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Abstract. We consider a large eddy simulation model for the 3D Navier–
Stokes equations obtained through fractional deconvolution of generic
order. The global well-posedness of such a problem is already known. We
prove the existence of the global attractor for the solution operator and
find estimates for its Hausdorff and fractal dimensions both in terms of the
Grashoff number and in terms of the mean dissipation length, with par-
ticular attention to the dependence on the fractional and deconvolution
parameters. These results can be interpreted as bounds for the number
of degrees of freedom of long-time dynamics, thus providing further in-
formation on the validity of the model for the simulation of turbulent 3D
flows.
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1. Introduction

We consider an approximate model for the Navier–Stokes Equations for a
homogeneous incompressible fluid, that read

∂tu + ∇ · (u ⊗ u) − νΔu + ∇π = f ,

∇ · u = 0,

u(0, ·) = u0,

in [0, T ] × D, where D is a three-space dimensional periodic domain under
suitable conditions that we are going to make precise. We assume that the
constant ν, called kinematic viscosity, is positive.
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It is well-known that, currently, we lack a good well-posedness theory for
these equations is lacking, so that this system is not suited for numerical sim-
ulations. Moreover, the simulation of turbulent pointwise flows is prohibitively
expensive and sensitive to small perturbations of the data, i.e. the pointwise
flow is chaotic. Large eddy simulation may overcome these difficulties (see the
introductions in [2,6]). Instead of pointwise flows, averaged deterministic flows
are considered, and systems satisfied by averages are studied. More precisely,
some approximations are introduced in order to mitigate the nonlinearity and
obtain well-posedness and the possibility to perform simulations. In particu-
lar, we are interested in fractional approximate deconvolution models (ADM),
introduced by Stolz–Adams in [18].

We introduce the fractional filter, denoted by “ ”, setting

Aθ = I + α2θ(−Δ)θ, v = A−1
θ v (1)

(with periodic conditions in x), where α > 0 and θ ∈ [0, 1] are fixed. Let
us note that the filter is linear and commutes with differentiation. It is a
generalization of the Helmholtz filter, which corresponds to the choice θ = 1,
and it is known to produce excellent results in numerical simulations, at least
for large Reynolds numbers and suitable geometries (see [15] and the references
therein).

Filtering the equations for u, we obtain

∂tu + ∇ · (u ⊗ u) − νΔu + ∇π = f ,

∇ · u = 0,

u(0, ·) = u0.

Set w = u and q = π, so that u = Aθw. We solve the so-called interior closure
problem by the approximation

u ⊗ u ≈ DN,θu ⊗ DN,θu = DN,θw ⊗ DN,θw,

where we have used the fractional deconvolution operator

DN,θw :=
N∑

h=0

(
I − A−1

θ

)h
w, (2)

defined for every integer N ≥ 0 and any real θ ∈ [0, 1].
We finally deduce the fractional ADM

∂tw + ∇ ·
(
DN,θw ⊗ DN,θw

)
− νΔw + ∇q = f , (3)

∇ · w = 0, (4)
w(0, ·) = u0. (5)

This model has been introduced by Berselli–Lewandowski [4], where global
well-posedness for θ > 3/4 and convergence results are proved (see Sect. 2.2
for the existence). This result has been generalized by Ali [1] to the case of
magnetohydrodynamics requiring only θ ≥ 1/2.

When the deconvolution order is 0, i.e. N = 0, and the power θ is nonfrac-
tional, i.e. 1, we obtain the model introduced by Layton–Lewandowski [13] and
studied by Cao–Lunasin–Titi [5], who prove the existence of global solutions
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and of the global attractor (see Sect. 4) for the solution operator, providing
also estimates of its fractal and Hausdorff dimensions. These notions are useful
in order to test the validity of the model as a large eddy simulation model. Ac-
tually, the dimension of the global attractor can be interpreted as the number
of degrees of freedom of the long-time dynamics of the system.

In this paper, we are interested in extending such results to the fractional
deconvolution model (3)–(5), with particular concern to the dependence on
the fractional power θ. First, we prove the existence of the global attractor
associated to the semigroup generated by the operator S(t) that associates to
the initial datum u0 the corresponding solution of (3)–(4) evaluated at time t
(see Sect. 2.3 for the definition of the function space Hθ

σ).

Theorem 1.1. Assume that θ ≥ 1/2 and let (S(t))t≥0 be the semigroup in
Hθ

σ associated to the initial value problem (3)–(5) defined in (28), with datum
f ∈ H−1. Then a unique global attractor A exists for such a semigroup in Hθ

σ.

The proof of Theorem 1.1 is given in Sect. 4. Note that the existence of
solutions to (3)–(5) (see Sect. 2.2) is known just for θ ≥ 1/2, whose assumption
in our result, for this reason, is not restrictive.

The subsequent step consists in finding estimates for the attractor A. We
resort to the trace formula and the standard technique described for instance in
[10,19]. This approach requires that the operator S(t) is Fréchet differentiable
with respect to the initial datum. After proving this result (see Sect. 5), we
introduce a suitable version of the Grashoff number adapted to the model we
are considering:

G :=
L3/2‖A

−1/2
θ D

1/2
N,θf‖

ν2
. (6)

First, we prove an estimate for the global attractor dimension in terms of this
number.

Theorem 1.2. If f ∈ H−θ for θ ∈ (1/2, 1], the Hausdorff dimension dH(A)
and the fractal dimension dF(A) of the global attractor A are bounded above by

dH(A) ≤ dF(A) ≤ C
(
C1ν

1+2μL1+μ
) 3

5+3(σ−1)s G
6+6μ

5+3(σ−1)s , (7)

where C is a numerical constant independent of the other parameters appear-
ing in the right-hand side, C1 is defined in (72), σ is defined in (94), while μ
and s are defined in (73).

The Grashoff number takes into account the effect of the forcing term f ,
so that the previous theorem establishes a relation between the global attractor
dimension and f .

Notice that, in view of the definition (94) of σ, it is convenient to ana-
lyze the estimate (7) by considering separately two cases corresponding to the
different ranges (1/2, 2/3) and [2/3, 1] for θ.
(i) For 2/3 ≤ θ ≤ 1 we have (σ − 1)s = 0; then the bound in the right-hand

side reduces to

C
(
C1ν

1+2μL1+μ
) 3

5 G
6+6μ

5 , (8)
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where μ =
2(1 − θ)
2θ − 1

[cf. (77)]. In particular, for θ = 1 we have μ = 0,

hence the exponent of G in (8) reduces to 6/5 and we recover the already
known estimate proved in [5] (but now it holds for all N and not only for
N = 0). We also observe that, when θ < 1, the exponent worsens.

(ii) For 1/2 < θ < 2/3 the result is worse with respect to the case (i), not only
because of the values of θ, but also since the exponent (σ − 1)s 	= 0.
Now, in order to understand more deeply the relation between the global

attractor dimension and the number of degrees of freedom of the long-time
dynamics, we introduce the mean rate of energy (of the model) dissipation,
defined by

ε :=
1
L3

sup
w0∈A

lim sup
T→+∞

1
T

∫ T

0

ν‖∇A
1/2
θ D

1/2
N,θw(t)‖2 dt.

Moreover, in analogy with Kolmogorov dissipation length in the classical the-
ory of turbulence, we define the mean dissipation length for the model as

	d :=
(

ν3

ε

)1/4

,

so that

sup
w0∈A

lim sup
T→+∞

1
T

∫ T

0

ν‖∇A
1/2
θ D

1/2
N,θw(t)‖2 dt =

L3ν3

	4d
. (9)

Theorem 1.3. If f ∈ H−1 and θ ∈ (1/2, 1], the Hausdorff dimension dH(A)
and the fractal dimension dF(A) of the global attractor A are bounded above by

dH(A) ≤ dF(A) ≤ C

[
(N + 1)γ

(
L

α

)2γθ (
L

	d

)2
] 6

6γ−1

,

where C is a numerical constant independent of the other parameters appearing
in the right-hand side, and γ is defined in (86).

Considerations similar to those for Theorem 1.2 still hold. In particular,
when θ = 1, we have again that γ = 1 and the exponent of (L/	d) reduces to
12/5, exactly as in [5].

The mean dissipation length 	d is defined to be the smallest length scale
actively participating in the dynamics of the turbulent flow. This means that,
when performing simulations, the size of every mesh can not be greater than
	d and L/	d points (for each space dimension) are needed and the number
of degrees of freedom for a 3D turbulent flow is expected to be (L/	d)3. The
previous theorem shows the dependence of the number of degrees of freedom of
the fractional deconvolution model with respect to θ and the other parameters.
The effect of filtering is the reduction of this number (for θ = 1, we have 12/5,
which is less than 3), and a reduced regularization (θ < 1) increases the number
of degrees of freedom. In particular, recalling the definition of γ (86), we can

easily compute that
12

6γ − 1
= 3 holds for θ = 9/10.
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Despite the use of standard techniques, the proofs are not trivial, since
the presence of the deconvolution operator of generic order N and, above all, of
the fractional power θ require a clever combination of several ad hoc estimates.
When θ decreases, the regularization provided by the filter lessens, so that
refined interpolation estimates are needed. Note that we do not compute the
bound of the attractor dimension when θ = 1/2; this is due to the fact that, in
such a case, 1 + θ = 3/2, and it is impossible to apply the fractional Agmon’s
inequality (Lemma A.3) in order to estimate appropriately some L∞-norms
by using (104).

We are convinced that the theorems proved in this paper can be extended
to other models, even for magnetofluids, generalizing the results concerning the
global attractor in magnetohydrodynamics (MHD), as in [7–9], to deconvolu-
tion and fractional deconvolution approximate MHD models, such as those in
[1,3]. However, this would require several more computations, and it is post-
poned to future works.
Outline of the paper Section 2 is devoted to present the main notation, function
spaces, the notion of regular weak solution, the properties of the filter and of
the deconvolution operator. In Sect. 3 we prove some a priori estimates that
will be used in the proofs of the main theorems. In Sect. 4 we recall some
notions and properties concerning global attractors and prove Theorem 1.1.
Section 5 is devoted to the proof of the differentiability of the solution operator,
while Sect. 6 contains all results concerning the bounds of the global attractor
dimension, i.e. Theorems 1.2 and 1.3. Finally, the Appendix lists and proves
some useful formulas and inequalities that play a crucial role in the proofs of
the original results contained in this paper.

2. Preliminary results and basic tools

2.1. Notation

We set

x = (x1 , x2 , x3),
∂j = ∂xj

, Δ = ∂2
1 + ∂2

2 + ∂2
3 , ∇ = (∂1 , ∂2 , ∂3).

The space domain is T3 = {x ∈ R
3 : −π L < x1, x2, x3 < π L }, L > 0, with

2π L periodicity with respect to x (i.e. with respect to x1, x2, x3), i.e. a torus.
We denote by Lp and Hs (with 1 ≤ p ≤ ∞ and s ∈ R) the standard

Lebesgue and Sobolev spaces, and define C ([0, T ];X) and the Bochner spaces
Lp (0, T ;X) in the usual way. We write Hs for the Sobolev space of vector
functions defined on T3 with zero spatial mean and 2π L periodicity in x, and
set L2 = H0. We denote by the subscript σ spaces of divergence-free (classes
of) functions, and we assume the domain T3 when not specified. The symbol
(· , ·) is used to denote the standard scalar product in L2.

We will denote by C a generic positive constant, independent of the
relevant parameters, which may differ at every occurrence, even in the same
expression.
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2.2. Regular weak solutions

Assume that f = f(x) ∈ H−3/2 is independent of time (for simplicity), so that
f ∈ H2θ−3/2, and u0 ∈ H−θ

σ , so that w0 := u0 ∈ Hθ
σ (we may even require the

stronger regularity u0 ∈ L2
σ, which is more natural for the unfiltered problem).

We say that w : [0,+∞) ×T
3 → R

3 is a regular weak solution of (3)–(5)
when, for all T > 0, the following properties are verified (see also [12]).

• Regularity:

w ∈ C ([0, T ];Hθ
σ) ∩ L2(0, T ;H1+θ

σ ),

∂tw ∈ L2(0, T ;H2θ−3/2
σ ),

q ∈ L2(0, T ; H2θ−1/2).

• Initial data: w(0, ·) = w0.
• Weak formulation:
∫ +∞

0

{
(w , ∂tϕ) − ν(∇w , ∇ϕ) + (DN,θw ⊗ DN,θw , ∇ϕ) + q∇ · ϕ

}
(s) ds

= −
∫ +∞

0

(f , ϕ)(s) ds −
(
w(0) , ϕ(0)

)

for each ϕ ∈
(
C∞
0 (T3 × [0, T ))

)3.

Theorem 2.1. Assume θ ≥ 1/2. Then there exists a unique regular weak solu-
tion of (3)–(5). This solution depends continuously on the data (the system is
well-posed) and satisfies the energy (of the model) identity

1
2
‖A

1/2
θ D

1/2
N,θw(t)‖2 + ν

∫ t

0

‖∇A
1/2
θ D

1/2
N,θw(s)‖2 ds

=
1
2
‖A

1/2
θ D

1/2
N,θw(0)‖2 +

∫ t

0

(
D

1/2
N,θf , D

1/2
N,θw(s)

)
ds

for each t ∈ [0,+∞).

This result has been proved by Berselli–Lewandowski [4] for θ > 3/4
and extended to θ ≥ 1/2 by Ali in [1], where the equations are coupled with
the equations for the magnetic field (so the theorem above follows taking the
magnetic field identically zero).

2.3. More on functional spaces

Let L > 0 be given. Let T
3 be the torus defined as the compact quotient

manifold, T3 = R
3/2πLZ3.

For general s ∈ R, we write Hs for the Sobolev space of vector functions
defined on T

3 with zero spatial mean, i.e.

Hs :=
{

w : T3 → R
3, w ∈ [Hs(T3)]3,

∫

T3
w dx = 0

}
,

and set L2 = H0.
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We denote by the subscript σ spaces of divergence-free (classes of) func-
tions, i.e.

Hs
σ :=

{
w : T3 → R

3, w ∈ [Hs(T3)]3, ∇ · w = 0,

∫

T3
w dx = 0

}
.

Since we work with periodic boundary conditions we can describe the spaces
that we use in terms of the Fourier series on the 3D torus T

3. A vector field
w ∈ Hs

σ can be expanded in terms of Fourier series (of 2πL-periodic functions)
as

w(x) =
∑

k∈T ∗
3

ŵk eik·x,

where the space of frequencies T ∗
3 is defined by setting

T3 :=
2π

2πL
Z
3 =

1
L
Z
3 and T ∗

3 := T3\{0},

and the Fourier coefficients are given by1

ŵk =
1

(2πL)3

∫

T3

w(x) e− ik·x dx.

We set |k| :=
√

|k1|2 + |k2|2 + |k3|2, and we introduce the Hs norm by

‖w‖2s,2 =
∑

k∈T ∗
3

|k|2s|ŵk|2, (10)

(for s = 0 we set ‖ · ‖ := ‖ · ‖0,2). The inner product associated with this norm
is

(w,v)Hs =
∑

k∈T ∗
3

|k|2s
(
ŵk, v̂k

)
,

where here v̂k denotes the complex conjugate of v̂k (if v̂k = (v1
k, v2

k, v3
k) we

have v̂k = (v1
k, v2

k, v3
k)) and (·, ·) in the right-hand side of the above formula is

the scalar product in C
3.

Since we are looking for real vector valued functions, we have that the
Fourier coefficients satisfy

v̂k = v̂−k, ∀k ∈ T ∗
3 .

Therefore, the spaces Hs can be rewritten as

Hs :=

⎧
⎨

⎩w(x) =
∑

k∈T ∗
3

ŵk eik·x, ŵk = ŵ−k, ‖w‖2s,2 =
∑

k∈T ∗
3

|k|2s|ŵk|2 < +∞

⎫
⎬

⎭.

1 We note that ŵ0 = 1
(2πL)3

∫
T3

w(x) dx = 0 since w has zero mean.
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2.4. Filter properties

In this paper we will use the deconvolution operator DN,θ, defined by (2) and
studied in Sect. 2.5, which is constructed by using Aθ defined in (1), i.e. the
Helmholtz operator with fractional regularization.

For real p the pseudo-differential operator Ap
θ is defined in the periodic

case as

Ap
θw :=

∑

k∈T ∗
3

(
1 + α2θ|k|2θ

)p
ŵk eik·x .

Lemma 2.2. (i) For all p ≥ 0 the operator Ap
θ, as a linear operator in L2, is

self-adjoint and commutes with differentiation.
(ii) The inverse operator A−1

θ is continuous from Hs to Hs+2θ with the esti-
mate

‖A−1
θ w‖s+2θ,2 ≤ α−2θ‖w‖s,2.

(iii) We have

‖A
1/2
θ w‖2 = ‖w‖2 + α2θ‖(−Δ)θ/2w‖2, ∀w ∈ Hθ. (11)

Proof. For the proof of (i)–(ii) we refer to [1]. Concerning (iii), using that A
1/2
θ

and (−Δ)θ/2 are self-adjoint, we get

‖A
1/2
θ w‖2 =

(
A

1/2
θ w, A

1/2
θ w

)
= (w, Aθw)

=
(
w, (I + α2θ(−Δ)θ)w

)
= ‖w‖2 + α2θ

(
(−Δ)θ/2w, (−Δ)θ/2w

)

= ‖w‖2 + α2θ‖(−Δ)θ/2w‖2.
�

Remark 2.3. Since the relevant cases and applications concern small values of
α, from now on, we assume 0 < α ≤ 1; this makes some terms less cumbersome
and does not limit the generality of the results.

Remark 2.4. Formula (11) implies the following equivalence of norms
1√
2
‖A

1/2
θ w‖ ≤ ‖w‖θ,2 ≤ 1

αθ
‖A

1/2
θ w‖, ∀w ∈ Hθ. (12)

By the same reason we have also that
1
2
‖Aθw‖ ≤ ‖w‖2θ,2 ≤ 1

α2θ
‖Aθw‖, ∀w ∈ H2θ. (13)

2.5. The deconvolution operator

We can express the pseudo-differential deconvolution operator in terms of the
Fourier series. We have:

DN,θw =
∑

k∈T ∗
3

D̂N,θ (k) ŵk eik·x

where

D̂N,θ (k) = (1 + α2θ|k|2θ)ρN,k, ρN,k = 1 −
(

α2θ|k|2θ

1 + α2θ|k|2θ

)N+1

.
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The following lemma is proved in [1].

Lemma 2.5. The symbol D̂N,θ (k) of the operator DN,θ satisfies the following
properties:

D̂0,θ(k) = 1,

1 ≤ D̂N,θ (k) ≤ N + 1, (14)

D̂N,θ (k) ≤ Âθ(k) :=
(
1 + α2θ|k|2θ

)
.

The following lemma is given in [4] (and [1]).

Lemma 2.6. For all s ≥ −1 and N > 0, the operator DN,θ : Hs → Hs

• is self-adjoint;
• commutes with differentiation.

Moreover, for all w sufficiently smooth we have

‖w‖s,2 ≤ ‖DN,θw‖s,2 ≤ ‖A1/2
θ D

1/2
N,θw‖s,2. (15)

Remark 2.7. In [1] the above inequalities are formulated in terms of a suitable
constant C. In fact, one can take C = 1, so we do not write C in the above
inequalities.

Lemma 2.8. For all p ≥ 0, s ≥ −1 and N > 0, and for all w sufficiently smooth
we have

‖w‖s,2 ≤ ‖Dp
N,θw‖s,2 ≤ (N + 1)p‖w‖s,2. (16)

Proof. We use the definition of the norm (10) and (14) to have

‖w‖2s,2 =
∑

k∈T ∗
3

|k|2s|ŵk|2 ≤
∑

k∈T ∗
3

|k|2s|D̂p
N,θ(k)|2|ŵk|2

≤
∑

k∈T ∗
3

(N + 1)2p|k|2s|ŵk|2 = (N + 1)2p‖w‖2s,2.

�

In the sequel we will make use of the following estimates which come
from the estimates (15) and (16) as particular cases:

‖DN,θw‖ ≤ ‖A1/2
θ D

1/2
N,θw‖; (17)

‖A
1/2
θ DN,θw‖ ≤ (N + 1)1/2‖A

1/2
θ D

1/2
N,θw‖; (18)

‖∇A
1/2
θ DN,θw‖ ≤ (N + 1)1/2‖∇A

1/2
θ D

1/2
N,θw‖; (19)

‖∇AθDN,θw‖ ≤ (N + 1)1/2‖∇AθD
1/2
N,θw‖. (20)

In particular estimate (17) is estimate (15) with s = 0, while (18)–(20) come
from (16) taking p = 1/2 and replacing w by A

1/2
θ D

1/2
N,θw, ∇A

1/2
θ D

1/2
N,θw and

∇AθD
1/2
N,θw respectively.
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3. A priori estimates

In this section, we collect suitable a priori estimates for the weak solution to
the problem (3)–(5), that will be used from Sect. 4 on to prove the existence
of the global attractor.

We set λ1 := L−2 (first eigenvalue for the Laplace operator −Δ), Λθ :=
(−Δ)θ/2 with domain Hθ and periodic boundary conditions (Λθ is a positive
self-adjoint operator in L2), Λ := Λ1, and

k0 := ‖A
1/2
θ D

1/2
N,θw(0)‖2, (21)

K1 :=
‖Λ−1A

−1/2
θ D

1/2
N,θf‖2

ν
, (22)

k1 := k0 +
K1

νλ1
. (23)

Theorem 3.1. If w is a regular weak solution of (3)–(5), for arbitrary t ≥
0, r > 0 we have

‖A
1/2
θ D

1/2
N,θw(t)‖2 ≤ k0 e−νλ1t +

K1

νλ1
(1 − e−νλ1t) ≤ k1, (24)

∫ t+r

t

ν‖∇A
1/2
θ D

1/2
N,θw(s)‖2 ds ≤ rK1 + k1, (25)

∫ t

0

e−νλ1s/C ν‖∇A
1/2
θ D

1/2
N,θw(s)‖2 ds ≤ CK1

νλ1
+ k0, ∀C > 0 given. (26)

Remark 3.2. (i) From (24) we get that

t �→ ‖A
1/2
θ D

1/2
N,θw(t)‖ ∈ L∞(0,+∞).

Then, in view of (12), we obtain that

D
1/2
N,θw ∈ L∞(0,+∞;Hθ

σ)

and, in view of Lemma 2.8 with p = 1/2, we also deduce

w ∈ L∞(0,+∞;Hθ
σ).

(ii) From (25) we find that

t �→ ‖∇A
1/2
θ D

1/2
N,θw(t)‖ ∈ L2

loc(0,+∞),

which yields, in view of Lemma 2.8 and (12),

w ∈ L2
loc(0,+∞;H1+θ

σ ).

Proof. To be rigorous, in order to prove the estimates one should pass through
a sequence of Galerkin approximating solutions of (3)–(5), then pass to the
limit in the resulting estimates. In order to avoid overloading calculations, here,
we derive the estimates by arguing directly, at a formal level, on the solution
of the problem (3)–(5). We refer to [1] and [4] for a detailed discussion of the
Galerkin approximation technique.
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Let us prove (24). We test the Eq. (3) against AθDN,θw. Leibniz’s rule
and differentiation under the integral sign give

(∂tw, AθDN,θw) =
(
∂tA

1/2
θ D

1/2
N,θw, A

1/2
θ D

1/2
N,θw

)
=

1
2

d
dt

‖A
1/2
θ D

1/2
N,θw(t)‖2.

Since ∇ · w = 0, by using (93) we get
(
∇ ·

(
DN,θw ⊗ DN,θw

)
, AθDN,θw

)
= (∇ · (DN,θw ⊗ DN,θw) ,DN,θw) = 0;

by using that the operators A
1/2
θ , D

1/2
N,θ are self-adjoint, we get

−ν (Δw, AθDN,θw) = −ν (∇ · (∇w), AθDN,θw) = ν (∇w,∇AθDN,θw)

= ν
(
∇A

1/2
θ D

1/2
N,θw,∇A

1/2
θ D

1/2
N,θw

)
= ν‖∇A

1/2
θ D

1/2
N,θw‖2;

by using ∇ · w = 0 and integration by parts, we get

(∇q,AθDN,θw) = − (q,AθDN,θ(∇ · w)) = 0;

moreover

(f , AθDN,θw) = (f ,DN,θw) = (D1/2
N,θf ,D

1/2
N,θw).

Collecting the previous estimates we get

1
2

d
dt

‖A
1/2
θ D

1/2
N,θw(t)‖2 + ν‖∇A

1/2
θ D

1/2
N,θw(t)‖2 = (D1/2

N,θf ,D
1/2
N,θw(t)).

We estimate the right-hand side by (Λ = (−Δ)1/2)

|(D1/2
N,θf , D

1/2
N,θw)| = |(Λ−1A

−1/2
θ D

1/2
N,θf , ΛA

1/2
θ D

1/2
N,θw)|

≤ ‖Λ−1A
−1/2
θ D

1/2
N,θf‖‖ΛA

1/2
θ D

1/2
N,θw‖

≤
‖Λ−1A

−1/2
θ D

1/2
N,θf‖2

2ν
+

ν

2
‖ΛA

1/2
θ D

1/2
N,θw‖2

=
1
2

{
K1 + ν‖∇A

1/2
θ D

1/2
N,θw‖2

}

by Cauchy–Schwarz inequality and definition of K1. We notice that in the
estimate above we used that ‖Λw‖ = ‖∇w‖.2

We deduce
d
dt

‖A
1/2
θ D

1/2
N,θw‖2 + ν‖∇A

1/2
θ D

1/2
N,θw(t)‖2 ≤ K1 (27)

and, thanks to the Poincaré inequality,

2 For every w we compute by Parseval’s identity

‖∇w‖2 =

3∑

j=1

‖∂jw‖2 =

3∑

j=1

∑

k

| i kjŵk|2 =

3∑

j=1

∑

k

|kj |2|ŵk|2 =
∑

k

|k|2|ŵk|2 = ‖Λw‖2.
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d
dt

‖A
1/2
θ D

1/2
N,θw(t)‖2 + νλ1‖A

1/2
θ D

1/2
N,θw(t)‖2 ≤ K1;

an application of Gronwall’s Lemma yields

‖A
1/2
θ D

1/2
N,θw(t)‖2 ≤ k0 e−νλ1t +

K1

νλ1
(1 − e−νλ1t)

which gives (24) and in particular

‖A
1/2
θ D

1/2
N,θw(t)‖2 ≤ k1,

which implies (see Remark 3.2)

w ∈ L∞(0,∞;Hθ
σ).

Let us prove now (25). Integrating (27) over [t, t + r] and neglecting
‖A

1/2
θ D

1/2
N,θw(t + r)‖2 in the left-hand side, we get
∫ t+r

t

ν‖∇A
1/2
θ D

1/2
N,θw(s)‖2 ds ≤ rK1 + ‖A

1/2
θ D

1/2
N,θw(t)‖2

and using (24) yields (25).
Let us prove (26). Now, let us multiply (27) by e−νλ1t/C > 0 and integrate

in time over the interval [0, t]:
∫ t

0

e−νλ1s/C d
ds

‖A
1/2
θ D

1/2
N,θw(s)‖2 ds +

∫ t

0

e−νλ1s/C ν‖∇A
1/2
θ D

1/2
N,θw(s)‖2 dt

�
∫ t

0

K1 e−νλ1s/C ds =
CK1

νλ1

(
1 − e−νλ1t/C

)
� CK1

νλ1
.

Integrating by parts, the first integral in the left-hand side of the above in-
equality becomes

[
e−νλ1s/C‖A

1/2
θ D

1/2
N,θw(s)‖2

]t

0
+

νλ1

C

∫ t

0

e−νλ1s/C‖A
1/2
θ D

1/2
N,θw(s)‖2 ds,

hence we have

e−νλ1t/C‖A
1/2
θ D

1/2
N,θw(t)‖2 +

νλ1

C

∫ t

0

e−νλ1s/C‖A
1/2
θ D

1/2
N,θw(s)‖2 ds

+
∫ t

0

e−νλ1s/C ν‖∇A
1/2
θ D

1/2
N,θw(s)‖2 ds

� CK1

νλ1
+ k0;

neglecting the first two terms, which are positive quantities, provides (26). �

4. Existence of the global attractor

4.1. Some basic definitions

To make the exposition self-contained, we recall below some basic concepts
and results on invariant sets and attractors in dynamical systems that will be
used later on.
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Definition 4.1. Let (W,d) be a metric space. A semigroup on (W,d) is a family
of operators (S(t))t≥0, S(t) : W → W , such that

(i) S(0)w = w, for all w ∈ W ;
(ii) S(s)S(t)w = S(t + s)w for all w ∈ W and for every s, t ≥ 0.
A semigroup (S(t))t≥0 is said to be continuous (or a semiflow) if

S(t) : W → W

is a continuous operator from W to itself, for every t ≥ 0.

Definition 4.2. Let (S(t))t≥0 be a semigroup on (W,d). We say that the oper-
ators S(t) are uniformly compact for t large if for every bounded set B there
exists t0, which may depend on B, such that

⋃

t≥t0

S(t)B

is relatively compact in W .

Definition 4.3. We say that A ⊂ W is a global attractor for the semiflow if
(1) A is nonempty and compact;
(2) S(t)A = A for all t ≥ 0 (i.e. A is invariant);
(3) for all bounded sets B ⊂ W , we have

lim
t→+∞

δ (S(t)B,A) = 0,

where δ(X,Y ) := sup
x∈X

inf
y∈Y

d(x, y) is the Hausdorff semidistance between

the pair of sets X,Y ⊂ W .

In order to establish the existence of attractors, a useful concept is the
related concept of absorbing set.

Definition 4.4. Let B be a subset of W and U be an open set containing B.
We say that B is absorbing in U if

∀B0 ⊂ U , B0 bounded, ∃t1(B0) such that S(t)B0 ⊂ B, ∀ t ≥ t1.

When U = W in the preceding definition, then we simply say that B is an
absorbing set in W .

Remark 4.5. Let us observe that a global attractor for a semigroup (S(t))t≥0,
if it exists, is necessarily unique and coincides with the omega-limit of an
absorbing set. We remind that the omega-limit of a set B ⊂ W is defined by

ω(B) :=
⋂

s≥0

⋃

t≥s

S(t)B.

The following theorem on the existence of the global attractor is proven
in [19] (see also [17]).

Theorem 4.6. Let (W,d) be a metric space and (S(t))t≥0 a continuous semi-
group on W, such that S(t) is uniformly compact for t large. Assume moreover
that there exists a bounded absorbing set B ⊂ W . Then there exists the (unique)
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global attractor A for the semigroup (S(t))t≥0 , which is given by the omega-
limit of the set B, i.e.

A = ω(B) =
⋂

s≥0

⋃

t≥s

S(t)B.

4.2. Existence (proof of Theorem 1.1)

In this section, the theoretical results collected above will be applied to the
continuous semigroup (S(t))t≥0 on Hθ

σ defined by

∀ t ≥ 0, S(t) : Hθ
σ → Hθ

σ

w0 �→ S(t)w0 := w(t, ·), (28)

where w = w(t, ·) is the regular weak solution of the problem (3)–(5) with
initial data w0.

We notice that the continuity of the operators S(t) in (28) directly follows
from the definition of regular weak solution, see Sect. 2.2.

In order to prove the existence of the global attractor for the semigroup
(28), as an application of Theorem 4.6, we need the following lemmas. Observe
that, in this section, we provide the spaces Hθ

σ and H2θ
σ with the norms

‖w‖Hθ := ‖A
1/2
θ D

1/2
N,θw‖, ‖w‖H2θ := ‖AθD

1/2
N,θw‖,

which are respectively equivalent to the norms ‖w‖θ,2 and ‖w‖2θ,2 [see Re-
mark 2.4 and (16)].

Lemma 4.7. If θ ≥ 1/2 and B0 is a bounded subset of Hθ
σ, then there exists

t′ = t′(B0) > 0 such that, if w is a regular weak solution of (3)–(5) with
arbitrary initial datum w0 ∈ B0, then

‖A
1/2
θ D

1/2
N,θw(t)‖2 ≤ 2K1

νλ1
, ∀ t ≥ t′, (29)

where K1 is defined in (22) and λ1 is the first eigenvalue of the Laplace operator
−Δ. In particular, we have

lim sup
t→+∞

‖A
1/2
θ D

1/2
N,θw(t)‖2 ≤ 2K1

νλ1
=: r21.

Notice that the constant r1 is independent of the initial datum.

Proof. The estimate (29) follows at once from the estimate (24) by noticing
that the right-hand side of the latter estimate

g(t) := k0 e−νλ1t +
K1

νλ1
(1 − e−νλ1t) ≤ R2 e−νλ1t +

K1

νλ1
(1 − e−νλ1t)

tends to K1
νλ1

as t → +∞, where R = supw0∈B0
‖A

1/2
θ D

1/2
N,θw0‖; thus there

exists t′ > 0 such that g(t) ≤ 2K1
νλ1

for t ≥ t′. �

Remark 4.8. As a consequence of Lemma 4.7, see also (15), we obtain that
the ball

B1 = B1(0; r1) :=
{

w ∈ Hθ
σ : ‖A

1/2
θ D

1/2
N,θw‖ ≤ r1

}
(30)
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is a bounded absorbing set in Hθ
σ; indeed by Lemma 4.7 we get that for every

bounded set B0 ⊂ Hθ
σ we have

S(t)B0 ⊂ B1, ∀ t ≥ t′,

being t′ > 0 the time given in Lemma 4.7.

Lemma 4.9. Assume that f ∈ H−1, θ ≥ 1/2 and let B0 be a bounded subset of
Hθ

σ. There exist r2 = r2(ν, N, θ,K1, λ1) > 0 and a time t′′ = t′′(B0) > t′ such
that, if w is the regular weak solution of (3)–(5) with arbitrary initial datum
w0 ∈ B0, then

‖AθD
1/2
N,θw(t)‖2 ≤ r22, ∀ t ≥ t′′. (31)

In particular, we have

lim sup
t→+∞

‖AθD
1/2
N,θw(t)‖2 ≤ r22.

Proof. We use A2
θDN,θw as test function for the Eq. (3) (now formally, but

the procedure actually goes through the Galerkin approximation).
Thus, testing the Eq. (3) against A2

θDN,θw, and arguing as in the proof
of Theorem 3.1 we get
(
∂tw, A2

θDN,θw
)

=
1
2
∂t

(
AθD

1/2
N,θw, AθD

1/2
N,θw

)
=

1
2

d
dt

‖AθD
1/2
N,θw‖2;

(
∇ ·

(
DN,θw ⊗ DN,θw

)
, A2

θDN,θw
)

= (∇ · (DN,θw ⊗ DN,θw) , AθDN,θw) ;

using that −Δ = Λ2 and ∇ · w = 0

−ν
(
Δw, A2

θDN,θw
)

= ν
(
Λ2w, A2

θDN,θw
)

= ν
(
ΛAθD

1/2
N,θw,ΛAθD

1/2
N,θw

)

= ν‖ΛAθD
1/2
N,θw‖2 = ν‖∇AθD

1/2
N,θw‖2;

(
∇q,A2

θDN,θw
)

= −
(
q,A2

θDN,θ(∇ · w)
)

= 0.

Finally, we observe that
(
f , A2

θDN,θw
)

= (f , AθDN,θw)

=
(
D

1/2
N,θf , AθD

1/2
N,θw

)
=

(
Λ−1D

1/2
N,θf ,ΛAθD

1/2
N,θw

)

≤ ‖Λ−1D
1/2
N,θf‖ ‖ΛAθD

1/2
N,θw‖ = ‖Λ−1D

1/2
N,θf‖ ‖∇AθD

1/2
N,θw‖

≤
‖Λ−1D

1/2
N,θf‖2

ν
+

ν

4
‖∇AθD

1/2
N,θw‖2.

Collecting the previous inequalities we get
1
2

d
dt

‖AθD
1/2
N,θw‖2 + ν‖∇AθD

1/2
N,θw‖2

=
(
D

1/2
N,θf , AθD

1/2
N,θw

)
− (∇ · (DN,θw ⊗ DN,θw) , AθDN,θw) (32)

≤
‖Λ−1D

1/2
N,θf‖2

ν
+

ν

4
‖∇AθD

1/2
N,θw‖2

+| (∇ · (DN,θw ⊗ DN,θw) , AθDN,θw) |.
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Now we are going to make an estimate of the nonlinear term (∇ · (DN,θw⊗
DN,θw) , AθDN,θw) in the right-hand side of the above inequality. We firstly
make use of the formula (91) (recall that ∇ · w = 0) and Hölder’s inequality
to get

| (∇ · (DN,θw ⊗ DN,θw) , AθDN,θw) | = | ((DN,θw · ∇) DN,θw, AθDN,θw) |
≤ ‖DN,θw‖L3‖∇DN,θw‖L3‖AθDN,θw‖L3 .

Now we estimate each of the L3-factors appearing in the right-hand side of the
inequality above as follows.

The estimate of ‖DN,θw‖L3 . We apply (95) to the function u = DN,θw
to get

‖DN,θw‖L3 ≤ C‖A
1/2
θ DN,θw‖a‖DN,θw‖1−a. (33)

The estimate of ‖∇DN,θw‖L3 . We apply (96) to the function u = DN,θw to
get

‖∇DN,θw‖L3 ≤ C‖∇AθDN,θw‖b‖A
1/2
θ DN,θw‖1−b. (34)

The estimate of ‖AθDN,θw‖L3 . We apply (97) to the function u = DN,θw to
get

‖AθDN,θw‖L3 ≤ C‖∇AθDN,θw‖c‖A
1/2
θ DN,θw‖1−c. (35)

The exponents a, b, c involved in the estimates (33)–(35) above are those cal-
culated in (99).

Using (33)–(35), we get

| (∇ · (DN,θw ⊗ DN,θw) , AθDN,θw) | ≤ C‖A
1/2
θ DN,θw‖a‖DN,θw‖1−a

×‖∇AθDN,θw‖b‖A
1/2
θ DN,θw‖1−b‖∇AθDN,θw‖c‖A

1/2
θ DN,θw‖1−c

= C‖DN,θw‖1−a‖A
1/2
θ DN,θw‖2−b−c+a‖∇AθDN,θw‖b+c. (36)

1. We estimate the factor involving ‖DN,θw‖ by using (17) to get

‖DN,θw‖1−a ≤ ‖A1/2
θ D

1/2
N,θw‖1−a. (37)

2. We estimate the factor involving ‖A
1/2
θ DN,θw‖ by using (18) to get

‖A
1/2
θ DN,θw‖2−b−c+a ≤ (N + 1)

2−b−c+a
2 ‖A

1/2
θ D

1/2
N,θw‖2−b−c+a. (38)

3. Finally, we estimate the factor involving ‖∇AθDN,θw‖ by using (20) to get

‖∇AθDN,θw‖b+c ≤ (N + 1)
b+c
2 ‖∇AθD

1/2
N,θw‖b+c. (39)

From (36)–(39) we get
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| (∇ · (DN,θw ⊗ DN,θw) , AθDN,θw) |
≤ C(N + 1)1+

a
2 ‖A

1/2
θ D

1/2
N,θw‖3−b−c‖∇AθD

1/2
N,θw‖b+c

≤ ν

4
‖∇AθD

1/2
N,θw‖2 +

C

ν
b+c
2 p′ (N + 1)(1+

a
2 )p′

‖A
1/2
θ D

1/2
N,θw‖(3−b−c)p′

=
ν

4
‖∇AθD

1/2
N,θw‖2 +

C

ν
1
θ

(N + 1)(1+
1
4θ )

θ+1
θ ‖A

1/2
θ D

1/2
N,θw‖3+ 1

θ , (40)

where Young’s inequality has been used with p = 2
b+c = θ+1 and p′ = 2

2−b−c =
θ+1

θ is the conjugate exponent of p [note that p > 1, as b + c < 2 thanks to
(101)] and where we have computed [see (99)]

b + c

2
p′ =

1
θ
,

(
1 +

a

2

)
p′ =

(
1 +

1
4θ

)
θ + 1

θ
, (3 − b − c)p′ = 3 +

1
θ
.

Coming back to (32) and using (40) to estimate the nonlinear term in
the right-hand side, we obtain

1
2

d
dt

‖AθD
1/2
N,θw‖2 + ν‖∇AθD

1/2
N,θw‖2

≤
‖Λ−1D

1/2
N,θf‖2

ν
+

ν

2
‖∇AθD

1/2
N,θw‖2

+
C

ν
1
θ

(N + 1)(1+
1
4θ )

θ+1
θ ‖A

1/2
θ D

1/2
N,θw‖3+ 1

θ .

Absorbing on the left the term ν
2‖∇AθD

1/2
N,θw‖2 appearing in the right-hand

side of the estimate above, estimating ‖A
1/2
θ D

1/2
N,θw‖3+1/θ by (29) we then get

d
dt

‖AθD
1/2
N,θw‖2 + ν‖∇AθD

1/2
N,θw‖2

≤ 2
‖Λ−1D

1/2
N,θf‖2

ν
+

C

ν
1
θ

(N + 1)(1+
1
4θ )

θ+1
θ

(
2K1

νλ1

) 1
2 (3+

1
θ )

=: K2, ∀ t ≥ t′.

(41)

Finally, using Poincaré’s inequality

λ1‖AθD
1/2
N,θw‖2 ≤ ‖∇AθD

1/2
N,θw‖2

we get
d
dt

‖AθD
1/2
N,θw‖2 + νλ1‖AθD

1/2
N,θw‖2 ≤ K2, ∀ t ≥ t′. (42)

Then setting y(t) := ‖AθD
1/2
N,θw(t)‖2, (42) becomes

y′(t) + νλ1y(t) ≤ K2, ∀ t ≥ t′. (43)

Multiplying (43) by eνλ1t then gives
d
dt

(
eνλ1t y(t)

)
= eνλ1t y′(t) + νλ1 eνλ1t y(t) ≤ K2 eνλ1t, ∀ t ≥ t′,

hence integrating in time over (t′, t) for an arbitrary t > t′

y(t) ≤ e−νλ1(t−t′) y(t′) + K2
νλ1

(
1 − e−νλ1(t−t′)

)
, ∀ t ≥ t′. (44)
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Let us observe that the value K2 introduced in (41) does not depend on the
initial data in (5). Since the right-hand side of (44) tends to K2

νλ1
as t → +∞,

one can find a time t′′ > t′ such that

‖AθD
1/2
N,θw(t)‖2 = y(t) ≤ 2K2

νλ1
, ∀ t ≥ t′′.

This just provides an estimate of type (31), where we take r22 := 2K2
νλ1

(inde-
pendent of the initial data). This ends the proof. �

Remark 4.10. The result of Lemma 4.9 [see estimate (31)] tells that, as long
as θ ≥ 1/2, a regular weak solution w to problem (3)–(5) with arbitrary
initial datum w0 ∈ Hθ

σ gains some additional regularity, definitely in time,
with respect to the one originally required at the beginning of Sect. 2.2: from
the time t′′ > 0 on, the solution w belongs to H2θ

σ pointwise in time. Notice
that, as a direct consequence of the definition of regular weak solution, we
only deduce that w ∈ L2

loc(0,+∞;H2θ
σ ) (observing that 2θ ≤ θ + 1 as long as

θ ≤ 1).
Let us denote by B2 the ball in H2θ

σ :

B2 = B2(0; r2) :=
{

w ∈ H2θ
σ : ‖AθD

1/2
N,θw‖ ≤ r2

}
.

As a consequence of Lemma 4.9, see also the norm equivalence in (13) and
(16) (with p = 1/2), we deduce that for every bounded set B ⊂ Hθ

σ

⋃

t≥t′′
S(t)B ⊂ B2,

being t′′ = t′′(B) > 0 the time given in Lemma 4.9.
Since H2θ

σ is compactly imbedded in Hθ
σ, the ball B2 is a relatively com-

pact subset of Hθ
σ. Hence for every bounded set B ⊂ Hθ

σ

⋃

t≥t′′
S(t)B

is a relatively compact subset of Hθ
σ, which means, according to Definition 4.2,

that the operators S(t) are uniformly compact for large t.

In view of the results collected in the previous Lemmas 4.7, 4.9, and the
Remarks 4.8, 4.10, we may conclude that the semigroup (S(t))t≥0 of operators
defined in (28) enjoys all the assumptions required in Theorem 4.6. Hence
applying the result of that theorem, we deduce that a unique global attractor
A exists and is given by the omega-limit of the absorbing ball B1 in (30),
namely

A = ω(B1).

We have thus proved Theorem 1.1.
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5. Differentiability

In this section we study the differentiability of the semigroup S(t) : Hθ
σ → Hθ

σ,
given by S(t)w0 = w(t, ·) [see (28)], with respect to the initial datum w0. The
reason is that, in the subsequent section, we will investigate the Hausdorff
and fractal dimensions of the global attractor A: the differentiability of the
semigroup S(t) is a sufficient condition in order to prove that the Hausdorff
dimension of the attractor A is finite and to find an appropriate estimate of
its value (see [19, Theorem 3.1]).

Consider the following systems of equations:

∂tw − νΔw + ∇q = f − ∇ · DN,θw ⊗ DN,θw,

∇ · w = 0, w(0) = w0;

∂tv − νΔv + ∇q1 = f − ∇ · DN,θv ⊗ DN,θv,

∇ · v = 0, v(0) = v0; (45)

∂tW − νΔW + ∇Q = − (DN,θW · ∇) DN,θw − (DN,θw · ∇) DN,θW

∇ · W = 0, W (0) = w0 − v0,

and set η := w − v − W . In order to prove the Fréchet differentiability with
respect to the initial datum of S(t) : Hθ

σ → Hθ
σ, it is sufficient to prove that

‖A
1/2
θ D

1/2
N,θη(t)‖ ≤ C‖A

1/2
θ D

1/2
N,θ(w0 − v0)‖2 (46)

for each t ∈ [0, T ).

Lemma 5.1. Assume θ ≥ 1/2. Given T > 0 and defined V := w − v, there
exists C̃ = C̃(T,N, θ,K1) > 0 such that

‖A
1/2
θ D

1/2
N,θV (t)‖2 + ν

∫ t

0

‖∇A
1/2
θ D

1/2
N,θV (s)‖2 d s ≤ C̃‖A

1/2
θ D

1/2
N,θV (0)‖2

for each t ∈ [0, T ).

Proof. The equations satisfied by V are

∂tV − νΔV + ∇(q − q1) = (DN,θv · ∇) DN,θv − (DN,θw · ∇) DN,θw

= (DN,θV · ∇) DN,θV − (DN,θV · ∇) DN,θw − (DN,θw · ∇) DN,θV (47)
∇ · V = 0, V (0) = w0 − v0.

Testing (47) by AθDN,θV and, recalling that ((u · ∇)V ,V ) = 0 provided that
∇ · u = 0, we obtain [see formula (92) in Lemma A.1]

1
2

d
dt

‖A
1/2
θ D

1/2
N,θV ‖2 + ν‖∇A

1/2
θ D

1/2
N,θV ‖2 = − ((DN,θV · ∇) DN,θw,DN,θV )

= ((DN,θV · ∇) DN,θV ,DN,θw) . (48)

We estimate

|((DN,θV · ∇) DN,θV ,DN,θw)| ≤ C‖DN,θV ‖L3‖∇DN,θV ‖L3‖DN,θw‖L3 .

(49)
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We estimate the L3-norms in (49) by using the inequality (95) to get, for
a = 1

2θ ≤ 1,

|((DN,θV · ∇) DN,θV ,DN,θw)|
≤ ‖DN,θV ‖1−a‖A

1/2
θ DN,θV ‖a‖∇DN,θV ‖1−a‖∇A

1/2
θ DN,θV ‖a

×‖DN,θw‖1−a‖A
1/2
θ DN,θw‖a.

To bound the factors involving the norms ‖DN,θw‖, ‖DN,θV ‖ and ‖∇DN,θV ‖
in the right-hand side above, we apply the estimate (17) respectively to w, V

and ∇V ; to bound the factors involving the norms ‖A
1/2
θ DN,θw‖,

‖A
1/2
θ DN,θV ‖ and ‖∇A

1/2
θ DN,θV ‖, we apply the estimates (18) and (19) to

w and V . Thus, from Young’s inequality, we obtain

|((DN,θV · ∇) DN,θV ,DN,θw)|
≤ C(N + 1)

3
2a‖A

1/2
θ D

1/2
N,θV ‖‖∇A

1/2
θ D

1/2
N,θV ‖‖A1/2

θ D
1/2
N,θw‖

≤ ν

2
‖∇A

1/2
θ D

1/2
N,θV ‖2 +

C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θV ‖2. (50)

Coming back to (48) and using (50) we get

1
2

d
dt

‖A
1/2
θ D

1/2
N,θV ‖2 + ν‖∇A

1/2
θ D

1/2
N,θV ‖2

≤ ν

2
‖∇A

1/2
θ D

1/2
N,θV ‖2 +

C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θV ‖2.

Absorbing in the left-hand side the term ν
2‖∇A

1/2
θ D

1/2
N,θV ‖2 we find

1
2

d
dt

‖A
1/2
θ D

1/2
N,θV ‖2 +

ν

2
‖∇A

1/2
θ D

1/2
N,θV ‖2

≤ C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θV ‖2

≤ C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θV ‖2, (51)

where we have used Theorem 3.1, see (24) in order to bound ‖A
1/2
θ D

1/2
N,θw‖2

with a suitable constant C.
We neglect in the left-hand side the term ν

2‖∇A
1/2
θ D

1/2
N,θV ‖2 and we apply

Gronwall’s Lemma to obtain, for all t ∈ [0, T ),

‖A
1/2
θ D

1/2
N,θV (t)‖2 ≤ ‖A1/2

θ D
1/2
N,θV (0)‖2 e

∫ t
0

C
ν (N+1)3ads

≤ ‖A1/2
θ D

1/2
N,θV (0)‖2 eCT . (52)
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Coming back to (51) and integrating in time over (0, t) and using again (52),
we get

‖A
1/2
θ D

1/2
N,θV (t)‖2 + ν

∫ t

0

‖∇A
1/2
θ D

1/2
N,θV (s)‖2 ds

≤ ‖A1/2
θ D

1/2
N,θV (0)‖2 +

C

ν
(N + 1)3a

∫ t

0

‖A
1/2
θ D

1/2
N,θV (s)‖2 ds

≤ ‖A1/2
θ D

1/2
N,θV (0)‖2 +

C

ν
(N + 1)3a eCT ‖A

1/2
θ D

1/2
N,θV (0)‖2T

= C̃‖A
1/2
θ D

1/2
N,θV (0)‖2,

where C̃ = 1 +
CT

ν
(N + 1)3a eCT . �

We are going to prove the announced estimate (46).

Lemma 5.2. Assume θ ≥ 1/2. There exists a constant C̃1 = C̃1(T,N, θ,K1) >
0 such that, for each t ∈ [0, T )

‖A
1/2
θ D

1/2
N,θη(t)‖ ≤ C̃1‖A

1/2
θ D

1/2
N,θ(w0 − v0)‖2.

Proof. The equations satisfied by η are

∂tη − νΔη + ∇Q1

= (DN,θV · ∇) DN,θV − (DN,θη · ∇) DN,θw − (DN,θw · ∇) DN,θη (53)
∇ · η = 0, η(0) = 0,

for a suitable Q1 depending on q, q1 and Q in the Eq. (45).
Testing (53) by AθDN,θη and recalling that ((DN,θw · ∇) DN,θη,DN,θη)

= 0 since ∇ · w = 0, we obtain

1
2

d
dt

‖A
1/2
θ D

1/2
N,θη‖2 + ν‖∇A

1/2
θ D

1/2
N,θη‖2

= ((DN,θV · ∇) DN,θV ,DN,θη) − ((DN,θη · ∇) DN,θw,DN,θη)
= I + II. (54)

Let us firstly estimate II. Observing that from Lemma A.1

II = ((DN,θη · ∇) DN,θη,DN,θw) ,

we apply the same arguments used to provide the estimate (50), to get

|II| ≤ ν

2
‖∇A

1/2
θ D

1/2
N,θη‖2 +

C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θη‖2,

(55)

where a is the same value involved by the Gagliardo–Nirenberg inequality (95).
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As regards to I, we use once again Hölder’s inequality, the estimates (95),
(17), (18) and Young’s inequality to get

|I| ≤ ‖DN,θV ‖L3‖∇DN,θV ‖L3‖DN,θη‖L3

≤ ‖DN,θV ‖1−a‖A
1/2
θ DN,θV ‖a‖∇DN,θV ‖1−a‖∇A

1/2
θ DN,θV ‖a

×‖DN,θη‖1−a‖A
1/2
θ DN,θη‖a

≤ C(N + 1)
3
2a‖A

1/2
θ D

1/2
N,θV ‖‖∇A

1/2
θ D

1/2
N,θV ‖‖A1/2

θ D
1/2
N,θη‖

≤ Cν‖A
1/2
θ D

1/2
N,θV ‖2‖∇A

1/2
θ D

1/2
N,θV ‖2 +

C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θη‖2. (56)

Coming back to (54), using (55) and (56), we get
1
2

d
dt

‖A
1/2
θ D

1/2
N,θη‖2 + ν‖∇A

1/2
θ D

1/2
N,θη‖2

≤ ν

2
‖∇A

1/2
θ D

1/2
N,θη‖2 +

C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θη‖2

+Cν‖A
1/2
θ D

1/2
N,θV ‖2‖∇A

1/2
θ D

1/2
N,θV ‖2 +

C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θη‖2

=
ν

2
‖∇A

1/2
θ D

1/2
N,θη‖2 +

C

ν
(N + 1)3a

(
‖A

1/2
θ D

1/2
N,θw‖2 + 1

)
‖A

1/2
θ D

1/2
N,θη‖2

+Cν‖A
1/2
θ D

1/2
N,θV ‖2‖∇A

1/2
θ D

1/2
N,θV ‖2

≤ ν

2
‖∇A

1/2
θ D

1/2
N,θη‖2 +

C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θη‖2

+C̃ν‖A
1/2
θ D

1/2
N,θV (0)‖2‖∇A

1/2
θ D

1/2
N,θV ‖2, (57)

where we have used Theorem 3.1; see (24) in order to bound ‖A
1/2
θ D

1/2
N,θw‖2

with a suitable constant C and Lemma 5.1 to bound ‖A
1/2
θ D

1/2
N,θV ‖2 with

C̃‖A
1/2
θ D

1/2
N,θV (0)‖2.

Absorbing ν
2‖∇A

1/2
θ D

1/2
N,θη‖2 in the left-hand side of (57) we get

1

2

d

dt
‖A

1/2
θ D

1/2
N,θη‖2 +

ν

2
‖∇A

1/2
θ D

1/2
N,θη‖2

≤ C

ν
(N + 1)3a‖A

1/2
θ D

1/2
N,θη‖2 + C̃ν‖A

1/2
θ D

1/2
N,θV (0)‖2‖∇A

1/2
θ D

1/2
N,θV ‖2.

(58)

Neglecting ν
2‖∇A

1/2
θ D

1/2
N,θη‖2 in the left-hand side of (58) and integrating in

time over (0, t) (recall that η(0) = 0) we get

‖A
1/2
θ D

1/2
N,θη(t)‖2 ≤ C

ν
(N + 1)3a

∫ t

0

‖A
1/2
θ D

1/2
N,θη(s)‖2 ds

+C̃‖A
1/2
θ D

1/2
N,θV (0)‖2ν

∫ t

0

‖∇A
1/2
θ D

1/2
N,θV (s)‖2 ds

≤ CN

∫ t

0

‖A
1/2
θ D

1/2
N,θη(s)‖2 ds + C̃2‖A

1/2
θ D

1/2
N,θV (0)‖4,

with CN := C
ν (N + 1)3a and in view of Lemma 5.1.
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Applying then Gronwall’s lemma to the last inequality we get for t ∈
[0, T )

‖A
1/2
θ D

1/2
N,θη(t)‖2 ≤ C̃2‖A

1/2
θ D

1/2
N,θV (0)‖4 eCN t ≤ C̃1‖A

1/2
θ D

1/2
N,θV (0)‖4,

where C̃1 := C̃2 eCN T . This ends the proof. �

6. Estimate for the global attractor dimension

First, we linearize Eq. (3), projected onto the space of divergence free functions,
about a solution w. The linear equation satisfied by a perturbation δw is

∂tδw + ∇ ·
(
DN,θw ⊗ DN,θδw

)
+ ∇ ·

(
DN,θδw ⊗ DN,θw

)
− νΔδw = 0,

that is to say

d
dt

δw + T (t)δw = 0, (59)

where

T (t) = −νΔ + ∇ ·
(
DN,θw ⊗ (·)

)
+ ∇ ·

(
(·) ⊗ DN,θw

)
. (60)

If δwj,0, j = 1, . . . , M , are M linearly independent functions in Hθ
σ, we de-

note by δwj(t) the corresponding solutions to (59), computed at time t, with
δwj(0) = δwj,0. We set E = { δw1(t), . . . , δwM (t) } and denote by PM (t) the
orthogonal projection of Hθ

σ onto the span of E, denoted hereafter by 〈E〉.
In this section we provide Hθ

σ with the inner product

[u , v] :=
(
A

1/2
θ D

1/2
N,θu , A

1/2
θ D

1/2
N,θv

)
(61)

and introduce the operator TM (t) defined by

TM (t) = Trace (PM (t) ◦ T (t) ◦ PM (t)) .

Let {ϕj(t)}M
j=1 be an orthonormal (with respect to [·, ·] defined in (61)) basis

of 〈E〉 = PM (t)Hθ
σ, so that

[ϕi(t),ϕj(t)] = δij (Kronecker symbol), i, j = 1, . . . , M. (62)

Using (62) and (60) we get

TM (t) =
M∑

i=1

[T (t)ϕi(t),ϕi(t)]

=
M∑

i=1

[
−νΔϕi(t) + ∇ ·

(
DN,θw ⊗ DN,θϕi(t)

)

+∇ ·
(
DN,θϕi(t) ⊗ DN,θw

)
,ϕi(t)

]
. (63)
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According to (61) we have that

[−νΔϕi(t),ϕi(t)] =
(
−νΔA

1/2
θ D

1/2
N,θϕi(t), A

1/2
θ D

1/2
N,θϕi(t)

)

=
(
ν∇A

1/2
θ D

1/2
N,θϕi(t),∇A

1/2
θ D

1/2
N,θϕi(t)

)
= ν‖∇A

1/2
θ D

1/2
N,θϕi(t)‖2, (64)

[
∇ ·

(
DN,θw ⊗ DN,θϕi(t)

)
,ϕi(t)

]

=
(

A
1/2
θ D

1/2
N,θ∇ ·

(
DN,θw ⊗ DN,θϕi(t)

)
, A

1/2
θ D

1/2
N,θϕi(t)

)

=
(

Aθ∇ ·
(
DN,θw ⊗ DN,θϕi(t)

)
,DN,θϕi(t)

)

=
(
∇ ·

(
DN,θw ⊗ DN,θϕi(t)

)
,DN,θϕi(t)

)

= ((DN,θϕi(t) · ∇)DN,θw,DN,θϕi(t)) , (65)
[
∇ ·

(
DN,θϕi(t) ⊗ DN,θw

)
,ϕi(t)

]

=
(

A
1/2
θ D

1/2
N,θ∇ ·

(
DN,θϕi(t) ⊗ DN,θw

)
, A

1/2
θ D

1/2
N,θϕi(t)

)

=
(

Aθ∇ ·
(
DN,θϕi(t) ⊗ DN,θw

)
,DN,θϕi(t)

)

=
(
∇ ·

(
DN,θϕi(t) ⊗ DN,θw

)
,DN,θϕi(t)

)
= 0, (66)

where integration by parts and formulas (91), (93) have been used in the
calculations above (remember that ∇ · w = ∇ · ϕi = 0).

Substituting (64)–(66) into (63) we get

TM (t) =
M∑

i=1

ν‖∇A
1/2
θ D

1/2
N,θϕi(t)‖2 +

M∑

i=1

((DN,θϕi(t) · ∇)DN,θw,DN,θϕi(t))

= QM (t) + RM (t). (67)

The next goal is to prove that

XM := lim inf
T→+∞

1
T

∫ T

0

TM (t) dt > 0, (68)

provided that M is taken sufficiently large, and find an estimate for M (see
the next Lemma 6.5). In fact (see [19, Sect. 3.4] and [10]) if M is sufficiently
large such that (68) is satisfied, then M is an upper bound for the Hausdorff
dimension dH(A) and the fractal dimension dF(A) of the global attractor A:

dH(A) ≤ dF(A) ≤ M.

To get this result, we need to provide useful estimates for QM (t) and RM (t)
in the representation (67) of TM (t).

Lemma 6.1. Assume that 1/2 ≤ θ ≤ 1. There exists a numerical constant
C > 0 such that



Vol. 22 (2015) Global attractor for the Navier 835

QM (t) ≥ νλ1M
5/3

C
, (69)

where λ1 = L−2 is the first eigenvalue of −Δ.

Proof. We use the Lieb–Thirring inequality in Lemma A.5 for

θj(x) = A
1/2
θ D

1/2
N,θϕj(t,x).

By (62) it follows that {θj}M
j=1 defined above is an orthonormal set in L2

σ(T3).
For the functions θj above, the right-hand side of Lieb–Thirring’s inequality
(105) becomes

M∑

j=1

∫

T3
∇A

1/2
θ D

1/2
N,θϕj(t,x) : ∇A

1/2
θ D

1/2
N,θϕj(t,x) dx

=
M∑

j=1

∫

T3
|∇A

1/2
θ D

1/2
N,θϕj(t,x)|2 dx =

M∑

j=1

‖∇A
1/2
θ D

1/2
N,θϕj(t)‖2

=
QM (t)

ν
.

As regards to the left-hand side of (105) we get by the use of Jensen’s inequality

∫

T3

⎛

⎝
M∑

j=1

|A1/2
θ D

1/2
N,θϕj(t,x)|2

⎞

⎠
5/3

dx

≥ 1
|T3|2/3

⎛

⎝
∫

T3

M∑

j=1

|A1/2
θ D

1/2
N,θϕj(t,x)|2 dx

⎞

⎠
5/3

=
1

|T3|2/3

⎛

⎝
M∑

j=1

‖A
1/2
θ D

1/2
N,θϕj(t)‖2

⎞

⎠
5/3

=
1

|T3|2/3
M5/3, (70)

where |T3| = (2πL)3 is the Lebesgue measure of the torus T
3, and where we

used that ‖A
1/2
θ D

1/2
N,θϕj(t)‖ = 1 (because of the orthonormality).

The estimate (69) comes from combining Lieb–Thirring’s inequality with
the estimate in (70). �

Remark 6.2. We notice that the same estimate (69) could be obtained by the
following alternative argument. The asymptotic behavior of the eigenvalues of
the operator −Δ is such that (see [10,19])

λi ≥ λ1i
2/3

C
, i = 1, 2, . . . and QM (t) ≥ ν

M∑

i=1

λi.

Hence QM (t) ≥ νλ1M
5/3

C
since, by induction, one can easily prove that

5
3

M∑
i=1

i2/3 ≥ M5/3.
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Lemma 6.3. Assume that 1/2 < θ ≤ 1 and let σ = σ(θ) be defined as in (94).
Then the following estimate holds

|RM (t)| ≤ QM (t)
2

+ CC1M
(1−σ)s‖∇A

1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θw‖2μ, (71)

where

C1 :=
(

(N + 1)σ+1/2L3/q

α2σθνσ(3/2−θ)

)s

, (72)

for a suitable numerical constant C > 0, and

μ :=
−1 + 3σ − 2σθ

2 − 3σ + 2σθ
, q :=

6
2(1 + 2σ)θ − 1

, s :=
2

2 − 3σ + 2σθ
. (73)

Proof. For a given θ, such that 1/2 < θ ≤ 1, let σ = σ(θ) be fixed as in the
statement above. The Cauchy–Schwarz and the Hölder inequalities together
with (17) give

|RM (t)| ≤
∫

T3

∣∣∣∣∣

M∑

i=1

(
DN,θϕi(t) · ∇

)
DN,θw · DN,θϕi(t)

∣∣∣∣∣ dx

≤
∫

T3

M∑

i=1

|DN,θϕi(t)|2|∇DN,θw| dx

≤
∫

T3

(
M∑

i=1

|DN,θϕi(t)|2
)σ ( M∑

i=1

|DN,θϕi(t)|2
)1−σ

|∇DN,θw| dx

≤
∥∥∥∥∥

(
M∑

i=1

|DN,θϕi(t)|2
)σ∥∥∥∥∥

L∞

∥∥∥∥∥∥

(
M∑

i=1

|DN,θϕi(t)|2
)1−σ

∥∥∥∥∥∥
L

1
1−σ

×‖∇DN,θw‖Lp |T3|1/q

≤ C

∥∥∥∥∥

M∑

i=1

|DN,θϕi(t)|2
∥∥∥∥∥

σ

L∞

(
M∑

i=1

‖DN,θϕi(t)‖2
)1−σ

‖∇DN,θw‖LpL3/q

≤ C

∥∥∥∥∥

M∑

i=1

|DN,θϕi(t)|2
∥∥∥∥∥

σ

L∞

(
M∑

i=1

‖A
1/2
θ D

1/2
N,θϕi(t)‖2

)1−σ

×‖∇DN,θw‖LpL3/q

= C

∥∥∥∥∥

M∑

i=1

|DN,θϕi(t)|2
∥∥∥∥∥

σ

L∞

M1−σ‖∇DN,θw‖LpL3/q, (74)

where p is the exponent defined by (100), through σ and θ, while q is given in
(73) and makes satisfied the needed identity

1
p

+
1
q

= σ.
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It is understood that the splitting of
M∑
i=1

|DN,θϕi(t)|2 into the σ and (1 − σ)-

powers becomes trivial as long as σ = 1 [when 2/3 ≤ θ ≤ 1, cf. (94)]. In this
case L∞ and L

1
1−σ -norms of those two powers “collapse” into the L∞-norm of

the whole
M∑
i=1

|DN,θϕi(t)|2 (thus M1−σ in the last expression above reduces to

1), while p and q become the conjugate exponents

p =
6

7 − 6θ
, q =

6
6θ − 1

.

Now, we use Lemma A.4 in the Appendix to estimate the L∞-norm in the
right-hand side of (74) by

∥∥∥∥∥

M∑

i=1

|DN,θϕi(t)|2
∥∥∥∥∥

L∞

≤ C

α2θ
(N + 1)

(
QM (t)

ν

)3/2−θ

, (75)

for a suitable numerical constant C. It is just the application of the above
inequality (see Lemma A.3) that requires to exclude the border value θ = 1/2
from our subsequent considerations.

By the use of (98) in Lemma A.2 in the Appendix, we estimate the Lp-
norm of ∇DN,θw as

‖∇DN,θw‖Lp ≤ C‖∇A
1/2
θ DN,θw‖β‖A

1/2
θ DN,θw‖1−β ,

with β given in (100). Then we apply estimates (18), (19) to get

‖∇DN,θw‖Lp ≤ C(N + 1)1/2‖∇A
1/2
θ D

1/2
N,θw‖β‖A

1/2
θ D

1/2
N,θw‖1−β . (76)

From (74), (75) and (76) we find

|RM (t)|

≤ C(N + 1)σ+1/2L3/qM1−σ

α2σθ

(
QM (t)

ν

)σ(3/2−θ)

‖∇A
1/2
θ D

1/2
N,θw‖β

×‖A1/2
θ D

1/2
N,θw‖1−β .

Now, we apply to the last expression above the Young inequality ab ≤ ar

r + bs

s ,
where the conjugate exponents r = 1

σ(3/2−θ) = 2
σ(3−2θ) and s = 1

1−σ(3/2−θ) =
2

2−3σ+2σθ are chosen in such a way that ar

r = QM (t)
2 ; then we get

|RM (t)| ≤ QM (t)
2

+ C

(
(N + 1)σ+1/2L3/qM1−σ

α2σθνσ(3/2−θ)

)s

‖∇A
1/2
θ D

1/2
N,θw‖sβ

×‖A1/2
θ D

1/2
N,θw‖s(1−β),

which gives the desired estimate in view of (72) and since sβ = 2, s(1 − β) =
2μ. �
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Remark 6.4. According to (94) one explicitly derives the following values of
the exponent μ involved in the estimate (71) [see (73)]

μ =

{
θ

1−θ , if 1/2 ≤ θ < 2/3,
2(1−θ)
2θ−1 , if 2/3 ≤ θ ≤ 1.

(77)

In particular it follows that

1 ≤ μ < 2 as 1/2 ≤ θ < 2/3 and 0 ≤ μ ≤ 2 as 2/3 ≤ θ ≤ 1.

In view of the subsequent analysis, it is also worth noticing that because of
(94) and (73) one has

0 < (1 − σ)s ≤ 1 as 1/2 ≤ θ < 2/3 and (1 − σ)s = 0 as 2/3 ≤ θ ≤ 1.

Let us prove now that (68) holds. To this end, we are going to prove that
the following lemma holds true.

Lemma 6.5. Assume that 1/2 < θ ≤ 1. Then

XM = lim inf
T→+∞

1
T

∫ T

0

TM (t) dt ≥ νλ1M
5/3

C
− M (1−σ)sC1C

K1+μ
1

ν1+μλμ
1

, (78)

where C1 is defined in (72).

Proof. Let us start by the representation formula (67). In view of (71), we
have the following estimate

TM (t) = QM (t) + RM (t) ≥ QM (t) − |RM (t)|

≥ QM (t)
2

− CC1M
(1−σ)s‖∇A

1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θw‖2μ,

where the exponents σ, μ and s are given in (94) and (73). We recall that the
use of estimate (71) requires θ > 1/2. We calculate

XM = lim inf
T→+∞

1
T

∫ T

0

TM (t) dt

≥ lim inf
T→+∞

1
T

∫ T

0

QM (t)
2

dt

−CC1M
(1−σ)s lim sup

T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θw‖2μ dt

≥ νλ1M
5/3

C
− CC1M

(1−σ)s lim sup
T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2

×‖A1/2
θ D

1/2
N,θw‖2μ dt (79)

in view of (69). It remains to produce an estimate for the limit superior in the
previous inequality. We will show (see the next Lemma 6.7) that the following
estimate

lim sup
T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θw‖2μ dt ≤ C

K1+μ
1

ν1+μλμ
1
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holds true. We use now the estimate above in (79) to find

XM = lim inf
T→+∞

1
T

∫ T

0

TM (t) dt

≥ νλ1M
5/3

C
− M (1−σ)sC1C

K1+μ
1

ν1+μλμ
1

,

which is just the estimate (78) of the lemma. �
Remark 6.6. The estimate (78) implies XM to be positive for M > 0 large
enough, since the exponent (1 − σ)s of the power of M in the second term of
the right-hand side above lies in the interval (0, 1] as long as 1/2 < θ ≤ 1, see
Remark 6.4.

Lemma 6.7. Assume that 1/2 ≤ θ ≤ 1. There exists a suitable positive constant
C such that

lim sup
T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θw‖2μ dt ≤ C

K1+μ
1

ν1+μλμ
1

, (80)

where K1 is defined in (22).

Proof. From estimate (24) we find in particular

‖A
1/2
θ D

1/2
N,θw(t)‖2 ≤ k0 e−νλ1t +

K1

νλ1

from which

‖A
1/2
θ D

1/2
N,θw(t)‖2μ ≤ C

{
kμ
0 e−νμλ1t +

(
K1

νλ1

)μ}
.

We note that the constant C in the inequality above can be chosen to be
independent of μ, since 0 ≤ μ ≤ 2 as 1/2 ≤ θ ≤ 1, see Remark 6.4. Hence

lim sup
T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2‖A

1/2
θ D

1/2
N,θw‖2μ dt

≤ Ckμ
0 lim sup

T→+∞

1
T

∫ T

0

e−νμλ1t‖∇A
1/2
θ D

1/2
N,θw‖2 dt (81)

+C

(
K1

νλ1

)μ

lim sup
T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2 dt = I1 + I2.

To estimate I1 we use (26) (with the constant C in (26) equal to 1
μ ) to find

∫ T

0

e−νλ1μt‖∇A
1/2
θ D

1/2
N,θw(s)‖2 ds ≤ K1

μν2λ1
+

k0
ν

,

k0, K1 being defined in (21), (22), hence

I1 = Ckμ
0 lim sup

T→+∞

1
T

∫ T

0

e−νμλ1t‖∇A
1/2
θ D

1/2
N,θw(t)‖2 dt = 0. (82)

To estimate I2, we use (25) with t = 0, r = T to find
∫ T

0

‖∇A
1/2
θ D

1/2
N,θw(t)‖2 dt ≤ TK1 + k1

ν
,
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where k1 is defined in (23), from which

I2 = C

(
K1

νλ1

)μ

lim sup
T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2 dt

≤ C

(
K1

νλ1

)μ

lim sup
T→+∞

1
T

TK1 + k1
ν

= C
K1+μ

1

ν1+μλμ
1

. (83)

Then (80) follows from (81), (82) and (83). �

6.1. Estimate by the Grashoff number (proof of Theorem 1.2)

Using (78), let us firstly derive an estimate of M in terms of the Grashoff
number G defined in (6). Comparing G with K1 defined in (22), through the
Poincaré inequality (where we use that λ1 = L−2), we get

K1 =
‖Λ−1A

−1/2
θ D

1/2
N,θf‖2

ν
≤

λ−1
1 ‖A

−1/2
θ D

1/2
N,θf‖2

ν
=

L2‖A
−1/2
θ D

1/2
N,θf‖2

ν

=
ν3G2

L
. (84)

Using (84) in (78) then gives

XM ≥ νλ1M
5/3

C
− M (1−σ)sC1C

ν2+2μG2+2μ

L1+μλμ
1

=
νL−2M5/3

C
− M (1−σ)sC1Cν2+2μG2+2μLμ−1,

from which XM > 0 holds true provided that

M > C
(
C1ν

1+2μL1+μ
) 3

5+3(σ−1)s G
6+6μ

5+3(σ−1)s .

6.2. Estimate by mean dissipation length (proof of Theorem 1.3)

In order to get the desired estimate, we are going to produce an estimate from
below of XM , defined in (68), different from the one provided by Lemma 6.5.

We will prove the following result.

Lemma 6.8. Assume that 1/2 < θ ≤ 1. Then the following estimate

XM ≥ νM5/3

CL2
− C(N + 1)2γM2(1−γ)L3+6/qν

α4γθ	4d
(85)

holds true, where it is set

γ =
1

3 − 2θ
and

1
2

+
1
q

= γ. (86)

Proof. In view of (67) we firstly get an estimate of RM (t), by arguing exactly
as we did to obtain the estimate (74) in the proof of Lemma 6.3, but making
a different choice of the exponents; namely, by the Hölder inequality and (17)
we get for each 1/2 < θ ≤ 1
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|RM (t)| ≤
∫

T3

(
M∑

i=1

|DN,θϕi(t)|2
)γ ( M∑

i=1

|DN,θϕi(t)|2
)1−γ

|∇DN,θw| dx

≤
∥∥∥∥∥

(
M∑

i=1

|DN,θϕi(t)|2
)γ∥∥∥∥∥

L∞

∥∥∥∥∥∥

(
M∑

i=1

|DN,θϕi(t)|2
)1−γ

∥∥∥∥∥∥
L

1
1−γ

×‖∇DN,θw‖ |T3|1/q

≤ C

∥∥∥∥∥

M∑

i=1

|DN,θϕi(t)|2
∥∥∥∥∥

γ

L∞

(
M∑

i=1

‖DN,θϕi(t)‖2
)1−γ

‖∇DN,θw‖L3/q

≤ C

∥∥∥∥∥

M∑

i=1

|DN,θϕi(t)|2
∥∥∥∥∥

γ

L∞

(
M∑

i=1

‖A
1/2
θ D

1/2
N,θϕi(t)‖2

)1−γ

×‖∇DN,θw‖L3/q

= C

∥∥∥∥∥

M∑

i=1

|DN,θϕi(t)|2
∥∥∥∥∥

γ

L∞

M1−γ‖∇DN,θw‖L3/q, (87)

where the exponents γ and q are defined by means of (86). Notice that the
second relation in (86) is just the needed constraint in order that the Hölder
inequality applies with the exponents γ and q above. Notice also that γ = 1

3−2θ

is an increasing function of θ, hence

1/2 < γ ≤ 1, as long as 1/2 < θ ≤ 1. (88)

Since in particular γ = 1, as long as θ = 1, the same observation about the
estimate (75) applies to the estimate above when θ = 1. In this case the
splitting of

∑M
i=1 |DN,θϕi(t)|2 into the γ and (1 − γ)-powers becomes trivial:

the L∞ and L
1

1−γ -norms of those two powers reduce to the L∞-norm of the
whole

∑M
i=1 |DN,θϕi(t)|2 (hence M1−γ = 1) and q = 2. An explicit calculation

gives that

q =
2(3 − 2θ)
2θ − 1

,

for arbitrary 1/2 < θ ≤ 1.
Using (17) and (75) to estimate respectively the L2-norm of ∇DN,θw

and the L∞-norm of
M∑
i=1

|DN,θϕi(t)|2 in the right-hand side of (87), we obtain

|RM (t)| ≤ C(N + 1)γ

α2γθνγ(3/2−θ)
(QM (t))γ(3/2−θ)

M1−γ‖∇A
1/2
θ D

1/2
N,θw‖L3/q.

Again, as done in the proof of Lemma 6.3 we apply to the last expression
above the Young inequality ab ≤ ar

r + bs

s , where the conjugate exponents
r = 1

γ(3/2−θ) = 2
γ(3−2θ) and s = 1

1−γ(3/2−θ) = 2
2−3γ+2γθ are chosen in such a

way that ar

r = QM (t)
2 ; then we get
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|RM (t)| ≤ QM (t)
2

+ C
(N + 1)sγL3s/qMs(1−γ)

α2sγθνsγ(3/2−θ)
‖∇A

1/2
θ D

1/2
N,θw‖s. (89)

Now the crucial point is to observe that, with the choice of γ made in (86), we
get γ(3 − 2θ) = 1, thus s = r = 2. Hence, the estimate (89) becomes

|RM (t)| ≤ QM (t)
2

+ C
(N + 1)2γL6/qM2(1−γ)

α4γθν
‖∇A

1/2
θ D

1/2
N,θw‖2.

For the rest, the proof follows the same lines of Lemma 6.5. Firstly, from (67)
we find

TM (t) = QM (t) + RM (t) ≥ QM (t) − |RM (t)|

≥ QM (t)
2

− C
(N + 1)2γL6/qM2(1−γ)

α4γθν
‖∇A

1/2
θ D

1/2
N,θw‖2.

Then we calculate

XM = lim inf
T→+∞

1
T

∫ T

0

TM (t) dt

≥ lim inf
T→+∞

1
T

∫ T

0

QM (t)
2

dt

−C
(N + 1)2γL6/qM2(1−γ)

α4γθν
lim sup
T→+∞

1
T

∫ T

0

‖∇A
1/2
θ D

1/2
N,θw‖2 dt

= lim inf
T→+∞

1
T

∫ T

0

QM (t)
2

dt

−C
(N + 1)2γL6/qM2(1−γ)

α4γθν2
lim sup
T→+∞

1
T

∫ T

0

ν‖∇A
1/2
θ D

1/2
N,θw‖2 dt. (90)

We use (69) to estimate from below lim inf
T→+∞

1
T

∫ T

0
QM (t)

2 dt (recall that λ1 =

L−2) by

lim inf
T→+∞

1
T

∫ T

0

QM (t)
2

dt ≥ νM5/3

CL2

and (9) to estimate lim sup
T→+∞

1
T

∫ T

0
ν‖∇A

1/2
θ D

1/2
N,θw‖2 dt by

lim sup
T→+∞

1
T

∫ T

0

ν‖∇A
1/2
θ D

1/2
N,θw(t)‖2 dt ≤ L3ν3

	4d
.

We use the last two inequalities above to bound the right-hand side of (90)
and to obtain

XM ≥ νM5/3

CL2
− C

(N + 1)2γL6/qM2(1−γ)

α4γθν2

L3ν3

	4d
=

νM5/3

CL2

−C
(N + 1)2γL3+6/qM2(1−γ)ν

α4γθ	4d
,

that is just the estimate (85). �
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Let us observe that in view of (88), the exponent 2(1 − γ) in the power
of M appearing in the second term of the right-hand side of (85) is smaller
than 1. Then, in view (85), we see that XM > 0 holds true provided that

M5/3−2(1−γ) >
C(N + 1)2γ

α4γθ

L5+6/q

	4d
=

C(N + 1)2γ

α4γθ

(
L

	d

)4

L1+6/q,

which gives

M > C

[
(N + 1)2γ

α4γθ
L1+6/q

] 3
5−6(1−γ)

(
L

	d

) 12
5−6(1−γ)

= C

[
(N + 1)γ

(
L

α

)2γθ (
L

	d

)2
] 6

6γ−1

,

where we have used the identity 1 +
6
q

= 4γθ.

Appendix: Some useful formulas and inequalities

Lemma A.1. Let a, b, c be sufficiently smooth vector fields such that ∇·a = 0.
Then,

∇ · (b ⊗ a) = (a · ∇) b; (91)
((a · ∇) b, c) = − ((a · ∇) c, b) ; (92)
(∇ · (b ⊗ a) , b) = 0. (93)

The following estimates are particular cases of the well known Gagliardo–
Nirenberg inequality (see [16]), where we make use of the equivalence of norms
given in Remark 2.4.

Lemma A.2. Let us assume that 1/2 ≤ θ ≤ 1 and define σ(θ) by setting

σ(θ) :=

{
1+θ
3−2θ , if 1/2 ≤ θ < 2/3,

1, if 2/3 ≤ θ ≤ 1.
(94)

There exists a positive constant C such that for every u = u(x) sufficiently
smooth vector or matrix-valued function we have

‖u‖L3 ≤ C‖A
1/2
θ u‖a‖u‖1−a, (95)

‖∇u‖L3 ≤ C‖∇Aθu‖b‖A
1/2
θ u‖1−b, (96)

‖Aθu‖L3 ≤ C‖∇Aθu‖c‖A
1/2
θ u‖1−c, (97)

‖∇u‖Lp ≤ C‖∇A
1/2
θ u‖β‖A

1/2
θ u‖1−β , (98)

where

a =
1
2θ

, b =
3

1 + θ

(
1
2

− θ

3

)
, c =

θ + 1/2
θ + 1

, (99)

p =
6

1 + 6σ(θ) − 2(1 + 2σ(θ))θ
, β = 2 − 3σ(θ) + 2σ(θ)θ. (100)
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Note that the exponents a, b, c involved in the estimates (95)–(97) and
computed above satisfy the constraints required by the Gagliardo–Nirenberg
inequality, in particular

1/2 ≤ a ≤ 1,
1 − θ

1 + θ
≤ b ≤ 1,

θ

1 + θ
≤ c ≤ 1

for every 1/2 ≤ θ ≤ 1. Moreover, we have

1/4 ≤ b ≤ 2/3, 2/3 ≤ c ≤ 3/4. (101)

As regards to the last inequality (98), due to the formula (94), it is worth
considering separately the two cases below:

1st case: for 1/2 ≤ θ < 2/3 the expressions in (100) become

p = 2, β = 1 − θ. (102)

2nd case: for 2/3 ≤ θ ≤ 1 the expressions in (100) become

p =
6

7 − 6θ
, β = 2θ − 1. (103)

Notice that p defined in (103) is an increasing function of θ and we have

2 ≤ p ≤ 6, as 2/3 ≤ θ ≤ 1.

Notice also that in both the previous cases the exponents p and β in (102)–
(103) satisfy the constraints required by the Gagliardo–Nirenberg inequality,
in particular 1 − θ ≤ β ≤ 1 for every 1/2 ≤ θ ≤ 1.

The fractional version of Agmon’s inequality can be found in [10] (p. 37,
Lemma 4.9; the proof is for Rn, but can be easily adapted to the periodic case
by resorting to the Fourier series instead of the Fourier transform).

Lemma A.3. (Fractional Agmon’s inequality) Let us assume that

0 < s1 < n/2 < s2 ,

where n is the space dimension of the periodic box domain D, and let t ∈ (0, 1)
such that n/2 = (1 − t)s1 + ts2. Then there exists a constant C = C(n, s1, s2)
such that

‖u‖L∞ ≤ C‖u‖1−t
Hs1 ‖u‖t

Hs2 ,

where the norms refer to the space D.
In particular, if D = T

3 and 1/2 < θ ≤ 1, we have

‖u‖L∞ ≤ C

αθ
‖A

1/2
θ u‖θ−1/2‖∇A

1/2
θ u‖3/2−θ. (104)

The final estimate can be easily obtained observing that

‖u‖θ,2 ≤ 1
αθ

‖A
1/2
θ u‖,

‖u‖θ+1,2 ≤ 1
αθ

‖∇A
1/2
θ u‖,

as it is easily seen using Fourier expansions.
The following inequality generalizes Lemma 5, Estimate (28), in Foias–

Holm–Titi [11] and is used in Sect. 6.
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Lemma A.4. Assume that 1/2 < θ ≤ 1. Let ϕj , j = 1, . . . ,M, be orthonormal
vector functions with respect to the scalar product [· , ·] defined in (61), and set

QM := ν

M∑

j=1

‖∇A
1/2
θ D

1/2
N,θϕj‖2.

Then there exists C > 0 (independent, in particular, of M) such that

M∑

j=1

∣∣DN,θϕj(x)
∣∣2 ≤ C

α2θ
(N + 1)

(
QM

ν

)3/2−θ

for each x ∈ T
3.

Proof. For fixed real numbers ξ1, . . . , ξM (that we will choose later on), by
using (104) and then (18)–(19) with w =

∑M
j=1 ξjϕj , we have

∣∣∣∣
M∑

j=1

ξjDN,θϕj(x)
∣∣∣∣
2

≤ C

α2θ

∥∥∥∥
M∑

j=1

ξjA
1/2
θ DN,θϕj

∥∥∥∥
2θ−1∥∥∥∥

M∑

j=1

ξj∇A
1/2
θ DN,θϕj

∥∥∥∥
3−2θ

≤ C(N + 1)
α2θ

∥∥∥∥
M∑

j=1

ξjA
1/2
θ D

1/2
N,θϕj

∥∥∥∥
2θ−1∥∥∥∥

M∑

j=1

ξj∇A
1/2
θ D

1/2
N,θϕj

∥∥∥∥
3−2θ

≤ C(N + 1)
α2θ

( M∑

i=1

ξiA
1/2
θ D

1/2
N,θϕi ,

M∑

j=1

ξjA
1/2
θ D

1/2
N,θϕj

)θ− 1
2

×

⎛

⎝
M∑

j=1

∣∣ξj

∣∣‖∇A
1/2
θ D

1/2
N,θϕj‖

⎞

⎠
3−2θ

≤ C(N + 1)
α2θ

[ M∑

i,j=1

ξiξj(A
1/2
θ D

1/2
N,θϕi , A

1/2
θ D

1/2
N,θϕj)]

θ−1/2

( M∑

j=1

ξ2j

)3/2−θ

×

⎛

⎝
M∑

j=1

‖∇A
1/2
θ D

1/2
N,θϕj‖2

⎞

⎠
3/2−θ

,

where we have used the discrete Cauchy–Schwarz inequality. If we denote by
δij the Kronecker symbol, using the orthonormality of the functions ϕj and
the definition of QM above, we obtain
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∣∣∣∣
M∑

j=1

ξjDN,θϕj(x)
∣∣∣∣
2

≤ C(N + 1)
α2θ

[ M∑

i,j=1

ξiξjδij

]θ−1/2( M∑

j=1

ξ2j

)3/2−θ

×
(

QM

ν

)3/2−θ

≤ C(N + 1)
α2θ

( M∑

j=1

ξ2j

)(
QM

ν

)3/2−θ

.

If we take ξj equal to the i-th component of DN,θϕj , for a fixed i ∈
{ 1, 2, 3 }, i.e. ξj = DN,θϕi,j(x), and sum over i = 1, 2, 3, we deduce

3∑

i=1

∣∣∣∣
M∑

j=1

DN,θϕi,j(x)DN,θϕj(x)
∣∣∣∣
2

≤ C

α2θ
(N + 1)

( 3∑

i=1

M∑

j=1

(
DN,θϕi,j(x)

)2
)

×
(

QM

ν

)3/2−θ

.

On the other hand, we notice that the left-hand side is greater than or equal
to

3∑

i=1

( M∑

j=1

(
DN,θϕi,j(x)

)2)2

≥ 1
C

( 3∑

i=1

M∑

j=1

(
DN,θϕi,j(x)

)2
)2

,

where C > 1 depends only on the space dimension. Combining this result with
the previous inequality, we obtain

( 3∑

i=1

M∑

j=1

(
DN,θϕi,j(x)

)2
)2

≤ C

α2θ
(N + 1)

( 3∑

i=1

M∑

j=1

(
DN,θϕi,j(x)

)2
)

×
(

QM

ν

)3/2−θ

.

The conclusion follows by simplifying. �

Another useful tool is represented by the Lieb–Thirring inequality (see
[14]).

Lemma A.5. (Lieb–Thirring inequality) Let us assume that θj , with j = 1, . . .,
M, are orthonormal functions in L2

σ(T3). Then there exists C > 0 (independent
of M) such that

∫

T3

( M∑

j=1

θj(x) · θj(x)
)5/3

dx ≤ C

M∑

j=1

∫

T3
∇θj(x) : ∇θj(x) dx, (105)

where for matrices A = (ai,j), B = (bi,j) it is set A : B :=
∑M

i=1

∑M
j=1 ai,jbi,j.
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[13] Layton, W., Lewandowski, R.: On a well-posed turbulence model. Discret. Con-
tin. Dyn. Syst. B 6, 111–128 (2006)

[14] Lieb, E., Thirring, W.: Inequalities for the Moments of the Eigenvalues of the
Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities. In: Lieb,
E., Simon, B., Wightman, A.S. (eds.) Studies in Mathematical Physics: Essays
in Honor of V. Bargman, pp. 226–303. Princeton University Press, Princeton
(1976)



848 D. Catania, A. Morando and P. Trebeschi NoDEA
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