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1. Introduction

The study of eigenvalue problems involving degenerate differential operators
goes back more than 200 years ago to the well-known Legendre’s equation

− d

dx

[
(1 − x2)

du

dx

]
= λu, x ∈ [−1, 1]. (1)

It can be shown that for each nonnegative integer n, λ = n(n + 1) is an
eigenvalue of (1) with the corresponding eigenfunction

Pn(x) =
1

2nn!
dn

dxn
[(x2 − 1)n],

known as Legendre’s polynomial.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00030-015-0314-5&domain=pdf
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In high dimensional case, a typical example of degenerate differential
operator was introduced in 1920’s by Tricomi [29], namely

T :=
∂2

∂x2
+ x

∂2

∂y2
,

and generalized later as

∂2

∂x2
+ xΔy,

where Δy denotes the Laplace operator with respect to variable y (see, e.g.
[5]).

In a similar context, we consider the so-called Baouendi–Grushin opera-
tors (see, [4] and [18])

∂2

∂x2
+ x2ξ ∂2

∂y2
, ξ > 0, (2)

and

Δξ := Δx + |x|ξΔy, x ∈ R
n, y ∈ R

m (n + m = N), ξ > 0, (3)

where Δx and Δy stand for the standard Laplace operators on R
n, respectively,

R
m.

Problems involving operators of type (2) and (3) have been extensively
studied over the years. We just remember the papers by Tri [28], D’Ambrosio
[9,10], D’Ambrosio and Lucente [11], Monti and Morbidelli [22], Thuy and Tri
[27].

Related to the above discussion we note that the natural geometrical
and functional setting for a wide class of linear ”Grushin”-type operators was
first settled in the works by Franchi and Lanconelli [12–14] and more recently
in Kogoj and Lanconelli [20]. Finally, we recall the survey paper by Sawyer
and Wheeden [25] related to some classes of degenerate second order elliptic
operators, containing, in particular the ones of Baouendi–Grushin-type.

Particularly, operators of type Δξ on domains from R
N interesecting the

plane x = 0 are not elliptic operators but hypoelliptic operators. The lack of
ellipticity is due to the presence of the degeneracy |x|ξ. However, for −Δξ

we can still use the classical theory of compact and self-adjoint operators in
order to show that, subject to a homogeneous Dirichlet boundary condition, it
possesses a discrete spectrum consisting in an unbounded sequence of positive
real numbers (see, e.g. [3, page 3])

0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · → ∞, as n → ∞ .

Operator −Δξ represents the basic source of inspiration in defining a nonho-
mogeneous Baouendi–Grushin type operator in the next section of this paper
for which we will analyze its spectrum subject to a homogeneous Dirichlet
boundary condition. Our main result will show that in this new situation the
spectrum is continuous, being exactly the open interval (0,∞). This is in sharp
contrast with the situation involving −Δξ.

The paper is organized as follows: in Sect. 2 we define a nonhomogeneous
Baouendi–Grushin type operator; in Sect. 3 we collect some preliminary results
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and we introduce some notations which will be used in the following; in Sect.
4 we establish some auxiliary results that will be used later in the analysis
of the spectrum of the operator introduced in Sect. 2; in Sect. 5 we give the
statement and the proof of the main result of this paper; the equivalence of
some norms is established in the Appendix.

2. A nonhomogeneous Baouendi–Grushin type operator

Let Ω ⊂ R
N be a bounded and smooth domain, N = n+m with n, m ≥ 1 and

assume that Ω intersects the plane x = 0, that is the set {(0n, y); y ∈ R
m},

where 0n is the null vector of Rn. We denote by ∂Ω the boundary of Ω.
If (x, y) ∈ Ω then we denote x = (x1, . . . , xn) and y = (y1, . . . , ym).
Consider ξ > 0 is a given real number and define the matrix

A(x) =
[

In On,m

Om,n |x|ξIm

]
∈ MN×N (R),

where On,m, Om,n are the null matrices in Mn×m(R), respectively Mm×n(R)
while In, Im stand for the unit matrices in Mn×n(R), respectively Mm×m(R).

Let a : (0,∞) → R be a function such that the mapping ϕ : R → R

defined by

ϕ(t) =
{

a(|t|)t, if t �= 0,
0, if t = 0

is an odd, increasing homeomorphism from R onto R. Define

Φ(t) =
∫ t

0

ϕ(s) ds

for any t ≥ 0.
We assume that the following relations hold true

1 < inf
t>0

tϕ(t)
Φ(t)

and sup
t>0

tϕ(t)
Φ(t)

< ∞ (4)

(0,∞) 	 t 
−→ Φ(
√

t) is a convex function. (5)
We define the degenerate operator

ΔGa
(·) = div (∇Ga

·)
where

∇Ga
· = A(x)

[
a(|∇x · |) ∇x·

a(|x|ξ/2|∇y · |) ∇y·
]

.

Thus,

ΔGa
(·) = divx(a(|∇x · |)∇x·) + divy(|x|ξa(|x|ξ/2|∇y · |)∇y·)

=
n∑

i=1

∂

∂xi

(
a(|∇x · |) ∂·

∂xi

)
+

m∑
j=1

∂

∂yj

(
|x|ξa(|x|ξ/2|∇y · |) ∂·

∂yj

)
.

This is a Baouendi–Grushin type operator since in the particular case when
a(t) = 1 for each t ≥ 0 we recover operator defined in (3).
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The goal of this paper is to give a complete description of the spectrum of
the operator −ΔGa

when Φ− := inft>0
tϕ(t)
Φ(t) > 2 and ξ ∈ (0, 2n(Φ− − 2)/Φ−),

subject with a homogeneous Dirichlet boundary condition. In other words, we
will analyze the eigenvalue problem{−ΔGa

u(x, y) = λu(x, y), for (x, y) ∈ Ω,
u(x, y) = 0, for (x, y) ∈ ∂Ω.

(6)

3. Function space setting

In this section we provide a brief review of the basic properties of Orlicz and
Orlicz–Sobolev spaces which represent the adequate function space setting
where we will analyze problem (6). For more details we refer to the books by
Adams [1], Adams and Hedberg [2], Musielak [23] and Rao and Ren [24], and
to the papers by Clément et al. [7,8], Garćıa-Huidobro et al. [16], and Gossez
[17].

Assume ϕ : R → R is an odd, increasing homeomorphism from R onto
R, and define

Φ(t) =
∫ t

0

ϕ(s) ds and Φ�(t) =
∫ t

0

ϕ−1(s) ds

for any t ≥ 0. Then Young’s inequality holds true

st ≤ Φ(s) + Φ�(t), ∀s, t ≥ 0. (7)

Letting

Φ− := inf
t>0

tϕ(t)
Φ(t)

and Φ+ := sup
t>0

tϕ(t)
Φ(t)

we will assume that

1 < Φ− ≤ tϕ(t)
Φ(t)

≤ Φ+ < ∞, ∀t > 0. (8)

Then, relation (8) and [15, Lemma 2.5, (2.7)] imply that

1 <
Φ+

Φ+ − 1
≤ tϕ−1(t)

Φ�(t)
≤ Φ−

Φ− − 1
< ∞, for all t > 0, (9)

and, actually, we have (Φ�)− = Φ+

Φ+−1 and (Φ�)− = Φ−
Φ−−1 .

We point out some examples of functions ϕ : R → R which are odd
increasing homeomorphisms from R onto R, and for which (8) holds. For more
details, the reader can consult [8, Examples 1–3, p. 243].

(1) ϕ(t) = |t|p−2t, with p > 1. It can be showed that ϕ− = Φ+ = p;
(2) ϕ(t) = log(1 + |t|r)|t|p−2t, with p, r > 1. In this case Φ− = p, and

Φ+ = p + r;
(3) ϕ(t) = |t|p−2t

log(1+|t|) if t �= 0, ϕ(0) = 0, with p > 2. In this case it turns out
that Φ− = p − 1 and Φ+ = p.
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Next, we recall some well-known inequalities regarding Φ and Φ�, namely

Φ�(ϕ(s)) ≤ (Φ+ − 1) Φ(s), ∀s ≥ 0 (10)

(see, e.g. [6, Lemma 2.1]) and

α(s)Φ(t) ≤ Φ(st) ≤ β(s)Φ(t) ∀s, t ≥ 0, (11)

where

α(s) :=

{
sΦ+

, if s ∈ (0, 1],
sΦ−

, if s > 1,
and β(s) :=

{
sΦ−

, if s ∈ (0, 1],
sΦ+

, if s > 1,
(12)

(see, e.g. [15, Lemma 2.1, (2.1)]).
We define the Orlicz space

LΦ(Ω) :=
{

u : Ω → R measurable such that
∫

Ω

Φ(|u(x, y)|) dxdy < ∞
}

which is a Banach space endowed with the Luxembrug norm

‖u‖LΦ(Ω) := inf
{

k > 0;
∫

Ω

Φ
(

u(x)
k

)
dx ≤ 1

}
.

We can also introduced the Orlicz–Sobolev space W 1,Φ(Ω), the space of all
functions u such that u and its distributional derivatives up to order 1 lie in
the Orlicz space LΦ(Ω). More exactly, we define the Orlicz–Sobolev space

W 1,Φ(Ω) =
{

u ∈ LΦ(Ω); |∇u| ∈ LΦ(Ω)
}

which becomes a Banach space with respect to the following norm

‖u‖W 1,Φ(Ω) := ‖u‖LΦ(Ω) + ‖|∇u|‖LΦ(Ω),

where ∇u = (∇xu,∇yu). We denote by W 1,Φ
0 (Ω) the closure of C1

0 (Ω) in
W 1,Φ(Ω). On this space we can consider the equivalent norm

‖u‖W 1,Φ
0 (Ω) := ‖ |(∇xu,∇yu)| ‖LΦ(Ω).

Under assumption (8) it is well-known that the spaces (LΦ(Ω), ‖·‖LΦ(Ω)),
(W 1,Φ(Ω), ‖ · ‖W 1,Φ(Ω)) and (W 1,Φ

0 (Ω), ‖ · ‖W 1,Φ
0 (Ω)) are separable and reflexive

Banach spaces. Moreover, the Hölder’s inequality holds true (see [24, Inequality
4, page 79]) ∫

Ω

u(x)v(x) dx ≤ 2‖u‖LΦ(Ω)‖v‖LΦ� (Ω)

for any u ∈ LΦ(Ω) and v ∈ LΦ�

(Ω).
Furthermore, if u ∈ LΦ(Ω), then

‖u‖LΦ(Ω) < 1 =⇒ ‖u‖Φ+

LΦ(Ω) ≤
∫

Ω

Φ(|u(x)|) dx ≤ ‖u‖Φ−
LΦ(Ω), (13)

‖u‖LΦ(Ω) > 1 =⇒ ‖u‖Φ−
LΦ(Ω) ≤

∫
Ω

Φ(|u(x)|) dx ≤ ‖u‖Φ+

LΦ(Ω), (14)

‖u‖LΦ(Ω) = 1 ⇐⇒
∫

Ω

Φ(|u(x)|) dx = 1. (15)
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Let p > 1, and define ϕ(t) = |t|p−2t, t ∈ R. As we already mentioned in
example 1 above, it can be shown that in this case we have Φ− = Φ+ = p, and
the corresponding Orlicz space LΦ(Ω) reduces to the classical Lebesgue space
Lp(Ω), while the Orlicz–Sobolev space W 1,Φ

0 (Ω) becomes the Sobolev space
W 1,p

0 (Ω).
On the other hand, it is obvious that if Ω intersects the plane x = 0,

the space (W 1,Φ
0 (Ω), ‖ · ‖W 1,Φ

0 (Ω)) is no longer adequate for seeking solutions of
Eq. (6). In this context, the natural functional space where we can investigate
problem (6) is defined as the closure of C1

0 (Ω) under the norm

‖u‖ :=
∥∥∥∥|∇xu| + |x|ξ/2|∇yu|

∥∥∥∥
LΦ(Ω)

. (16)

We will denote this Orlicz–Sobolev-type space by W 1,Φ
0,ξ (Ω). Standard

arguments can be used to show that
(
W 1,Φ

0,ξ (Ω), ‖ · ‖
)

is a reflexive Banach
space. We note that the norm ‖ · ‖ is equivalent with the norm ‖ · ‖W 1,Φ

0 (Ω)

provided that there exists a positive constant c such that for each (x, y) ∈
Ω we have |x| ≥ c (see Appendix). Thus, the space W 1,Φ

0,ξ (Ω) is a natural
generalization of the classical Orlicz–Sobolev space W 1,Φ

0 (Ω).

4. Auxiliary results

In this section we establish two important auxiliary results which will be crucial
in establishing the main result from the next section. The first result, given in
Theorem 1, represents a generalization of Poincaré’s inequality to the function
space setting used in this paper while the second result, stated in Theorem
2, assures that under suitable conditions W 1,Φ

0,ξ (Ω) is compactly embedded in
L2(Ω).

Theorem 1. Assume conditions (4) and (5) are fulfilled. Then, there exists a
positive constant C such that∫

Ω

[Φ(|u(x, y)|) + Φ(|x|ξ/2|u(x, y)|)] dxdy

≤ C

∫
Ω

[
Φ(|∇xu(x, y)|) + Φ(|x|ξ/2|∇yu(x, y)|)

]
dxdy (17)

for all u ∈ C1
0 (Ω).

Proof. Let u ∈ C1
0 (Ω) be given. Elementary computations show that

div[Φ(|u(x, y)|)(x, 0m)] = n Φ(|u(x, y)|) + ϕ(|u(x, y)|) x · ∇x|u(x, y)|
for almost every (x, y) ∈ Ω, where 0m denotes the null vector in R

m. Similarly,
we have
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div[Φ(|x|ξ/2|u(x, y)|)(0n, y)] = m Φ(|x|ξ/2|u(x, y)|)
+|x|ξ/2ϕ(|x|ξ/2|u(x, y)|) y · ∇y|u(x, y)|

for almost every (x, y) ∈ Ω, where 0n is the null vector in R
n.

After integrating these two identities over ω, an open set and sufficiently
smooth subset of Ω such that supp u ⊂ ω, we obtain∫

ω

div[Φ(|u(x, y)|)(x, 0m)] dxdy = n

∫
ω

Φ(|u(x, y)|)dxdy +
∫

ω

ϕ(|u(x, y)|) x

·∇x|u(x, y)| dxdy

and ∫
ω

div[Φ(|x|ξ/2 |u(x, y)|)(0n, y)] dxdy

= m

∫
ω

Φ(|x|ξ/2|u(x, y)|) dxdy

+
∫

ω

|x|ξ/2 ϕ(x|ξ/2|u(x, y|) y · ∇y|u(x, y)| dxdy.

Then the flux-divergence theorem implies that∫
ω

div[Φ(|u(x, y)|)(x, 0m)] dxdy =
∫

∂ω

Φ(|u(x, y)|)(x, 0m) · −→n (x, y) dσ(x, y)

= 0

and ∫
ω

div[Φ(|x|ξ/2|u(x, y)|)(0n, y)] dxdy

=
∫

∂ω

Φ(|x|ξ/2|u(x, y)|)(0n, y) · −→n (x, y) dσ(x, y) = 0,

where −→n (x, y) stands for the unit outward normal at ∂ω.
Combining all the above pieces of information and since ϕ(t) ≥ 0 for all

t ≥ 0, we infer that∫
ω

[nΦ(|u(x, y)|) + mΦ(|x|ξ/2|u(x, y)|)] dxdy

≤
∫

ω

ϕ(|u(x, y)|) |x| |∇x|u(x, y)|| dxdy

+
∫

ω

|x|ξ/2 ϕ(|x|ξ/2|u(x, y|) |y| |∇y|u(x, y)|| dxdy.

Thus, using the fact that supp u ⊂ ω ⊂ Ω and taking into account the prop-
erties of Φ, we obtain∫

Ω

[nΦ(|u(x, y)|) + mΦ(|x|ξ/2|u(x, y)|)] dxdy

≤
∫

Ω

ϕ(|u(x, y)|) |x| |∇xu(x, y)| dxdy

+
∫

Ω

|x|ξ/2ϕ(|x|ξ/2|u(x, y|) |y| |∇yu(x, y)| dxdy.
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We point out that the Young-type inequality (7) implies that for all ε ∈ (0, 1),
we have∫

Ω

ϕ(|u(x, y)|) |x| |∇xu(x, y)| dxdy ≤
∫

Ω

Φ(ε−1|x| |∇xu(x, y)|) dxdy

+
∫

Ω

Φ�(εϕ(|u(x, y)|)) dxdy

and ∫
Ω

|x|ξ/2ϕ(|x|ξ/2|u(x, y)|) |y| |∇yu(x, y)| dxdy

≤
∫

Ω

Φ(ε−1|x|ξ/2|y| |∇yu(x, y)|) dxdy

+
∫

Ω

Φ�(εϕ(|x|ξ/2|u(x, y)|)) dxdy.

Taking into account the above pieces of information and then using in-
equalities (10), (11) and (13) and the fact that |x| ≤ |(x, y)| and |y| ≤ |(x, y)|,
we find

[n − ε(Φ
�)−(Φ+ − 1)]

∫
Ω

Φ(|u(x, y)|) dxdy + [m − ε(Φ
�)−(Φ+ − 1)]

∫
Ω

Φ(|x|ξ/2|u(x, y)|) dxdy

≤ (ε−1)Φ
+
∫

Ω

Φ(|x||∇xu(x, y)|) dxdy + (ε−1)Φ
+
∫

Ω

Φ(|y||x|ξ/2|∇yu(x, y)|) dxdy

≤ (ε−1)Φ
+
(1 + diam(Ω))Φ

+
∫

Ω

[Φ(|∇xu(x, y)|) + Φ(|x|ξ/2|∇yu(x, y)|)] dxdy,

where diam(Ω) is the diameter of Ω. The proof of Theorem 1 is complete.
�

Theorem 2. Assume that the hypotheses of Theorem 1 are fulfilled and the
domain Ω intersects that plane x = 0. Furthermore, assume that Φ− > 2 and
0 < ξ < 2n(Φ−−2)/Φ−. Then W 1,Φ

0,ξ (Ω) is compactly embedded in the Lebesgue
space L2(Ω).

Proof. Let {up} be a bounded sequence in the Orlicz–Sobolev space W 1,Φ
0,ξ (Ω).

Since Ω intersects the plane x = 0, for each ε ∈ (0,min{1, 1
2 diam(Ω)}) we

have

Dε := {(x, y) ∈ Ω; |x| < ε} ⊂ Ω,

where diam(Ω) is the diameter of the domain Ω.
By Theorem 1 it follows that the sequence {up} is bounded in the Orlicz

space LΦ(Ω). Consequently, {up} ⊂ W 1,Φ−
(Ω\Dε) is a bounded sequence. Since

W 1,Φ(Ω\Dε) ⊂ W 1,Φ−
(Ω\Dε), we deduce that the sequence {up} is bounded

in W 1,Φ−
(Ω\Dε). The classical compact embedding theorem implies that {up}
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possesses a convergent subsequence, still denoted by {up}, in Lebesgue space
L2(Ω\Dε). Therefore, for any p and r large enough, we get∫

Ω\Dε

|up − ur|2 dxdy < ε.

On the other hand, using the Hölder’s inequality, we have∫
Dε

|up − ur|2 dxdy =
∫

Dε

1
|x|ξ/2

|x|ξ/2|up − ur|2 dxdy

≤ ‖|x|−ξ/2χDε
‖

L
Φ−

Φ−−2 (Ω)
‖|x|ξ/2|up − ur|2‖LΦ−/2(Ω).

Next, using the fact that |x| < ε < 1 for each (x, y) ∈ Dε and taking into
account inequalities (13)–(14), then the conclusion of Theorem 1 yields

‖|x|ξ/2|up − ur|2‖LΦ−/2(Ω)

=
(∫

Ω

|x|ξΦ−/4|up − ur|Φ−
dxdy

)2/Φ−

≤ ‖up − ur‖2
LΦ− (Ω)

≤ C1‖up − ur‖2
LΦ(Ω)

≤ C2

[(∫
Ω

Φ(|up − ur|) dxdy

)2/Φ−

+
(∫

Ω

Φ(|up − ur|) dxdy

)2/Φ+]

≤ C3

[∫
Ω

(
Φ(|∇x(up − ur)|) + Φ(|x|ξ/2|∇y(up − ur)|)

)
dxdy

]2/Φ−

+C3

[∫
Ω

(
Φ(|∇x(up − ur)|) + Φ(|x|ξ/2|∇y(up − ur)|)

)
dxdy

]2/Φ+

≤ C4 < ∞,

since {up} is bounded in W 1,Φ
0,ξ (Ω), where C1, C2, C3 and C4 are positive con-

stants.
In what follows, we compute

‖|x|−ξ/2χDε
‖

L
Φ−

Φ−−2 (Ω)
=

(∫
Dε

|x|
−ξΦ−

2(Φ−−2) dxdy

)Φ−−2
Φ−

.

We note that Dε ⊂ Ω1 × Ω2 where Ω1 := {x ∈ R
n; |x| < ε} and Ω2 := {y ∈

R
m; |y| < M} with M := sup

(x,y)∈Ω

|y|.
We introduce the function H : Ω1 × Ω2 → R defined by H(x, y) =

|x|−
ξΦ−

2(Φ−−2) . For each x ∈ Ω1\{0} we have∫
Ω2

|H(x, y)| dy = |x|− ξΦ−
Φ−−2 |Ω2| < ∞,

where |Ω2| is the m-dimensional Lebesgue measure of Ω2. On the other hand,
using the co-area formula and taking into account that Ω1 is the ball centered
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in origin of radius ε in the n-dimensional euclidian space Rn, denoted by Bε(0),
we obtain∫

Ω1

|x|−
ξΦ−

2(Φ−−2) dx =
∫ ε

0

ωn t
n−1− ξΦ−

2(Φ−−2) dt = C ε
n− ξΦ−

2(Φ−−2) ,

where ωn is the area of the unit sphere in R
n and C is a positive constant. As

a consequence, we deduce that∫
Ω1

dx

∫
Ω2

|H(x, y)| dy = C ε
n− ξΦ−

2(Φ−−2) |Ω2| < ∞.

Thus, we can apply Tonelli’s theorem and we infer that H ∈ L1(Ω1 × Ω2).
Going further, we can apply Fubini’s theorem and we get∫

Ω1×Ω2

|x|−
ξΦ−

2(Φ−−2) dxdy ≤ C ε
n− ξΦ−

2(Φ−−2) ,

where C is a positive constant.
Taking into account the above pieces of information, we infer that

‖|x|−ξ/2χDε
‖

L
Φ−

Φ−−2 (Ω)
≤

(∫
Ω1×Ω2

|x|−
ξΦ−

2(Φ−−2) dxdy

)Φ−−2
Φ−

≤ const. ε
n(Φ−−2)

Φ− − ξ
2 .

Therefore, ∫
Ω

|up − ur|2 dxdy ≤ Const.
(

ε + ε
n(Φ−−2)

Φ− − ξ
2

)
.

We conclude that {up} is a Cauchy sequence in L2(Ω) and the proof of Theorem
2 is complete. �

5. Spectrum of the operator −ΔGa

We say that λ ∈ R is an eigenvalue of the problem (6) if there exists uλ ∈
W 1,Φ

0,ξ (Ω)\{0} such that∫
Ω

(
a(|∇xuλ|)∇xuλ · ∇xv + |x|ξa(|x|ξ/2|∇yuλ|)∇yuλ · ∇yv

)
dxdy

= λ

∫
Ω

uλv dxdy (18)

for any v ∈ W 1,Φ
0,ξ (Ω). Moreover, uλ from the above definition is called an

eigenfunction associated to eigenvalue λ.
Remark. Note that each λ ∈ (−∞, 0] can not be an eigenvalue of problem (6).
That fact follows simply from relation (18) by testing with v = uλ.

The following theorem describes the entire spectrum of the operator
−ΔGa

.

Theorem 3. The set of the eigenvalues of the problem (6) is exactly the interval
(0,∞). Moreover, for each λ > 0 there exists a sequence of eigenfunctions
{uk} ⊂ W 1,Φ

0,ξ (Ω) such that limk→∞ uk = 0 in W 1,Φ
0,ξ (Ω).
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5.1. Proof of Theorem 3

Let λ ∈ (0,∞) be arbitrary but fixed. We consider the energy functional
corresponding to the problem (6) defined as Iλ : W 1,Φ

0,ξ (Ω) → R,

Iλ(u) =
∫

Ω

(
Φ(|∇xu|) + Φ(|x|ξ/2|∇yu|)

)
dxdy

−λ

2

∫
Ω

|u(x, y)|2 dxdy (19)

for all u ∈ W 1,Φ
0,ξ (Ω).

Standard arguments show that the functional Iλ ∈ C1
(
W 1,Φ

0,ξ (Ω),R
)

and
its Fréchet derivative is given by

〈I ′
λ(u), v〉 =

∫
Ω

(
a(|∇xu|)∇xu · ∇xv + |x|ξa(|x|ξ/2|∇yu|)∇yu · ∇yv

)
dxdy

−λ

∫
Ω

uv dxdy (20)

for all u, v ∈ W 1,Φ
0,ξ (Ω).

In view of the above relation, we note that the weak solutions of the
problem (6) are exactly the critical points of the functional Iλ. Thus, λ is an
eigenvalue of the problem (6) if and only if the functional Iλ has a nontrivial
critical point.

The idea to prove Theorem 3 is to use the above remarks and to apply
a symmetric version of the mountain pass lemma, developed by Kajikiya. In
order to give the statement of Kajikiya’s result we recall first some definitions
and we introduce some notations.

Definition 1. Let X be a real Banach space. We say that a subset A of X
is symmetric if u ∈ A implies −u ∈ A. For a closed symmetric set A which
does not contain the origin, we define the genus of A, denoted by γ(A), as the
smallest integer k such that there exists an odd continuous mapping from A to
R

k\{0}. If does not exist such an integer k, we define γ(A) = +∞. Moreover,
we set γ(∅) = 0. Finally, we denote by Γk the family of closed symmetric
subsets A of X such that 0 /∈ A and γ(A) ≥ k.

Theorem 4. [19, Theorem 1] Let X be an infinite dimensional Banach space
and Λ ∈ C1(X,R) satisfies conditions (A1) and (A2) below.

(A1) Λ(u) is even, bounded from below, Λ(0) = 0 and Λ(u) satisfies the Palais-
Smale condition, that is any sequence {up} in X such that {Λ(up)} is
bounded and Λ′(up) → 0 in X� as p → ∞ has a convergent subsequence.

(A2) For each k ∈ N, there exists a subset Ak ∈ Γk such that supu∈Ak
Λ(u) <

0.

Under the above assumptions (A1) and (A2), either (i) or (ii) below holds true:

(i) There exists a sequence {uk} such that Λ′(uk) = 0, Λ(uk) < 0 and {uk}
converges to zero.
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(ii) There exist two sequences {uk} and {vk} such that Λ′(uk) = 0, Λ(uk) = 0,
uk �= 0, limk→∞ uk = 0, Λ′(vk) = 0, Λ(vk) < 0, limk→∞ Λ(vk) = 0 and
{vk} converges to a non-zero limit.

In order to apply Theorem 4 to the functional Iλ we have to show that
conditions (A1) and (A2) from this theorem are fulfilled.

Lemma 1. The functional Iλ satisfies condition (A1) from Theorem 4.

Proof. Clearly, Iλ(−u) = Iλ(u) for any u ∈ W 1,Φ
0,ξ (Ω), that is the functional Iλ

is even, and Iλ(0) = 0.
On the other hand, using the second inequality (11) and the fact that Φ

is a convex function, we obtain

Φ
(
|∇xu| + |x|ξ/2|∇yu|

)
≤ 2Φ+

Φ
( |∇xu| + |x|ξ/2|∇yu|

2

)

≤ 2Φ+−1
(
Φ(|∇xu|) + Φ(|x|ξ/2|∇yu|)),

∀u ∈ W 1,Φ
0,ξ (Ω).

Next, since W 1,Φ
0,ξ (Ω) is compactly embedded in the Lebesgue space L2(Ω)

(by Theorem 2), it follows that there exists a positive constant C such that

‖u‖L2(Ω) ≤ C‖u‖ for any u ∈ W 1,Φ
0,ξ (Ω).

The last two inequalities combined with relations (13)–(14) show that

Iλ(u) ≥ 1
2Φ+−1

α(‖u‖) − λ

2
C2 ‖u‖2, ∀u ∈ W 1,Φ

0,ξ (Ω), (21)

where function α is defined in relation (12). Since 2 < Φ− ≤ Φ+ we infer that
Iλ is bounded from below on W 1,Φ

0,ξ (Ω).
Finally, we prove that Iλ satisfies the Palais–Smale condition. Let {up} ⊂

W 1,Φ
0,ξ (Ω) be a sequence such that {Iλ(up)} is bounded and 〈I ′

λ(up), v〉 → 0 as
p → ∞ for any v ∈ W 1,Φ

0,ξ (Ω).

We show that the sequence {up} is bounded in W 1,Φ
0,ξ (Ω). Assume by

contradiction the contrary. Then, passing eventually to a subsequence, still
denoted by {up}, we may assume that ‖up‖ → ∞ as p → ∞. Combining this
fact with relation (21) we find

lim
‖up‖→∞

Iλ(up) = ∞,

a contradiction with the assumption that {Iλ(up)} is a bounded sequence. It
follows that {up} is a bounded sequence in W 1,Φ

0,ξ (Ω). Therefore, since W 1,Φ
0,ξ (Ω)

is a reflexive Banach space, there exists u ∈ W 1,Φ
0,ξ (Ω) such that a subsequence

of {up}, still denoted by {up}, converges weakly to u in W 1,Φ
0,ξ (Ω). Moreover,

by Theorem 2 we deduce that {up} converges strongly to u in L2(Ω).
Next, we show that {up} converges strongly to u in W 1,Φ

0,ξ (Ω). Taking into
account that the mapping Jλ : W 1,Φ

0,ξ (Ω) → R defined by Jλ(v) = 〈I ′
λ(u), v〉
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for any v ∈ W 1,Φ
0,ξ (Ω), is linear and continuous, the above facts imply that

Jλ(up − u) → 0 as p → ∞, namely

lim
p→∞〈I ′

λ(u), up − u〉 = 0. (22)

On the other hand, since 〈I ′
λ(up), v〉 → 0 as p → ∞ for any v ∈ W 1,Φ

0,ξ (Ω), we
have

lim
p→∞〈I ′

λ(up), up − u〉 = 0. (23)

Using Hölder’s inequality and the facts that {up} converges strongly to u in
L2(Ω) and {up} is a bounded sequence in W 1,Φ

0,ξ (Ω) and also in L2(Ω), we infer
that

lim
p→∞

∫
Ω

u(up − u) dxdy = 0 (24)

and

lim
p→∞

∫
Ω

up(up − u) dxdy = 0. (25)

Adding relations (23) and (22) and taking into consideration (24)–(25), we
obtain

lim
p→∞

[ ∫
Ω

(
a(|∇xup|)∇xup − a(|∇xu|)∇xu

) · ∇x(up − u) dxdy

+
∫

Ω

|x|ξ(a(|x|ξ/2|∇yup|)∇yup − a(|x|ξ/2|∇yu|)∇yu
) · ∇y(up − u) dxdy

]

= 0.

(26)

Next, using the fact that Φ is a convex function, we deduce

Φ(|∇xup|) ≤ Φ
( ∣∣∣∣∇xup + ∇xu

2

∣∣∣∣
)

+ a(|∇xup|)∇xup · ∇xup − ∇xu

2
, ∀p ∈ N

and

Φ(|∇xu|) ≤ Φ
( ∣∣∣∣∇xu + ∇xup

2

∣∣∣∣
)

+ a(|∇xu|)∇xu · ∇xu − ∇xup

2
, ∀p ∈ N.

Upon adding the last two inequalities term by term and integrating over Ω,
we get

2
∫

Ω

Φ(|∇xu|) dxdy + 2
∫

Ω

Φ(|∇xup|) dxdy − 4
∫

Ω

Φ
( ∣∣∣∣∇xup + ∇xu

2

∣∣∣∣
)

dxdy

≤
∫

Ω

[
a(|∇xup|)∇xup − a(|∇xu|)∇xu

]
· (∇xup − ∇xu) dxdy, ∀p ∈ N.

(27)
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Since condition (5) is assumed we deduce by [21, Theorem 2.1] that

1
2

∫
Ω

(
Φ(|∇xup|) + Φ(|∇xu|)

)
dxdy

≥
∫

Ω

Φ
(∣∣∣∣∇xup + ∇xu

2

∣∣∣∣
)

dxdy +
∫

Ω

Φ
(∣∣∣∣∇xup − ∇xu

2

∣∣∣∣
)

dxdy, ∀p ∈ N.

(28)

Relations (27), (28) and (11) imply∫
Ω

[
a(|∇xup|)∇xup − a(|∇xu|)∇xu

]
· (∇xup − ∇xu) dxdy

≥ 4
∫

Ω

Φ
(∣∣∣∣∇xup − ∇xu

2

∣∣∣∣
)

dxdy

≥ 22−Φ+
∫

Ω

Φ(|∇x(up − u)|) dxdy, ∀p ∈ N.

(29)

Similar way, we can show that∫
Ω

|x|ξ
[
a(|x|ξ/2|∇yup|)∇yup − a(|x|ξ/2|∇yu|)∇yu

]
· (∇yup − ∇yu) dxdy

≥ 22−Φ+
∫

Ω

Φ(|x|ξ/2|∇y(up − u)|) dxdy, ∀p ∈ N.

(30)

Combining (29), (30), (26) and relations (13)–(14) we conclude that {up} con-
verges strongly to u in (W 1,Φ

0,ξ (Ω), ‖·‖). Therefore, Iλ satisfies the Palais–Smale
condition.

The proof of Lemma 1 is complete. �

Lemma 2. The functional Iλ satisfies condition (A2) from Theorem 4.

Proof. We construct a sequence of subsets Ak ∈ Γk such that supu∈Ak
Iλ(u) <

0 for each k ∈ N.
We fix k ∈ N arbitrary. Let (x1, y1) ∈ Ω and r1 be a positive real number such
that Br1(x1, y1) ⊂ Ω and |Br1(x1, y1)| < 1

2 |Ω|, where Br1(x1, y1) is the ball in
R

N centered in (x1, y1) of radius r1. Consider v1 ∈ C1
0 (Ω) be a function with

supp(v1) = Br1(x1, y1). Define Ω1 := Ω\Br1(x1, y1). Let (x2, y2) ∈ Ω and r2 be
a positive real number such that Br2(x2, y2) ⊂ Ω1 and |Br2(x2, y2)| < 1

2 |Ω1|.
Consider v2 ∈ C1

0 (Ω) such that supp(v2) = Br2(x2, y2). Next, define Ω2 :=
Ω1 \Br2(x2, y2) and let (x3, y3) ∈ Ω and r3 > 0 be a real number such that
Br3(x3, y3) ⊂ Ω2 and |Br3(x3, y3)| < 1

2 |Ω2|. Consider v3 ∈ C1
0 (Ω) such that

supp(v3) = Br3(x3, y3).
Continuing the process described above we can construct by recurrence

a sequence of functions v1, v2, . . . , vk ∈ C1
0 (Ω) such that supp(vi) �= supp(vj)

for i �= j and |supp(vi)| > 0 for any i, j ∈ {1, . . . , k}.
We define the finite dimensional subspace of W 1,Φ

0,ξ (Ω),

V := span{v1, v2, v3, . . . , vk}.
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Clearly, dim V = k and
∫

Ω

|v|2 dxdy > 0 for every v ∈ V \{0}. We denote by

S
1 the unit sphere in W 1,Φ

0,ξ (Ω), namely

S
1 := {v ∈ W 1,Φ

0,ξ (Ω); ‖v‖ = 1}.

For any real number t ∈ (0, 1), we define the set

Ak(t) := t (S1 ∩ V ) = {tv; v ∈ S
1 ∩ V }.

By [26, Proposition 5.2 ] we have that for any bounded symmetric neighbor-
hood B of the origin in R

k there holds γ(∂B) = k. Thus, we deduce that
γ(Ak(t)) = k for any t ∈ (0, 1).

It remains to show that for each integer k ∈ N there exists tk ∈ (0, 1)
such that

sup
u∈Ak(tk)

Iλ(u) < 0.

Note that for any t ∈ (0, 1), we have

sup
u∈Ak(t)

Iλ(u)

= sup
v∈S1∩V

Iλ(t v)

= sup
v∈S1∩V

{∫
Ω

[Φ(t|∇xv|) + Φ(t|x|ξ/2|∇yv|)]dxdy − λ

2

∫
Ω

|tv|2 dxdy

}

≤ sup
v∈S1∩V

{
tΦ

−
∫

Ω

[Φ(|∇xv|) + Φ(|x|ξ/2|∇yv|)]dxdy − λ t2

2

∫
Ω

|v|2 dxdy

}

≤ sup
v∈S1∩V

{
2 tΦ

−
∫

Ω

Φ(|∇xv| + |x|ξ/2|∇yv|)dxdy − λ t2

2

∫
Ω

|v|2 dxdy

}

≤ sup
v∈S1∩V

{
tΦ

−
(

2 − λ

2tΦ−−2

∫
Ω

|v|2 dxdy

)}
.

Since S
1 ∩ V is a compact set, we get

m := min
v∈S1∩V

∫
Ω

|v|2 dxdy > 0.

Taking into account that 2 < Φ− we deduce that we can choose tk ∈ (0, 1)
small enough such that

2 − λ

2
t2−Φ−
k m < 0.

The above relation yields

sup
u∈Ak(tk)

Iλ(u) < 0.

Thus, the proof of Lemma 2 is complete. �
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Proof of Theorem 3. Using Lemmas 1 and 2 and applying Theorem 4 for the
functional Iλ we deduce that, in any case (i) and (ii), there exists a sequence
{uk} ⊂ W 1,Φ

0,ξ (Ω) such that 〈I ′
λ(uk), v〉 = 0 for any v ∈ W 1,Φ

0,ξ (Ω), Iλ(uk) ≤
0, uk �= 0 for each k and {uk} converges to zero in W 1,Φ

0,ξ (Ω). Thus, each λ > 0
is an eigenvalue of the problem (6) with the corresponding eigenfunctions {uk}
converging to 0. The proof of Theorem 3 is complete. �
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Appendix

In this section we show that the norms

‖u‖ :=
∥∥∥|∇xu| + |x|ξ/2|∇yu|

∥∥∥
LΦ(Ω)

,

‖u‖1 :=
∥∥(∇xu,∇yu)

∥∥
LΦ(Ω)

and

‖u‖2 :=
∥∥(∇xu, |x|ξ/2∇yu)

∥∥
LΦ(Ω)

are equivalent on the Orlicz–Sobolev space W 1,Φ
0,ξ (Ω), provided that there exists

a positive constant c such that for every (x, y) ∈ Ω we have |x| ≥ c. Particularly,
that fact shows that the functional space W 1,Φ

0,ξ (Ω) is a natural generalization
of the classical Orlicz–Sobolev space W 1,Φ

0 (Ω). More precisely, we will prove:

Proposition 1. Let Ω ⊂ R
N (N = n+m) be a bounded and smooth domain for

which there exists a positive constant c such that for each (x, y) ∈ Ω we have
|x| ≥ c. Then the norms

‖u‖ :=
∥∥∥|∇xu| + |x|ξ/2|∇yu|

∥∥∥
LΦ(Ω)

,

‖u‖1 :=
∥∥(∇xu,∇yu)

∥∥
LΦ(Ω)
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and

‖u‖2 :=
∥∥(∇xu, |x|ξ/2∇yu)

∥∥
LΦ(Ω)

are equivalent.

Proof. First, we prove that the norms ‖ · ‖ and ‖ · ‖2 are equivalent. Simple
computations show that we have

1√
2

(|∇xu| + |x|ξ/2|∇yu|) ≤
√

|∇xu|2 + |x|ξ|∇yu|2 (31)

for any u ∈ W 1,Φ
0,ξ (Ω) and (x, y) ∈ Ω. The definition of Luxemburg norm leads

to ∫
Ω

Φ

(√|∇xu|2 + |x|ξ|∇yu|2
‖u‖2

)
dxdy ≤ 1

and taking into account that Φ is an increasing function and inequality (31)
holds true, we find that∫

Ω

Φ
( |∇xu| + |x|ξ/2|∇yu|√

2‖u‖2

)
dxdy ≤ 1

which implies that ‖u‖ ≤ √
2 ‖u‖2 for any u ∈ W 1,Φ

0,ξ (Ω). Next, using again
the definition of the Luxemburg norm, we get∫

Ω

Φ
( |∇xu| + |x|ξ/2|∇yu|

‖u‖
)

dxdy ≤ 1.

It is clear that the following inequality√
|∇xu|2 + |x|ξ|∇yu|2 ≤ |∇xu| + |x|ξ/2|∇yu|

holds true for any u ∈ W 1,Φ
0,ξ (Ω) and (x, y) ∈ Ω. Combining the fact that Φ is

an increasing function with the last two inequalities we deduce
∫

Ω

Φ

(√|∇xu|2 + |x|ξ|∇yu|2
‖u‖

)
dxdy ≤ 1

or, ‖u‖2 ≤ ‖u‖ for any u ∈ W 1,Φ
0,ξ (Ω).

Therefore, we have

1√
2

‖u‖ ≤ ‖u‖2 ≤ ‖u‖ for all u ∈ W 1,Φ
0,ξ (Ω),

which shows the equivalence of norms ‖ · ‖ and ‖ · ‖2.
Second, we show that the norms ‖ · ‖1 and ‖ · ‖2 are equivalent provided

that there exists a positive constant c such that for any (x, y) ∈ Ω we have
|x| ≥ c. We start with the simple remark that

a(|∇xu|2 + |∇yu|2) ≤ |∇xu|2 + |x|ξ|∇yu|2 ≤ b(|∇xu|2 + |∇yu|2) (32)



1084 M. Mihăilescu, D. Stancu-Dumitru and C. Varga NoDEA

for any u ∈ W 1,Φ
0,ξ (Ω) and (x, y) ∈ Ω, where a := min(x,y)∈Ω

{
1, |x|ξ

}
and

b := max(x,y)∈Ω

{
1, |x|ξ

}
.

By the definition of the Luxemburg norm, we deduce
∫

Ω

Φ

(√|∇xu|2 + |∇yu|2
‖u‖1

)
dxdy ≤ 1 (33)

and ∫
Ω

Φ

(√|∇xu|2 + |x|ξ|∇yu|2
‖u‖2

)
dxdy ≤ 1. (34)

• If a ≥ 1, by (32) we get |∇xu|2 + |∇yu|2 ≤ |∇xu|2 + |x|ξ|∇yu|2 for any
u ∈ W 1,Φ

0,ξ (Ω) and (x, y) ∈ Ω. Combining this inequality with the fact that Φ
is an increasing function and inequality (34) holds true, we obtain

∫
Ω

Φ

(√|∇xu|2 + |∇yu|2
‖u‖2

)
dxdy ≤ 1

or ‖u‖1 ≤ ‖u‖2.
• If a < 1, by the first inequality in (32) and (34) we deduce that

∫
Ω

Φ

(√|∇xu|2 + |∇yu|2√
a‖u‖2

)
dxdy ≤ 1

which implies that ‖u‖1 ≤ 1√
a

‖u‖2.

• If b ≤ 1, inequality (32) leads to

|∇xu|2 + |x|ξ|∇yu|2 ≤ |∇xu|2 + |∇yu|2, ∀u ∈ W 1,Φ
0,ξ (Ω)

which helps us to prove that ‖u‖2 ≤ ‖u‖1 as a consequence of inequality (33).
• If b > 1, by the second inequality in (32), inequality (33) and the fact

that Φ is an increasing function, we get
∫

Ω

Φ

(√|∇xu|2 + |x|ξ|∇yu|2√
b‖u‖1

)
dxdy ≤ 1

or ‖u‖2 ≤ √
b‖u‖1.

In brief, for any u ∈ W 1,Φ
0,ξ (Ω), we proved that

• if a < 1 < b, then
√

a‖u‖1 ≤ ‖u‖2 ≤ √
b‖u‖1;

• if 1 ≤ a < b, then ‖u‖1 ≤ ‖u‖2 ≤ √
b‖u‖1;

• if a < b ≤ 1, then
√

a‖u‖1 ≤ ‖u‖2 ≤ ‖u‖1.
Consequently, the norms ‖ · ‖1 and ‖ · ‖2 are equivalent provided that

there exists a positive constant c such that for each (x, y) ∈ Ω we have |x| ≥ c.
The proof of Proposition 1 is complete. �
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