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Abstract. This paper examines a class of nonlocal equations involving the
fractional p-Laplacian, where the nonlinear term is assumed to have ex-
ponential growth. More specifically, by using a suitable Trudinger–Moser
inequality for fractional Sobolev spaces, we establish the existence of weak
solutions for these equations.
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1. Introduction

Our aim is to show the existence of weak solutions for the following class of
equations:

(−Δ)s
p u + V (x)|u|p−2u = f(x, u) + λh in R

n, (1.1)

where p ≥ 2, 0 < s < 1, n ≥ 1, λ is a positive parameter and (−Δ)s
p is the

fractional p-Laplacian defined by

(−Δ)s
p u(x) = 2 lim

ε↘0

∫
Rn\Bε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+sp

dy, x ∈ R
n.

(1.2)
When p = 2 the Eq. (1.1) arises when one seeks for standing waves solu-

tions of the following nonlinear fractional Schrödinger equation

i
∂ϕ

∂t
= (−Δ)sϕ + W (x)ϕ − g(x, |ϕ|)ϕ, (t, x) ∈ R × R

n. (1.3)
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The special case when (−Δ)sϕ+W (x)ϕ−g(x, |ϕ|)ϕ does not depend explicitly
on the time is of great importance for physical applications (see Laskin [17]). In
this case there exists a special solution of the fractional Schrödinger equation
of the form

ϕ(t, x) = u(x)e−iEt (so-called standing wave solution),

where u(x) satisfies

(−Δ)su + V (x)u = f̃(x, u), x ∈ R
n,

with V (x) = W (x) − E and f̃(x, u) = g(x, |u|)u for a suitable E > 0 (see N.
Laskin [16,17]).

By examining the literature, we notice that many authors, by considering
different ways, have established the existence of solutions for the equation
above in the last decades, see for instance [3,5,6,12,13,18]. It worth to mention
that for s = 1, the fractional Schrödinger equation becomes the standard
Schrödinger equation:

i
∂ϕ

∂t
= −Δϕ + W (x)ϕ − g(x, |ϕ|)ϕ, (t, x) ∈ R × R

n. (1.4)

The existence of standing wave solutions for (1.4) is discussed in papers
such as [1,11,22,24] and references therein.

In order to obtain the existence of weak solutions for (1.1), let us recall
some results related to the fractional Sobolev space W s,p(Rn). First of all,
define the Gagliardo seminorm by

[u]s,p =
(∫

R2n

|u(x) − u(y)|p
|x − y|n+sp

dxdy

)1/p

,

where u : Rn → R is a measurable function. Now, consider that the fractional
Sobolev space given by

W s,p(Rn) = {u ∈ Lp(Rn) : u measurable and [u]s,p < ∞}
is assumed to be endowed with norm

‖u‖s,p = ([u]ps,p + ‖u‖p
p)

1/p,

where the fractional critical exponent is defined by

p∗
s =

{ np

n − sp
, if sp < n;

∞, if sp ≥ n.

The classical Sobolev embedding states that W s,p(Rn) ↪→ Lp∗
s (Rn) for

sp < n. Furthermore, Wn/p, p(Rn) ↪→ Lq(Rn) for p ≤ q < ∞; however,
Wn/p, p(Rn) �↪→ L∞(Rn). For a detailed account on the properties of W s,p(Rn)
we refer to [10].

In this paper, we are interested in the borderline case of the Sobolev
embedding, i.e., s = n/p, which is usually known as the Trudinger–Moser case
(cf. [19,21,26]). More precisely, we examine the existence of weak solutions for
the following class of equations involving the fractional p-Laplacian:

(−Δ)n/p
p u + V (x)|u|p−2u = f(x, u) + λh in R

n, (1.5)
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where p ≥ 2, 0 < n/p < 1, λ is a positive parameter, f , V are functions that
satisfy mild conditions and h belongs to the dual of an appropriated functional
space (see more details below).

It is important to point out that the existence of solutions for the equation
(1.1) has been discussed under various assumptions involving the potential V ,
provided that p = 2, s = 1 and n ≥ 3 (see [1,22,24] and references therein);
or p = 2, 0 < s < 1 and n ≥ 2 (cf. [5,23] and references therein). Besides, the
limiting case of the Sobolev embedding with p = n, namely, s = 1, was studied
in some papers as, for example [7–9,15,27]. It is also worthwhile to remark that,
in these works, different hypotheses on V are assumed in order to overcome
the problem of “lack of compactness”, which often occurs in elliptic problems
associated with unbounded domains. More precisely, numerous papers assume
that the potential is uniformly positive, that is, V (x) ≥ V0 > 0 for any x ∈ R

n,
and satisfies one of the following assumptions:
1. V (x) → +∞ as |x| → +∞;
2. 1/V ∈ L1(Rn);
3. for every M > 0 the Lebesgue measure μ({x ∈ R

n : V (x) ≤ M}) is finite.
Each of these conditions ensure that the space

E :=
{

u ∈ W s,p(Rn) :
∫
Rn

V (x)|u|pdx < ∞
}

is compactly embedded in the Lebesgue space Lq(Rn) for all q ≥ p.
To our knowledge, there are a few results available in the literature which

discuss sign change for the potential V , see, for instance [11,25,28]. However,
we stress that in all the above mentioned papers, the authors require the
potential V to be continuous and bounded below.

We focus our efforts on treating the case in which V can change sign
without requiring any additional condition in order to get compactness. In
particular, we do not suppose the existence of an uniform bound on the po-
tential, which may develop singularities near zero. Physically, this corresponds
to collision of particle with the center of force, see for example [20] for more
details. Throughout the paper, we assume the following hypotheses on V : (V1)
V : Rn → R is measurable and

λ1 : = inf
{∫

R2n

|u(x) − u(y)|p
|x − y|2n

dxdy+
∫
Rn

V +(x)|u|p dx : u ∈ X and ‖u‖p =1
}

is positive, where X is defined in (1.8). (V2) V − ∈ Lβ(Rn) for some 1 < β ≤
∞; where V ± = max{±V, 0}.

In this paper, we consider that the nonlinearity f(x, s) may be discon-
tinuous and exhibit exponential growth. In order to improve our description
of the assumptions on f(x, s), we recall some well known facts related to the
limiting Sobolev embedding.

After the works [14,19,21,26], authors have paid considerable attention
in the limiting case of the Sobolev embedding. Roughly speaking, Kozono et
al. [14] proved that if p and p′ satisfy 1/p + 1/p′ = 1, then for all α > 0 and
u ∈ Wn/p, p (Rn), we have
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∫
Rn

Φα(u) dx < ∞, (1.6)

where

Φα(s) := eα|s|p′
−

∑
0≤j<p−1

j∈N

αj |s|jp′

j!
.

Moreover, there exist positive constants αn,p and Cn,p, depending only on p
and n, such that ∫

Rn

Φα(u) dx ≤ Cn,p , ∀α ∈ (0, αn,p), (1.7)

for all u ∈ Wn/p, p (Rn) with ‖u‖n/p, p ≤ 1.
Motivated by (1.6)–(1.7), we assume that the nonlinearity f(x, s) of the

Eq. (1.5) satisfies the following properties:

• (F1) for each measurable function u : R
n → R, the Nemytskii function

Nf : Rn → R, given by Nf (x) = f(x, u(x)), is measurable;
• (F2) for each x ∈ R

n, f(x, s) is nondecreasing in s and satisfies

|f(x, s)| ≤ c1k(x)|s|ρ + c2Φα0
(s)|s|μ, ∀ (x, s) ∈ R

n × R,

where k ∈ Lσ(Rn) for some 1 < σ ≤ ∞, c1, c2 > 0, α0 > 0, ρ > p − 1 and
μ > p − 1.

In order to obtain the existence of weak solutions for (1.5), we consider
the subspace of Wn/p, p(Rn)

X =
{

u ∈ Wn/p, p(Rn) :
∫
Rn

V +(x)|u|p dx < ∞
}

(1.8)

endowed with the norm

‖u‖ = ([u]pn/p, p + ‖(V +(x))1/pu‖p
p)

1/p.

Using the condition (V1), we show that the embedding X ↪→ Wn/p, p(Rn) is
continuous (see Lemma 2.1 below). Since Wn/p, p(Rn) and Lp(Rn) are complete
spaces, one concludes that (X, ‖ · ‖) is a Banach space. Moreover, by using
the Clarkson’s first inequality (see [2, pg. 95]), it follows that X is uniformly
convex. As a result, X is a reflexive space.

Next, for all p ≤ q < ∞, we set

Sq := inf
u∈X
u�=0

‖u‖p

(∫
Rn |u|q dx

)p/q
. (1.9)

Consequently, from the continuous embedding Wn/p, p(Rn) ↪→ Lq(Rn), one
has that Sq > 0. In this context, we assume that h ∈ X ′ (dual space of X) and
say that u ∈ X is a weak solution for the Eq. (1.5) if the following equality
holds:

〈A(u), v〉 +
∫
Rn

V (x)|u|p−2uv dx =
∫
Rn

f(x, u)v dx + λ〈h, v〉, ∀ v ∈ X,
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where 〈·, ·〉 denotes the duality pairing between X and X ′, and A : X → X ′ is
the nonlinear operator defined by

〈A(u), v〉 =
∫
R2n

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|2n

dxdy,

for all u, v ∈ X. It is standard to check that, if u ∈ C0,ν (Hölder continuous)
for suitable ν > 0, this definition coincides with (1.2).

At this point, in addition to the hypotheses on V , we assume the condition
• (V3) ‖V −‖β < Sq0 , where q0 := βp/(β − 1) > p.
The main result of this paper is presented next:

Theorem 1.1. Suppose that (V1) − (V3) and (F1) − (F2) hold. Consider that
h �= 0. Then, there exists λ0 > 0 such that, for all 0 < λ ≤ λ0, the equation
(1.5) has a nontrivial weak solution.

The main properties of this class of problems are: the domains is un-
bounded and the operator involved is nonlocal and nonlinear. Furthermore,
the nonlinearity f(x, s) may develop jump discontinuities in s and behave like
Φα(s) at infinity. To our knowledge, the result is new even for the semilinear
case p = 2.

Remark 1.1. We point out that ours results are closely related with results
by Iannizzotto and Squassina [13]. It is worth to mention that the eigenvalue
problem for this class of problems has been studied in [18].

Remark 1.2. The perturbation h could belong to (Wn/p,p)′ (dual space of
Wn/p,p(Rn)) or Lp/(p−1)(Rn). However, we consider a more general perturba-
tion h ∈ X ′.

Remark 1.3. It is worth to mention that the Theorem 1.1 guarantees the
existence of a nontrivial weak solution only for nonhomogeneous case.

Remark 1.4. Motivated by (1.7), we say that a function f(x, s) has subcritical
growth if

lim
|s|→∞

f(x, s)e−α|s|p′
= 0, uniformly in x ∈ R

n,

for all α > 0, and has critical growth if there exists α0 > 0 such that

lim
|s|→∞

f(x, s)e−α|s|p′
=

{ 0, for all α > α0;
+∞, for all α < α0,

uniformly in x ∈ R
n. We point out that the hypothesis (F2) allows the non-

linearity f(x, s) to have subcritical or critical growth.

The outline of the paper is as follows: Section 2 contains some preliminary
results, which are required in the proof of our main result; and in Section 3 we
show Theorem 1.1.

Hereafter, C, C0, C1, C2, ... denote positive (possibly different) constants
and we use the notation ‖ · ‖p for the standard Lp(Rn)-norm.
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2. Preliminary results

In this section, we obtain some technical results and we establish the appro-
priate setting to prove Theorem 1.1.

Lemma 2.1. By condition (V1) the space X is continuously embedded in Wn/p, p

(Rn). In particular, the embedding X ↪→ Lq(Rn) is continuous for each q ∈
[p,∞).

Proof. By condition (V1) we have

‖u‖p
p ≤ 1

λ1

(
[u]pn/p, p + ‖(V +(x))1/pu‖p

p

)
, ∀u ∈ X.

Thus,

‖u‖p
n/p,p = [u]pn/p, p + ‖u‖p

p ≤ [u]pn/p, p +
1
λ1

(
[u]pn/p, p + ‖(V +(x))1/pu‖p

p

)
,

which implies

‖u‖n/p,p ≤ p

√(
1 +

1
λ1

)
‖u‖.

Therefore, lemma is proved. �

Next as a consequence of (1.7), we establish in our function space frame-
work X an estimate that will be essential in our arguments. Next, we set

κ := inf
u∈X
u�=0

‖u‖
‖u‖n/p, p

. (2.1)

Lemma 2.2. Suppose that (V1) holds. Let u, v ∈ X and α, μ > 0. If ‖u‖ ≤ M

and α(M/κ)p′
< αn,p, then there exists a constant C = C(α,M, μ) > 0 such

that ∫
Rn

Φα(u)|u|μ|v|dx ≤ C‖u‖μ‖v‖.

Proof. First, we choose q > 1 sufficiently close to 1 satisfying qα(M/κ)p′
<

αn,p and

σ :=
2q

q − 1
> max{p, p/μ}.

Thus, 1/q +1/σ +1/σ = 1 and applying the generalized Hölder inequality and
Lemma 2.1 one has∫

Rn

Φα(u)|u|μ|v|dx ≤
(∫

Rn

[Φα(u)]q dx

)1/q

‖u‖μ
μσ‖v‖σ

≤ C1

(∫
Rn

Φqα(u) dx

)1/q

‖u‖μ‖v‖

≤ C2

[∫
Rn

Φ
qα‖u‖p′

n/p, p

(
u

‖u‖n/p, p

)
dx

]1/q

‖u‖μ‖v‖.

(2.2)



Vol. 22 (2015) On a class of nonhomogeneous 505

Since qα‖u‖p′

n/p, p ≤ qα(M/κ)p′
< αn,p, in view of the Trudinger–Moser in-

equality (1.7) we conclude that∫
Rn

Φα(u)|u|μ|v|dx ≤ C‖u‖μ‖v‖

and the proof is finished. �

For the convenience of the reader, in the sequel, we recall some basic
concepts and notations. Let X be a real Banach space. A nonempty subset
X+ �= {0} of X is called an order cone if the following hold:

i) X+ is closed and convex;
ii) if u ∈ X+ and α ≥ 0, then αu ∈ X+;
iii) if u ∈ X+ and −u ∈ X+, then u = 0.

We observe that an order cone X+ induces in a natural way a partial
order in X as follows: x � y if and only if y − x ∈ X+, and (X,�) is called
an ordered Banach space. If in addition, inf{x, y} and sup{x, y} exist for all
x, y ∈ X with respect to � then we say that (X, ‖ ·‖) is a lattice. Furthermore,
if ‖x±‖ ≤ ‖x‖ for all x ∈ X, with x+ := sup{0, x} and x− := − inf{0, x} then
(X, ‖ · ‖) is called a Banach semilattice.

Special examples of Banach semilattices are the Lebesgue spaces Lp(Rn)
and Sobolev spaces Wn/p,p(Rn) when we consider the natural partial order
(u � v if and only if u ≤ v a.e. in R

n).
Let (X,�) and (X̃,�) be ordered Banach spaces. We say that an operator

G : X → X̃ is increasing iff for all x, y ∈ X, x � y implies Gx � Gy. A subset
B of X is said to have the fixed point property if every increasing operator
S : B → B has a fixed point.

Now, we present a version of the fixed point result due to S. Carl and S.
Heikkilä (see Corollary 2.2 in [4]) which we use to prove Theorem 1.1.

Lemma 2.3. Let X be a Banach semilattice which is reflexive. Then any closed
ball of X has the fixed point property.

For more details with respect to definitions and results about ordered
Banach spaces, we refer to [4] and references therein.

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. To do this, we need to
introduce some appropriate operators in order to apply Lemma 2.3. First, we
consider the operator L : X → X ′ defined by

〈Lu, v〉 =
∫
R2n

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|2n

dxdy

+
∫
Rn

V +(x)|u|p−2uv dx,
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for all u, v ∈ X. Note that for each u ∈ X, Lu is a linear map. Moreover, we
deduce from Hölder inequality that

|〈Lu, v〉| ≤ C‖u‖p−1‖v‖, for some C > 0,

which shows that Lu ∈ X ′ and therefore L is well defined. Furthermore, we
have

Lemma 3.1. Under the hypothesis (V1), the operator L : X → X ′ is continuous
and invertible.

Proof. Let (uk) in X such that uk → u in X. Using Hölder inequality, for
v ∈ X with ‖v‖ ≤ 1 we obtain
|〈Luk − Lu, v〉|

≤
⎛
⎝

∫
R2n

∣∣∣∣∣
|uk(x)−uk(y)|p−2(uk(x)−uk(y))−|u(x) − u(y)|p−2(u(x)−u(y))

|x − y|2n

∣∣∣∣∣
p

p−1

dxdy

⎞
⎠

p−1
p

+

(∫
Rn

V
+
(x)

∣∣∣|uk|p−2
uk − |u|p−2

u
∣∣∣

p

p−1 dx

) p−1
p

:= I1 + I2.

Now by using the following inequality

||a|p−2a − |b|p−2b| ≤ 2p−2(p − 1)|a − b|(|a| + |b|)p−2, ∀a, b ∈ R,

we obtain the following estimate

I
p

p−1
1 ≤ C1

×
∫
R2n

|(uk(x)−uk(y))−(u(x) − u(y))| p
p−1 (|uk(x)−uk(y)| +|u(x)−u(y)|) p(p−2)

p−1

|x − y|2n dxdy.

Using Hölder inequality we get

I
p

p−1
1 ≤ C2[uk − u]

p
p−1 ([uk] + [u])

p(p−1)
p−2 ≤ C2‖uk − u‖ p

p−1 (‖uk‖ + ‖u‖)
p(p−1)

p−2 .

Similarly,

I
p

p−1
2 ≤ C3‖(V +(x))

1
p (uk − u)‖

p
p−1
p (‖(V +(x))

1
p uk‖p + ‖(V +(x))

1
p u‖p)

p(p−1)
p−2

≤ C3‖uk − u‖ p
p−1 (‖uk‖ + ‖u‖)

p(p−1)
p−2 .

Since uk → u in X, by using the last estimates, we conclude that

‖Luk − Lu‖X′ = sup
v∈X, ‖v‖≤1

|〈Luk − Lu, v〉| ≤ I1 + I2 → 0

and the continuity of L is proved. Furthermore, from 〈Lu, u〉 = ‖u‖p for all
u ∈ X and p ≥ 2 we get

lim
‖u‖→∞

〈Lu, u〉
‖u‖ = ∞.

On the other hand, using the well known inequality,

(|a|p−2a − |b|p−2b)(a − b) ≥ Cp|a − b|p−2, a, b ∈ R, (3.1)

one has

〈Lv1 − Lv2, v1 − v2〉 > 0
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for all v1, v2 ∈ X, v1 �= v2. Thus, by the Minty–Browder theorem (see for
instance Theorem 5.16 in [2]), the operator L is invertible and this completes
the proof. �

At this point, we consider another operator T : X → X ′ given by

〈Tu, v〉 =
∫
Rn

[V −(x)|u|p−2u + f(x, u)]v dx + λ〈h, v〉, u, v ∈ X.

It is clear that for each fixed u ∈ X, Tu is a linear map. As a consequence of
Lemma 2.2 we have the following estimate:

Lemma 3.2. Assume (V1)−(V2) and (F1)−(F2). Let M > 0 be such that
α0(M/κ)p′

< αn,p. There exist positive constants C1 and C2 such that if
‖u‖ ≤ M , then

|〈Tu, v〉| ≤ (
S−1

q0 ‖V −‖β‖u‖p−1 + C1‖u‖ρ + C2‖u‖μ + λ‖h‖X′
) ‖v‖,

for all v ∈ X.

Proof. Here, let us consider 1 < β < ∞ and 1 < σ < ∞. The case β = ∞ or
σ = ∞ are more simple and they are treated similarly. Note that

1
β

+
p − 1
q0

+
1
q0

= 1 ⇔ q0 =
pβ

β − 1
.

Using the generalized Hölder inequality together with the inequality ‖u‖p
q0 ≤

S−1
q0 ‖u‖p one has∣∣∣∣

∫
Rn

V −(x)|u|p−2uv dx

∣∣∣∣ ≤ S−1
q0 ‖V −‖β‖u‖p−1‖v‖. (3.2)

Analogously, setting τ := σ(ρ + 1)/(σ − 1) > p we see that

1
σ

+
ρ

τ
+

1
τ

= 1,

from which follows that∣∣∣∣
∫
Rn

k(x)|u|ρv dx

∣∣∣∣ ≤ ‖k‖σ‖u‖ρ
τ‖v‖τ ≤ C‖k‖σ‖u‖ρ‖v‖. (3.3)

On the other hand, Lemma 2.2 with α = α0 yields∫
Rn

Φα0(u)|u|μ|v|dx ≤ C‖u‖μ‖v‖. (3.4)

Since |〈h, v〉| ≤ ‖h‖X′‖v‖, using estimates (3.2), (3.3), (3.4) and condition
(F2), we obtain the desired result. �

Analyzing the previous proof, we observe that (3.2) and (3.3) holds for
each u ∈ X as well as estimate (2.2). This fact together with hypothesis (F2)
shows that the operator T is well defined.

Now, we define the operator S : X → X by S = L−1 ◦ T.
In order to address the existence of a fixed point for S, we need the

following lemma:



508 M. de Souza NoDEA

Lemma 3.3. Under the hypotheses of Theorem 1.1, for any λ < λ0, there exists
R > 0 such that

S(BX [0, R]) ⊂ BX [0, R],

where BX [0, R] = {u ∈ X : ‖u‖ ≤ R}.
Proof. Let u ∈ X and set v = (L−1 ◦ T )u = Su. Since 〈Lv, v〉 = ‖v‖p we get

‖Su‖p = 〈Tu, Su〉 ≤ ‖Tu‖X′‖Su‖.

Choosing R ≤ M , if ‖u‖ ≤ R then by Lemma 3.2 one has

‖Su‖p−1 ≤ ‖Tu‖X′

≤ S−1
q0 ‖V −‖β‖u‖p−1 + C1‖u‖ρ + C2‖u‖μ + λ‖h‖X′

≤ S−1
q0 ‖V −‖βRp−1 + C1R

ρ + C2R
μ + λ‖h‖X′ ,

which implies

‖Su‖p−1

Rp−1
≤ S−1

q0 ‖V −‖β + C1R
ρ−p+1 + C2R

μ−p+1 + λ
‖h‖X′

Rp−1
. (3.5)

Now, choose R > 0 sufficiently small so that

C1R
ρ−p+1 + C2R

μ−p+1 ≤ 1 − S−1
q0 ‖V −‖β

2
.

Setting

λ0 :=
Rp−1(1 − S−1

q0 ‖V −‖β)
2‖h‖X′

,

for all 0 < λ ≤ λ0, we deduce from (3.5) that

‖Su‖p−1

Rp−1
≤ 1.

Therefore, S(BX [0, R]) ⊂ BX [0, R] and the proof is complete. �

At this point, we are ready to prove our main result.

Proof of Theorem 1.1. In order to apply Lemma 2.3, we consider the following
partial order in X:

u1, u2 ∈ X, u1 � u2 ⇔ u1 ≤ u2 a.e. in R
n. (3.6)

It is clear that (X,�) is an ordered Banach space and for all u, v ∈ X, there
exist sup{u, v} and inf{u, v} with respect to the order �. Moreover, recalling
that u+ = sup{u, 0} and u− = − inf{u, 0}, by the order (3.6), u+ and u−

are the positive and negative parts of u. Since |u±(x)| ≤ |u(x)| and |u±(x) −
u±(y)| ≤ |u(x) − u(y)| almost everywhere in R

n we see that ‖u±‖ ≤ ‖u‖.
Hence (X,�) is a Banach semilattice which is reflexive. We also observe that
the dual space X ′, endowed with the order:

ϕ1, ϕ2 ∈ X ′, ϕ1 � ϕ2 ⇔ 〈ϕ1, v〉 ≤ 〈ϕ2, v〉, ∀ v ∈ X+

where X+ := {v ∈ X : v ≥ 0 a.e. in R
n}, is an ordered Banach space.
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We claim that L−1 : (X ′,�) → (X,�) is an increasing operator. Indeed,
let ϕ1, ϕ2 ∈ X ′ such that ϕ1 � ϕ2. Setting u1 = L−1ϕ1 and u2 = L−1ϕ2, for
v ∈ X+ one has
0 ≤ 〈ϕ2 − ϕ1, v〉 = 〈Lu2 − Lu1, v〉

=

∫
R2n

(|u2(x)−u2(y)|p−2(u2(x)−u2(y))−|u1(x)−u1(y)|p−2(u1(x)−u1(y))
)
(v(x)−v(y))

|x−y|2n
dxdy

+

∫
Rn

V
+
(x)

(
|u2|p−2

u2 − |u1|p−2
u1

)
v dx.

From this, taking v = (u2 − u1)− ∈ X+ and using (3.1), there exists C > 0
such that

0 ≤ 〈ϕ2 − ϕ1, (u2 − u1)−〉 ≤ −C‖(u2 − u1)−‖p ≤ 0

whence we conclude that (u2 − u1)− = 0 and so u1 ≤ u2 almost everywhere
in R

n, that is, L−1ϕ1 � L−1ϕ2. Now, we prove that T : (X,�) → (X ′, ) is
increasing. To this, let u1, u2 ∈ X such that u1 ≤ u2 almost everywhere in R

n.
Since the function l(s) := |s|p−2s is increasing it follows from assumption (F2)
that

〈Tu1, v〉 =
∫
Rn

[V −(x)|u1|p−2u1 + f(x, u1)]v dx + λ〈h, v〉

≤
∫
Rn

[V −(x)|u2|p−2u2 + f(x, u2)]v dx + λ〈h, v〉 = 〈Tu2, v〉, ∀ v ∈ X+,

that is, Tu1  Tu2. Consequently, by definition, the operator S : (X,�) →
(X,�) is also increasing. By Lemma 2.3, BX [0, R] has the fixed point property
and in view of Lemma 3.3 there exists u0 ∈ BX [0, R] such that Su0 = u0.
Since S = L−1 ◦ T we have

〈Lu0, v〉 = 〈Tu0, v〉, ∀ v ∈ X.

Thus, by the definitions of L and T , since h �= 0, u0 is a nontrivial weak
solution of (1.5) and the theorem is proved. �
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