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Abstract. We prove the uniqueness and non-degeneracy of positive solu-
tions to a cubic nonlinear Schrödinger (NLS) type equation that describes
nucleons. The main difficulty stems from the fact that the mass depends
on the solution itself. As an application, we construct solutions to the σ–ω
model, which consists of one Dirac equation coupled to two Klein–Gordon
equations (one focusing and one defocusing).
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1. Introduction and main results

1.1. A nonlinear Schrödinger type equation

The purpose of this paper is to study the uniqueness and non-degeneracy of
solutions to a nonlinear Schödinger-type equation, arising from the minimiza-
tion of the following energy functional
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1
2

∫
R3

|σ · ∇ψ(x)|2
(1 − |ψ(x)|2)+ dx − a

4

∫
R3

|ψ(x)|4 dx, (1.1)

under the mass constraint
∫
R3 |ψ(x)|2 dx = 1. Here x+ = max(x, 0) is the pos-

itive part, ψ = (ψ1, ψ2) ∈ L2(R3,C2) is a 2-spinor that describes the quantum
state of a nucleon (a proton or a neutron),

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

are the Pauli matrices and σ · ∇ :=
∑3

j=1 σj∂xj
. The equation of interest is

−σ · ∇
(

σ · ∇ψ

1 − |ψ|2
)

+
|σ · ∇ψ|2

(1 − |ψ|2)2 ψ − a|ψ|2ψ + bψ = 0, (1.2)

with b the Lagrange multiplier associated with the mass constraint.
This equation can as well be written in the form of a system of two

coupled Dirac-like equations
{ − iσ · ∇ζ + |ζ|2ψ − a|ψ|2ψ + bψ = 0,

iσ · ∇ψ +
(
1 − |ψ|2) ζ = 0 .

(1.3)

Indeed, the above model can formally be deduced from a relativistic model
involving one Dirac particle coupled with two auxiliary classical fields (the so-
called σ−ω model), in a specific non-relativistic limit that will be described in
detail below. In this limit, the equations for the classical fields can be solved
explicitly, leading to the nonlinear system (1.3) and the corresponding nonlin-
ear energy functional (1.1), expressed in terms of ψ only.

The term −(a/4)
∫
R3 |ψ|4 in (1.1) is the usual nonlinear Schrödinger

attraction which describes here the confinement of the nucleons. On the other
hand, the denominator (1 − |ψ|2)+ can be interpreted as a mass depending
on the state ψ of the nucleon, and it describes a phenomenon of saturation in
the system. A high density |ψ|2 generates a lower mass, which itself prevents
from having a too high density. Mathematically speaking, this term enforces
the additional constraint 0 � |ψ| � 1, which is very important for the stability
of the energy (1.1). Without the ψ-dependent mass, the model is of course
unstable and the energy functional is unbounded from below. The mass term
(1− |ψ|2)+ allows us to consider the minimization of the energy (1.1) in space
dimensions d � 1 without any limitation on d and a > 0, even if d = 3 is the
interesting physical case. We remark that the upper bound 1 on the particle
density |ψ(x)|2 arises after an appropriate choice of units.

Let us emphasize that, in the model presented above, spin is taken into
account since ψ takes values in C

2. Under the additional assumption that the
state of the nucleon is an eigenfunction of the spin operator, the energy must
be restricted to functions of the special form

ψ(x) = ϕ(x)
(

1
0

)
, (1.4)



Vol. 22 (2015) Uniqueness and non-degeneracy 675

leading to the simpler functional

Ea(ϕ) :=
1
2

∫
Rd

|∇ϕ(x)|2
(1 − |ϕ(x)|2)+ dx − a

4

∫
Rd

|ϕ(x)|4 dx. (1.5)

It is an open problem to show that minimizers of the original energy (1.1) are
necessarily of the special form (1.4). In principle, the spin symmetry could be
broken. In this paper we will however restrict ourselves to the simplified func-
tional (1.5), which we study in any space dimension d � 1. The corresponding
Euler-Lagrange equation simplifies to

−∇ ·
( ∇ϕ

1 − |ϕ|2
)

+
|∇ϕ|2

(1 − |ϕ|2)2 ϕ − a|ϕ|2ϕ + bϕ = 0 (1.6)

To our knowledge, the above model was mathematically studied for the
first time in [4], where Esteban and the second author of this paper formally
derived the Eq. (1.2) from its relativistic counterpart, and then proved the
existence of radial square integrable solutions of (1.6). This result has then been
generalized in [13], where the existence of infinitely many square-integrable
excited states (solutions with an arbitrary but finite number of sign changes)
was shown.

In [5], Esteban and the second author used a variational approach to
prove the existence of minimizers for the spin energy (1.1), for a large range of
values for the parameter a. The model is translation-invariant, hence unique-
ness cannot hold. Usual symmetrization techniques do not obviously apply due
to the presence of the Pauli matrices σk’s but a natural conjecture is that all
minimizers are of the form

ψ(x) = ϕ(|x|)
(

1
0

)
, (1.7)

after a suitable space translation and a choice of spin orientation.
The approach of [5] applies as well to the simplified no-spin model (1.5),

and the proof works in any dimension. The result in this case is the following.

Theorem 1. (Existence of minimizers in the no-spin case [5]) Let d � 1 and

E(a) := inf
{

Ea(ϕ) :
∫
Rd

|∇ϕ|2
(1 − |ϕ|2)+ < ∞,

∫
Rd

|ϕ|2 = 1
}

. (1.8)

There exists a universal number 0 � ad < ∞ such that

• For a � ad, E(a) = 0 and there is no minimizer;
• For a > ad, E(a) < 0 and all the minimizing sequences are precompact
in H1(Rd), up to translations. There is at least one minimizer ϕ for the
minimization problem E(a) and it can be chosen such that 0 � ϕ � 1,
after multiplication by an appropriate phase factor. It solves the nonlinear
equation (1.6) for some b > 0.

The method used in [5] to prove Theorem 1 is based on Lions’
concentration-compactness technique [17,18] and the main difficulty was to
deal with the denominator (1−|ϕ|2)+, for which special localization functions
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had to be introduced. Because the energy (1.5) depends linearly on the para-
meter a, the function a �→ E(a) is concave non-increasing, which is another
important fact used in the proof of [5].

The critical strength ad of the nonlinear attraction is the largest for which
E(a) = 0 and it can simply be defined by

ad = inf
ϕ∈H1(Rd)
0�|ϕ|�1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
(∫

Rd

|ϕ|2
) 2

d
(∫

Rd

|∇ϕ|2
(1 − |ϕ|2)+

)
∫
Rd

|ϕ|4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

It can easily be verified that a1 = 0 in dimension d = 1, that

a2 = inf
ϕ∈H1(R2)
0�|ϕ|�1

{
2
||ϕ||2L2(R2) ||∇ϕ||2L2(R2)

||ϕ||4L4(R2)

}
> 0

is related to the Gagliardo–Nirenberg–Sobolev constant in dimension d = 2,
and that ad > 0 in higher dimensions. Estimates on ad have been provided in
dimension d = 3 in [5] and similar bounds can be derived in higher dimensions
by following the same method.

1.2. Uniqueness and non-degeneracy of solutions

After the two works [4,5], it remained an open problem to show that minimizers
are all radial and unique, up to a possible translation and multiplication by a
phase factor. The purpose of this paper is to answer this question. Our main
result is the following.

Theorem 2. (Uniqueness and non-degeneracy in the no-spin case) The non-
linear equation (1.6) has no non-trivial solution 0 < ϕ < 1 in L2(Rd) when
0 < a � 2b. For a > 2b > 0, the nonlinear equation (1.6) has a unique solution
0 < ϕ < 1 that tends to 0 at infinity, modulo translations and multiplication
by a phase factor. It is radial, decreasing, and non-degenerate.

This theorem is the analogue of a celebrated similar result for the non-
linear Schrödinger equation (see, e.g., [28, App. B] and [8] for references). Our
main contribution is the remark that the Eq. (1.6) can be rewritten in terms
of u := arcsin(ϕ) as a simpler nonlinear Schrödinger equation

−Δu + b sin(u) cos(u) − a sin3(u) cos(u) = 0. (1.9)

Applying a classical argument of McLeod [19] (as explained in [28, App. B]
and in [8]) allows to prove the non-degeneracy and uniqueness in the radial
case. That any solution of (1.6) is necessarily radial decreasing then follows
from the moving plane method [9,15]. The proof of Theorem 2 is provided in
Sect. 2 below.

Let us remark that, since Eq. (1.6) is invariant under multiplications by
a phase factor, we can always suppose that a solution ϕ is real-valued. Hence,
in [5, Appendix A.1] it has been proved that any solution ϕ ∈ H1(Rd) is such
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that |ϕ|2 � 1 a.e. in R
d whenever a � b > 0. As a consequence, the change of

variables u = arcsin(ϕ) makes sense whenever a � b > 0.

1.3. Application: solutions to a Dirac Klein–Gordon equation

As an application of Theorem 2, we are able to construct a branch of solutions
of the underlying Dirac equation, that converges to the non-relativistic solution
ϕ in the limit, thereby justifying the formal arguments of [4]. We explain this
now.

We restrict ourselves to d = 3 for simplicity (but the results are similar
in other dimensions). We consider one relativistic nucleon in interaction with
two scalar fields S (the σ–field) and V (the ω–field). As described for instance
in [21,24–26,30,31], the corresponding equation is⎧⎪⎨

⎪⎩
−iα · ∇Ψ + β(m + S)Ψ + V Ψ = (m − μ)Ψ,

(−Δ + m2
σ)S = −g2

σΨ∗βΨ,

(−Δ + m2
ω)V = g2

ω|Ψ|2,
(1.10)

where

αk =
(

0 σk

σk 0

)
, k = 1, 2, 3, β =

(
12 0
0 −12

)

are the Dirac matrices and Ψ ∈ L2(R3,C4) is now a 4-spinor. The wavefunction
Ψ should in principle be normalized in L2 but, here, we think of fixing μ
instead of imposing ||Ψ||L2 = 1. Any non-trivial solution Ψ to (1.10) also gives a
normalized solution after an appropriate change of parameters. In most physics
papers, the equation for the σ-field S contains a nonlinear term as well (for
instance including vacuum polarization effects [24]),(−Δ + m2

σ + U ′(S)
)
S = −g2

σΨ∗βΨ,

but we restrict ourselves to the simpler linear case for convenience.
The fields S and V are respectively focusing and defocusing, which can

be seen from the different signs in the two Klein–Gordon equations. On the
other hand, they have very different effects, since S modifies the mass m in
the same way for the upper and lower spinors, whereas V is repulsive for the
upper spinor and attractive for the lower spinor. This statement is clarified
when the Dirac equation is written in terms of

Ψ =
(

ψ
ζ

)

as ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−iσ · ∇ζ + (S + V + μ)ψ = 0,

−iσ · ∇ψ = (2m − μ + S − V )ζ,

(−Δ + m2
σ)S = −g2

σ(|ψ|2 − |ζ|2),
(−Δ + m2

ω)V = g2
ω(|ψ|2 + |ζ|2).

(1.11)

We see that S + V and S − V respectively appear in the two equations.
In our units, the non-relativistic limit corresponds to m,mσ,mω → ∞,

with all the masses being of the same order. On the contrary to atomic physics,
in nuclear physics the coupling constants gω and gσ are very large, comparable
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to the masses. It is therefore customary to work in a regime where gω/mω

and gσ/mσ are fixed or, even, large. In the two Klein Gordon equations, the
Laplacian can then be neglected in such a way that

S � − g2
σ

m2
σ

(|ψ|2 − |ζ|2) and V � g2
ω

m2
ω

(|ψ|2 + |ζ|2)

and hence

S + V �
(

g2
ω

m2
ω

− g2
σ

m2
σ

)
|ψ|2 +

(
g2

ω

m2
ω

+
g2

σ

m2
σ

)
|ζ|2,

S − V � −
(

g2
ω

m2
ω

+
g2

σ

m2
σ

)
|ψ|2 −

(
g2

ω

m2
ω

− g2
σ

m2
σ

)
|ζ|2.

As usual, in the non-relativistic regime, the lower spinor χ is of order 1/
√

m.
Simple effective equations will then be obtained in the limit.

The σ model. In order to better illustrate the regime of interest for the σ–ω
model, let us first discuss the case of the σ model, in which V ≡ 0 and gω ≡ 0.
The Eq. (1.11) then reduces to⎧⎪⎨

⎪⎩
−iσ · ∇ζ + Sψ + μψ = 0,

−iσ · ∇ψ = (2m − μ + S)ζ,

(−Δ + m2
σ)S = −g2

σ(|ψ|2 − |ζ|2),
(1.12)

The interesting regime is then gσ/mσ of order 1, say (gσ/mσ)2 = κ fixed. It
can be proved that 2m−μ+S � 2m and the usual NLS equation is recovered
in the limit, after a simple scaling. The precise result is the following.

Theorem 3. (Non-relativistic limit of the σ model) Let κ, μ, c be positive con-
stants. Then for m large enough, the Eq. (1.12) admits a branch of solutions
of the special form

Ψm(x) =

⎛
⎜⎜⎝

ϕm(|x|)
(

1
0

)

−iχm(|x|) σ · x
|x|

(
1
0

)
⎞
⎟⎟⎠ , (1.13)

with

mσ = cm,

(
gσ

mσ

)2

= κ. (1.14)

In the limit m → ∞, we have

ϕm

( · /
√

m
)→ ϕNLS and 2

√
m χm

( · /
√

m
)→ ϕ′

NLS

strongly in H2(R3), where ϕNLS is the unique positive radial solution of

−ΔϕNLS − 2κϕ3
NLS + 2μϕNLS = 0. (1.15)

Functions of the form (1.13) have the lowest possible total angular
momentum [29, Sec. 4.6.4]. The theorem can be shown by following step by
step the method of Sect. 3, using the non-degeneracy of the NLS ground state.
Its proof will not be provided in this paper for shortness.
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Theorem 3 is not satisfactory from a physical point of view. Indeed, the
limit ϕNLS is considered physically unstable since the corresponding energy
functional is unbounded from below in dimension 3. Furthermore, in practice
κ is very large and the corresponding ϕNLS is then very peaked at the origin.
In real nuclei, many forces are in action and they tend to compensate in order
to avoid this collapse at 0. It is therefore important to take the ω field into
account.

The σ–ω model. For the σ–ω model, the interesting regime is when the
parameters g2

σ/m2
σ and g2

ω/m2
ω behave like m, whereas g2

σ/m2
σ − g2

ω/m2
ω stays

bounded, which is the cancellation between the two scalar fields mentioned
before. Even if g2

σ/m2
σ diverges, the model still has a nice bounded limit ϕ,

which is precisely the non-relativistic ground state studied in the previous
section.

Theorem 4. (Non-relativistic limit of the σ–ω model) Let θ, λ, μ, C,D be pos-
itive constants such that λ > 2μθ. Then for m large enough, the Eq. (1.10)
admits a branch of solutions of the special form

Ψm(x) =

⎛
⎜⎜⎝

ϕm(|x|)
(

1
0

)

−iχm(|x|) σ · x
|x|

(
1
0

)
⎞
⎟⎟⎠ , (1.16)

with

m2
σ = Cm2, m2

ω − m2
σ = D,

(
gσ

mσ

)2

= θm,

(
gσ

mσ

)2

−
(

gω

mω

)2

= λ.

(1.17)
In the limit m → ∞, we have

√
θ ϕm

( · /
√

m
)→ ϕ and 2

√
θmχm

( · /
√

m
)→ ϕ′

1 − ϕ2

strongly in H2(R3), where ϕ is the unique positive solution of (1.6) with a =
2λ/θ and b = 2μ.

We refer to [30,31], [24, Sec. 3] and [25, Sec. 2.3] for a discussion of the
validity of this regime for standard nucleons. Typical physical values for the
parameters of the model are provided in [25, Table 3.1].

The proof of Theorem 4 is provided in Sect. 3 and it is based on the
implicit function theorem. In other words, we see (1.11) as a small perturbation
of (1.3) and we use the non-degeneracy of ϕ to construct a solution. Remark
that, thanks to the non-degeneracy property proved in Sect. 2.4, this argument
gives also the local uniqueness of the solution to (1.11) around ϕ, modulo
translations and multiplication by a phase factor. The exact same reasoning
can be used for proving Theorem 3. A similar argument has for instance been
used in [14].

We hope that our work will stimulate further research on this model.
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2. Proof of Theorem 2

This section is devoted to the proof of Theorem 2, which is split in several
steps. In the next section, we explicit the change of variable u = arcsin(ϕ) and
combine it with symmetric rearrangement to deduce that the minimization
problem E(a) can be restricted to radial decreasing functions. This step is
not necessary for our analysis but we mention it for completeness, as it gives a
simpler existence proof than in [4]. Then, in Sect. 2.2, we use the moving plane
method to conclude that positive solutions to the nonlinear equation (1.6) are
radial decreasing. Section 2.3 is devoted to the uniqueness of radial solutions.
Finally, we prove the non-degeneracy of the linearized operator in the whole
of L2(Rd) (modulo the trivial symmetries of the problem) in Sect. 2.4.

2.1. Minimizers are radial decreasing

We recall that the energy functional is

Ea(ϕ) :=
1
2

∫
Rd

|∇ϕ(x)|2
(1 − |ϕ(x)|2)+ dx − a

4

∫
Rd

|ϕ(x)|4 dx (2.1)

which we study on the subset of ϕ’s in L2(Rd) such that
∫
Rd |ϕ|2 = 1 and

∫
Rd

|∇ϕ|2
(1 − |ϕ|2)+ < ∞.

Since (1 − |ϕ|2)+ � 1, it is clear that any such ϕ must be in H1(Rd). It was
proved in [5, Lem. 2.1] that it must also satisfy 0 � |ϕ| � 1 a.e. The nonlinear
term

∫
Rd |ϕ|4 is then well defined and, since 0 � |ϕ| � 1, we conclude that

E(a) � −a/4.
By using rearrangement inequalities and the change of variable u =

arcsin(ϕ), we are able to prove that minimizers are always radial-decreasing.
This can be used to simplify the proof of Theorem 1 of [4].

Lemma 1. (Minimizers are radial decreasing) For every a � 0, the minimiza-
tion problem E(a) can be restricted to radial non-increasing functions. Further-
more, any minimizer of E(a), when it exists, is positive and radial-decreasing,
after a possible translation and multiplication by a phase factor.

Proof. First we recall that |∇ϕ|2 � |∇|ϕ||2 a.e., see [16, Thm. 7.8]. Hence
Ea(ϕ) � Ea(|ϕ|) and the minimization problem can be restricted to functions
satisfying 0 � ϕ � 1, which we assume from now on. Let then ϕ∗ be the
Schwarz rearrangement of ϕ. Using that

∇ arcsin(ϕ) =
∇ϕ√
1 − ϕ2

,

we see that

Ea(ϕ) =
1
2

∫
Rd

|∇ arcsin(ϕ)|2 − a

4

∫
Rd

|ϕ|4.

Next, we have
∫
Rd |∇u|2 �

∫
Rd |∇u∗|2 for all u ∈ H1(Rd) and, since arcsin is

increasing, arcsin(ϕ)∗ = arcsin(ϕ∗), by [16, Chap. 3 & Lem. 7.17]. We conclude
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that Ea(ϕ) � Ea(ϕ∗) and the minimization can be restricted to radial non-
decreasing functions.

If ϕ is a (possibly non-symmetric) minimizer with 0 � ϕ � 1, then ϕ∗ is
also a minimizer and we have

∫
Rd |∇ arcsin ϕ|2 =

∫
Rd |∇ arcsin ϕ∗|2. In general,

this does not imply that ϕ is itself radial-decreasing, but this will be proved
using the nonlinear equation. Denoting u = arcsin(ϕ) and u∗ = arcsin(ϕ∗), we
see that u � 0 must solve the Euler-Lagrange equation

−Δu +
a

2
sin(2u)

(
b

a
− sin2(u)

)
= 0.

In particular, u must be the first eigenvector of the Schrödinger operator

−Δ +
a sin(2u)

2u

(
b

a
− sin2(u)

)

and therefore u > 0. The real-analyticity of u (see, e.g., [22]) combined with
the equality

∫
Rd |∇u|2 =

∫
Rd |∇u∗|2 now implies that u = u∗, hence ϕ = ϕ∗,

after an appropriate space translation, by [2,7]. Finally, if ϕ is an arbitrary
minimizer, the equality |∇ϕ|2 = |∇|ϕ||2 implies ϕ = eiθ|ϕ| by [16, Thm. 7.8].
This concludes the proof of the lemma. �

2.2. Positive solutions are radial decreasing

In the previous section, we have shown using rearrangement inequalities that
minimizers of Ea are necessarily radial-decreasing. Here we use the moving
plane method to prove that non-negative solutions of the Eq. (1.6) are also all
radial decreasing, which of course also implies Lemma 1.

We recall that the nonlinear equation (1.6) can be rewritten in terms of
u = arcsin(ϕ) as

−Δu +
a

2
sin(2u)

(
b

a
− sin2(u)

)
= 0. (2.2)

We also remark that u ∈ H1(Rd) when ϕ ∈ H1(Rd) and
∫
Rd |∇ϕ|2(1 −

|ϕ|2)−1
+ < ∞. For simplicity of notation, we denote

F (u) :=
a

2
sin(2u)

(
sin2(u) − b

a

)
. (2.3)

Lemma 2. (Positive solutions are radial-decreasing) Let a, b > 0 and u ∈
L2(Rd) be a non-trivial solution of (2.2) with 0 < u � π/2. Then, u is radial
decreasing about some point in R

d.

Proof. Elliptic regularity gives that u → 0 at infinity. Then the result follows
immediately from the famous moving plane method. Indeed, noticing that
F (0) = F ′′(0) = 0 and F ′(0) = −b < 0, we may use [9, Thm. 2]. �

We have proved that any solution to the Eq. (2.2) must be radial-
decreasing. The next step consists in studying the uniqueness of radial solu-
tions.
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2.3. Uniqueness and non-degeneracy in the radial case

In this section, we study radial solutions to the Eq. (2.2), which then solve⎧⎨
⎩

u′′ +
d − 1

r
u′ +

a

2
sin(2u)

(
sin2(u) − b

a

)
= 0 on R+

u′(0) = 0
(2.4)

and we concentrate on showing the uniqueness of positive solutions such that
(u(r), u′(r)) → 0 when r → ∞. In dimensions d � 2, the condition u′(0) = 0 is
necessary to avoid a singularity at the origin. In dimension d = 1, the solution
is known to be even about one point and, after a suitable translation we may
always assume u′(0) = 0 as well. More precisely, to prove the existence of
solutions in dimension d = 1, we use the fact that in this case the local energy

H(r) =
u′(r)2

2
+ a

sin4(u(r))
4

− b
sin2(u(r))

2
(2.5)

is conserved along the trajectories. However, in dimension d � 2, the energy
H defined by (2.5), decreases:

H ′(r) = − (d − 1)
r

u′(r)2.

The solutions uy to (2.4) are parametrized by uy(0) := y ∈ (0, π/2).
Using the same arguments as in the proof of [4, Lem. 2.6] and in particular the
fact that the energy H is non-increasing, we can easily show that a solution
starting at y � π/2 stays bigger than π/2 and hence cannot tend to 0 at
infinity. Moreover, note that the Eq. (2.4) has the three stationary solutions
u ≡ 0, u ≡ π/2 and u ≡ arcsin(

√
b/a). Hence u(0) /∈ {0, arcsin(

√
b/a), π/2}

is necessary. The following is a reformulation of the result of [4] that was
expressed in terms of ϕ = sin(u).

Theorem 5. (Existence of solutions [4]) For 0 < a � 2b, there is no non-trivial
solution u to (2.4), such that u → 0 at infinity.

For a > 2b > 0, there exists one positive solution Q to (2.4), such that
(Q,Q′) → (0, 0) at infinity. It is decreasing, starts at

Q(0) = ȳ = arcsin(
√

2b/a) for d = 1,

Q(0) = ȳ ∈ ( arcsin(
√

2b/a), π/2
)

for d � 2,

and has the following behavior at infinity:

Q(r) ∼
r→∞ C

e−√
br

r
d−1
2

Q′(r) ∼
r→∞ −

√
b C

e−√
br

r
d−1
2

, (2.6)

for some C > 0.

The proof used in [4], which is presented for d = 3 but can be generalized
for all d � 2, is based on a shooting method consisting in increasing y contin-
uously starting from 0 (Fig. 1). A byproduct of the proof is that all the other
solutions uy with 0 < y = uy(0) < ȳ do not tend to 0 at infinity. Hence it will
remain to prove that the solutions uy with ȳ < y < π/2 necessarily vanish at
some point ry ∈ R+. The explicit decay rate (2.6) was not stated in [4], but
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Figure 1. Phase portrait with several solutions (u′
y, uy)

including the ground state Q, for a = 4 and b = 1, in dimen-
sion d = 3
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it is a classical fact whose proof can for instance be read in [9]. As remarked
above, the result of Lemma 1 can be use to simplify this proof.

For completeness we quickly explain the non-existence part in Theorem 5
which is needed below and is itself taken from [4, Prop 2.1]. The idea is to use
that the local energy (2.5) is non-increasing.

This implies that any solution satisfying u′(0) = 0 and (u, u′) → (0, 0) at
infinity must be such that

1 > sin2(u(0)) � 2b

a
.

Hence a/2b > 1 is a necessary condition for the existence of u. Moreover, we
see that ȳ > arcsin(

√
2b/a) which is strictly above the stationary solution

arcsin(
√

b/a).
The main result of this section is the following

Theorem 6. (Uniqueness and non-degeneracy of radial ground states) For a >
2b > 0 and d � 1, the solution Q of Theorem 5 is the only non-trivial positive
solution u of (2.4) such that (u, u′) → (0, 0) at infinity.

Furthermore, Q is non-degenerate: the unique solution v to
⎧⎪⎪⎨
⎪⎪⎩

L(v) = v′′ +
d − 1

r
v′ + F ′(Q)v = 0

v(0) = 1
v′(0) = 0

(2.7)

diverges exponentially fast when r → ∞. More precisely, if d � 2, v satisfies
v(r) → −∞ and v′(r) → −∞ exponentially fast when r → ∞.

Proof. In dimension d = 1, the result follows immediately from the Hamilton-
ian feature of the problem, based on the energy (2.5) and the fact that (0, 0) is a
non-degenerate critical point of H, when b > 0. In particular, the divergence of
the solution v to the linearized Eq. (2.7) can be proved by computing the Wron-
skian (v′Q′ − vQ′′)′ = Q′L(v) − vL(Q′) = 0, using that L(Q′) = 0. We deduce
that v′(r)Q′(r) − v(r)Q′′(r) = −Q′′(0) = a/2 sin(2Q(0))(sin2 Q(0) − b/a) > 0
which cannot converge to 0 at infinity.

In the following we assume d � 2. There are many existing results dealing
with the uniqueness (and, often, the non-degeneracy as well) of radial solutions
to semi-linear equations of the type Δu+F (u) = 0. After the pioneering works
on the NLS nonlinearity [3,11], many authors introduced various conditions on
the function F that ensure uniqueness, see, e.g. [12,19,20,23,27]. Our particu-
lar function F as defined in (2.3) satisfies some of the assumptions required in
these works. For instance uniqueness can be directly obtained from [27, Thm.
1’] in dimensions d � 3, by means of Lemma 3 below. On the other hand, the
non-degeneracy is sometimes not explicitly stated in those works, although
often shown in the middle of the proof. For clarity, we will therefore quickly
explain the proof of the theorem, following the approach of McLeod in [19]
and its summary in [28, App. B] and [8]. �
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The main properties of the function F that make everything works are
summarized in the following

Lemma 3. (Elementary properties of F ) Let F be defined as in (2.3) on
(
0, π

2

)
,

with a > 2b > 0. Then
1. F is negative on (0, arcsin(

√
b/a)) and positive on (arcsin(

√
b/a), π/2)

with F ′(arcsin(
√

b/a)) > 0;
2. x �→ xF ′(x)/F (x) is decreasing on (arcsin(

√
b/a), π/2);

3. for every λ > 1, the function

I(x) := xF ′(x) − λF (x) (2.8)

has exactly one root x∗ ∈ (arcsin(
√

b/a), π/2), at which we have I ′(x∗) <
0.

The above properties of F are somehow inherited from the NLS case,
since F (x) = cos(x)P (sin(x)) with P (ξ) = aξ3 − bξ. Below we will not use the
property (2), but rather (3) (which itself follows from (2)). We however state
(2) since the monotonicity of xF ′(x)/F (x) appears in many works, including
for instance [12,27]. The proof of Lemma 3 will be provided at the end of the
proof of the theorem. The ‘I’ function (2.8) appears as well in [19], where an
additional assumption on the behavior of x∗ was required.

Now, we assume that a > 2b > 0 and we look at the solutions uy of (2.4)
with uy(0) = y and u′(0) = 0, and we let y vary in (0, π/2).

Note that the function (y, r) �→ uy(r) is smooth (indeed real-analytic
since F is analytic). Following [19], we introduce the sets

S+ =
{
y ∈ (0, π/2) : min

R+
uy > 0

}
,

S0 =
{
y ∈ (0, π/2) : uy > 0 and lim

r→∞ uy(r) = 0
}
,

S− =
{
y ∈ (0, π/2) : uy(ry) = 0 for some (first) ry > 0

}
,

which form a partition of (0, π/2). As we have recalled above, since the energy
H is decreasing along a solution, we have (0, arcsin(

√
2b/a)) ⊂ S+. This was

actually shown in [4], where the solution Q = uȳ is constructed by looking at
the supremum of S+. In particular, S0 �= ∅. If y ∈ S0 we let for convenience
ry := +∞. Since (r, y) �→ uy(r) is smooth, it can easily be proved that S− is
open. The same holds for S+, but the proof is more difficult. The idea is that
the points of S− are characterized by the fact that the trajectory in phase
space crosses first the horizontal axis (that is, uy vanishes before u′

y), whereas
for y ∈ S+ it only crosses the vertical axis (u′

y vanishes and uy does not),
see Fig. 1.

Lemma 4. Let y ∈ S0 ∪S−. Then u′
y < 0 on (0, ry), that is, uy vanishes before

u′
y. In particular, uy is strictly decreasing on (0, ry).

Proof. The proof is again based on the monotonicity of the energy H and it
can for instance be read in [23, Lem. 3]. The idea is the following. We denote
for simplicity u = uy and u′ = u′

y. First, since S0∪S− ⊂ (arcsin(
√

2b/a), π/2),
then we have from (2.4) u′′(0) = −F (u(0))/d < 0 and hence u′(r) < 0 for small
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r > 0. On the other hand u′(ry) < 0 (since ry is the first root of u = uy and
the latter cannot have double zeroes). Assuming that u′ changes sign before
ry implies that u must have a local strict minimum at some point 0 < r′ < ry,
at which u(r′) > 0. Then, since limr→ry

u(r) = 0, there must be another later
point r′′ < ry at which u(r′′) = u(r′). However, we have

u′(r′′)2

2
= H(r′′) − H(r′) =

∫ r′′

r′
H ′(s) ds = −(d − 1)

∫ r′′

r′

u′(s)2

s
ds < 0,

a contradiction. �

Lemma 5. Let y ∈ S+. Then u′
y vanishes at least once and, for the first positive

root r′
y of u′

y, we have H(r′
y) < 0. The set S+ is open.

Proof. The proof follows the presentation of [8] and it goes as follows. We
denote for simplicity u = uy and u′ = u′

y. If y = arcsin(
√

b/a), then u ≡
arcsin(

√
b/a) and H(r) < 0 for all r ∈ R

+. Hence, let y �= arcsin(
√

b/a).
First we claim that u′ must vanish. Otherwise u is decreasing whenever y ∈
S+ ∩

(
arcsin(

√
b/a), π

2

)
and increasing if y ∈ S+ ∩

(
0, arcsin(

√
b/a)

)
. In both

cases, u has a positive limit 0 < α < π
2 at infinity. Using the equation, we

see that F (α) = 0, hence α = arcsin(
√

b/a). Next, following [1,8], we look at
U := r(d−1)/2(u − arcsin(

√
b/a)) which solves the equation

U ′′ =

(
(d − 1)(d − 3)

4r2
− F (u)

u − arcsin(
√

b/a)

)
U.

At infinity we have F (u)(u − arcsin(
√

b/a))−1 → 2 b
a (a − b) > 0, hence

U ′′(r) ∼r→∞ −2 b
a (a − b)U(r), which easily leads to a contradiction. We con-

clude that u′ vanishes and we denote by r′
y its first root.

Next we distinguish two cases. First, if y � arcsin(
√

b/a), then H(0) < 0
and, by (2.5), H(r) < 0 for all r > 0 and in particular H(r′

y) < 0. Second,
if y > arcsin(

√
b/a), then u′ is negative for small r (due to the fact that

u′′(0) = −F (y)/d < 0). Since u′′(r′
y) �= 0 (otherwise F (u(r′

y)) = 0 and u
is constant), we see that u must attain a local minimum at r′

y. From the
Eq. (2.4), this yields F (u(r′

y)) < 0 and hence u(r′
y) < arcsin(

√
b/a), which

implies H(r′
y) < 0.

Finally we prove that S+ is open. We already know that S+ ⊃
(0, arcsin(

√
2b/a)). Let then y ∈ S+ ∩ (arcsin(

√
2b/a), π/2). For z in a neigh-

borhood of y, uz possesses a local minimum at r′
z at which H(r′

z) < 0.
Since (a/4) sin2(u(r))(sin2(u(r)) − 2b/a) � H(r) < H(r′

z) < 0, we get
0 < ε � u(r) � arcsin(

√
2b/a) − ε for all r > r′

z and some ε > 0, and
therefore z ∈ S+. �
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Let now vy be the unique solution to⎧⎪⎪⎨
⎪⎪⎩

L(v) := v′′ +
d − 1

r
v′ + F ′(uy)v = 0

v(0) = 1
v′(0) = 0.

(2.9)

The main remark is that vy = ∂yuy is the variation of u with respect to the
initial condition uy(0) = y, which implies the following result

Lemma 6. Assume that y ∈ S0 and that vy(r), v′
y(r) → −∞ when r → +∞.

Then there exists ε > 0 such that (y − ε, y) ⊂ S+ and (y, y + ε) ⊂ S−.

Proof. This is [19, Lem. 3(b)] and the argument goes as follows. Choose first
α > 0 such that F ′ � −b/2 on [0, α), and then R̄ such that uy(r) � α for
all r � R̄. Finally, choose R � R̄ such that vy(R) < 0 and v′

y(R) < 0. For
z ∈ (y, y + ε), we then have 0 < uz(R) < uy(R) and u′

z(R) < u′
y(R) < 0.

The function w := uz − uy is negative at R with w′(R) < 0. If z ∈ S0 or
if z ∈ S+, then w must tend to 0 or become positive at some point, and
therefore it must have a first local (strict) minimum at some point R′ > R,
with w(R) � w(r) � w(R′) for all R � r � R′. From the Eq. (2.4) we can
then write

w′′(R′) = F (uy(R′)) − F (uz(R′)) = −F ′(θ)w(R′),

for some 0 < uz(R′) < θ < uy(R′) � α. Here uz(R′) > 0 because of our
assumption that z ∈ S0 ∪ S+ and uy(R′) � α by choice of α. Now F ′(θ) �
−b/2 < 0 and w(R′) < 0, which is a contradiction. The argument is the same
for z < y. �

The lemma implies that any y ∈ S0 for which vy, v′
y diverges to −∞ must

be an isolated point. Now, if we can prove that vy, v′
y → −∞ for all y ∈ S0

then we would clearly be done. Indeed, we know that S+ and S− are open
and they can only be separated by points in S0. But the lemma says that
points in S0 can only serve as a transition between S+ below and S− above.
Therefore, there can be only one such transition, and we conclude that S0 is
reduced to one point. So our goal will be to prove that all the points in S0

have vy, v′
y → −∞.

Our argument will be based on the Wronskian identity(
rd−1(vyf ′ − fv′

y)
)′ = rd−1vyL(f) (2.10)

for various functions f ’s. A simple calculation shows that

L(uy) = uyF ′(uy) − F (uy), (2.11)
L(ru′

y) = −2F (uy), (2.12)

and

L(u′
y) =

d − 1
r2

u′
y. (2.13)

These three test functions correspond respectively to variations of uy using
multiplication by a constant, dilations and translations.



688 M. Lewin and S. Rota Nodari NoDEA

Lemma 7. For every y ∈ S0, the function vy vanishes exactly once.

Proof. For simplicity we denote again u = uy and v = vy. Assume on the
contrary that v(r) > 0 for all r � 0 (if v does not vanish it must be strictly
positive since it cannot have double zeroes). Using (2.10) with f = u′, we find(

rd−1(vu′′ − u′v′)
)′ = (d − 1)rd−3v(r)u′(r) < 0

and, therefore, rd−1(vu′′ − u′v′) = rd−1v2(u′/v)′ is decreasing and vanishes at
r = 0, hence (u′/v)′ < 0. Since u′(0)/v(0) = 0, we conclude that u′/v � −ε
for r � 1 and thus 0 � v � −u′/ε. As we have said rd−1(vu′′ − u′v′) vanishes
at r = 0 and it is decreasing, hence rd−1(vu′′ − u′v′) � −ε for r � 1. However
rd−1|vu′′| � Crd−1|u′(r)| |u′′(r)| decays exponentially at infinity and hence
rd−1u′v′ � ε/2 for r large enough. Using (2.6), this proves that −√

bv′ �
Ce

√
brr−(d−1)/2. Therefore v′ diverges to −∞ exponentially at infinity, which

contradicts the assumption that v > 0.
Next, the proof that v can only vanish once is the same as in [28, p.

357–358]. Indeed, start with z = arcsin(
√

b/a) at which the solution uz is
stationary. The function uy − uz = uy − arcsin(

√
b/a) vanishes exactly once

since uy decreases from y > arcsin(
√

b/a) = z to 0. Taking z → y and using
that uy−uz cannot have double zeroes gives that v can vanish at most once. �

We are now able to show that v and v′ diverge to −∞.

Lemma 8. Let y ∈ S0. Then vy(r) and v′
y(r) diverge to −∞ as r → ∞.

Proof. For simplicity we denote again u = uy and v = vy. Let r∗ be the unique
root of v, at which we must have v′(r∗) < 0. Let now c := −u(r∗)/(r∗u′(r∗)) >
0, which is chosen such that f := u + cru′ vanishes at the zero r∗ of v. Recall
that u′(r) < 0 and u(r) > 0 for all r > 0, by Lemma 4. Then we have
from (2.10)

(
rd−1(f ′v − v′f)

)′ = rd−1v
(
uF ′(u) − (1 + 2c)F (u)

)
. (2.14)

Next we remark that the function rd−1(f ′v − v′f) vanishes both at r = 0 and
at r = r∗. Therefore, its derivative must vanish at least once on (0, r∗), that
is, uF ′(u)− (1+2c)F (u) vanishes before r∗. Since u is strictly decreasing, and
since y �→ yF ′(y) − (1 + 2c)F (y) vanishes only once by Lemma 3, we conclude
that

(
rd−1(f ′v − v′f)

)′ is negative for r > r∗, hence rd−1(f ′v − v′f) is strictly
decreasing after r∗. In particular,

rd−1(v′f − vf ′) � ε > 0, ∀r > 2r∗.

Since f = u + cru′ and f ′ go to 0 exponentially at infinity, we conclude that
(v, v′) must diverge. More precisely, we have for r large enough

f = u(1 + cru′/u) ∼
r→∞ −C

√
b r(3−d)/2e−√

br

since u′/u → −√
b and by (2.6). Hence(

v

f

)′
� ε

rd−1f2
� Cr−2e2r

√
b
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and after integrating we get v � −Cer(
√

b−ε). As a consequence, v diverges to
−∞ exponentially.

Finally using that (rd−1v′)′ = −rd−1F ′(u)v � (b/2)rd−1v for large r
(since F ′ → −b), we conclude that v′ diverges to −∞ exponentially as well. �

As we have explained, the fact that all the points y ∈ S0 are non-
degenerate with vy, v′

y → −∞ implies uniqueness, and concludes the proof
of Theorem 6.

Proof. (Proof of Lemma 3) Let P (ξ) = aξ3 −bξ be the NLS polynomial, which
is such that F (x) = cos(x)P (sin(x)). We have

ξP ′(ξ)
P (ξ)

= 3 +
2b

aξ2 − b
(2.15)

which is positive decreasing on (
√

b/a, 1). Noticing that

xF ′(x)
F (x)

= x
cos(x)
sin(x)

(
sin(x)P ′(sin(x))

P (sin(x))

)
− x sin(x)

cos(x)
,

we find (
xF ′(x)
F (x)

)′
=

sin(2x) − 2x

2 sin2(x)

(
sin(x)P ′(sin(x))

P (sin(x))

)

+x
cos(x)
sin(x)

(
sin(x)P ′(sin(x))

P (sin(x))

)′
− sin(2x) + 2x

2 cos2(x)

=
sin(2x) − 2x

2 sin2(x)

(
3 +

2b

a sin2(x) − b

)

−4abx
cos2(x)

(a sin2(x) − b)2
− sin(2x) + 2x

2 cos2(x)
.

This is negative for arcsin(
√

b/a) < x < π/2.
Let now λ > 1, and consider the function I in (2.8). Note that F ′(0) = −b,

and hence xF ′(x) − λF (x) = (λ − 1)bx + o(x) is positive for small x > 0. On
the other hand,

(π/2)F ′(π/2) − F (π/2) = π(b − a)/2 < 0,

hence I must vanish at least once on the interval (0, π/2). Next we remark
that

I(x) = a

(
x cos(2x) − λ

2
sin(2x)

)(
sin2(x) − b

a

)
+

a

2
x sin2(2x)

=
a

2
sin(2x)

[(
2x cos(2x)

sin(2x)
− λ

)(
sin2(x) − b

a

)
+ x sin(2x)

]
.

Note that, for 0 < x < π/2, sin(2x) > 0 and

2x cos(2x)
sin(2x)

− λ � 1 − λ < 0.
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From this we conclude that I(x) > 0 when 0 < x � arcsin(
√

b/a), hence I can
only vanish on (arcsin(

√
b/a), π/2). On this interval xF ′(x)/F (x) is strictly

decreasing, as we have shown before, hence I can only have one root. �

2.4. Non-degeneracy in L2(Rd)
The linearized operators at our solution ϕ = sin(Q) are defined by

L1(η)=−∇·
( ∇η

1−ϕ2

)
+
{

−2∇·
(

ϕ∇ϕ

(1−ϕ2)2

)
+4

ϕ2(ϕ′)2

(1−ϕ2)3
+

(ϕ′)2

(1−ϕ2)2
−3aϕ2+b

}
η

(2.16)
and

L2(η) = −∇ ·
( ∇η

1 − ϕ2

)
+
{

(ϕ′)2

(1 − ϕ2)2
− aϕ2 + b

}
η. (2.17)

More precisely, the linearized operator is L(η1 + iη2) = L1η1 + iL2η2. The
operator L1 describes variations with respect to ϕ for real functions, whereas
L2 is related to the invariance of our problem under multiplication by a phase
factor. It is easy to verify that both L1 and L2 are self-adjoint operators on
L2(Rd), with domain H2(Rd) and form domain H1(Rd). The main result of
this section is

Theorem 7. (Non-degeneracy of the unique ground state ϕ) In L2(Rd), we
have ker(L1) = span(∂x1ϕ, . . . , ∂xd

ϕ) and ker(L2) = span(ϕ).

Proof. The operators L1 and L2 both satisfy the Perron-Frobenius property
that their first eigenvalue, when it exists, is necessarily non-degenerate with a
positive eigenfunction. This follows for instance from the fact that

〈
η, L1/2η

〉
�〈|η|, L1/2|η|〉 and from Harnack’s inequality [6, Sec. 6.4, Thm 5] which gives the

strict positivity of eigenfunctions. Since L2ϕ = 0 and ϕ is positive, we deduce
that it must be the first eigenfunction of L2, and that it is non-degenerate. Thus
ker(L2) = span(ϕ). Next, in dimension d = 1, we know that ∂xϕ ∈ ker(L1)
and ∂xϕ has a constant sign. Hence, 0 is the first eigenvalue of L1 and it is
non-degenerate which implies ker(L1) = span(∂xϕ).

The argument for L1 in dimension d � 2 is slightly more complicated. A
lengthy but straightforward computation shows that

L1(η) = −Δv + F ′(Q)v
cos(Q)

, with v =
η

cos(Q)
.

Since 0 < Q � Q(0) < π/2, the multiplier cos(Q) is bounded away from 0 and
we deduce that v ∈ L2(Rd) if and only if η ∈ L2(Rd). Hence η ∈ ker(L1) if and
only if v = η/ cos(Q) ∈ ker(Δ + F ′(Q)). The argument is now classical. The
operator −Δ − F ′(Q) commutes with space rotations and it may be written
as a direct sum

−Δ − F ′(Q) =
⊕
��0

A(�) ⊗ 1

corresponding to the decomposition

L2(Rd) =
⊕
��0

L2(R+, rd−1 dr) ⊗ K�
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with K� = ker
(
Δ|Sd−1 +�(�+d−2)

)
the �th eigenspace of the Laplace-Beltrami

operator on the sphere Sd−1. In dimension d = 3, K� = span{Y
(�)
m ,m =

−�, . . . , �} where Y
(�)
m are the usual spherical harmonics. The formula for A(�)

is

A(�)v := −v′′ − (d − 1)
r

v′ +
�(� + d − 2)

r2
v − F ′(Q(r))v

with an appropriate boundary condition at r = 0 (Neumann for � = 0 and
Dirichlet for � � 1). Each A(�) has the Perron-Frobenius property. Since Q′ ∈
ker(A(1)) and Q′ has a constant sign, we conclude that 0 is the first eigenvalue
of A(1) and it is non-degenerate, thus ker(A(1)) = span(Q′). Next, for � � 2, we
simply use that A(�) > A(1) in the sense of quadratic forms, which shows that
the first eigenvalue of A(�) must be positive and hence ker(A(�)) = {0}. Finally,
for � = 0, the operator A(0) was studied in Theorem 6, where we proved that
the unique solution to A(0)v = 0 with v′(0) = 0 diverges exponentially at
infinity, hence cannot be in L2(R+, rd−1 dr). We have therefore shown that

ker(Δ + F ′(Q)) = span{∂x1Q, . . . , ∂xd
Q}.

Since ∂xk
ϕ = ∂xk

sin(Q) = cos(Q)∂xk
Q, this says that

ker(L1) = span{∂x1ϕ, . . . , ∂xd
ϕ}

which concludes our proof of Theorem 7. �

3. Proof of Theorem 4

We want to prove the existence of a branch of solutions to the Dirac equation⎧⎪⎨
⎪⎩

−iα · ∇Ψ + β(m + S)Ψ + V Ψ = (m − μ)Ψ,

(−Δ + m2
σ)S = −g2

σΨ∗βΨ,

(−Δ + m2
ω)V = g2

ω|Ψ|2,
(3.1)

which can be rewritten for Ψ = (ψ, ζ) as
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−iσ · ∇ζ + (S + V + μ)ψ = 0,

−iσ · ∇ψ = (2m − μ + S − V )ζ,

(−Δ + m2
σ)S = −g2

σ(|ψ|2 − |ζ|2),
(−Δ + m2

ω)V = g2
ω(|ψ|2 + |ζ|2).

(3.2)

Here the parameters are chosen as

m2
σ = Cm2, m2

ω − m2
σ = D,

(
gσ

mσ

)2

= θm,

(
gσ

mσ

)2

−
(

gω

mω

)2

= λ

(3.3)
with C,D, θ, λ, μ > 0 fixed such that λ > 2θμ. It will be convenient to introduce
the new fields

W̃+ =
S + V

2
and W̃− =

S − V

2
(3.4)
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Then, imposing the special form

ψ(x) = ϕ̃(|x|)
(

1
0

)
, ζ(x) = −iχ̃(|x|) σ · x

|x|
(

1
0

)
, (3.5)

with real-valued functions ϕ̃ and ζ̃, and using (3.3) and (3.4), we obtain the
following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃′ − (2m + 2W̃− − μ)χ̃ = 0

χ̃′ +
2
r
χ̃ − (2W̃+ + μ)ϕ̃ = 0

W̃+ =
1
2

(
1

m2
σ

+
1

m2
ω

)
ΔW̃++

1
2

(
1

m2
σ

− 1
m2

ω

)
ΔW̃− − λ

2
(ϕ̃2 + χ̃2) + θmχ̃2

W̃− =
1
2

(
1

m2
σ

− 1
m2

ω

)
ΔW̃++

1
2

(
1

m2
σ

+
1

m2
ω

)
ΔW̃− +

λ

2
(ϕ̃2 + χ̃2) − θmϕ̃2

(3.6)
which is equivalent to (3.1) for functions of the above form (3.5).

Next, we consider the following rescaling

ϕ̃(x) = 1√
θ
ϕ(

√
mx), χ̃(x) = 1

2
√

θ
1√
m

χ(
√

mx),

W̃+(x) = W+(
√

mx), W̃−(x) = mW−(
√

mx), (3.7)

and we find⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′ −
(
1 + W− − μ

2m

)
χ = 0

χ′ +
2
r
χ − (4W+ + 2μ) ϕ = 0

W+ =
2 + D/(Cm2)

2m(C + D/m2)
ΔW++

D

2C(Cm2 + D)
ΔW−− λ

2

(
ϕ2

θ
+

χ2

4θm

)
+

χ2

4

W− =
D

2Cm2(Cm2+D)
ΔW++

2+D/(Cm2)
2m(C+D/m2)

ΔW−+
λ

2m

(
ϕ2

θ
+

χ2

4θm

)
−ϕ2

Finally, denoting ε = 1/m the perturbative parameter and recalling that

a = 2λ/θ, b = 2μ,

we obtain ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ′ −
(

1 + W− − ε
b

4

)
χ = 0

χ′ +
2
r
χ − (4W+ + b) ϕ = 0

(− εR(ε)Δ + 12

)(W+

W−

)
+ F(ϕ, χ) + H(ε, ϕ, χ) = 0

(3.8)

with

R(ε) =
1

2(C + Dε2)

(
2 + ε2D/C εD/C

ε3D/C 2 + ε2D/C

)
,

F(ϕ, χ) =
(

aϕ2/4 − χ2/4
ϕ2

)
, H(ε, ϕ, χ) = ε

a

4

(
χ2/4

−ϕ2 − εχ2/4

)
.
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When ε = 0, we obtain the system of equations{
ϕ′ = χ(1 − ϕ2)
χ′ + 2

r χ = ϕ(χ2 − aϕ2 + b)
(3.9)

which is equivalent to (2.4) with ϕ = sin(u) and was studied in [4,5].
We introduce the map K : R×H2

rad × (H2
rad)2 −→ H1

rad × (H2
rad)2 defined

by

K(ε, ϕ, χ,W+,W−)

=

⎛
⎜⎜⎝

ϕ′ − (1 + W− − εb/4)χ
χ′ + 2χ/r − (4W+ + b)ϕ(

W+

W−

)
+ 1

εR(ε)(−Δ) + 12

(
F(ϕ, χ) + H(ε, ϕ, χ)

)
⎞
⎟⎟⎠ . (3.10)

Here the spaces

Hk
rad :=

⎧⎪⎪⎨
⎪⎪⎩

(ϕ, χ) :

⎛
⎜⎜⎝

ϕ(|x|)
(

1
0

)

−iχ(|x|)σ · x
|x|

(
1
0

)
⎞
⎟⎟⎠ ∈ Hk(R3,C4)

⎫⎪⎪⎬
⎪⎪⎭

are the projections of the usual Sobolev spaces Hk(R3,C4) to the sector of
minimal total angular momentum (they in particular contain a boundary con-
dition at r = 0), whereas H2

rad is the usual projection of H2(R3,R) to the
subspace of radial functions.

In what follows, we let X = H2
rad × (H2

rad)2, Y = H1
rad × (H2

rad)2 and Ξ =
(ϕ, χ,W+,W−). Solving the system (3.8) is equivalent to solving K(ε,Ξ) = 0.
We construct a branch of solutions, by means of an implicit function-type
argument. The first step is to prove that K is a smooth operator from R × X
into Y .

Lemma 3.1. For η small enough, the operator K : [0, η)×X → Y defined as in
(3.10) is continuous. Its derivative ∂ΞK : [0, η) × X → Y is also continuous.

Note that we do note prove the continuity of the derivative ∂εK, which
fails at ε = 0. Fortunately, the latter is not needed for the implicit function
theorem (see e.g. [10, Thm. 3.4.10]).

Proof. The proof is tedious but elementary. It relies on the fact that H2(R3)
is an algebra and that all the functions appearing in the definition of K are
polynomials in the unknowns (ϕ, χ,W+,W−). Also, it uses that(

ϕ
χ

)
�→
(

ϕ′ − χ
χ′ + 2χ/r − bϕ

)

is an isomorphism from H2
rad to H1

rad. Indeed, this map is related to the restric-
tion of the Dirac operator

−iα · ∇ +
b + 1

2
β +

b − 1
2
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to functions of the form (3.5). Since |b − 1|/2 < (b + 1)/2, the operator is
an isomorphism from H2(R3) to H1(R3) and the same holds in the radial
subspaces H2

rad and H1
rad. Similarly, the operator

Φ �→ 1
εR(ε)(−Δ) + 12

Φ

is the Fourier multiplier with the matrix (εR(ε)|k|2 +12)−1 and we claim that∣∣∣
∣∣∣(εR(ε)|k|2 + 12

)−1
∣∣∣
∣∣∣ � 1 (3.11)

for all k ∈ R
3 and all ε � 0. This estimate shows that the corresponding map

is bounded on H2(R3), as needed. In order to prove (3.11), we recall that

εR(ε)|k|2 + 12 =
ε|k|2

2C(C + Dε2)

(
2C + ε2D εD

ε3D 2C + ε2D

)
+ 12.

Changing ε|k|2 into ε|k|2/(2C2 + 2DCε2), it suffices to show that x
∣∣∣∣Mε(x)−1

∣∣∣∣ � 1
1 + cx

for all x � 0, with

Mε(x) := x

(
2C + ε2D εD

ε3D 2C + ε2D

)
+ 12

The matrix Mε(x) has two real positive eigenvalues ξ− = 1 + 2Cx and ξ+ =
1 + 2x(C + ε2D) with ξ− < ξ+. Hence∣∣∣∣Mε(x)−1

∣∣∣∣−1
= 1 + 2Cx.

As a consequence, ‖Mε(x)−1‖ = (1 + 2Cx)−1 � 1, for all k ∈ R
3 and for all

ε � 0.
Finally, the fact that ∂ΞK : [0, η) × X → Y is also continuous can be

proved with the same arguments. �
Next, we consider the linearization L = ∂ΞK(0,Ξ0) of the operator K at

our non-relativistic solution Ξ0 = (ϕ, χ,W+,W−) ∈ X with

χ = ϕ′/(1 − ϕ2), W+ = −a

4
ϕ2 +

1
4
χ2, W− = −ϕ2,

which is defined by

L(f, g, h+, h−) =

⎛
⎜⎜⎝

f ′ − (1 + W−)g − χh−
g′ + 2

r g − 4W+f − 4ϕh+ − bf
h+ + a

2ϕf − 1
2χg

h− + 2ϕf

⎞
⎟⎟⎠ . (3.12)

Lemma 3.2. The operator L : X → Y defined as in (3.12) is an isomorphism.

Proof. First we prove that L is a one to one operator. Let (f, g, h+, h−) ∈ X
a non-trivial solution to L(f, g, h+, h−) = 0. Then, since (R(0)(−Δ) + 12)−1

is bounded, (
h+

h−

)
=
(−a

2ϕf + 1
2χg

−2ϕf

)
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and (f, g) solves ⎧⎨
⎩

f ′ − (1 − ϕ2)g + 2ϕχf = 0

g′ +
2
r
g − (χ2 − 3aϕ2 + b)f − 2ϕχg = 0

. (3.13)

A calculation shows that the radial function f solves L1f = 0 where L1 is
the linearized operator defined in (2.16). Since the restriction of L1 to radial
functions is invertible by Theorems 6 and 7, we conclude that (f, g) = (0, 0)
and L is one-to-one.

Next, we observe that L can be written as the sum of two linear operators

L(f, g, h+, h−) =

⎛
⎜⎜⎝

f ′ − g
g′ + 2

r g − bf
h+

h−

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

−W−g − χh−
−4W+f − 4ϕh+

a
2ϕf − 1

2χg
2ϕf

⎞
⎟⎟⎠ := L1 + L2.

As we have already said before, the upper part of the operator L1 is a restric-
tion of the Dirac operator −iα · ∇ + (b + 1)β/2 + (b − 1)/2 and it is an
isomorphism from H2

rad to H1
rad, by definition of these spaces. On the other

hand, L2 is compact. Therefore L is a one-to-one operator that can be written
as a sum of an isomorphism and a compact perturbation and it is then an
isomorphism. �

As a conclusion, we can apply the implicit function theorem to find that
there exists δ > 0 and a function Ξ ∈ C([0, δ) × X) such that

Ξ(0) =
(

ϕ ,
ϕ′

1 − ϕ2
, −a

4
ϕ2 +

1
4
χ2 , −ϕ2

)

and K(ε,Ξ(ε)
)

= 0 for 0 � ε < δ. This concludes the proof of Theorem 4.
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