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1. Introduction

In this paper, we establish a Liouville type theorem for the 2m-order elliptic
equations coupled via the Navier boundary conditions in the half-space R

n
+ =

{x ∈ R
n : xn > 0}:

⎧
⎪⎪⎨

⎪⎪⎩

(−Δ)mu(x) = vβ in R
n
+,

(−Δ)mv(x) = uα in R
n
+,

u = Δu = · · · = Δm−1u = 0 on ∂R
n
+,

v = Δv = · · · = Δm−1v = 0 on ∂R
n
+,

(1.1)

where m is a positive integer satisfying 0 < 2m < n, n
n−2m < α, β ≤ n+2m

n−2m .
Various higher-order elliptic equations can be used to model complex

spatio-temporal pattern formations [26,28,33]. They also appear in studying
the so-called Paneitz–Branson operator and its generalizations, with important
applications in mathematical physics [4,12,14]. There are many other appli-
cations of them for such as the hinged plate problems [25,34], the switched
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diffusion processes (in probability theory) [10], and the switching costs prob-
lems (in stochastic control) [18].

It is well known that in order to establish a priori estimates for nonlin-
ear elliptic equations and systems of equations without variational structure,
one usually uses the blow-up argument [16]. The argument, in turn, relies on
nonexistence theorems for positive solutions of the limiting problems, i.e., Li-
ouville type theorems. Thus, Liouville type theorems play a very important
role in the study of nonlinear elliptic equations without variational structure.

It is known from [11,24,27,31] that the whole space problem

(−Δ)mu(x) = vβ , (−Δ)mv(x) = uα in R
n (1.2)

with m = 1 does not admit positive classical solutions in the following cases:

(a) 1
β+1 + 1

α+1 > n−2
n and either u, v are radial or n = 3;

(b) max(2(β+1)
αβ−1 , 2(α+1)

αβ−1 ) ≥ n − 2;
(c) α, β ≤ n+2

n−2 with α+β
2 < n+2

n−2 .

This Liouville type result with m = 1 is still valid for the half space
problem (1.1) under the same parameter regions (a)–(c) [3], and also has been
extended to the biharmonic case with m = 2 [13].

For the polyharmonic system (1.2) (m �= 1) in whole space, Guo, Liu,
and Zhang [20] proved the following Liouville type results that the problem
has no positive classical solutions in the following cases:

(a) α, β ≥ 1 with α+β
2 > 1, 1

β+1 + 1
α+1 > n−2

n , and u, v are radial;
(b) α, β ≥ 1 with α+β

2 > 1, (n − 2m)α < n
β + 2m or (n − 2m)β < n

α + 2m;
(c) 1 ≤ α, β ≤ n+2m

n−2m with 1 < α+β
2 < n+2m

n−2m .

In addition, Zhang [35] proved that if n > 2m, α, β ≥ 1 with α+β
2 > 1,

and 2m(β+1)
αβ−1 , 2m(α+1)

αβ−1 ∈ [n−2
2 , n − 2m), then (1.2) has no positive classical

solutions.
The half space problems have been thoroughly studied as well. The

Liouville theorem for the Dirichlet type boundary conditions was shown in
[15,29,30] that if u is a classical solution of

⎧
⎨

⎩

(−Δ)mu(x) = up in R
n
+,

u ≥ 0 in R
n
+,

u = ∂u
∂xn

= · · · = ∂m−1u
∂xm−1

n
= 0 on ∂R

n
+,

with 1 < p < n+2m
n−2m , then u ≡ 0. The Liouville theorem with the Navier

boundary problem of higher order equation in half space was studied in [32].
Please see [5,9,21] for the current and more general results on the Liouville
theorem with the Navier boundary condition. Also mention the early important
works [1,2] of Berestycki, Capuzzo Dolcetta and Nirenberg on second order
equations.
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In the present paper, instead of (1.1), we will at first establish a Liouville
type theorem for the integral system

⎧
⎪⎪⎨

⎪⎪⎩

u(x) = Cn

∫

R
n
+

(
1

|x − y|n−2m
− 1

|x̄ − y|n−2m

)

vβ(y)dy,

v(x) = Cn

∫

R
n
+

(
1

|x − y|n−2m
− 1

|x̄ − y|n−2m

)

uα(y)dy,
(1.3)

where Cn > 0, x̄ = (x1, . . . , xn−1,−xn) is the reflection of the point x about
the ∂R

n
+, and then prove that the two systems are equivalent each other under

certain conditions. That is the following two theorems:

Theorem 1.1. Let (u, v) ∈ Lp
loc(R

n
+) × Lq

loc(R
n
+) be a positive solution of the

system (1.3) with p = α−1
n−2m

n α−1
and q = β−1

n−2m
n β−1

. If n
n−2m < α, β ≤ n+2m

n−2m ,

then (u, v) ≡ (0, 0).

Theorem 1.2. Let (u, v) be a classical positive solution of system (1.1) with
α, β ≥ 1, then the differential system (1.1) is equivalent to the integral system
(1.3).

Theorems 1.1 and 1.2 yield the main result of the paper:

Theorem 1.3. Under the conditions of Theorems 1.1 and 1.2, the classical
positive solutions of system (1.1) must be trivial.

To prove Theorem 1.1, we will explore the moving plane method in inte-
gral forms by Chen–Li–Ou [8]. Corresponding to the half space problem (1.3),
the Liouville type theorem to the whole space problem was established by Ma
and Chen [22]. Refer to [7,19,23] and the references therein. Theorem 1.2 can
be simply treated by using a technique introduced by Chen and Fang [9] for
the scalar case of higher-order equations.

via the equivalent system coupled by 2m elliptic equations of 2-order and
the related system of 2m integral equations, .

This paper is arrange as follows. We will give some preliminaries in Sect.
2, and then prove the main results of the paper in Sect. 3.

2. Preliminaries

We introduce a series lemmas for the integral system (1.3) as preliminaries,
and let Cn = 1 there for simplicity in the sequence.

Denote

G(x, y) =
1

|x − y|n−2m
− 1

|x̄ − y|n−2m
, x, y ∈ R

n
+, (2.1)

with x̄ reflecting x about the ∂R
n
+. Let xλ,1 = (2λ − x1, x2, . . . , xn) be the

reflection of the point x about the plane Tλ,1 = {x ∈ R
n
+ | x1 = λ}, and denote

uλ,1(x) = u(xλ,1), vλ,1(x) = v(xλ,1). Define Hλ,1 = {x ∈ R
n
+ | x1 < λ}, Hc

λ,1 =
R

n
+ \ Hλ,1. Generally, some global integrability of solutions is required for the
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moving-plane method in integral form. In the present paper, the solutions are
just assumed locally integrable. We employ the Kelvin transformation

ū(x)=
1

|x−z0|n−2m
u

(
x−z0

|x−z0|2+z0

)

, v̄(x)=
1

|x−z0|n−2m
v

(
x−z0

|x−z0|2+z0

)

(2.2)

with z0 ∈ ∂R
n
+. We have an equivalent integral system for (2.2):

Lemma 2.1. Let (u, v) be a positive solution of system (1.3). Then (ū, v̄) solves
⎧
⎪⎪⎨

⎪⎪⎩

u(x) =
∫

R
n
+

G(x, y)
1

|y − z0|(n+2m)−β(n−2m)
vβ(y)dy,

v(x) =
∫

R
n
+

G(x, y)
1

|y − z0|(n+2m)−α(n−2m)
uα(y)dy.

(2.3)

Proof. Notice
∣
∣
∣

(
x − z0

|x − z0|
)

|t − z0|−
(

t − z0

|t − z0|
)

|x − z0|
∣
∣
∣
2

= |(x − z0) − (t − z0)|2 = |x − t|2,
∣
∣
∣

(
x̄ − z0

|x̄ − z0|
)

|t − z0|−
(

t − z0

|t − z0|
)

|x̄ − z0|
∣
∣
∣
2

= |(x̄ − z0) − (t − z0)|2 = |x̄ − t|2,

and |x − z0| = |x̄ − z0| for z0 ∈ ∂R
n
+. Let y = t−z0

|t−z0|2 + z0. We have for the
solution (u, v) of (2.3) by a simple computation that

ū(x) =
1

|x−z0|n−2m

∫

R
n
+

(
1

| x−z0

|x−z0|2 + z0−y|n−2m
− 1

| x̄−z0

|x̄−z0|2 + z0−y|n−2m

)

vβ(y)dy

=
∫

R
n
+

(
1

|x − t|n−2m
− 1

|x̄ − t|n−2m

)
v̄β(t)

|t − z0|(n+2m)−β(n−2m)
dt,

and a similar result for v̄. �

Remark 1. Due to Lemma 2.1, it suffices to prove the Liouville type conclusion
for the system (2.3).

Lemma 2.2. Let (u, v) be a positive solution of (2.3). Then for any x ∈ Hλ,1,
we have

u(x) − uλ,1(x) =
∫

Hλ,1

[G(xλ,1, yλ,1) − G(x, yλ,1)]

×
[

vβ(y)
|y − z0|(n+2m)−β(n−2m)

− vβ
λ,1(y)

|yλ,1 − z0|(n+2m)−β(n−2m)

]

dy,

(2.4)

v(x) − vλ,1(x) =
∫

Hλ,1

[G(xλ,1, yλ,1) − G(x, yλ,1)]

×
[

uα(y)
|y − z0|(n+2m)−α(n−2m)

− uα
λ,1(y)

|yλ,1 − z0|(n+2m)−α(n−2m)

]

dy.

(2.5)
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Proof. By the first equation of (2.3),

u(x) =
∫

Hλ,1

G(x, y)
vβ(y)

|y − z0|(n+2m)−β(n−2m)
dy

+
∫

Hλ,1

G(x, yλ,1)
vβ

λ,1(y)

|yλ,1 − z0|(n+2m)−β(n−2m)
dy,

uλ,1(x) =
∫

Hλ,1

G(xλ,1, y)
vβ(y)

|y − z0|(n+2m)−β(n−2m)
dy

+
∫

Hλ,1

G(xλ,1, yλ,1)
vβ

λ,1(y)

|yλ,1 − z0|(n+2m)−β(n−2m)
dy.

Since

G(x, y) = G(xλ,1, yλ,1), G(xλ,1, y) = G(x, yλ,1), x, y ∈ Hλ,1, x �= y,

we get (2.4) directly. The same is true for (2.5). �

Denote Σμ,n = {x ∈ R
n
+ | 0 < xn < μ}, Tμ,n = {x ∈ R

n
+ | xn = μ},

Σ̃μ,n = {xμ,n |x ∈ Σμ,n}, Σc
μ,n = R

n
+\Σμ,n. The following lemma on the Green

function G(x, y) in Σμ,n was known.

Lemma 2.3. (Lemma 2.1 in [6])
(i) For any x, y ∈ Σμ,n, x �= y, we have

G(xμ,n, yμ,n) > max G(xμ,n, y), G(x, yμ,n),

G(xμ,n, yμ,n) − G(x, y) > |G(xμ,n, y) − G(x, yμ,n)|.
(ii) For any x ∈ Σμ,n, y ∈ Σc

μ,n, it holds that

G(xμ,n, y) > G(x, y).

Lemma 2.4. Let (u, v) be a positive solution of (1.3). For any x ∈ Σμ,n, we
have

u(x) − uμ,n(x) ≤
∫

Σμ,n

G(xμ,n, yμ,n)(vβ − vβ
μ,n)(y)dy,

v(x) − vμ,n(x) ≤
∫

Σμ,n

G(xμ,n, yμ,n)(uα − uα
μ,n)(y)dy.

Proof. We only deal with the first inequality. Since

u(x) =
∫

Σμ,n

G(x, y)vβ(y)dy +
∫

Σμ,n

G(x, yμ,n)vβ
μ,n(y)dy

+
∫

Σc
μ,n\Σ̃μ,n

G(x, y)vβ(y)dy,

uμ,n(x) =
∫

Σμ,n

G(xμ,n, y)vβ(y)dy +
∫

Σμ,n

G(xμ,n, yμ,n)vβ
μ,n(y)dy

+
∫

Σc
μ,n\Σ̃μ,n

G(xμ,n, y)vβ(y)dy,
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we have by Lemma 2.3 that

u(x) − uμ,n(x) ≤
∫

Σμ,n

[G(xμ,n, yμ,n) − G(x, yμ,n)]vβ(y)dy

−
∫

Σμ,n

[G(xμ,n, yμ,n)

− G(x, yμ,n)]vβ
μ,n(y)dy+

∫

Σc
μ,n\Σ̃μ,n

[G(x, y)−G(xμ,n, y)]vβ(y)dy

≤
∫

Σμ,n

[G(xμ,n, yμ,n) − G(x, yμ,n)][vβ − vβ
μ,n](y)dy.

�

In addition, we need the Weighted Hardy-Littlewood-Sobolev inequality:

Lemma 2.5. ([17]) Let 1 < l,m < ∞, 0 < ν < n, τ +κ ≥ 0, 1
l + 1

m + ν+κ+τ
n = 2,

and 1 − 1
m − ν

n < τ
n < 1 − 1

m . Then

|
∫

Rn

∫

Rn

f(x)g(y)
|x|τ |x − y|ν |y|κ dxdy| ≤ C‖f‖Lm‖g‖Ll

with C = C(τ, κ, l, ν, n) > 0, or equivalently,

‖Tg(x)‖Lγ = sup
‖f‖Lm=1

〈Tg(x), f(x)〉 ≤ C‖g‖Ll

with Tg(x) =
∫

Rn

g(y)
|x|τ |x−y|ν |y|κ dy, 1

l + ν+κ+τ
n = 1 + 1

γ , 1
m + 1

γ = 1.

3. Proof of Theorem of the main results

The techniques for the proof of Theorem 1.1 are motivated by those in [15] for
a scalar problem with the Dirichlet boundary condition. We begin with two
lemmas.

Lemma 3.1. Let (ū, v̄) ∈ Lp(Rn
+\Bε(z0))×Lq(Rn

+\Bε(z0)) be a positive solution
of (2.3) with ε > 0, p = α−1

n−2m
n α−1

, and q = β−1
n−2m

n β−1
. If n

n−2m < α, β ≤ n+2m
n−2m

with α+β
2 < n+2m

n−2m , or (ū, v̄) is singular at z0 with α+β
2 = n+2m

n−2m , then (ū, v̄)
is rotationally symmetric about any line parallel to the xn-axis and passing
through z0.

Proof. We apply the moving-plane method in two steps:
1. Prepare to move the plane from near x1 = −∞
Compare the values of (ūλ,1(x), v̄λ,1(x)) and (ū(x), v̄(x)). Denote wλ,1(x)

= ū(x) − ūλ,1(x), gλ,1(x) = v̄(x) − v̄λ,1(x). For λ sufficiently negative, we are
going to prove that

wλ,1(x), gλ,1(x) ≤ 0 for a.e. x ∈ H̃λ,1 = Hλ,1 \ Bε((z0)λ). (3.1)

It suffices to show that both
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Hu
λ,1 = {x ∈ H̃λ,1 | wλ,1(x) > 0} and Hv

λ,1 = {x ∈ H̃λ,1 | gλ,1(x) > 0}
has measure zero.

Noticing |y−z0| > |yλ,1−z0|, and (n+2m)−β(n−2m), (n+2m)−α(n−
2m) > 0, by Lemma 2.2 with the mean value theorem, we have for sufficiently
negative values of λ and x ∈ Hu

λ,1 that

0 < wλ,1(x)

=
∫

Hv
λ,1

+
∫

Hλ,1\Hv
λ,1

[G(xλ,1, yλ,1) − G(x, yλ,1)]
[

v̄β(y)
|y − z0|(n+2m)−β(n−2m)

− v̄β
λ,1(y)

|yλ,1 − z0|(n+2m)−β(n−2m)

]

dy

≤
∫

Hv
λ,1

[G(xλ,1, yλ,1) − G(x, yλ,1)]

[
v̄β(y)

|y − z0|(n+2m)−β(n−2m)

− v̄β
λ,1(y)

|yλ,1 − z0|(n+2m)−β(n−2m)

]

dy

≤ β

∫

Hv
λ,1

[v̄β−1(v̄ − v̄λ,1)](y)
|x − y|n−2m|y − z0|(n+2m)−β(n−2m)

dy.

Furthermore, by Lemma 2.5 with Hölder’s inequality and p∗ = p
p−1 ,

‖wλ‖p, Hu
λ,1

≤ β sup
‖f‖

Lp∗ =1

∫

Hv
λ,1

[v̄β−1(v̄ − v̄λ,1)f ](y)
|x − y|n−2m|y − z0|(n+2m)−β(n−2m)

dy

≤ C‖v̄β−1gλ,1χHv
λ,1

‖Q, Rn

= C‖v̄β−1gλ,1‖Q,Hv
λ,1

≤ C‖v̄‖β−1
q,Hv

λ,1
‖gλ,1‖p,Hv

λ,1
, (3.2)

where 1
Q = 1 + 1

p − n−2m+[(n+2m)−(n−2m)β]
n and throughout the paper, C is

used to represent positive constants independent of x, which may change from
line to line. Similarly, we have

‖gλ,1‖p,Hv
λ,1

≤ C‖ū‖α−1
p,Hu

λ,1
‖wλ,1‖p,Hu

λ,1
. (3.3)

It follows from (3.2) and (3.3) that

‖wλ,1‖p,Hu
λ,1

≤ C‖ū‖α−1
p,Hu

λ,1
‖v̄‖β−1

q,Hv
λ,1

‖wλ,1‖p,Hu
λ,1

. (3.4)

Since (ū, v̄) ∈ Lp(Rn
+) × Lq(Rn

+), we can choose N sufficiently large such that

C‖ū‖α−1
p,Hu

λ,1
‖v̄‖β−1

q,Hv
λ,1

<
1
2

whenever λ < −N , and thus ‖wλ,1‖p, Hu
λ,1

= 0 by (3.4). In the same way,
‖gλ,1‖q, Hv

λ,1
= 0. This proves (3.1).

2. Move the plane to the limiting position to derive the symmetry
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Inequality (3.1) provides a starting point to move the plane Tλ,1. We
start from the neighborhood of −∞, and move the plane to the right as long
as (3.1) holds. Define

λ0 = sup{λ ≤ z0
1 | wρ,1, gρ,1 ≤ 0, ρ ≤ λ for a.e. x ∈ H̃ρ,1}. (3.5)

We at first prove that λ0 = z0
1 . Assume for contradiction that λ0 < z0

1 . We
claim

wλ0,1(x) = gλ0,1(x) = 0 a.e. in H̃λ0,1. (3.6)

Otherwise, for such a λ0, e.g., the set E0 = {x| gλ0,1(x) < 0, x ∈ H̃λ0,1}
possesses a positive measure. By (2.3),

ū(x) − ūλ,1(x)

≤
∫

Hλ,1

(G(xλ,1, yλ,1) − G(x, yλ,1))
1

|y − z0|(n+2m)−β(n−2m)
(v̄β − v̄β

λ,1)(y)dy

=
∫

E0

(G(xλ,1, yλ,1) − G(x, yλ,1))
1

|y − z0|(n+2m)−β(n−2m)
(v̄β − v̄β

λ,1)(y)dy,

Consequently,

wλ0,1(x) < 0 a.e. in H̃λ0,1. (3.7)

Denote λε = λ + ε with ε > 0 to be determined. For any small η > 0,
choose R sufficiently large such that

∫

R
n
+\Bε((z0)λε )\BR(0)

|ū|p(y)dy ≤ η.

It follows from Lusin’s theorem and (3.7), for any θ > 0, there exists a closed
set Fδ such that wλ0,1|Fδ

is continuous, with Fδ ⊂ E := Hλ0,1

⋂
BR(0) and

m(E \ Fδ) < θ. Since wλ0,1(x) < 0 in H̃λ0,1, we know wλ0,1(x) < 0 in Fδ.
Choosing ε > 0 sufficiently small, we have

wλε,1(x) < 0 for any x ∈ Fδ

by continuity. Denote Dλε
= (H̃λε,1 \ Hλ0,1) ∩ BR(0). Then

Hu
λε,1 ⊂ M := (Rn

+ \ Bε((z0)λε) \ BR(0)) ∪ (E \ Fδ) ∪ Dλε
.

Let R be large, θ and ε small such that
∫

Hu
λε,1

|ū|p(y)dy ≤ ∫

M
|ū|p(y)dy ≤ 1

2 .
Similarly,

∫

Hv
λε,1

|v̄|q(y)dy ≤ 1
2
.

By (3.4) with λ = λε, we can get

‖wλε,1‖p,Hu
λε,1

≤ C‖ū‖α−1
p,Hu

λε,1
‖v̄‖β−1

q,Hv
λε,1

‖wλε,1‖p,Hu
λε,1

≤ 1
4
‖wλε,1‖p,Hu

λε,1
,
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which implies ‖wλε,1‖p,Hu
λε,1

≡ 0. Thus

wλε,1(x) ≤ 0 a.e. in H̃λε,1,

and similarly,

gλε,1(x) ≤ 0 a.e. in H̃λε,1.

This contradicts (3.5). So, the claim (3.6) is true.
For the subcritical case n

n−2m < α, β ≤ n+2m
n−2m with α+β

2 < n+2m
n−2m ,

without loss of generality, assume n
n−2m < β < n+2m

n−2m . By Lemma 2.2 and
G(xλ0,1, yλ0,1) > G(x, yλ0,1), |y − z0| > |yλ0,1 − z0| in Hλ0,1, we have

0 ≡ ū(x) − ūλ0,1(x)

=
∫

Hλ0,1

[G(xλ0,1, yλ0,1) − G(x, yλ0,1)]
[

1
|y − z0|(n+2m)−β(n−2m)

v̄β

− 1
|yλ0,1 − z0|(n+2m)−β(n−2m)

v̄β
λ0,1

]

(y)dy

<

∫

Hλ0,1

[G(xλ0,1, yλ0,1)−G(x, yλ0,1)]
1

|y−z0|(n+2m)−β(n−2m)
[v̄β −v̄β

λ0,1](y)dy

≡ 0.

This contradiction implies that λ0 < z0
1 is impossible for this case.

For the critical case α+β
2 = n+2m

n−2m , with (ū, v̄) singular at z0, the claim
(3.6) contradicts the singularity of (ū, v̄). So, λ0 = z0

1 also has to be true.
In summary, for both cases,

wz0
1 ,1(x), gz0

1 ,1(x) ≤ 0 for a.e x ∈ Hz0
1 ,1 \ Bε(z0),

Similarly, we can move the plane from near x1 = +∞ to the left and derive
that

wz0
1 ,1(x), gz0

1 ,1(x) ≥ 0 for a.e x ∈ Hz0
1 ,1 \ Bε(z0).

This concludes that (3.6) holds with λ0 = z0
1 .

By the arbitrary of the x1-direction chosen, we have actually shown that
the solution (u, v) is rotationally symmetric about any axis parallel to xn-axis
and passing through z0. �
Lemma 3.2. Let (u, v) ∈ Lp

loc(R
n
+) × Lq

loc(R
n
+) be a positive solution of (1.3),

p = α−1
n−2m

n α−1
, and q = β−1

n−2m
n β−1

. Assume n
n−2m < α, β ≤ n+2m

n−2m , if one of ū

and v̄ is not singular at z0, then (u, v) ≡ (0, 0).

Proof. Without loss of generality, assume that there is z0 ∈ ∂R
n
+ such that ū

is not singular at z0 (v̄ may be singular at z0 or not). We have

u(x) =
1

|x − z0|n−2m
ū

(
x − z0

|x − z0|2 + z0

)

.

Consequently, u(x) = O(|x|−(n−2m)), |x| → ∞. Together with u ∈ Lp
loc(R

n
+),

we know u ∈ Lp(Rn
+), and so ū ∈ Lp(Rn

+). Moreover, v̄ ∈ Lq(Rn
+ \ Bε(z0)).
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The rest of the proof consists of two steps.
1. We start from the position near xn = 0. We will show that if μ suffi-

ciently small, then

ωμ,n(x) = ū(x) − ūμ,n(x) ≤ 0 a.e. in Σμ,n. (3.8)

Denote

Bu
μ,n = {x ∈ Σμ,n | ωμ,n(x) > 0}.

We claim that Bu
μ,n must be measure zero, provided μ sufficiently small.

In fact, for any x ∈ Bu
μ,n, similar to (3.4), we know by Lemma 2.4 that

‖ωμ,n‖p,Bu
μ,n

≤ C‖ū‖α−1
p,Bu

μ,n
‖v̄‖β−1

q,Bv
μ,n

‖ωμ,n‖p,Bu
μ,n

. (3.9)

Since (ū, v̄) ∈ Lp(Rn
+) × Lq(Rn

+ \ Bε(z0)), we can choose μ > 0 small enough
such that

C‖ū‖α−1
p,Bu

μ,n
‖v̄‖β−1

q,Bv
μ,n

≤ 1
2
,

and hence ‖ωμ,n‖p,Bu
μ,n

= 0 by (3.9).
2. The inequality (3.8) provides a starting point to move the plane Tμ,n =

{x ∈ R
n
+ |xn = μ}. Now we start from the neighborhood of xn = 0, and

move the plane up as long as (3.8) holds. Define μ0 = sup{μ |ωρ,n ≤ 0, ρ ≤
μ a.e. in Σρ,n}. If μ0 < +∞, similarly to (3.6), with Lemma 2.4, we can obtain

ωμ0,n(x) ≡ 0 a.e. in Σμ0,n.

This yields the contradiction that ū(x) ≡ 0 on the plane {xn = 2μ0}. So,
μ0 = +∞, and hence ū is strictly monotonically increasing with respect to xn.
This implies that

∫

Rn−1

∫ ∞

a

|ū(x′, a)|pdxndx′ = ∞

for any a > 0, which contradicts ū ∈ Lp(Rn
+). We conclude ū ≡ 0, and so

u ≡ 0. Moreover, v ≡ 0 is obtained by (1.3). �

Proof of Theorem 1.1. Suppose n
n−2m < α, β ≤ n+2m

n−2m . By Lemma 3.2, if
ū (or v̄) is not singular at a point z0 ∈ ∂R

n
+, then u, v ≡ 0.

Now consider α+β
2 < n+2m

n−2m , or ū and v̄ are singular at every z0 ∈ ∂R
n
+

with α+β
2 = n+2m

n−2m . Let Ω be a domain with a positive distance away from z0.
Then

∫

Ω

ūpdy,

∫

Ω

v̄qdy < ∞.

By Lemma 3.1, (ū, v̄) is rotationally symmetric about any line parallel to xn-
axis and passing through z0. With Xi = (xi, xn) ∈ R

n−1 × [0,∞), i = 1, 2,
let z0 be the projection of X̄ = X1+X2

2 on ∂R
n
+. Set Y i = Xi−z0

|Xi−z0|2 + z0,
i = 1, 2. From the above arguments, we have ū(Y 1) = ū(Y 2), v̄(Y 1) = v̄(Y 2),
since |Y 1 − z0| = |Y 2 − z0|. Hence u(X1) = u(X2), v(X1) = v(X2). This
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implies that (u, v) only depends on the xn-variable. Denote u(x) = u(xn),
v(x) = v(xn) for simplicity. For fixed x ∈ R

n
+, choose R large enough such

that |xn| < R
2 . We have

u(xn) ≥
∫

R
n
+\BR(0)

(
1

|x − y|n−2m
− 1

|x̄ − y|n−2m

)

vβ(yn)dy.

By the mean value formula, we know for y ∈ R
n
+ \ BR(0) that

1
|x − y|n−2m

− 1
|x̄ − y|n−2m

= (2m − n)
(ξ1 − y1, . . . , ξn − yn) · (0, · · · , 2xn)

|ξ − y|n−2m+2

≥ c

|y|n−2m+2
,

with c = c(xn, R) > 0. Set |y′| = r, |yn| = a. We have

u(xn) ≥
∫

R
n
+\BR(0)

c
1

|y|n−2m+2
vβ(y)dy

= c

∫ ∞

R

vβ(yn)|yn|2m−2

|yn| dyn

∫ ∞

R

( r
a )n−2

[| r
a |2 + 1]

n
2

d
( r

a

)

≥ c

∫ ∞

R

vβ(yn)
y2−2m

n

dyn. (3.10)

Due to the integer m ∈ (0, n/2), there exists a sequence yi
n → ∞ as i → ∞,

such that limi→∞ v(yi
n) = 0.

For simplicity, denote u(xn) = u(t), v(xn) = v(t).
Notice m ∈ N satisfying 0 < 2m < n. If m = 2k with k ∈ N, we have

u(2m)(t) = (−Δ)mu(x) =
∫

R
n
+

(−Δ)m

(
1

|x − y|n−2m
− 1

|x̄ − y|n−2m

)

vβ(y)dy

= vβ(x) > 0,

which implies u(2m−1)(t) is increasing.
We claim that u(2m−1)(t) ≤ 0. Otherwise, there is t0 > 0 such that

u(2m−1)(t0) > 0, and thus

u(2m−1)(t) ≥ u(2m−1)(t0) > 0 for t ≥ t0 > 0.

Integrating several times, and then letting t → ∞, we have u(t) → ∞. This
contradicts the fact that u(yi

n) → 0. The claim implies u(2m−2)(t) is nonin-
creasing.

By deduction, we derive that u(t) is nonincreasing. Together with the
positivity of u and u(0) = 0, we conclude u ≡ 0. Therefore, v ≡ 0 as well due
to the second equation of (1.3).

If m = 2k − 1 with k ∈ N, we can show by a similar procedure that v(t)
is nondecreasing. By (3.10), we have

+∞ > u(x)=u(xn)≥c

∫ ∞

R

vβ(yn)
y2−2m

n

dyndyn ≥ cvβ(R)
∫ ∞

R

1
y2−2m

n

dyndyn = +∞,

and hence v ≡ 0. In addition, u ≡ 0 by (1.3). �
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Finally, it suffices to show the equivalence between the differential sys-
tem (1.1) and the integral system (1.3) (Theorem 1.2). The required proof is
identical mutatis mutandis to the same result for the single equation case.

It is easy to see that the higher-order PDEs problem (1.1) can be rewritten
as the following second-order system
{−Δvi =vi+1, vi|∂R

n
+

= 0, i = 0, 1, . . . , m − 1, with v0 =u, vm =vβ ,

−Δui =ui+1, ui|∂R
n
+

= 0, i = 0, 1, . . . ,m − 1, with u0 =v, um =uα.
(3.11)

On the other hand, rewrite the integral system (1.3) as
⎧
⎪⎪⎨

⎪⎪⎩

vi =
∫

R
n
+

G(x, y, 2)vi+1(y)dy, i = 0, 1, . . . , m − 1, with v0 = u, vm = vβ ,

ui =
∫

R
n
+

G(x, y, 2)ui+1(y)dy, i = 0, 1, . . . ,m − 1, with u0 = v, um = uα,

(3.12)

where G(x, y, 2) is defined by (2.1) with m = 1.
Consequently, by using the technique introduced by Chen and Fang [9]

for the scalar case of higher-order equations, we can establish the equivalence
between the 2m second-order elliptic equations (3.11) and the 2m integral
system (3.12). We omit the details.
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