uλ(x)s − uλ(x)s−1t

]
.

Put also G′(x, t) = g(x, t) and H ′(x, t) = h(x, t) for every (x, t) ∈ Ω × R.
Finally let

Φλ(u) =
1
2
‖u‖2 −

∫
Ω

H(x, u(x))dx +
∫

Ω

G(x, u(x))dx

for all u ∈ W 1,2
0 (Ω).

The functional Φλ is well defined because of the generalized Hardy Sobolev
inequality and is differentiable in W 1,2

0 (Ω) with derivative at u ∈ W 1,2
0 (Ω) given

by

Φ′
λ(u)ϕ =

∫
Ω

∇u∇ϕdx −
∫

Ω

(h(x, u) − g(x, u))ϕdx

for every ϕ ∈ W 1,2
0 (Ω).

0 is a local minimum of Φλ. Indeed, since (1 − ε0)uλ ∈ intC+, we can
find a neighborhood V of 0 in C1(Ω) such that (1 − ε0)uλ + V ⊂ intC+ and
Φ̃λ(u) ≥ Φ̃λ(0) = 0 for all u ∈ V . Consequently, noticing that Φλ = Φ̃λ in V, 0
is a local minimum in the C1(Ω)-topology for Φλ.

Let us prove that 0 is a local minimum for Φλ in the topology of W 1,2
0 (Ω).

The proof follows with some modification that of Theorem 1 of [2]. Indeed,
assume by contradiction that 0 is not a local minimum for Φλ in the topology
of W 1,2

0 (Ω). Then, we can find a sequence {δn} of positive numbers and a
sequence {un} in W 1,2

0 (Ω) such that for all n ∈ N,
(j) δn → 0,
(jj) ‖un‖ ≤ δn,
(jjj) Φλ(un) = inf‖u‖≤δn

Φλ(u) < 0 = Φλ(0).
By the Lagrange Multipliers Theorem, for each n ∈ N, there exists μn ≤ 0
such that

Φ′
λ(un) = μnun.

In other words,⎧⎨
⎩

−(1 − μn)Δun = λ
[
(uλ + un)s−1

+ − us−1
λ

] − g(x, un) in Ω,

un = 0 on ∂Ω.

At this point, let p > N such that (1 − r)p < N . Observe that, from the
definition of G, we can find a positive constant C1 such that

|λ [
(uλ(x) + un(x))s−1

+ − uλ(x)s−1
] − g(x, un(x))|

≤ C1

(|un(x)|s−1 + |uλ(x)|s−1 + |uλ(x)|r−1 + 1
)
,
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for all x ∈ Ω. By standard regularity results, one has un ∈ C1(Ω). Moreover,
since uλ ∈ intC+ and (1− r)p < N the right hand side in the above inequality
is p-summable. So, is the left hand side. It follows, from Theorem 8.2 and
Theorem 8.2’ of [1], that un ∈ W 2,p(Ω) and for some constant C3,

‖un‖W 2,p(Ω) ≤ C3

[(∫
Ω

|un|pdx

) 1
p

+ 1

]
.

Let α ∈]0, 1[ such that pα < cp, where cp is the embedding constant of
W 1,2

0 (Ω) ↪→ Lp(Ω). From the above inequality and in view of the embed-
ding W 2,p(Ω) ↪→ C1+β(Ω) for some β ∈]0, 1[, there exists a positive constant
C4 such that

‖un‖C1+β(Ω) ≤ C4

[
‖un‖1−α

C1+β(Ω)
·
((∫

Ω

|un|αpdx

) 1
p

+ 1

)]

≤ C4

[
‖un‖1−α

C1+β(Ω)
· (‖un‖α + 1)

]
,

for all n ∈ N. In view of (j) and (jj), it follows that the sequence {un} is
bounded in C1+β(Ω). Since un → 0 strongly in W 1,2

0 (Ω), up to a subsequence,
by the Ascoli–Arzelà Theorem, un → 0 in C1(Ω). This is a contradiction with
(jjj) and the fact that 0 is a local minimum for Φλ in the C1(Ω) topology.
Therefore 0 is a local minimum for Φλ in the W 1,2

0 (Ω)-topology.
At this point, observe that, by construction (see (i) and (ii)), one has

Φλ(u) ≤ Φ̃λ(u), for all u ∈ W 1,2
0 (Ω), and Φλ(0) = Φ̃λ(0) = 0. From this, we

easily infer that uλ is a local minimum point for Ψλ in the W 1,2
0 (Ω)-topology.

Step 2. Existence of a second solution.
From the previous step, there exists δ0 > 0, which can also be assumed

strictly less than ‖uλ‖, such that

0 = Φλ(0) ≤ inf
‖u‖=δ

Φλ(u)

for all δ ∈]0, δ0[. Now, let us distinguish the following cases:

(I) inf‖u‖=δ Φλ(u) = 0 for all δ ∈]0, δ0[;
(II) inf‖u‖=δ̃ Φλ(u) > 0 for some δ̃ ∈]0, δ0[.

Suppose that case (I) occurs. Let {δn} be a sequence in ]0, δ0[ such that δn → 0
and

inf
‖u‖=δn

Φλ(u) = 0

for all n ∈ N. Since the functional

I(u) :=
∫

Ω

(G(x, u) − H(x, u)) dx, u ∈ W 1,2
0 (Ω),

is sequentially weakly continuous in W 1,2
0 (Ω) and, in particular, weakly con-

tinuous on every bounded set of W 1,2
0 (Ω) (by the Eberlein–Smulian Theorem),

one has:
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0 = inf
‖u‖=δn

Φλ(u) =
1
2
δ2
n + inf

‖u‖=δn

∫
Ω

(G(x, u) − H(x, u))dx

=
1
2
δ2
n + inf

‖u‖≤δn

∫
Ω

(G(x, u) − H(x, u))dx. (7)

Therefore, there exists un ∈ W 1,2
0 (Ω) such that ‖un‖ ≤ δn and I(un) =

inf‖u‖≤δn
I(u). If it was ‖un‖ < δn, then un should be a local minimum for I

and so I ′(un) = 0. In other words,∫
Ω

(g(x, un) − h(x, un)) vdx = 0 for all v ∈ W 1,2
0 (Ω). (8)

By the Hahn–Banach theorem, the functional I ′(un) can be extended to L2(Ω).
Since W 1,2

0 (Ω) is dense in L2(Ω), from (8) we have I ′(un) = 0 in L2(Ω). This
implies

g(x, un(x)) − h(x, un(x)) = 0, for almost every x ∈ Ω. (9)

Since the function g(x, ·) − h(x, ·) is strictly decreasing in R and g(x, 0) −
h(x, 0) = 0, for all x ∈ Ω, we infer, from (9), that un(x) = 0 a.e. in Ω. Then,
from (7) we should have δn = 0 which is an absurd. Consequently, ‖un‖ = δn,
and so Φλ(un) = inf‖u‖=δn

Φλ(u) = 0 = Φλ(0). Since δn ∈]0, δ0[, this means
that un is a nonzero local minimum for Φλ for all n ∈ N. Clearly, we have{−Δun = h(x, un) − g(x, un) in Ω,

un = 0 on ∂Ω.

Using again Theorem 8.2 and Theorem 8.2’ of [1], we infer that un → 0 in
C1(Ω). Therefore, for n ∈ N large enough, we have un(x) ≥ −(1 − ε0)uλ(x)
for all x ∈ Ω. This implies that un is a nonzero weak solution of the problem{−Δu = λ(u + uλ)s−1

+ − λus−1
λ − (u + uλ)r−1

+ + ur−1
λ in Ω,

u = 0 on ∂Ω.

Recalling that uλ is a weak solution of problem (Pλ), we infer that un +uλ is a
nonzero weak solution for (Pλ) distinct from uλ. So, in this case, the conclusion
is achieved.

Now, suppose that case (II) occurs. Let Φ̃λ be the functional defined in
(6). Recalling that

G(x, t) ≤ 1
r
(t + uλ(x))r

+ − 1
r
uλ(x)r − uλ(x)r−1t

for all (x, t) ∈ Ω × R, we have

Φλ(u) =
1
2
‖u‖2 −

∫
Ω

H(x, u)dx +
∫

Ω

G(x, u)dx

≤ 1
2
‖u‖2 −

∫
Ω

H(x, u)dx +
∫

Ω

(
1
r
(u + uλ)r

+ − 1
r
ur

λ − ur−1
λ u

)
dx

= Φ̃λ(u)
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for all u ∈ W 1,2
0 (Ω). Consequently,

inf
‖u‖=δ̃

(Ψλ(u + uλ) − Ψλ(uλ)) = inf
‖u‖=δ̃

Φ̃λ(u) ≥ inf
‖u‖=δ̃

Φλ(u) > 0,

that is
inf

‖u‖=δ̃
Ψλ(u + uλ) > Ψλ(uλ) (10)

Moreover, since δ̃ < ‖uλ‖, in view of Lemma 2, we can find δ1 ∈ R with
0 < δ1 < ‖uλ‖ − δ̃ such that

inf
‖u‖=δ1

Ψλ(u) > Ψλ(0) = 0. (11)

Introduce now the continuous function

fε(t) =

⎧⎪⎨
⎪⎩

tq−1

(t + ε)q−r
if t ≥ 0,

0 if t ≤ 0

with 1 < q < s. Let Fε(t) =
∫ t

0

fε(s)ds. Define also the functions ϕ1, ϕ2 : R →
R by

ϕ1(ε) =
1
2
‖uλ‖2 −

∫
Ω

[
λ

s
us

λ − Fε(uλ)
]

dx,

ϕ2(ε) = inf
‖u‖=δ̃

(
1
2
‖u + uλ‖2 −

∫
Ω

[
λ

s
(u + uλ)s

+ − Fε((u + uλ)
]

dx

)
.

Clearly, ϕ1 is continuous in R. Let us to show that ϕ2 is continuous in R as
well. For all u ∈ W 1,2

0 (Ω) and ε ∈ R, put

J(ε, u) =
∫

Ω

∇uλ∇udx −
∫

Ω

[
λ

s
(u + uλ)s

+ − Fε(u + uλ)
]

dx,

It is easy to check that J is sequentially continuous in R× W 1,2
0 (Ω) whenever

W 1,2
0 (Ω) is equipped with the weak topology. Since the closed ball Bδ̃(0) is

weakly compact and J(ε, ·) is weakly continuous on Bδ̃(0) (from the Eberlein–
Smulian Theorem), one has

inf
‖u‖=δ̃

J(ε, u) = inf
‖u‖≤δ̃

J(ε, u),

and the continuity of the marginal function

ε ∈ R → inf
‖u‖≤δ̃

J(ε, u).

From this and noticing that

ϕ2(ε) =
1
2
δ̃2 +

1
2
‖uλ‖2 + inf

‖u‖=δ̃
J(ε, u),

we obtain the continuity of ϕ2.
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Now, observe that

F0(t) =
1
r
tr+ for all t ∈ R,

so

ϕ1(0) =
1
2
‖uλ‖2 −

∫
Ω

[
λ

s
us

λ − 1
r
ur

λ

]
dx = Ψλ(uλ),

ϕ2(0) = inf
‖u‖=δ̃

(
1
2
‖u + uλ‖2 −

∫
Ω

[
λ

s
(u + uλ)s

+ − 1
r
(u + uλ)r

+

]
dx

)

= inf
‖u‖=δ̃

Ψλ(u + uλ).

From (10) one has ϕ2(0) − ϕ1(0) > 0. Then, if we put η1 = ϕ2(0)−ϕ1(0)
2 ,

we can find ε1 ∈]0, 1[ such that

inf
‖u‖=δ̃

[
1
2
‖u + uλ‖2 −

∫
Ω

(
λ

s
(u + uλ)s

+ − Fε(u + uλ)
)

dx

]

−
[
1
2
‖uλ‖2 −

∫
Ω

(
λ

s
us

λ − Fε(uλ)
)

dx

]
= ϕ2(ε) − ϕ1(ε) > η1 > 0 (12)

for all ε ∈ [0, ε1]. Following the same argument, thanks to (11), we can also
find η2 > 0 and ε2 ∈]0, 1[ such that

inf
‖u‖=δ1

[
1
2
‖u‖2 −

∫
Ω

(
λ

s
us

+ − Fε(u)
)

dx

]
> η2 > 0, (13)

for all ε ∈ [0, ε2].
Let ε̃ = min{ε1, ε2} < 1 and put

Ψε,λ(u) =
1
2
‖u‖2 −

∫
Ω

(
λ

s
us

+ − Fε(u)
)

dx

for all u ∈ W 1,2
0 (Ω) and ε ∈ [0, ε̃]. Notice that Ψε,λ is a C1 functional and

its critical points are non negative functions in W 1,2
0 (Ω). Now, let ε ∈]0, ε̃[.

Inequalities (12) and (13) say that Ψε,λ has two local minima u1,ε, u2,ε ∈
W 1,2

0 (Ω) such that ‖u1,ε‖ < δ1 and ‖uλ−u2,ε‖ < δ̃. Recalling that δ1 < ‖uλ‖−
δ̃, we have that u1,ε 
= u2,ε. Since Ψε,λ satisfies the Palais–Smale condition (see
[7, Example 38.25]), using a standard Mountain Pass Theorem (see [6]) we find
a critical point vε ∈ W 1,2

0 (Ω) for Ψε,λ which, thanks to (12) and (13), satisfies:

Ψε,λ(vε) ≥ η1 + Ψε,λ(uλ) and Ψε,λ(vε) ≥ η2. (14)

Fix now a sequence {εn} ⊂]0, ε̃[. From above, there exists a sequence
of non negative functions {vn} ⊂ W 1,2

0 (Ω) (with vn = vεn
), satisfying the

following conditions:

(l) Ψ′
εn,λ(vn) = 0,

(ll) Ψεn,λ(vn) ≥ η1 + Ψεn,λ(uλ),
(lll) Ψεn,λ(vn) ≥ η2.
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From (l), we deduce that the sequence {vn} is bounded in W 1,2
0 (Ω). Indeed,

0 = Ψ′
εn,λ(vn)(vn) = ‖vn‖2 − λ

∫
Ω

vs
ndx +

∫
Ω

fεn
(vn)vndx

≥ ‖vn‖2 − λ‖vn‖s
Ls(Ω) ≥ ‖vn‖2 − λcs‖vn‖s.

(cs being the embedding constant of W 1,2
0 (Ω) into Ls(Ω)). Since s ∈]1, 2[, vn

is bounded in W 1,2
0 (Ω). Therefore, there exists vλ ∈ W 1,2

0 (Ω) such that {vn}
weakly converges to vλ in W 1,2

0 (Ω). Clearly, vλ ≥ 0 a.e. in Ω.
Let us prove that vλ 
= uλ.
From (l) and (ll) we get that

2 (η1 + Ψεn,λ(uλ)) ≤ 2Ψεn,λ(vn) − Ψ′
εn,λ(vn)(vn)

= λ

(
1 − 2

s

)∫
Ω

vs
n +

∫
Ω

[2Fεn
(vn) − fεn

(vn)vn] dx

(15)

It is easily seen that∫
Ω

Fεn
(uλ)dx → 1

r

∫
Ω

ur
λdx.

Indeed from Beppo Levi Theorem, it follows that

Fεn
(uλ(x)) → 1

r
uλ(x)r a.e. x ∈ Ω

and also

|Fεn
(uλ)| ≤ 1

r
ur

λ ∈ L1(Ω),

which clearly implies our claim. Therefore,

Ψεn,λ(uλ) → Ψ(uλ). (16)

Also, from the weak convergence vn ⇀ vλ, it follows that vn → vλ a.e.
x ∈ Ω and vn → vλ strongly in Ls(Ω) and in Lr(Ω). So, in particular,∫

Ω

vs
ndx →

∫
Ω

vs
λdx. (17)

Moreover, there exists h ∈ Lr(Ω) such that

vn(x) ≤ h(x) a.e. in Ω and n ∈ N.

Therefore,

0 ≤ fεn
(vn)vn =

vq
n

(vn + εn)q−r
→ vr

λ a.e. in Ω

and

0 ≤ fεn
(vn)vn ≤ hr ∈ L1(Ω),

and from Lebesgue theorem∫
Ω

fεn
(vn)vndx →

∫
Ω

vr
λdx. (18)
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In a similar way it is easy to prove that

Fεn
(vn) → 1

r
vr

λ

and

|Fεn
(vn)| ≤ 1

r
hr ∈ L1(Ω),

so from Lebesgue theorem∫
Ω

Fεn
(vn)dx → 1

r

∫
Ω

vr
λdx. (19)

Bearing in mind (16)–(19) we get

2Ψεn
(vn) − Ψ′

εn
(vn)(vn) → λ

(
1 − 2

s

)∫
Ω

vs
λdx +

(
1 − 2

r

) ∫
Ω

vr
λdx (20)

So, taking the limit in (15) we get

2 (η1 + Ψ(uλ)) ≤ λ

(
1 − 2

s

) ∫
Ω

vs
λdx −

(
1 − 2

r

) ∫
Ω

vr
λdx

If vλ = uλ, then, from the above inequality

2 (η1 + Ψ(uλ)) ≤ λ

(
1 − 2

s

)∫
Ω

us
λdx −

(
1 − 2

r

)∫
Ω

ur
λdx

= 2Ψ(uλ) − Ψ′(uλ)(uλ)
= 2Ψ(uλ),

a contradiction. In a similar way, using (l) and (lll), we get that

2η2 ≤ 2Ψεn,λ(vn) − Ψ′
εn,λ(vn)(vn)

and by (20)

0 < 2η2 ≤ λ

(
1 − 2

s

)∫
Ω

vs
λdx −

(
1 − 2

r

)∫
Ω

vr
λdx

which implies vλ 
= 0.
It remains to show that vλ is a solution of (Pλ). This follows as in ([5,

Proof of Theorem 1.1]). The proof is concluded.

�

Remark 1. Comparing our Theorem 1 with Theorem B in the Introduction,
some natural questions arise:

(Q1) Is it true that Λ = λ0?
(Q2) From Theorem A we know that for λ < Λ problem (Pλ) has no positive

solutions. What about the existence of sign changing solutions?
(Q3) What about the positivity of the second solution vλ?
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