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Existence and multiple solutions for a critical
quasilinear equation with singular potentials

Shaowei Chen and Zhi-Qiang Wang

Abstract. We study the following quasilinear elliptic equations

−Δpu + V (x)|u|p−2u = K(x)|u|q−2u in R
N

where 1 < p < N and q = p(N − ps/b)/(N − p) with constants b and
s such that b < p, b �= 0, 0 < s

b
< 1. This exponent q behaves like a

critical exponent due to the presence of the potentials even though p <
q < p∗ = pN

N−p
the Sobolev critical exponent. The potential functions V

and K are locally bounded functions and satisfy that there exist positive
constants L, C1, C2, D1 and D2 such that C1 ≤ |x|bV (x) ≤ C2 and D1 ≤
|x|sK(x) ≤ D2 for |x| ≥ L. We prove that below some energy threshold,
the Palais–Smale condition holds for the functional corresponding to this
equation. And we show that the finite energy solutions of this equation

have exponential decay like e−γ|x|1−b/p

at infinity. If V has a critical
frequency, i.e., V −1(0) has a non-empty interior, we prove that

−Δpu + λV (x)|u|p−2u = K(x)|u|q−2u in R
N

has more and more solutions as λ → +∞.
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1. Introduction and statement of results

In this paper, we consider the following quasilinear elliptic equation

−Δpu + V (x)|u|p−2u = K(x)|u|q−2u in R
N , u(x) → 0 as |x| → ∞ (1.1)

where N ≥ 2, 1 < p < N and Δpu = div(|∇u|p−2∇u). The exponent

q =
p(N − ps

b )
N − p

(1.2)
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with the real numbers b and s satisfying

b < p, b �= 0, 0 <
s

b
< 1. (1.3)

By this definition, it is easy to see p < q < p∗ := pN/(N − p) with p∗ the
Sobolev critical exponent. Even though q < p∗ we will see that q behaves like
a critical exponent due to the effects of the potential functions V and K which
may have singular asymptotic near infinity.

For the potential functions V and K, we assume
(A1). V and K are locally bounded nonnegative functions in R

N .
(A2). There exist positive constants L, C1, C2, D1 and D2 such that, for

|x| ≥ L,

C1 ≤ |x|bV (x) ≤ C2, D1 ≤ |x|sK(x) ≤ D2. (1.4)

When 0 < b < p, V and K decay to zero at infinity and when b < 0, V and K
are coercive.

Equation (1.1) arises in various applications, such as superfluidity,
plasticity, population genetics, chemical reactor theory, and the study of
standing wave solutions of certain nonlinear Schrödinger equations. There-
fore, it has received growing attention in recent years (we refer to [2–
4,6,9,12,21,22,26,29,30] for more references therein).

There have been mathematical works for related problems in recent years.
When p = 2, b > 0 and 2(N − 2s/b)/(N − 2) < q < 2∗, Ambrosetti et al. [5]
proved that (1.1) has a nonzero solution under the assumptions (A1) and (A2).
In fact, it was proved in [5] that there is a compact embedding from a weighted
Sobolev space into a weighted Lq space, which provides the compactness of the
variational formulation. However, the case q = 2(N − 2s/b)/(N − 2) was left
open in [5] since for q = 2(N − 2s/b)/(N − 2) the compact embedding breaks
down in general and in a sense it is a critical exponent problem as this q appears
on the boundary of the embedding range. For general p ∈ (1, N), Lyberopoulos
proved in [15] (see also [16]) that when b > 0, 1 < p < N and p(N −ps/b)/(N −
p) < q < p∗, (1.1) has a nonzero solution if V and K satisfy (A1) and (A2).
When V and K are radially symmetric functions, existence of solutions for
(1.1) can be obtained through some compact embedding theorems of weighted
Sobolev spaces. Again the critical case q = p(N−ps/b)/(N−p) was not treated
in [15,16], We also mention [20,21,23–26] in which cases, certain compact
embedding was proved so the Euler-Lagrange functional corresponding to (1.1)
satisfies the Palais–Smale condition and the nonzero solution of (1.1) can be
obtained through the standard critical point theorems.

When b and s satisfy (1.3), q = p(N − ps/b)/(N − p) and V and K
satisfy (A1) and (A2), the functional corresponding to (1.1) does not sat-
isfy the Palais–Smale condition in general. From this point of view, q =
p(N −ps/b)/(N −p) should be seen as a kind of critical exponent for Eq. (1.1).
For the case p = 2, in [11], through a transformation, Chen obtained an equiv-
alent equation for (1.1) and then, using the concentration-compactness prin-
ciple, he got a global compactness theorem for this equivalent equation. This
theorem reveals why the Palais–Smale condition does not holds. Using this
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theorem, he obtained a nonzero solution for (1.1) under some additional con-
ditions. However, the method in [11] fails for the general case p �= 2, and
it seems difficult to find a similar transform for (1.1) as the case p = 2. In
this paper, we develop a new approach, which unifies all cases p > 1, for the
existence of solutions of (1.1). We investigate the compactness first and find
that below some energy threshold, the functional corresponding to (1.1) satis-
fies the Palais–Smale condition (Theorem 3.3). As a consequence, we provide
a sufficient condition to insure the existence of a minimizer for the infimum
(3.1) (Corollary 3.4), which corresponds to a nonzero solution of (1.1).

In the second part of the paper we study the following equation with a
parameter λ > 0

−Δpu + λV (x)|u|p−2u = K(x)|u|q−2u in R
N , |u(x)| → 0 as |x| → ∞

where V has a critical frequency in the sense that the interior of the set Z =
V −1(0) is non-empty. This is a steep potential well problem with λ controlling
the depth of the potential. We prove that for any m ∈ N, there exists Λm > 0
such that when λ ≥ Λm, this equation has at least m solutions (Theorem 4.2)
and for fixed m ∈ N, as λ → ∞, these solutions concentrate on Z (Theorem
4.3). These results generalize the classical work of Beyon, Bartsch, Pankov and
Wang for semilinear Schrödinger equations (see [7,8,10,13]) to the quasilinear
Schrödinger equations. Finally, we prove that the finite energy solutions for
(1.1) have e−γ|x|1−b/p

decay at infinity, where γ > 0 (Theorem 5.1).
Notation. B(a, r) denotes the open ball of radius r and centered at a

in R
N . For a Banach space E, we denote the dual space of E by E′, and

denote the strong and the weak convergences in E by → and ⇀, respectively.
For ϕ ∈ C1(E;R), we denote the Fréchet derivative of ϕ at u by ϕ′(u). The
Gateaux derivative of ϕ is denoted by 〈ϕ′(u), v〉, ∀u, v ∈ E. L∞

loc(R
N ) denotes

the space of locally bounded functions in R
N . Let Ω be a domain in R

N .
C∞

0 (Ω) denotes the space of smooth functions with compact support in Ω.

2. Variational structure for Eq. (1.1)

In this section, we shall prove that under the assumptions (A1) and (A2),
Eq. (1.1) has a variational structure.

Lemma 2.1. Suppose that p, b, s and q satisfy (1.2) and (1.3) and V and K sat-
isfy (A1) and (A2). Then there exists C > 0 such that the following inequality
holds

(∫

RN

K(x)|u|qdx
)p/q

≤ C
( ∫

RN

|∇u|pdx +
∫

RN

V (x)|u|pdx
)
,

∀u ∈ C∞
0 (RN ). (2.1)

Proof. Let

χ(x) :=
{

1, |x| ≤ L
0, |x| > L,
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V1 = V +χ and K1 = K +χ. By (A1) and (A2), there exist positive constants
C ′′ and C ′ such that for all x ∈ R

N ,

C ′(1 + |x|)−b ≤ V1(x) ≤ C ′′(1 + |x|)−b,

C ′(1 + |x|)−s ≤ K1(x) ≤ C ′′(1 + |x|)−s.
(2.2)

By (2.2), the Hölder and the Sobolev inequalities (see, e.g., [28, Theorem 1.8]),
we have, for every u ∈ C∞

0 (RN ),
(∫

RN

K1(x)|u|qdx

) 1
q

≤ C

(∫

RN

|u|q
(1 + |x|)s

dx

) 1
q

(here we used (2.2))

= C

(∫

RN

|u| ps
b

(1 + |x|)s
· |u|q− ps

b dx

) 1
q

≤ C

(∫

RN

|u|p
(1 + |x|)b

dx

) s
qb

(∫

RN

|u|p∗
dx

) 1
q (1− s

b )

(
here we used

(
1 − s

b

)−1 (
q − ps

b

)
= p∗

)

≤ C

(∫

RN

|u|p
(1 + |x|)b

dx

) s
qb

(∫

RN

|∇u|pdx

) p∗
qp (1− s

b )

(here we used the Sobolev inequality)

= C

(∫

RN

|u|p
(1 + |x|)b

dx

) 1
p · ps

qb
(∫

RN

|∇u|pdx

) 1
p ·(1− ps

qb )

(
here we used

p∗

q

(
1 − s

b

)
= 1 − ps

bq

)

≤ C

(∫

RN

V1(x)|u|pdx

) 1
p · ps

qb
(∫

RN

|∇u|pdx

) 1
p ·(1− ps

qb )
,

(here we used (2.2)) (2.3)

where C is a positive constant independent of u. It follows that there exists a
constant C > 0 such that
(∫

RN

K|u|qdx

)1/q

≤
(∫

RN

K1|u|qdx

)1/q

≤ C

(∫

RN

|∇u|pdx

)1/p

+ C

(∫

RN

V1|u|pdx

)1/p

. (2.4)

Moreover, by the Sobolev inequality, we have, for any u ∈ C∞
0 (RN ),

∫

RN

χ(x)|u|pdx ≤
(∫

RN

χ
p∗

p∗−p

)1− p
p∗ (∫

RN

|u|p∗
) p

p∗

≤ CLN(1− p
p∗ )

(∫

RN

|∇u|p
)

(2.5)

where C = C(N, p) > 0 is a constant which depends only on N and p. Inequal-
ity (2.1) follows from (2.4) and (2.5) immediately. �
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Remark 2.2. Inequality (2.1) is a weighted Sobolev inequality. For more knowl-
edge of weighted Sobolev inequalities, one can consult the Opic and Kufner’s
book [17].

Let E be the completion of C∞
0 (RN ) with respect to the norm

||u||E =
(∫

RN

|∇u|pdx +
∫

RN

V (x)|u|pdx

)1/p

.

From [1], it is easy to verify that under this norm, E is an uniformly convex
Banach space. By Lemma 2.1, the functional

Φ(u) =
1
p
||u||pE − 1

q

∫

RN

K(x)|u|qdx, u ∈ E (2.6)

is well defined in E. It is easy to check that Φ is a C1 functional and the
derivative of Φ is given by

〈Φ′(u), v〉 =
∫

RN

|∇u|p−2∇u∇vdx +
∫

RN

V (x)|u|p−2uvdx

−
∫

RN

K(x)|u|q−2uvdx, ∀u, v ∈ E.

It follows that the critical points of Φ are weak solutions of (1.1).

3. Palais–Smale condition for the functional Φ

Let

S = inf
u∈E\{0}

∫
RN |∇u|pdx +

∫
RN V (x)|u|pdx

(
∫
RN K(x)|u|qdx)p/q

. (3.1)

For R > L, let (B(0, R))c = {x ∈ R
N | |x| > R} and

SR := inf
u∈C∞

0 ((B(0,R))c)\{0}

∫
(B(0,R))c |∇u|pdx +

∫
(B(0,R))c V (x)|u|pdx

(
∫
(B(0,R))c K(x)|u|qdx)p/q

. (3.2)

Let

S∞ := lim
R→∞

SR. (3.3)

Lemma 3.1. Suppose that p, b, s and q satisfy (1.2) and (1.3) and V and K
satisfy (A1) and (A2). Then

S∞ ≥ C
1− ps

qb

1 D
− p

q

2

(
max

{ qb

ps
,

(
1 − ps

qb

)−1 })−1

· A, (3.4)

where

A = inf
u∈C∞

0 ((B(0,L))c)\{0}

(
∫
(B(0,L))c |∇u|pdx)

ps
qb (

∫
(B(0,L))c |x|−b|u|pdx)1− ps

qb

(
∫
(B(0,L))c |x|−s|u|qdx)p/q

.
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Proof. By assumptions (A1) and (A2), for |x| ≥ L,

V (x) ≥ C1

|x|b , and K(x) ≤ D2

|x|s .

This together with (3.2) and (3.3) implies that

S∞ ≥ lim
R→∞

inf
u∈C∞

0 ((B(0,R))c)\{0}

∫
(B(0,R))c |∇u|pdx + C1

∫
(B(0,R))c |x|−b|u|pdx

(D2

∫
(B(0,R))c |x|−s|u|qdx)p/q

.

(3.5)

From (2.3), we deduce that for R ≥ L and u ∈ C∞
0 ((B(0, R))c),

qb

ps

∫

(B(0,R))c

|∇u|pdx +
(

1 − ps

qb

)−1 ∫

(B(0,R))c

C1|x|−b|u|pdx

≥ C
1− ps

qb

1

(∫

(B(0,R))c

|∇u|pdx

) ps
qb

(∫

(B(0,R))c

|x|−b|u|pdx

)1− ps
qb

≥ ARC
1− ps

qb

1

(∫

(B(0,R))c

|x|−s|u|qdx

)p/q

(3.6)

where

AR = inf
u∈C∞

0 ((B(0,R))c)\{0}

(
∫
(B(0,R))c |∇u|pdx)

ps
qb (

∫
(B(0,R))c |x|−b|u|pdx)

1− ps
qb

(
∫
(B(0,R))c |x|−s|u|qdx)p/q

≥A.

From (3.6) and AR ≥ A, we have that, for any R ≥ L and u ∈ C∞
0 ((B(0, R))c),

max
{ qb

ps
,

(
1 − ps

qb

)−1 }
·
(∫

(B(0,R))c

|∇u|pdx +
∫

(B(0,R))c

C1|x|−b|u|pdx

)

≥ AC
1− ps

qb

1

(∫

(B(0,R))c

|x|−s|u|qdx

)p/q

.

Inequality (3.4) follows from this inequality and (3.5). �

Definition 3.2. Let φ ∈ C1(E,R). A sequence {un} ⊂ E is called a Palais–
Smale sequence at level c ((PS)c sequence for short) for φ, if φ(un) → c and
||φ′(un)||E′ → 0 as n → ∞. φ is said to satisfy (PS)c condition if every (PS)c

sequence of φ contains a convergent subsequence in E.

Theorem 3.3. For c < ( 1
p − 1

q )S
q

q−p∞ , the functional Φ, defined by (2.6), satisfies
the (PS)c condition.

Proof. Let {un} ⊂ E be a (PS)c sequence for Φ, i.e., Φ(un) → c and Φ′(un) →
0 in E′. Then

||un||pE =
(

q

p
− 1

)−1

(qΦ(un) − 〈Φ′(un), un〉) =
pqc

q − p
+ o(1) · ||un||E ,
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where o(1) denotes the infinitesimal depending only on n, i.e., o(1) → 0 as
n → ∞. It follows that

sup
n

||un||E < +∞. (3.7)

Then
∫

RN

K(x)|un|qdx =
(

1
p

− 1
q

)−1

(Φ(un) − 1
p
〈Φ′(un), un〉)

=
(

1
p

− 1
q

)−1

c + o(1).

Together with the assumption c < ( 1
p − 1

q )S
q

q−p∞ and the fact that limR→∞ SR =
S∞, this implies that there exist positive constants R0, δ0 ∈ (0, 1) and m0 such
that for n ≥ m0 and R ≥ R0,

1 − S−1
R

(∫

RN

K(x)|un|qdx

) q−p
q

≥ 2δ0. (3.8)

Let η ∈ C∞[0,+∞) be such that

0 ≤ η ≤ 1; η(r) = 0, r ∈ [0, 1]; η(r) = 1, r ∈ [2,+∞); 0 ≤ η′(r) ≤ 2.

For R > 0 and x ∈ R
N , let ηR(x) = η(|x|/R). Then

|∇ηR(x)| ≤ 2/R, ∀x ∈ R
N . (3.9)

By (1.4) and (3.9), for R ≥ R0,∫

RN

|∇(ηp
Run)|pdx ≤ C

∫

RN

ηp2

R |∇un|pdx + C

∫

RN

|un|p|∇ηp
R|pdx

≤ C

∫

RN

|∇un|pdx +
C

Rp

∫

R≤|x|≤2R

|un|pdx

≤ C

∫

RN

|∇un|pdx +
C

Rp−b

∫

R≤|x|≤2R

V (x)|un|pdx

≤ C||un||pE . (here we used p − b > 0). (3.10)

Together with (3.7) and (3.10), this yields

sup{||ηp
Run||E | R ≥ R0, n ≥ 1} < +∞.

Then, by Φ′(un) → 0 in E′, we obtain 〈Φ′(un), ηp
Run〉 = o(1), i.e.,

∫

RN

|∇un|p−2∇un∇(ηp
Run)dx +

∫

RN

V (x)|ηRun|p

=
∫

RN

K(x)|un|q−2un · (ηp
Run)dx + o(1). (3.11)

By the Hölder inequality, for any ε > 0, there exists Cε > 0 such that

|unηp−1
R |∇un|p−2∇un∇ηR| ≤ εηp

R|∇un|p + Cε|un|p|∇ηR|p.
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Using this inequality with ε = δ0/2p, we get that there exists a positive con-
stant C > 0 such that∫

RN

|∇un|p−2∇un∇(ηp
Run)dx

=
∫

RN

|∇un|pηp
Rdx + p

∫

RN

unηp−1
R |∇un|p−2∇un∇ηRdx

≥
(

1 − δ0

2

)∫

RN

|∇un|pηp
Rdx − C

∫

RN

|un|p|∇ηR|pdx (3.12)

By the mean value theorem, we have

|ηR∇un|p − |∇(ηRun)|p
= p((1 − θ)|ηR∇un| + θ|∇(ηRun)|)p−1(|ηR∇un| − |∇(ηRun)|)
≥ −p(|ηR∇un| + |un∇ηR|)p−1|un∇ηR|, (3.13)

where 0 < θ = θ(x) < 1, x ∈ R
N . By the Hölder inequality, for any ε > 0,

there exists Cε > 0 such that

(|ηR∇un| + |un∇ηR|)p−1|un∇ηR| ≤ ε(|ηR∇un| + |un∇ηR|)p + Cε|un∇ηR|p
≤ Cpε|ηR∇un|p + (Cpε + Cε)|un∇ηR|p

(3.14)

where Cp > 0 depends only on p. Choosing ε = δ0/2(1 − δ0)pCp in (3.14) and
combining (3.13) with (3.14), we get

|ηR∇un|p ≥ 2(1 − δ0)
(2 − δ0)

|∇(ηRun)|p − C|un∇ηR|p. (3.15)

Combining (3.12) and (3.15) leads to
∫

RN

|∇un|p−2∇un∇ (ηp
Run) dx ≥ (1 − δ0)

∫

RN

|∇(ηRun)|pdx

− C

Rp

∫

R≤|x|≤2R

|un|pdx, (3.16)

where C is a positive constant which is independent of n and R. From (1.4)
and (3.7), we have

1
Rp

∫

R≤|x|≤2R

|un|pdx ≤ C

Rp−b

∫

R≤|x|≤2R

V (x)|un|pdx ≤ C

Rp−b
(3.17)

Combining (3.16) with (3.17) yields that there exists C > 0 which is indepen-
dent of n and R such that∫

RN

|∇un|p−2∇un∇(ηp
Run)dx ≥ (1 − δ0)

∫

RN

|∇(ηRun)|pdx − C

Rp−b
. (3.18)

Together with (3.11), this implies
∫

RN

|∇un|p−2∇un∇(ηp
Run)dx+

∫

RN

V (x)|ηRun|p ≥(1−δ0)||ηRun||pE − C

Rp−b
.

(3.19)



Vol. 22 (2015) Existence and multiple solutions 707

Combining (3.19), (3.11), (3.8) and the following inequality∫

RN

K(x)|un|q−2un · (ηp
Run)dx

≤
(∫

|x|≥R

K(x)|un|q
) q−p

q (∫

RN

K(x)|ηRun|q
) p

q

≤ S−1
R

(∫

|x|≥R

K(x)|un|q
) q−p

q

||ηRun||pE , (3.20)

we obtain

δ0||ηRun||pE ≤ C

Rp−b
+ o(1). (3.21)

Together with (3.1), this yields

δ0S(
∫

RN

K(x)|ηRun|qdx)
p
q ≤ C

Rp−b
+ o(1). (3.22)

Since E is a reflexive Banach space and {||un||E} is bounded in E, we
deduce that there exists u0 ∈ E such that, up to a subsequence, un ⇀ u0 in
E. It is easy to verify that u0 is a critical point of Φ.

By (3.22), we have

|
∫

RN

K(x)|un|qdx −
∫

RN

K(x)|u0|qdx|

≤ |
∫

RN

K(x)|(1 − ηR)un|qdx −
∫

RN

K(x)|(1 − ηR)u0|qdx|

+
∫

RN

K(x)|ηRun|qdx +
∫

RN

K(x)|ηRu0|qdx

≤ |
∫

RN

K(x)|(1 − ηR)un|qdx −
∫

RN

K(x)|(1 − ηR)u0|qdx|

+
C

R
q
p (p−b)

+
∫

RN

K(x)|ηRu0|qdx + o(1). (3.23)

Since the imbedding E ↪→ Lp
loc(R

N ) is compact, we get

lim
n→∞ |

∫

RN

K(x)|(1 − ηR)un|qdx −
∫

RN

K(x)|(1 − ηR)u0|qdx| = 0.

Then, by (3.23), we obtain that

lim sup
n→∞

|
∫

RN

K(x)|un|qdx −
∫

RN

K(x)|u0|qdx|

≤ C

R
q
p (p−b)

+
∫

RN

K(x)|ηRu0|qdx.

Together with CR− q
p (p−b) +

∫
RN K(x)|ηRu0|qdx → 0 as R → ∞, this implies

lim sup
n→∞

|
∫

RN

K(x)|un|qdx −
∫

RN

K(x)|u0|qdx| = 0. (3.24)
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By 〈Φ′(un), un〉 = o(1) and 〈Φ′(u0), u0〉 = 0, we have

||un||pE =
∫

RN

K(x)|un|qdx + o(1), ||u0||pE =
∫

RN

K(x)|u0|qdx.

Together with (3.24), we get limn→∞ ||un||E = ||u0||E . Finally, by the fact
that E is uniformly convex Banach space, we deduce that un → u0 in E. This
completes the proof. �

Theorem 3.4. If S < S∞, then the infimum S is achieved.

Proof. Let {un} be a minimizing sequence. We assume
∫
RN K(x)|un|qdx = 1,

n = 1, 2, . . . , otherwise, we choose un/(
∫
RN K(x)|un|qdx)1/q as the minimizing

sequence. Then

||un||pE → S,

∫

RN

K(x)|un|qdx = 1, n = 1, 2, . . . . (3.25)

By the Ekeland variational principle (see, e.g., [28]) and the Lagrange multi-
plier rule, we have∫

RN

|∇un|p−2∇un∇ϕdx +
∫

RN

V (x)|un|p−2unϕdx

−S

∫

RN

K(x)|un|q−2unϕdx → 0 (3.26)

holds uniformly for ϕ ∈ E with ||ϕ||E ≤ 1. Let vn = S
1

q−p un. Then by (3.25)
and (3.26), we deduce that {vn} is a (PS)c sequence for Φ with c = ( 1

p −
1
q )S

q
q−p . Since S < S∞, by Theorem 3.3, there exists v ∈ E such that, up to a

subsequence, vn → v in E. It follows that un → u = S− 1
q−p v. Then u achieves

the infimum S. �

Remark 3.5. When p = 2, the recent paper [11] provides some conditions on
the potentials V and K ensuring that the inequality S < S∞ is satisfied (see
Theorem 1.1 of [11]). In Sect. 4 we consider the case of a steep potential well
and give conditions that also ensure the inequality S < S∞.

4. Equation (1.1) with a steep potential well and a critical
frequency

In this section, we assume that V and K satisfy the additional assumptions
(V). There exists a closed subset Z ⊂ {x ∈ R

N | |x| < L} with nonempty
interior Ω = intZ such that V (x) = 0 for x ∈ Z.

(K). inf |x|≤L K(x) > 0.

Consider the equation

−Δpu + λV (x)|u|p−2u = K(x)|u|q−2u, u ∈ Eλ (4.1)

where λ is a positive parameter and Eλ is the Banach space E defined in Sect. 2
with V replaced by λV . The norm of Eλ is denoted by || · ||λ. The functional
corresponding to this equation is denoted by Φλ which is the functional defined
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by (2.6) with ||u||pE replaced by ||u||pλ. Let Sλ and Sλ
R be S and SR with V

replaced by λV and let Sλ
∞ = limR→∞ Sλ

R. By (3.4), we have

Sλ
∞ ≥ (λC1)1− ps

qb D
− p

q

2

(
max

{ qb

ps
, (1 − ps

qb
)−1

})−1

· A.

This implies

lim
λ→+∞

Sλ
∞ = +∞. (4.2)

On the other hand, choose a function v0 ∈ C∞
0 (RN ) satisfying v0 �= 0 and the

support of v0 is contained in Z. Then by (V) and (K), we get that, for every
λ > 0,

Sλ ≤
∫
RN |∇v0|pdx

(
∫
RN K(x)|v0|qdx)p/q

.

Together with (4.2) and Theorem 3.4, this leads to the following corollary

Corollary 4.1. Suppose that (A1), (A2), (V) and (K) hold. Then there exists
Λ∗ > 0, such that for λ ≥ Λ∗, the infimum Sλ is achieved.

Theorem 4.2. Suppose that (A1), (A2), (V) and (K) hold. Then for every
integer m there exists Λm ≥ 1 such that (4.1) with λ ≥ Λm has at least m
distinct pairs ±vλ

1 , . . . ,±vλ
m of weak solutions. Moreover, there exist positive

constants a, bm (independent of λ) such that

a ≤ ||vλ
j ||λ ≤ bm, 1 ≤ j ≤ m (4.3)

hold for all λ ≥ Λm.

Proof. Let W 1,p
0 (Ω) = {u | ∫

Ω
|∇u|pdx < +∞, u|∂Ω = 0}. By (V), W 1,p

0 (Ω) ⊂
Eλ for all λ > 0. Let

Φ0(u) =
1
p

∫

Ω

|∇u|pdx − 1
q

∫

Ω

K(x)|u|qdx, u ∈ W 1,p
0 (Ω).

If 0 �= u ∈ Eλ is a critical point of Φλ, by 〈Φ′
λ(u), u〉 = 0, S ≤ Sλ (λ ≥ 1) and

Lemma 2.1, we get that, for λ ≥ 1,

||u||pλ =
∫

RN

K(x)|u|qdx ≤ S
− q

p

λ ||u||qλ ≤ S− q
p ||u||qλ.

It follows that for λ ≥ 1,

||u||λ ≥ Sq/p(q−p) := a. (4.4)

Let {en} ⊂ W 1,p
0 (Ω) be a linearly independent sequence and Ej :=

span{e1, . . . , ej}. By (V), Φλ(u) = Φ0(u), ∀u ∈ W 1,p
0 (Ω). Then by (K) and

q > p, we deduce that there exists an increasing sequence of positive numbers
{Rj} (independent of λ) such that

Φλ(u) ≤ 0, ∀u ∈ Ej , ||u||λ ≥ Rj .
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Let Dj = {u | u ∈ Ej , ||u||λ ≤ Rj} and ∂Dj be the boundary of Dj in Ej .
Let Σ be the class of closed symmetric subsets of Eλ and γ(Y ) be the genus
of Y for Y ∈ Σ (see [18] for its definition). Define for j = 1, 2, . . . ,

Gj = {h | h ∈ C(Dj , Eλ), h is odd, h|∂Dj
= id},

G̃j = {h | h ∈ C(Dj ,W
1,p
0 (Ω)), h is odd, h|∂Dj

= id},

Γj = {h(Dk \ Y ) | h ∈ Gk, k ≥ j, Y ∈ Σ, γ(Y ) ≤ k − j},

Γ̃j = {h(Dk \ Y ) | h ∈ G̃k, k ≥ j, Y ∈ Σ, γ(Y ) ≤ k − j},

where F denotes the closure of a set F. It follows that Γ̃j ⊂ Γj for all j. Define
for j = 1, 2, . . . ,

cλ
j = inf

B∈Γj

sup
u∈B

Φλ(u), c̃j = inf
B∈Γ̃j

sup
u∈B

Φ0(u).

We have

cλ
1 ≤ cλ

2 ≤ . . . , c̃1 ≤ c̃2 ≤ . . . .

By Γ̃j ⊂ Γj , we obtain

cλ
j ≤ c̃j , ∀j.

It easy to verify that Φλ and Φ0 satisfy the (I ′
1) and (I ′

2) assumptions of
[18, Theorem 9.12]. By (4.2), for any m, there exists Λm > 1 such that for
λ ≥ Λm, c̃m < ( 1

p − 1
q )(Sλ

∞)q/(q−p). Then by [18, Theorem 9.12] and Theorem
3.3, for λ ≥ Λm, cλ

1 , . . . , cλ
m are critical values of Φλ. Let vλ

j , i = 1, . . . ,m be
critical points of Φλ with Φλ(vλ

j ) = cλ
j . Then ||vλ

j ||λ = ( 1
p − 1

q )−1/p(cλ
j )1/p ≤

( 1
p − 1

q )−1/p(c̃m)1/p := bm. Together with (4.4), this implies (4.3). �

Theorem 4.3. Suppose (A1), (A2), (V) and (K) hold. Let un ∈ Eλn
, n ∈ N

be a non-zero weak solution of (4.1) for some sequence λn → +∞ and suppose
that

sup
n∈N

||un||λn
< ∞ (4.5)

holds. Then there exists 0 �= ū ∈ E such that un → ū along a subsequence
strongly in E. Moreover, ū is a weak solution of the equation

−Δpu = K(x)|u|q−2u, for x ∈ Ω = intZ (4.6)

and ū = 0 a.e. in R
N \ Z.

Proof. We divide the proof into several steps.

1. From (4.5), we deduce that {un} is bounded in E. Then, there exists
ū ∈ E such that, up to a subsequence, un ⇀ ū and by the compact
embedding E ↪→ Lθ

loc(R
N ) (see for example, [1]), un → ū in Lθ

loc(R
N ) for

all p ≤ θ < p∗. It follows that ū is a weak solution of (4.6).
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2. For k ∈ N, let Ak = {x ∈ R
N | |x| ≤ k, V (x) ≥ 1/k}. From the compact

embedding E ↪→ Lp
loc(R

N ), we have that
∫

Ak
|un|pdx → ∫

Ak
|ū|pdx. Then

by
∫

Ak

|un|pdx ≤ k

∫

Ak

V (x)|un|pdx ≤ k

λn
||un||pλn

→ 0, n → ∞,

we get
∫

Ak
|ū|pdx = 0. Therefore, ū = 0 a.e. in ∪∞

k=1Ak = R
N \ Z.

3. From λn → ∞ and (4.2), we deduce that Sλn∞ → +∞ as n → ∞. Then
following the same argument as (3.24), we have

lim sup
n→∞

|
∫

RN

K(x)|un|qdx −
∫

RN

K(x)|ū|qdx| = 0. (4.7)

Together with ||un||pλn
=

∫
RN K(x)|un|qdx and (4.4), this implies∫

RN K(x)|ū|qdx ≥ Sq/(q−p). Hence ū �= 0.
4. Since un is a weak solution of (4.1), we have

∫

RN

|∇un|p−2∇un∇ūdx + λn

∫

RN

V (x)|un|p−2unūdx

=
∫

RN

K(x)|un|q−2unūdx.

By ū = 0 a.e. in R
N \ Z and V = 0 in Z, we get

∫

RN

|∇un|p−2∇un∇ūdx =
∫

RN

K(x)|un|q−2unūdx.

Sending n to infinity, we obtain
∫

RN

|∇ū|pdx =
∫

RN

K(x)|ū|qdx. (4.8)

5. By λn → +∞, λn

∫
RN V (x)|un|pdx ≤ ||un||pλn

and (4.5), we get that∫
RN V (x)|un|pdx → 0. Therefore, to prove un → ū in E, it suffices to

prove
∫
RN |∇un|pdx → ∫

RN |∇ū|pdx. By ||un||pλn
=

∫
RN K(x)|un|qdx, we

have ∫

RN

|∇un|pdx ≤
∫

RN

K(x)|un|qdx.

Then by (4.7) and (4.8),

lim sup
n→∞

∫

RN

|∇un|pdx ≤ lim sup
n→∞

∫

RN

K(x)|un|qdx =
∫

RN

K(x)|ū|qdx

=
∫

RN

|∇ū|pdx.

Together lim infn→∞
∫
RN |∇un|pdx ≥ ∫

RN |∇ū|pdx, we get
limn→∞

∫
RN |∇un|pdx =

∫
RN |∇ū|pdx. This completes the proof.

�
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5. Exponential decay of solutions of Eq. (1.1)

The main result of this section is the following theorem

Theorem 5.1. Suppose V and K satisfy (A1) and (A2). If u ∈ E is a weak
solution of (1.1), then there exist C > 0 and γ > 0 such that

|u(x)| ≤ Ce−γ|x|1− b
p
, x ∈ R

N . (5.1)

To prove this theorem, we need some lemmas.

Lemma 5.2. Suppose V and K satisfy (A1) and (A2). If u ∈ E is a weak
solution of (1.1), then there exist α > max{|s| + q|b|(N − p)/p2, p|s|/(q − p)},
C > 0, and R0 > 0 such that for R > R0,∫

|x|≥R

K|u|qdx ≤ CR−α. (5.2)

Proof. Let φ ∈ C∞(R) be such that

0 ≤ φ ≤ 1; φ(r) = 0, r ∈ (−∞, 0]; φ(r) = 1, r ∈ [1,+∞); 0 ≤ φ′(r) ≤ 2.

For R′ > L and n ∈ N, let ηn(x) = φ(|x|/2nR′), x ∈ R
N . Then supp |∇ηn|,

the support of |∇ηn|, is contained in {x ∈ R
N | 2nR′ ≤ |x| ≤ 2n+1R′}. Using

ηp
nu as a test function on the Eq. (1.1), we obtain∫

RN

|∇u|p−2∇u∇(ηp
nu)dx +

∫

RN

V (x)|ηnu|p =
∫

RN

K(x)|u|q−2u · (ηp
nu)dx.

(5.3)

As in the proof of (3.16), we have∫

RN

|∇u|p−2∇u∇(ηp
nu)dx ≥ 1

4

∫

RN

|∇(ηnu)|pdx

− C

(2nR′)p

∫

2nR′≤|x|≤2n+1R′
|u|pdx, (5.4)

where C > 0 is independent of n and R′

From u ∈ E, we have
∫
RN K(x)|u|qdx < +∞. It follows that there exists

R0 > 0 such that, for R′ > R0 and n ≥ 1,

S−1

(∫

|x|≥2nR′
K(x)|u|qdx

) q−p
q

≤ 1
8
. (5.5)

And the similar proof for (3.20) yields

∫

RN

K(x)|u|q−2u · (ηp
nu)dx ≤ S−1

(∫

|x|≥2nR′
K(x)|u|q

) q−p
q

||ηnu||pE (5.6)

Combining (5.3)–(5.6), we obtain∫

|x|≥2n+1R′
V (x)|u|pdx ≤

∫

RN

|∇(ηnu)|pdx +
∫

RN

V (x)|ηnu|pdx

≤ C

(2nR′)p

∫

2nR′≤|x|≤2n+1R′
|u|pdx. (5.7)
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From (A2), there exists C > 0 which is independent of R′ and n, such that
for R′ > R0 and n ≥ 1,

∫

2nR′≤|x|≤2n+1R′
|u|pdx ≤ C(2nR′)b

∫

2nR′≤|x|≤2n+1R′
V (x)|u|pdx. (5.8)

Let an =
∫

|x|≥2nR′ V (x)|u|pdx. By (5.7) and (5.8), we get that

an+1

an
≤ C

(2nR′)p−b
. (5.9)

where C > 0 is independent of n and R′ > R0.
Let n0 ∈ N be such that

n0 ≥ 1
p − b

max{|s| + q|b|(N − p)/p2, p|s|/(q − p)} + 2

and α = (p − b)(n0 − 1). Then α > max{|s| + q|b|(N − p)/p2, p|s|/(q − p)}. By
(5.9), we obtain

an0 ≤ C(n0−1)2− n0(n0−1)
2 (p−b)(R′)−αa1 ≤ C(R′)−α. (5.10)

where C > 0 is independent of n and R′ > R0. Combining (5.8), (5.7) with
(5.10), we obtain

∫

RN

|∇(ηn0u)|pdx +
∫

RN

V (x)|ηn0u|pdx ≤ C

(R′)α
(5.11)

where C > 0 is independent of n and R′ > R0. Let R = 2n0+1R′. Then (5.2)
follows from (5.11) and (2.1). �

Lemma 5.3. Suppose that V and K satisfy (A1) and (A2). If u ∈ E is a weak
solution of (1.1), then there exists C > 0 such that for |x| > R0 + 2,

|u(x)| ≤ C|x|−(α−s)/q. (5.12)

where α and R0 are the constants appearing in Lemma 5.2.

Proof. For x ∈ R
N , let u±(x) = max{±u(x), 0}. Then u+ and u− satisfy the

inequality

−Δpv + V (x)vp−1 ≤ K(x)vq−1 in R
N . (5.13)

To prove this lemma, it suffices to prove that u± satisfy (5.12).
Take G(s) = sβ if s > 0, and zero otherwise, and put

F (s) =
∫ s

0

G′(t)pdt = βpspβ−p+1/(pβ − p + 1).

It is easy to verify that

sp−1F (s) ≤ spG′(s)p ≤ βpG(s)p, if β ≥ 1. (5.14)

Take φ ∈ C∞[0,+∞) such that

0 ≤ φ ≤ 1; φ(r) = 1, r ∈ [0, 1]; φ(r) = 0, r ∈ [2,+∞); −2 ≤ φ′(r) ≤ 0.
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For |x0| > R0 + 2, let η(x) = φ(|x − x0|), x ∈ R
N . Using ηpF (v) as a test

function in the inequality (5.13), we obtain
∫

RN

|∇v|pG′(v)pηpdx +
∫

RN

V |v|p−2v · ηpF (v)dx

+p

∫

RN

|∇v|p−2F (v)ηp−1(∇v∇η)dx ≤
∫

RN

Kvq−1 · ηpF (v)dx. (5.15)

Using the Hölder inequality: For a, b ≥ 0, ab ≤ εa
p

p−1 +p−1( p
p−1ε)−(p−1)bp and

(5.14), we get that
∣∣∣|∇v|p−2F (v)ηp−1(∇v∇η)

∣∣∣ ≤ ε|∇v|pηpv−1F (v) + C ′
εv

p−1F (v)|∇η|p

≤ ε|∇v|pηpG′(v)p + C ′
εβ

p|∇η|pG(v)p,

where C ′
ε = p−1( p

p−1ε)−(p−1). It follows that
∫

RN

∣∣∣|∇v|p−2F (v)ηp−1(∇v∇η)
∣∣∣dx

≤ ε

∫

RN

|η∇G(v)|pdx + C ′
εβ

p

∫

RN

|∇η|pG(v)pdx

≤ ε

∫

RN

|η∇G(v)|pdx + Cεβ
p

(∫

B(x0,2)

|G(v)|qdx

) p
q

. (5.16)

where Cε > 0 depends only on N, ε and p. Using a similar proof as for (3.16),
we have∫

RN

|∇v|pG′(v)pηpdx ≥ 1
2

∫

RN

|∇(ηG(v))|pdx − C

∫

RN

|G(v)|p|∇η|pdx

≥ 1
2

∫

RN

|∇(ηG(v))|pdx − C

(∫

B(x0,2)

|G(v)|qdx

) p
q

(5.17)

where C > 0 depends only on p and N . Moreover, by (5.14), we get that
∫

RN

Kvq−1 · ηpF (v)dx =
∫

RN

Kvq−pvp−1 · ηpF (v)dx

≤ βp

∫

supp η

K|v|q−p(ηG(v))pdx

≤ βp

(∫

supp η

K
q

q−p |v|qdx

) q−p
q

(∫

B(x0,2)

|G(v)|qdx

) p
q

.

(5.18)

Note that |x0| − 2 > R0 and supp η is contained in {x | |x| > |x0| − 2}. From
(5.2), we have that (choose R = |x0| − 2)

∫

supp η

K|v|qdx ≤ C

∫

|x|>|x0|−2

K|v|qdx ≤ C|x0|−α. (5.19)
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By (A2), there exists C > 0 independent of x0, such that,

K(x) ≤ C|x0|−s, ∀x ∈ B(x0, 2). (5.20)

Together with (5.19) and the fact that −p
q s − q−p

q α < 0, this yields

(∫

supp η

K
q

q−p |v|qdx

) q−p
q

≤ C|x0|−
p
q s− q−p

q α ≤ C (5.21)

where C > 0 is independent of x0. Then, by (5.18), we obtain

∫

RN

Kvq−1 · ηpF (v)dx ≤ Cβp

(∫

B(x0,2)

|G(v)|qdx

) p
q

. (5.22)

Choosing ε = 1/4p in (5.16) and combining (5.15), (5.16), (5.17) with (5.22),
we obtain

∫

RN

|∇(ηG(v))|pdx ≤ C(1 + βp)

(∫

B(x0,2)

|G(v)|qdx

) p
q

.

Then, using the Sobolev inequality, we get
(∫

B(x0,1)

|G(v)|p∗
dx

) p
p∗

≤ C(1 + βp)

(∫

B(x0,2)

|G(v)|qdx

) p
q

,

where C > 0 is independent of x0 and β. From this, the standard Moser’s
iteration (see [14, Theorem 8.18]) shows that for x ∈ B(x0, 1/2),

v(x) ≤ C

(∫

B(x0,2)

|v|qdx

) 1
q

where C > 0 is independent of x0. By (A2), K(x) ≥ C|x0|−s, ∀x ∈ B(x0, 2).
Then by (5.19) and (5.20), we deduce that

(∫

B(x0,2)

|v|qdx

) 1
q

≤ C|x0|
−α+s

q

where C > 0 is independent of x0. The result of this lemma follows form the
above two inequalities. �

Lemma 5.4. Suppose V satisfies (A1) and (A2). There exists R∗ > L such
that, if u ∈ E is a nonnegative and locally bounded function satisfying the
inequality:

−Δpu +
1
2
V (x)up−1 ≤ 0, |x| > R∗ (5.23)

then there exist γ > 0 and C > 0 such that

u(x) ≤ Ce−γ|x|1− b
p
, |x| > R∗. (5.24)
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Proof. For ε > 0 and r = |x|, let wε(r) = e−εr
1− b

p
. Direct computation shows

that

Δpwε(|x|) = |w′
ε(r)|p−2

(
(p − 1)w′′

ε (r) +
N − 1

r
w′

ε(r)
)

= εpB1r
−be−(p−1)r

1− b
p + εp−1B2r

−b−(1− b
p )e−(p−1)r

1− b
p
.

where

B1 = (p − 1)
(

1 − b

p

)p

, B2 =
(

1 − b

p

)p−1 (
b − b

p
− N + 1

)
.

Then by (A2), we can choose R∗ > L and a sufficiently small ε0 > 0 such that
for |x| ≥ R∗,

−Δpwε0 +
1
2
V (x)wp−1

ε0 ≥ 0. (5.25)

Since u is a locally bounded function, we can choose λ > 0 such that

ū := λwε0 > u for |x| = R∗.

It follows that (ū − u)− ∈ E. By (5.23) and (5.25), we have

−Δpū + Δpu +
1
2
V (ū − u) ≥ 0.

Multiplying both sides of this inequality by (ū − u)− and integrating in
{x | |x| > R∗}, we obtain

∫

Ω

(|∇ū|p−2∇ū − |∇u|p−2∇u)(∇ū − ∇u)dx

+
1
2

∫

Ω

V (x)(|ū|p−2ū − |u|p−2u)(ū − u)dx ≤ 0, (5.26)

where Ω = {x | ū(x) − u(x) < 0, |x| > R∗}. From [19], there exists c > 0 such
that for any x, y ∈ R

m (m ≥ 1),

(|x|p−2x − |y|p−2y) · (x − y) ≥
{

c|x − y|p, p ≥ 2
c |x−y|2

(|x|+|y|)p−2 , 1 < p < 2.

By this inequality and (5.26), we deduce that Ω has zero measure. The result
of this lemma follows. �

Proof of Theorem 5.1. Since V and K are locally bounded functions and
q < p∗, by the classical regularity theory of quasilinear elliptic equations (see,
for example, [27]), we have u ∈ L∞

loc(R
N ).

By assumption, u satisfies

−Δpu + (V − K|u|q−p)|u|p−2u = 0 in R
N .

By the definition of α (see Lemma 5.2), we have

α − s

q
(q − p) + s > b.
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Together with Lemma 5.3, this implies that there exists R∗∗ > R∗ such that
V − K|u|q−p > V/2 if |x| ≥ R∗∗. It follows that u+ satisfies

−Δpu
+ +

1
2
V (x)(u+)p−1 ≤ 0 if |x| ≥ R∗∗.

Then, Lemma 5.4 implies that there exist C > 0 and γ > 0 such that u+(x) ≤
Ce−γ|x|1− b

p if |x| ≥ R∗∗. Similarly, we can prove that u−(x) ≤ Ce−γ|x|1− b
p if

|x| ≥ R∗∗. The result of this theorem follows from these two inequalities and
fact that u ∈ L∞

loc(R
N ). �
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[29] Zhang, G.: Weighted Sobolev spaces and ground state solutions for quasilinear
elliptic problems with unbounded and decaying potentials, Bound. Value Probl.
2013, 189 (2013)

[30] Zhang, Q.S.: Positive solutions to Δu − V u + Wup = 0 and its parabolic coun-
terpart in noncompact manifolds. Pacific J. Math. 213, 163–200 (2004)

Shaowei Chen
School of Mathematical Sciences
Huaqiao University
Quanzhou 362021
People’s Republic of China
e-mail: swchen6@163.com

Zhi-Qiang Wang
Center for Applied Mathematics
Tianjin University
Tianjin 300072
People’s Republic of China
e-mail: zhi-qiang.wang@usu.edu

Zhi-Qiang Wang
Department of Mathematics and Statistics
Utah State University
Logan
UT 84322
USA

Received: 1 July 2014.

Accepted: 12 November 2014.


	Existence and multiple solutions for a critical quasilinear equation with singular potentials
	Abstract
	1. Introduction and statement of results
	2. Variational structure for Eq. (1.1)
	3. Palais--Smale condition for the functional Φ
	4. Equation (1.1) with a steep potential well and a critical frequency
	5. Exponential decay of solutions of Eq. (1.1)
	Acknowledgements
	References




