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Anna Capietto, Walter Dambrosio and Duccio Papini

Abstract. We first study the linear eigenvalue problem for a planar Dirac
system in the open half-line and describe the nodal properties of its solu-
tions by means of the rotation number. We then give a global bifurcation
result for a planar nonlinear Dirac system in the open half-line. As an
application, we provide a global continuum of solutions of the nonlinear
Dirac equation which have a special form.
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1. Introduction

In this paper we give a global bifurcation result (Theorem 4.3) for a nonlinear
Dirac system in R

2 of the form

Jz′ + P (x)z = λz + S(x, z)z, x > 0, λ ∈ R, z = (u, v) ∈ R
2, (1.1)

where

J =

⎛
⎝

0 1

−1 0

⎞
⎠

and P (x), S(x, z) are continuous symmetric matrices, for every x > 0 and
z ∈ R

2. We will be interested in solutions z of (1.1) belonging to the space

D0 = {z ∈ L2(0,+∞) : z ∈ AC(0,+∞), Jz′ + P (·)z ∈ L2(0,+∞)}.
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In particular, the solutions are convergent to zero at zero and at infinity.
This choice is strictly related to the spectral properties of the linear operator
τz = Jz′ + P (x)z and to the possibility of considering self-adjoint extensions
of τ (see Sect. 3).

When P has the form

P (x) = PV,k,μa
(x) =

⎛
⎜⎝

−1 + V (x) −k

x
− μaV

′(x)

−k

x
− μaV

′(x) 1 + V (x)

⎞
⎟⎠ , x > 0, (1.2)

the differential operator z �→ Jz′ +P (·)z coincides with the radially symmetric
Dirac operator with or without anomalous magnetic moment (cf. [15,18,23,24]
and Sect. 4.2). In this context V ∈ C1(0,+∞) represents an electrostatic
potential, μa ∈ R an anomalous magnetic moment and k ∈ Z \ {0} (see [23]).
For a comprehensive treatment of linear and nonlinear Dirac systems, we refer
to the paper by Esteban [14]. As it is explained in detail in Sect. 4.2, nonlinear
systems of the form (1.1) arise, for some S, when one is interested in solutions
of a nonlinear Dirac PDE which have a special form (cf. (4.49)).

The study of global bifurcation problems for second order equations in
unbounded intervals was initiated in the 1970s by Stuart [22] and Dancer
[7,8]. More recent results have been given by Rabier and Stuart [16], Secchi
and Stuart [20], the first and second author [4] and the authors [5].

In [4] it is considered the particular case when the r.h.s. of (1.1) (and the
function S) is regular at zero. We are now able to avoid this restriction and,
as a consequence, to treat the physically relevant Dirac operator.

Having in mind a bifurcation result, a comprehensive knowledge of the
linear eigenvalue problem

Jz′ + P (x)z = λz, x > 0, λ ∈ R, z = (u, v) ∈ R
2 (1.3)

is necessary. More precisely, we have to study the existence of eigenvalues and
their ”nodal properties”. To this end, in Subsection 2.1, assuming (P1), (P2),
(P3) for the matrix P , we first describe (Lemmas 2.6 and 2.13) the behaviour
of the solutions of the linear system (1.3) when x → +∞ and x → 0+. As in [4],
we apply the Levinson theorem [13] on the asymptotic properties of solutions
of linear equations and, by means of a suitable change of variables, we manage
to treat the singularity at zero as well. Using the results of Subsection 2.1, we
develop in Subsection 2.2 an oscillatory theory for nontrivial solutions of (2.1)
based on the study of the asymptotic behaviour of the angular coordinate θ in
the phase-plane (cf. the book by Weidmann [24]). It is interesting to observe
that, contrary to the case of second order equations, in case of planar Dirac-
type systems the angular coordinate is not, in general, an increasing function
of x. However, we are able to guarantee (Propositions 2.16 and 2.17) that the
limits

θ(+∞, λ) = lim
x→+∞ θ(x, λ), θ(0) = lim

x→0+
θ(x, λ) (1.4)

exist and are finite. We can thus give the definition of

rot (z) =
θ(+∞, λ) − θ(0)

π
, (1.5)
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the rotation number of a solution z to (1.3). Roughly speaking, the unbound-
edness of the interval and the singularity at zero do not prevent solutions to
perform only a finite number of rotations around the origin (as in the regular
case). A nontrivial phase-plane analysis leads then to some useful continuity
properties of the angular function near zero and infinity (Propositions 2.21
and 2.22).

In Sect. 3 we study the spectral theory for the linear operator formally
defined by

τz = Jz′ + P (x)z, x > 0. (1.6)
More precisely, standard arguments from [24] ensure that τ is in the limit
point case at infinity and at zero and that there exists a unique self-adjoint
realization A0 (cf. (3.2)) of τ having (when P has the form (1.2)) essential
spectrum σess(A0) = (−∞,−1] ∪ [1,+∞). Then, the (nontrivial) question of
characterizing eigenvalues of A0 is tackled by the results of Subsection 2.2.
Finally, we give results on the existence and accumulation of eigenvalues of
A0 at the boundary of the interval (−1, 1) which are based on the oscillatory
behaviour of the solutions for a value of λ corresponding to one of the extrema
of the essential spectrum; similar results can be found in the case of second-
order differential operators in the book by Dunford and Schwartz [12] and in
case of Dirac operators (without any knowledge of the nodal properties of the
corresponding eigenvalues) in the paper by Schmid and Tretter [18].

Taking advantage of all the results described above, in Subsection 4.1 we
give a global bifurcation result (Theorem 4.3) for system (1.1). Due to the fact
that we are dealing with an unbounded interval, we face a lack of compact-
ness; this difficulty is overcome by applying an abstract bifurcation result due
to Stuart [22]. A more precise description of the continuum emanating from
eigenvalues of odd multiplicity of the linear operator τ is then performed (as
we did in [4]) in Theorem 4.8; to this aim, we develop a continuity-connectivity
argument based on a linearization approach and on the properties of the ro-
tation number of a solution to (1.1) (cf. (4.5), (4.33) and Proposition 4.7).

Finally, in Subsection 4.2 we consider the partial differential equation

i

3∑
j=1

αj
∂ψ

∂xj
− βψ − V (||x||)ψ + ia

3∑
j=1

αj
∂V (||x||)
∂xj

ψ

= λψ + γ(||x||)F (〈βψ, ψ〉)βψ, x ∈ R
3, a ∈ R, (1.7)

where ψ : R
3 → C

4, V ∈ C((0,+∞),R) and γ ∈ C((0,+∞),R) satisfy suitable
assumptions, 〈·, ·〉 denotes the scalar product in C

4 and αj (j = 1, 2, 3) and β
are the 4 × 4 Dirac matrices (see Subsection 4.2). Set

H0ψ = i
3∑

j=1

αj
∂ψ

∂xj
− βψ, ∀ ψ ∈ H1

0 (R3) ⊂ L2(R3). (1.8)

It is well-known (cf. the book by Thaller [23]), that there exist suitable sub-
spaces of L2(S2) s.t. the restriction of the linear operator H0 − V + ia α · ∇V
to each of these subspaces can be represented by an ordinary differential op-
erator of the form τ . A remark on the physical meaning of the partial wave
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subspaces can be found in Remark 4.10 in Sect. 4.2. It is interesting to observe
(on the lines of a paper by Cacciafesta [3]) that there are nonlinear terms
F (〈βψ, ψ〉)βψ in (1.7) which leave the above described subspaces invariant.
These appear, among others, in the so-called Soler model and are the most
interesting from a physical point of view (cf. [17,21]). On the same lines, we
refer also to the contributions by Balabane et al. [2], Ding and Ruf [10], Ding
et al. [9], Dong and Xie [11] and references therein.

Our contribution (Theorem 4.11) provides the existence of a global con-
tinuum of solutions of the nonlinear PDE (1.7) which have a special form
(i.e. which belong to one of the above mentioned subspaces). To the authors’
knowledge, Theorem 4.11 is the first global bifurcation result for a nonlinear
Dirac-type equation of the form (1.7). In the particular case V ≡ 0, Balabane
et al. [1] gave a multiplicity result for solutions (having prescribed nodal prop-
erties) to a system of ODEs of the form (4.51). For multiplicity results via
critical point theory for the nonlinear Dirac PDE, we refer to Theorem 3.3 in
[14] (in case V ≡ 0) and to the paper by Ding and Ruf [10] (for a potential
that includes the Coulomb case). On the other hand, in the particular case of
linear Dirac-type systems of ODEs, Schmid and Tretter [18] have given results
for the eigenvalue problem for some special choice of the potential V .

In what follows, we will denote by M2
S the set of symmetric 2×2 matrices.

2. Linear Dirac systems

In this Section we consider a linear system of the form

Jz′ + P (x)z = λz, x > 0, λ ∈ R, z = (u, v) ∈ R
2; (2.1)

by a solution of (2.1) we mean a function z ∈ ACloc(0,+∞) satisfying (2.1)
almost everywhere in (0,+∞). In the next sections we will be interested in
solutions z ∈ L2(0,+∞) or z ∈ H1(0,+∞); hence, in describing the solutions
of (2.1) we will point out, when possible, if they belong to L2(0,+∞) or to
H1(0,+∞).

We assume that P ∈ C((0,+∞),M2
S) and we denote by pij its coeffi-

cients, as usual. For each pair of real numbers μ− < μ+, let us consider the
class Pμ of continuous maps P : (0,+∞) −→ M2,2

S satisfying the following
conditions:

(P1) There exists q∞ ≥ 1 such that

lim
x→+∞P (x) =

⎛
⎝
μ− 0

0 μ+

⎞
⎠ =: P∞ (2.2)

and ∫ +∞

1

||R∞(x)||q∞ dx < +∞, (2.3)

where R∞(x) = P (x) − P∞, for every x ≥ 1.
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(P2) There exist β ≥ 1, P ∗ ∈ M2
S and q0 ≥ 1 such that

lim
x→0+

xβP (x) = P ∗ (2.4)

and ∫ 1

0

1
xβ

||R0(x)||q0 dx < +∞, (2.5)

where R0(x) = xβP (x) − P ∗, for every x ∈ (0, 1).
(P3) The matrix P ∗ satisfies

det P ∗ < −1/4 if β = 1 (2.6)
det P ∗ < 0 if β > 1. (2.7)

In what follows, we write Λ = (μ−, μ+).

Remark 2.1. 1. We observe that assumption (P2) implies that (2.1) has a
singularity for x → 0+; indeed, from (2.4) and the fact that P ∗ is not the
zero-matrix (since its determinant is negative in any case), we deduce that

pij(x) ∼ p∗
ij

xβ
, x → 0+ (i, j = 1, 2)

and, in particular, that pij /∈ L1(0, 1).
(2) Let us also observe that, for a particular choice of P , the differential

operator given in (2.1) coincides with the radially symmetric Dirac operator
with or without anomalous magnetic moment (cf. [15,18,23,24] and Sect. 4.2);
indeed, this is the situation when P has the form

P (x) = PV,k,μa
(x) =

⎛
⎜⎜⎜⎝

−1 + V (x) −k

x
− μaV

′(x)

−k

x
− μaV

′(x) 1 + V (x)

⎞
⎟⎟⎟⎠ , x > 0, (2.8)

where V ∈ C1(0,+∞) is an electrostatic potential, μa ∈ R is an anomalous
magnetic moment and k ∈ Z \ {0} (see [23]).

Let us assume that V satisfies the following conditions:

V (x) =
γ∞
xα∞

+RV,∞(x), α∞ > 0,

xα∞RV,∞ = o(1), xα∞+1R′
V,∞ = o(1), x → +∞

(2.9)

and

V (x) =
γ0

xα0
+RV,0(x), α0 > 0, (2.10)

where

if μa = 0 :

⎧⎪⎪⎨
⎪⎪⎩

α0 = 1, xRV,0 = o(1), x → 0+,∫ 1

0

1
x

|xRV,0(x)|q′
dx < +∞, q′ ≥ 1,

γ2
0 < k2 − 1/4

(2.11)
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and

if μa �= 0 :

⎧⎪⎪⎨
⎪⎪⎩

xα0RV,0 = o(1), xα0+1R′
V,0 = o(1), x → 0+,∫ 1

0

1
xα0+1

|xα0+1R′
V,0(x)|q

′′
dx < +∞, q′′ ≥ 1,

γ0 �= 0.

(2.12)

Under these conditions, assumption (P1) is satisfied with μ± = ±1; indeed,
we obviously have

lim
x→+∞PV,k,μa

(x) = lim
x→+∞

⎛
⎜⎝

−1 + V (x) −k

x
− μaV

′(x)

−k

x
− μaV

′(x) 1 + V (x)

⎞
⎟⎠=

⎛
⎝

−1 0

0 1

⎞
⎠ .

Moreover, the matrix R∞ in (2.3) is given by

R∞(x) =

⎛
⎜⎝

V (x) −k

x
− μaV

′(x)

−k

x
− μaV

′(x) V (x)

⎞
⎟⎠ , ∀ x > 0;

from (2.9) we deduce that V,RV,∞ ∈ Lq(1,+∞), for every q > 1/α∞, and
R′

V,∞ ∈ Lp(1,+∞), for every p > 1/(α∞ + 1), while we plainly have k/x ∈
Ls(1,+∞), for every s > 1. By observing that all the functions V,RV,∞, R′

V,∞,
k/x go to zero at infinity, we conclude that (2.3) is satisfied with q∞ = 1/(α∞+
1).

As far as (P2) and (P3) are concerned, a crucial role is played by the
constants γ0 and μa, as it is evident from the assumptions on V . Indeed, let us
first discuss the case μa = 0; in this situation, taking α0 = 1 and β = α0 = 1
in (2.4), we have

P ∗ = lim
x→0+

xPV,k,0(x)

= lim
x→0+

(−x+ xV (x) −k
−k x+ xV (x)

)
=
(
γ0 −k
−k γ0

)

and

R0(x) = xP (x) − P ∗ =
(−x+ xV (x) − γ0 0

0 x+ xV (x) − γ0

)
.

Hence, from (2.10) and (2.11) we infer
∫ 1

0

1
x

||R0(x)||q′
dx ≤ 2q′−1

∫ 1

0

(xq′−1 + xq′−1|RV,0(x)|q′
) dx < +∞,

concluding that (2.5) holds true with q0 = q′. Moreover, the last relation in
(2.11) guarantees that (2.6) is fulfilled.

Suppose now μa �= 0; taking β = α0 + 1 in (2.4), we have

P ∗ = lim
x→0+

xα0+1PV,k,μa
(x)=

= lim
x→0+

( −xα0+1 + xα0+1V (x) −kxα0 − μax
α0+1V ′(x)

−kxα0 − μax
α0+1V ′(x) xα0+1 + xα0+1V (x)

)

=
(

0 μaα0γ0

μaα0γ0 0

)
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and

R0(x) = xα0+1P (x) − P ∗

=
(−xα0+1 + xα0+1V (x) −kxα0 − μax

α0+1V ′(x) − μaα0γ0

−kxα0 − μax
α0+1V ′(x) − μaα0γ0 xα0+1 + xα0+1V (x)

)
.

Now, let q0 > max(q′′, α0); from (2.10) and (2.12) we infer
∫ 1

0

1
xα0+1

|xα0+1|q0 dx =
∫ 1

0

1
x(α0+1)(1−q0)

dx < +∞
∫ 1

0

1
xα0+1

|xα0+1V (x)|q0 dx ≤ 2q0−1

∫ 1

0

xq0

xα0+1
(γq0

0 + |xα0RV,0(x)|q0) dx < +∞
∫ 1

0

1
xα0+1

|kxα0 |q0 dx = |k|q0

∫ 1

0

1
x1+(1−q0)α0

dx < +∞
∫ 1

0

1
xα0+1

| − μax
α0+1V ′(x) − μaα0γ0|q0 dx

= |μa|q0

∫ 1

0

1
xα0+1

|xα0+1R′
V,0(x)|q

′′ |xα0+1R′
V,0(x)|q0−q′′

dx < +∞,

concluding again that (2.5) holds true. Moreover, the last relation in (2.12)
guarantees that (2.7) is fulfilled.

The fact that P ∈ Pμ, and in particular the fact that P satisfies (P3), is
related to the spectral properties of the operator τ : z → Jz′ +P (x)z; indeed,
as we will see at the beginning of Sect. 3, condition (P3) implies that the
operator τ is in the limit point case at x = 0. As a consequence, it admits a
unique self-adjoint realization (cfr. (3.2)); in the particular case of the operator
associated to (2.8), with the Coulomb potential

V (x) =
γ

x
, ∀ x > 0, γ < 0, (2.13)

condition (P3) is satisfied for a larger range of values of γ when μa �= 0. This
means that the presence of an anomalous magnetic moment has a regularizing
effect on the radial Dirac operator (cf. also [23, Sect. 5.3.2].

2.1. Asymptotic estimates

In this subsection we describe the behaviour of the solutions of (2.1) when
x → +∞ or x → 0+; this will be the consequence of some general results on
the asymptotic properties of solutions of linear equations (see e.g. [13]). As a
first step, let us consider a system of the form

u′ = C(λ)u+ U(x, λ)u, x ≥ 1, λ ∈ Λ (2.14)

where C(λ) and U(x, λ) are 2 × 2 matrix, for every λ ∈ Λ and x ≥ 1. We have
the following result:

Proposition 2.2. [13, Th. 1.5.2, Th. 1.8.1, Th. 1.8.2] Let us suppose that for
every λ ∈ Λ the matrix C(λ) has two real eigenvalues σ−

λ < 0 < σ+
λ and let

u−
λ , u+

λ be the eigenvectors associated to σ−
λ and σ+

λ , respectively. Moreover,
let us assume that

lim
x→+∞U(x, λ) = 0, ∀ λ ∈ Λ, (2.15)



270 A. Capietto, W. Dambrosio and D. Papini NoDEA

and that there exists q ≥ 1 such that
∫ +∞

1

||U(x, λ)||q dx < +∞, ∀ λ ∈ Λ. (2.16)

Then, for every λ ∈ Λ system (2.14) has two linearly independent solutions
u1,λ and u2,λ satisfying

u1,λ(x) = (u−
λ + o(1))eσ−

λ (x−1)+
∫ x
1 g1,λ(t) dt, x → +∞

u2,λ(x) = (u+
λ + o(1))eσ+

λ (x−1)+
∫ x
1 g2,λ(t) dt, x → +∞,

(2.17)

where, for i = 1, 2, we have

gi,λ = 0 if q = 1

gi,λ ∈ Lq(1,+∞) if q > 1.
(2.18)

Proof. Let us note that when q = 1 the result follows from [13, Th. 1.8.1].
Therefore, assume that q > 1; from [13, Th. 1.5.2, Th. 1.8.2] we immediately
deduce that (2.17) is satisfied with some functions gi,λ, i = 1, 2, λ ∈ Λ, such
that

gi,λ =

⎧⎪⎨
⎪⎩

0 if q = 1
M∑

m=1

gi,m,λ if q > 1,
(2.19)

with M such that 2M−1 < q ≤ 2M and

gi,m,λ ∈ Lq/2m−1
(1,+∞), ∀m = 1, . . . ,M. (2.20)

Now, assumption (2.15) implies that

lim
x→+∞ gi,m,λ(x) = 0, ∀m = 1, . . . ,M, λ ∈ Λ, i = 1, 2

(see also formula (1.5.27) in [13]). Hence, for every i = 1, 2, λ ∈ Λ and m =
1, . . . ,M we have

gi,m,λ ∈ Lq/2m−1
(1,+∞) ⇒ gi,m,λ ∈ Lq(1,+∞).

This implies that qi,λ ∈ Lq(1,+∞), for every i = 1, 2 and λ ∈ Λ. �

Now, let us observe that

f ∈ Lp(1,+∞), p > 1 ⇒
∣∣∣∣
∫ x

1

f(t) dt
∣∣∣∣ ≤ ‖f‖Lp(x− 1)1/p′

, ∀ x ≥ 1,

(2.21)
where p′ is the conjugate exponent of p; noting that in this case 1/p′ < 1, from
Proposition 2.2 we obtain the following result:

Proposition 2.3. Under the assumptions of Proposition 2.2, for every λ ∈ Λ
we have

lim
x→+∞u1,λ(x) = 0 (2.22)

and
lim

x→+∞ ‖u2,λ(x)‖ = +∞. (2.23)
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Moreover, if q > 1 in (2.16), then there exists x1 > 1 such that

σ−
λ (x− 1) +

∫ x

1

g1,λ(t) dt ≤ σ−
λ

2
(x− 1), ∀ x ≥ x1. (2.24)

Using Proposition 2.2 and Proposition 2.3 we are able to prove some
asymptotic results on the solutions of (2.1) when x → +∞ or x → 0+. We
start with the study of (2.1) when x → +∞ (cf. also [4]); assume then x ≥ 1.

Let us first observe that (2.1) can be written as

z′ = Bλz +Q(x)z, (2.25)

where

Bλ = J−1(λId − P∞), Q(x) = J−1(P∞ − P (x)), ∀ x > 0.

This form corresponds to (2.14) with C(λ) = Bλ and U(x, λ) = Q(x), for
every x ≥ 1, λ ∈ Λ; note that assumptions (2.2) and (2.3) imply that (2.15)
and (2.16), with q = q∞, hold true. Moreover, if λ ∈ Λ, setting Δλ = (μ+ −
λ)(λ−μ−), then Bλ has the real eigenvalues ±√

Δλ; in this situation we denote
by b1,λ = (λ − μ+,

√
Δλ) and b2,λ = (μ+ − λ,

√
Δλ) the eigenvectors of Bλ

associated to the eigenvalues −√
Δλ and

√
Δλ, respectively.

Therefore from Proposition 2.2 and Proposition 2.3 we deduce the fol-
lowing results:

Proposition 2.4. For every λ ∈ Λ system (2.1) has two linearly independent
solutions z1,λ and z2,λ satisfying

z1,λ(x) = (b1,λ + o(1))e−√
Δλ(x−1)+

∫ x
1 g1(t) dt, x → +∞

z2,λ(x) = (b2,λ + o(1))e
√

Δλ(x−1)+
∫ x
1 g2(t) dt, x → +∞,

(2.26)

where, for i = 1, 2, we have

gi = 0 if q∞ = 1

gi ∈ Lq∞(1,+∞) if q∞ > 1.
(2.27)

Lemma 2.5. Assume that λ ∈ Λ and let z1,λ and z2,λ be the solutions of (2.1)
given in Proposition 2.4. Then

lim
x→+∞ z1,λ(x) = 0 (2.28)

and
lim

x→+∞ |(z2,λ)1(x)| = lim
x→+∞ |(z2,λ)2(x)| = +∞. (2.29)

Moreover, z1,λ ∈ H1(1,+∞).

Proof. The relations (2.28) and (2.29) immediately follow from (2.22) and
(2.23). In particular (2.29) comes from the fact that neither component of b2,λ

vanishes.
Moreover, from (2.24) we deduce that there exists K1,λ > 0 such that

||z1,λ(x)|| ≤ K1,λe
−√

Δλ(x−1), ∀ x ≥ x1;
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this implies that z1,λ ∈ L2(1,+∞). Now, from the differential equation we
deduce that

Jz′
1,λ(x) = λz1,λ(x) − P (x)z1,λ(x), ∀ x ≥ 1;

since P ∈ L∞(1,+∞), we infer that Jz′
1,λ ∈ L2(1,+∞) and then z1,λ ∈

H1(1,+∞). �

Arguing as in the proof of [4, Lemma 2.3], we obtain the following result:

Lemma 2.6. Assume that λ ∈ Λ and let z = (u, v) be a nontrivial solution of
(2.1). Then either

lim
x→+∞u(x) = lim

x→+∞ v(x) = 0 (2.30)

or
lim

x→+∞ |u(x)| = lim
x→+∞ |v(x)| = +∞. (2.31)

Moreover, z ∈ H1(1,+∞) if and only if (2.30) holds true and there exists
γ > 0 such that z = γz1,λ, where z1,λ is given in Proposition 2.4.

Now, let us study the behaviour of the solutions of (2.1) when x → 0+;
assume then that x ∈ (0, 1). For every β ≥ 1 let us consider an invertible
function φβ ∈ C1((1,+∞), (0, 1)) such that

lim
t→+∞φβ(t) = 0 and lim

t→1+
φβ(t) = 1. (2.32)

The change of variable x = φβ(t) transforms (2.1) into

w′ = −J−1P (φβ(t))φ′
β(t)w + λJ−1φ′

β(t)w, (2.33)

where w(t) = z(φβ(t)), for every t ≥ 1. With a suitable choice of φβ system
(2.33) can be reduced to a system of the form (2.14):

Lemma 2.7. Assume β = 1 in (P2) and let

φβ(t) = e1−t, ∀ t ≥ 1.

Then (2.33) reduces to a system of the form (2.14) with

C! = C(λ) = J−1P ∗, U(t, λ) = J−1(R0(e1−t) − λe1−tId), (2.34)

for every t ≥ 1 and λ ∈ Λ.

Lemma 2.8. Assume β > 1 in (P2) and let

φβ(t) = t−1/(β−1), ∀ t ≥ 1.

Then (2.33) reduces to a system of the form (2.14) with

C=C(λ)=
1

β − 1
J−1P ∗, U(t, λ) =

1
β − 1

J−1(R0(t−1/(β−1))−λt−β/(β−1)Id),

(2.35)
for every t ≥ 1 and λ ∈ Λ.
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The proofs of Lemma 2.7 and Lemma 2.8 are straightforward and there-
fore they are omitted.

Now, set Δ∗ = −det P ∗ and observe that the matrix C given in (2.34)
or (2.35) has the eigenvalues σ± = ±√

Δ∗ if β = 1 and σ± = ±√
Δ∗/(β − 1)

if β > 1; in what follows, we will denote by w∗
1 and w∗

2 the eigenvectors of C
associated to σ±.

Moreover, from (2.4) and the definition of R0 we deduce that the function
U given in (2.34) or (2.35) satisfies (2.15). Finally, let us note that (2.5) implies
that (2.16) is satisfied with q = q0; indeed, when β = 1 we have

∫ +∞

1

||U(t, λ)||q0 dt≤
{[∫ +∞

1

||R0(e1−t)||q0 dt

] 1
q0

+ λ

[∫ +∞

1

eq0(1−t) dt

] 1
q0

}q0

=

{[∫ 1

0

1
x

||R0(x)||q0 dx

] 1
q0

+
λ

q
1/q0
0

}q0

< +∞.

On the other hand, if β > 1 we deduce that

∫ +∞

1

||U(t, λ)||q0 dt ≤ 1
(β − 1)q0

{[∫ +∞

1

||R0(t−1/(β−1))||q0 dt

] 1
q0

+λ
[∫ +∞

1
t−βq0/(β−1) dt

] 1
q0

}q0

=
1

β − 1

{[
(β − 1)

∫ 1

0

1
xβ

||R0(x)||q0 dx

] 1
q0

+ λ

(
β − 1
q0

) 1
q0

}q0

< +∞.

Therefore, we can apply Proposition 2.2 and Proposition 2.3 to (2.33), with
φβ as above, and obtain the following results:

Proposition 2.9. For every λ ∈ Λ system (2.33), with φβ as in Lemma 2.7 or
Lemma 2.8, has two linearly independent solutions w1,λ and w2,λ satisfying

w1,λ(t) = (w∗
1 + o(1))e−√

Δ∗(t−1)+
∫ t
1 g1,λ(s) ds, t → +∞

w2,λ(t) = (w∗
2 + o(1))e

√
Δ∗(t−1)+

∫ t
1 g2,λ(s) ds, t → +∞,

(2.36)

if β = 1 and

w1,λ(t) = (w∗
1 + o(1))e−

√
Δ∗

β−1 (t−1)+
∫ t
1 g1,λ(s) ds, t → +∞

w2,λ(t) = (w∗
2 + o(1))e

√
Δ∗

β−1 (t−1)+
∫ t
1 g2,λ(s) ds, t → +∞,

(2.37)

if β > 1, where, for i = 1, 2, we have

gi,λ = 0 if q0 = 1

gi,λ ∈ Lq0(1,+∞) if q0 > 1.
(2.38)
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Lemma 2.10. Assume that λ ∈ Λ and let w1,λ and w2,λ be the solutions of
(2.33) given in Proposition 2.9. Then

lim
t→+∞w1,λ(t) = 0 (2.39)

and
lim

t→+∞ ‖w2,λ(t)‖ = +∞. (2.40)

Moreover, the solution w1,λ satisfies
∫ +∞

1

||w1,λ(t)||2 et dt < +∞, if β = 1 (2.41)

and ∫ +∞

1

||w1,λ(t)||2 tβ/(β−1) dt < +∞, if β > 1. (2.42)

Proof. Let us note that (2.39) and (2.40) immediately follow from (2.22) and
(2.23).

As far as (2.41) is concerned, from (2.36) we deduce that there exists
K1,λ > 0 such that

||w1,λ(t)||2 et ∼ K1,λe
−2

√
Δ∗(t−1)+2

∫ t
1 g1,λ(s) ds et, t → +∞; (2.43)

now, let us observe that 1 − 2
√

Δ∗ > 0, since (2.6) holds. Hence, using again
(2.21) we infer that there exists t1 > 1 such that

e(1−2
√

Δ∗)t+2
∫ t
1 g1,λ(s) ds ≤ e(1−2

√
Δ∗)t/2, ∀ t ≥ t1, (2.44)

is satisfied. Conditions (2.43) and (2.44) imply (2.41).
Finally, when β > 1 from (2.37) we deduce that there exists M1,λ > 0

such that

||w1,λ(t)||2 tβ/(β−1) ∼ M1,λe
−2

√
Δ∗

β−1 (t−1)+2
∫ t
1 g1,λ(s) ds tβ/(β−1), t → +∞;

(2.45)
moreover, from (2.24) we infer that there exists t2 > 1 such that

e−2
√

Δ∗
β−1 (t−1)+2

∫ t
1 g1,λ(s) ds ≤ e−

√
Δ∗

β−1 (t−1), ∀ t ≥ t2, (2.46)

is satisfied. Conditions (2.45) and (2.46) imply (2.42). �

The next result is a consequence of Proposition 2.9 and Lemma 2.10.

Proposition 2.11. For every λ ∈ Λ system (2.1) has two linearly independent
solutions ζ1,λ and ζ2,λ satisfying

ζ1,λ(x) = (w∗
1 + o(1)) x

√
Δ∗
e
∫ 1−log x
1 g1,λ(s) ds, x → 0+

ζ2,λ(x) = (w∗
2 + o(1)) x−√

Δ∗
e
∫ 1−log x
1 g2,λ(s) ds, x → 0+,

(2.47)

if β = 1 and

ζ1,λ(x) = (w∗
1 + o(1)) e−

√
Δ∗

β−1 x1−β+
∫− log x
1 g1,λ(s) ds, x → 0+

ζ2,λ(x) = (w∗
2 + o(1)) e

√
Δ∗

β−1 x1−β
∫− log x
1 g2,λ(s) ds, x → 0+,

(2.48)
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if β > 1, where, for i = 1, 2, we have

gi,λ = 0 if q0 = 1

gi,λ ∈ Lq0(1,+∞) if q0 > 1.
(2.49)

Lemma 2.12. Assume that λ ∈ Λ and let ζ1,λ and ζ2,λ be the solutions of (2.1)
given in Proposition 2.11. Then

lim
x→0+

ζ1,λ(x) = 0 (2.50)

and
lim

x→0+
‖ζ2,λ(x)‖ = +∞. (2.51)

Moreover, ζ1,λ ∈ H1(0, 1).

Proof. The relations (2.50) and (2.51) immediately follow from (2.39) and
(2.40).

Now, assume that β = 1; let us observe that we have
∫ 1

0

||ζ1,λ(x)||2
x2

dx=
∫ +∞

1

||ζ1,λ(e1−t)||2et−1 dt=
∫ +∞

1

||w1,λ(t)||2et−1 dt <+∞,

(2.52)

by (2.41). This condition obviously implies that
∫ 1

0

||ζ1,λ(x)||2 dx ≤
∫ 1

0

||ζ1,λ(x)||2
x2

dx < +∞ (2.53)

and so ζ1,λ ∈ L2(0, 1); in order to prove that ζ ′
1,λ ∈ L2(0, 1), let us note that

ζ1,λ satisfies

Jζ ′
1,λ(x) = λζ1,λ(x) − P (x)ζ1,λ(x), ∀ x ∈ (0, 1).

From (P2) we deduce that there exists K > 0 such that

||P (x)|| ≤ K

x
, ∀ x ∈ (0, 1);

therefore, (2.52) implies that Pζ1,λ ∈ L2(0, 1) and then also ζ ′
1,λ ∈ L2(0, 1).

When β > 1 by (2.42) we obtain
∫ 1

0

||ζ1,λ(x)||2
x2β

dx =
1

β − 1

∫ +∞

1

||ζ1,λ(t−1/(β−1))||2
t−2β/(β−1)

t−β/(β−1) dt

=
∫ +∞

1

||w1,λ(t)||2 tβ/(β−1) dt < +∞. (2.54)

This condition implies that
∫ 1

0

||ζ1,λ(x)||2 dx ≤
∫ 1

0

||ζ1,λ(x)||2
x2β

dx < +∞ (2.55)

and so ζ1,λ ∈ L2(0, 1); arguing as above, in order to prove that ζ ′
1,λ ∈ L2(0, 1),

let us note that ζ1,λ satisfies

Jζ ′
1,λ(x) = λζ1,λ(x) − P (x)ζ1,λ(x), ∀ x ∈ (0, 1).
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From (P2) we deduce that there exists M > 0 such that

||P (x)|| ≤ M

xβ
, ∀ x ∈ (0, 1);

therefore, (2.54) implies that Pζ1,λ ∈ L2(0, 1) and then also ζ ′
1,λ ∈ L2(0, 1). �

Lemma 2.13. Assume that λ ∈ Λ and let z = (u, v) be a nontrivial solution of
(2.1). Then either

lim
x→0+

u(x) = lim
x→0+

v(x) = 0 (2.56)

or

lim
x→0+

‖z(x)‖ = +∞. (2.57)

Moreover, z ∈ H1(0, 1) if and only if (2.56) holds true and there exists ξ ∈ R

such that z = ξζ1,λ, where ζ1,λ is given in Proposition 2.11.

Remark 2.14. Let us denote by Z the set of solutions of (2.1). From Proposition
2.4 and Proposition 2.11 we deduce that

Z = span {z1,λ, z2,λ} = span {ζ1,λ, ζ2,λ}.
As far as nontrivial solutions z ∈ L2(0,+∞) are concerned, let us observe that
Lemma 2.6 and Lemma 2.13 prove that

z ∈ L2(1,+∞) ⇐⇒ z ∈ span {z1,λ} := Z∞

and

z ∈ L2(0, 1) ⇐⇒ z ∈ span {ζ1,λ} := Z0.

As a consequence, z ∈ L2(0,+∞) is a solution of (2.1) if and only if

z ∈ Z0 ∩ Z∞.

We conclude this subsection with some explicit formulas for solutions of
the non-homogeneous equation

Jz′ + P (x)z = f, (2.58)

where z, f ∈ L2(0, 1). They are based on the fact that the homogeneous equa-
tion (2.1) has a suitable dichotomy at zero when λ = 0 (see [6]).

First of all, let us observe that from [6, §3] we deduce that (2.58) has
a solution zf ∈ L∞(0, 1) when f ∈ L2(0, 1). Moreover, let us point out that
the previous results on the asymptotic behaviour for x → 0+ of the solutions
of (2.1) hold true also when λ = 0; indeed, they are based on the fact that
Δ∗ > 0. Hence, according to Remark 2.14, all the solutions z ∈ L2(0, 1) of
(2.58) are of the form

z = cζ1,0 + zf ,

for some c ∈ R. More precisely, we have the following result:
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Theorem 2.15. [6, §3] Let us consider f ∈ L2(0, 1) and let z ∈ L2(0, 1) be a
solution of (2.58). Then, there exist c ∈ R and G : (0, 1) × (0, 1) −→ R

2 such
that

z(x) = cζ1,0(x) +
∫ 1

0

G(x, ξ)f(ξ) dξ, ∀ x ∈ (0, 1). (2.59)

Moreover, there exist K > 0 such that

||G(x, ξ)||

≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K

(
min(x, ξ)
max(x, ξ)

)√
Δ∗

if β = 1

K

(
e− min(x,ξ)1−β

e− max(x,ξ)1−β

)√
Δ∗/(β−1)

if β > 1

≤ K, ∀ (x, ξ) ∈ (0, 1)×(0, 1).

(2.60)

Proof. We just point out that the result follows from the change of variables
x = φβ(t), from estimates in [6, §3, formulas (3) and (4)] and Propositions 2.9
or 2.11. �

2.2. Oscillatory properties

In this subsection we develop an oscillatory theory for nontrivial solutions of
(2.1), based on the study of the angular coordinate in the phase-plane (see
[24]). For every nontrivial solution (u, v, λ) of (2.1) let us introduce the polar
coordinates (ρ, θ) = (ρ(x, λ), θ(x, λ)) according to

⎧⎨
⎩
u = ρ cos θ

v = ρ sin θ.

Observe that θ is defined mod. 2π; we do not impose a normalization condi-
tion on θ and then the following results hold true for any angular coordinate
associated to a nontrivial solution z. As a first step, we are able to study the
asymptotic behaviour of θ when x → +∞ or x → 0+; this follows from the
results of Subsection 2.1.

Proposition 2.16. [4, Prop. 2.4] For every λ ∈ Λ the function θ(·, λ) has limit
at infinity and we have either

lim
x→+∞ θ(x, λ) = π − arctan

√
λ− μ−

μ+ − λ
(mod π) (2.61)

or

lim
x→+∞ θ(x, λ) = arctan

√
λ− μ−

μ+ − λ
(mod π). (2.62)

Moreover, (2.61) and (2.62) correspond to the cases when (2.30) and (2.31)
are fulfilled, respectively.
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Proposition 2.17. For every λ ∈ Λ the function θ(·, λ) has limit at zero and
we have either

lim
x→0+

θ(x, λ) = arctan
w∗

1,2

w∗
1,1

(mod π) (2.63)

or

lim
x→0+

θ(x, λ) = arctan
w∗

2,2

w∗
2,1

(mod π), (2.64)

where w∗
1 and w∗

2 are eigenvectors of C associated to the eigenvalues σ±, re-
spectively. Moreover, (2.63) and (2.64) correspond to the cases when (2.56)
and (2.57) are fulfilled, respectively.

Let us observe that the possible limits of θ(·, λ) at zero do not depend on
λ ∈ Λ; in what follows, we denote

θ(+∞, λ) = limx→+∞ θ(x, λ)

θ(0) = limx→0+ θ(x, λ),

which exist and are finite by Proposition 2.16 and Proposition 2.17.

Remark 2.18. According to Remark 2.14 and the above Propositions, we de-
duce that for a nontrivial solution z of (2.1) we have

z ∈ L2(1,+∞) ⇐⇒ θ(+∞, λ) = π − arctan

√
λ− μ−

μ+ − λ
(mod π)

and

z ∈ L2(0, 1) ⇐⇒ θ(0) = arctan
w∗

1,2

w∗
1,1

(mod π).

Proposition 2.16 and Proposition 2.17 imply that any angular function
θ(·, λ) is bounded on (0,+∞), for every λ ∈ Λ. As a consequence, we can
associate to every nontrivial solution z of (2.1) the rotation number

rot (z) =
θ(+∞, λ) − θ(0)

π
. (2.65)

Roughly speaking, the unboundedness of the interval and the singularity at
zero do not prevent solutions to perform only a finite number of rotations
around the origin (as in the regular case). It is important to observe that
rot (z) does not depend on the choice of the angular function of z. In Sect. 4
we will study some continuity properties of the rotation number defined in
(2.65).

We conclude this subsection with some asymptotic phase-plane analysis
for (2.1); as above, we prove the results for x → +∞. The case of x → 0+ can
be obtained in an analogous way by means of the change of variable x = φβ(t)
already introduced.

Let us consider again (2.25), which is equivalent to (2.1), and a similar
system

Jz′ + P̃ (x)z = λ̃z, (2.66)
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where P̃ ∈ Pμ and λ̃ ∈ Λ; (2.66) can be written in the form

z′ = Bλ̃z + Q̃(x)z, (2.67)

where Bλ̃ = J−1(λ̃Id − P∞) and Q̃(x) = J−1(P∞ − P̃ (x)), for every x > 0.
Let us note that the matrix P∞ is the same both for P and P̃ , since P, P̃ ∈ Pμ.

For every λ ∈ Λ, let b1,λ, b2,λ be as in Proposition 2.4; from the discussion
leading to Proposition 2.4 we know that

b1,λ = (λ− μ+,
√

Δλ), b2,λ = (−λ+ μ+,
√

Δλ),

for every λ ∈ Λ; moreover, there exists ρλ > 0 such that

b1,λ = ρλ(cos θ∞,λ, sin θ∞,λ)

b2,λ = ρλ(− cos θ∞,λ, sin θ∞,λ),

where

θ∞,λ = π − arctan

√
λ− μ−

μ+ − λ
(mod π).

For every θ ∈ R, let rθ be the straight line of equation x sin θ − y cos θ = 0
and let vθ = (sin θ,− cos θ); moreover, let r±

θ be the half-lines given by the
intersection of rθ with the half-planes H+ = {(x, y) ∈ R

2 : x > 0} and
H− = {(x, y) ∈ R

2 : x < 0}, respectively. We are in position to prove the
following result:

Proposition 2.19. For every λ̃ ∈ Λ, P̃ ∈ Pμ and for every θ ∈ (π/2, π) there
exist δ̃ > 0 and x̃∞ = x̃∞(λ̃, P̃ , θ) > 0 such that for every λ ∈ Λ and P ∈ Pμ

with
|λ− λ̃| < δ̃, ||P − P̃ ||L∞(1,+∞) < δ̃ (2.68)

we have

θ < θ∞,λ ⇒ 〈vθ, Bλw +Q(x)w〉 > 0, ∀ w ∈ r−
θ , ∀ x ≥ x̃∞

θ > θ∞,λ ⇒ 〈vθ, Bλw +Q(x)w〉 < 0, ∀ w ∈ r−
θ , ∀ x ≥ x̃∞.

(2.69)

Proof. First of all, let us observe that it is sufficient to prove (2.69) when w is
a versor. Therefore, let w = (cos θ, sin θ); a simple computation shows that

φλ(θ, w) := 〈vθ, Bλw〉 = cos2 θ
(
(μ+ − λ) tan2 θ − (λ− μ−)

)
, ∀ λ ∈ Λ.

(2.70)
Let us fix λ̃ ∈ Λ, P̃ ∈ Pμ and θ ∈ (π/2, π) such that θ < θ∞,λ̃; the continuity of
θ∞,λ as a function of λ ∈ Λ implies that there exists δ1 > 0 such that θ < θ∞,λ

if |λ− λ̃| < δ1.
From (2.70) we deduce that

φλ̃(θ∞,λ̃, w) = 0

θ < θ∞,λ̃ ⇒ φλ̃(θ, w) > φλ̃(θ∞,λ̃, w) = 0.
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Hence, there exists δ2 ∈ (0, δ1) such that

|λ− λ̃| < δ2 ⇒ θ < θ∞,λ and φλ(θ, w) >
φλ̃(θ, w)

4
> 0 (2.71)

Now, from assumption (2.2) we deduce that

lim
x→+∞〈vθ, Q̃(x)w〉 = lim

x→+∞〈vθ, J
−1(P∞ − P̃ (x))w〉 = 0;

this implies that there exists x̃∞ = x̃∞(λ̃, P̃ , θ) > 1 such that

x ≥ x̃∞ ⇒ |〈vθ, Q̃(x)w〉| < φλ̃(θ, w)
16

. (2.72)

On the other hand, setting δ3 = φλ̃(θ, w)/16, if ||P − P̃ ||L∞(1,+∞) < δ3 we
have

|〈vθ, Q(x)w〉 − 〈vθ, Q̃(x)w〉| = |〈vθ, J
−1(P̃ (x) − P (x))w〉|

≤ ||P̃ (x) − P (x)|| < φλ̃(θ, w)
16

, ∀ x ≥ 1.
(2.73)

From (2.72) and (2.73) we deduce that

||P − P̃ ||L∞(1,+∞) < δ3, x ≥ x̃∞ ⇒ |〈vθ, Q(x)w〉| < φλ̃(θ, w)
8

. (2.74)

Now, let us set δ̃ = min(δ2, δ3); when |λ − λ̃| < δ̃ and ||P − P̃ ||L∞(1,+∞) < δ̃
both (2.71) and (2.74) hold true. As a consequence, we obtain

x ≥ x̃∞ ⇒ 〈vθ, Bλw +Q(x)w〉 > φλ̃(θ, w)
4

− φλ̃(θ, w)
8

> 0, (2.75)

i.e. the first inequality in (2.69) is satisfied.
An analogous argument proves the validity of the second inequality in

(2.69). �

In a very similar way it is possible to prove the following Proposition:

Proposition 2.20. For every λ̃ ∈ Λ, P̃ ∈ Pμ and for every θ ∈ (0, π/2) there
exist δ̃1 > 0 and x̃∞,1 = x̃∞,1(λ̃, P̃ , θ) > 0 such that for every λ ∈ Λ and
P ∈ Pμ with

|λ− λ̃| < δ̃, ||P − P̃ ||L∞(1,+∞) < δ̃ (2.76)

we have

θ < π − θ∞,λ ⇒ 〈vθ, Bλw +Q(x)w〉 < 0, ∀ w ∈ r+θ , ∀ x ≥ x̃∞,1

θ > π − θ∞,λ ⇒ 〈vθ, Bλw +Q(x)w〉 > 0, ∀ w ∈ r+θ , ∀ x ≥ x̃∞,1.
(2.77)

From Proposition 2.19 and Proposition 2.20 we deduce the following re-
sult:
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Proposition 2.21. For every λ̃ ∈ Λ and P̃ ∈ Pμ there exists ε̃ > 0 such that
for every ε ∈ (0, ε̃) there exist δ̃ > 0 and x̃∞ = x̃∞(λ̃, P̃ , ε) > 0 such that for
every λ ∈ Λ and P ∈ Pμ with

|λ− λ̃| < δ̃, ||P − P̃ ||L∞(1,+∞) < δ̃ (2.78)

and for every nontrivial solution z ∈ L2((1,+∞)) of (2.1) we have

|θ(x, λ) − θ(+∞, λ)| < ε, ∀ x ≥ x̃∞, (2.79)

where θ(·, λ) is any angular coordinate of z.

Proof. Without loss of generality let us assume that

θ∞,λ = π − arctan

√
λ− μ−

μ+ − λ
∈
(π

2
, π
)

and define

ε̃ = min
{
θ∞,λ̃ − π

2
, π − θ∞,λ̃

}
> 0.

Fix any ε ∈ (0, ε̃) and consider

θ1 = θ∞,λ̃ − ε

2
and θ2 = θ∞,λ̃ +

ε

2
,

thus the cone between rθ1 and rθ2 lies inside the II and the IV quadrants and
its angular amplitude is exactly ε. We use the continuity of θ∞,λ with respect
to λ and apply Proposition 2.19 twice with the choices θ = θ1 and θ = θ2 in
order to find δ̃ > 0 and x̃∞ = x̃∞(λ̃, P̃ , ε) > 0 in such a way that, if (2.78)
hold, then

∣∣∣θ∞,λ − θ∞,λ̃

∣∣∣ < ε/2 and (2.69) hold. We remark that x̃∞ depends

only on λ̃, P̃ , ε since the number x̃∞,1 provided by Proposition 2.19 depends
on θ1 and θ2 which depend only on λ̃ and ε.

By construction we have θ1 < θ∞,λ < θ2 and (2.69) implies that the
vector field of (2.25) points strictly outwards the cone between rθ1 and rθ2

for all x ≥ x̃∞. Therefore, any nontrivial solution z ∈ L2(1,+∞) of (2.25)
approaches the origin at the angle θ∞,λ as x tends to infinity and a standard
phase plane argument shows that z(x) must remain inside the cone between
rθ1 and rθ2 for all x ≥ x̃∞. Hence (2.79) follows. �

By means of the transformation x = φβ(t), it is possible to prove an
analogous result concerning the local behaviour of the angular coordinate when
x → 0+; indeed, we have the following:

Proposition 2.22. There exist ε0 > 0 such that for every ε ∈ (0, ε0), λ̃ ∈ Λ and
P̃ ∈ Pμ there exist δ̃0 > 0 and x0 = x0(P̃ , ε) > 0 such that for every λ ∈ Λ
and P ∈ Pμ with

|λ− λ̃| < δ̃0, ||P − P̃ ||L∞(0,1) < δ̃0 (2.80)

and for every nontrivial solution z ∈ L2((0, 1)) of (2.1) we have

|θ(x, λ) − θ(0)| < ε, ∀ x ∈ (0, x0], (2.81)

where θ(·, λ) is any angular coordinate of z.
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3. The linear eigenvalue problem

In this Section we are dealing with the study of the spectral theory for the
linear operator formally defined by

τz = Jz′ + P (x)z, x > 0, (3.1)

where P ∈ Pμ. Some information on the spectrum of τ follow directly from a
standard spectral theory (see e.g. [18,24]). Indeed, [24, Th. 6.8] ensures that
τ is in the limit point case at infinity; moreover, from Remark 2.14 we deduce
that τ is in the limit point case also at zero. Let us point out that this fact is
a consequence of assumption (P3) on P ∗.

Let us consider the operator A0 defined by

D(A0) = {z ∈ L2(0,+∞) : z ∈ AC(0,+∞), τz ∈ L2(0,+∞)},

A0z = τz, ∀ z ∈ D(A0).
(3.2)

From [24, Th. 5.8] we deduce that A0 is the unique self-adjoint realization of
τ ; moreover, arguing as in the proof of [18, Lemma 5.1], it is possible to see
that σess(A0) = (−∞, μ−] ∪ [μ+,+∞).

As far as D0 := D(A0) is concerned, we are able to prove the following
result:

Proposition 3.1. For every z ∈ D0 we have

z ∈ H1(1,+∞), z ∈ L∞(0,+∞).

Proof. Assume that z ∈ D0. Since P ∈ L∞(1,+∞) we deduce that P (x)z ∈
L2(1,+∞); hence Jz′ = τz − P (x)z ∈ L2(1,+∞). This proves that z ∈
H1(1,+∞) ⊂ L∞(1,+∞).

The fact that z ∈ L∞(0, 1) immediately follows from (2.59) and (2.60).
�

The aim of this Section is to study the problem of the existence of eigen-
values of A0 in Λ; first of all, let us observe that every eigenvalue of A0 is
simple, since τ is in the limit point case at infinity. Moreover, from Remark
2.14 we know that λ ∈ Λ is an eigenvalue of A0 if and only if there exists
cλ ∈ R such that

ζ1,λ = cλz1,λ, (3.3)
where z1,λ and ζ1,λ are given in Proposition 2.4 and Proposition 2.11, respec-
tively.

Remark 3.2. According to Lemma 2.6 and Lemma 2.13, when λ ∈ Λ is an
eigenvalue of A0 the associated eigenfunction zλ satisfies zλ ∈ H1

0 (0,+∞).

In what follows we show that it is possible to write a condition equivalent
to (3.3) by means of the angular function θ associated to solutions of (2.1)
introduced in Subsection 2.2. To this aim, let us denote by ϑ(·, λ) the angular
coordinate of ζ1,λ, normalized in such a way that ϑ(0) ∈ (0, π), for every λ ∈ Λ.

From Proposition 2.16 we know that there exists

lim
x→+∞ϑ(x, λ) = ϑ(+∞, λ)



Vol. 22 (2015) Linear and nonlinear eigenvalue problems 283

and that this limit corresponds to a function belonging to H1(1,+∞) if and
only if

ϑ(+∞, λ) = π − arctan

√
λ− μ−

μ+ − λ
(mod π). (3.4)

Let us define ν : Λ → R by

ν(λ) = lim
x→+∞ϑ(x, λ), ∀ λ ∈ Λ.

We then have the following characterization of the eigenvalues of A0:

Theorem 3.3. A number λ ∈ Λ is an eigenvalue of A0 if and only if

ν(λ) = π − arctan

√
λ− μ−

μ+ − λ
(mod π). (3.5)

In order to prove the existence of eigenvalues of A0 it is then sufficient
to study the behaviour of the function ν∗ : Λ → R defined by

ν∗(λ) = ν(λ) + arctan

√
λ− μ−

μ+ − λ
, ∀ λ ∈ Λ.

We will prove that ν∗ is strictly increasing and continuous in Λ.

Proposition 3.4. The function ν∗ : Λ → R is strictly increasing in Λ.

Proof. Let us first observe that ν∗ is the sum of ν and of the function ν∗
defined by

ν∗(λ) = arctan

√
λ− μ−

μ+ − λ
, ∀ λ ∈ Λ;

since ν∗ is strictly increasing in Λ, it is sufficient to prove that ν is increasing
in Λ.

To this aim, let us recall (cf. [24, Cor. 16.2]) that for every fixed x > 0
the function

ϕx : Λ → R

λ → ϑ(x, λ)

is increasing in Λ.
Now, let λ, λ′ ∈ Λ with λ < λ′; for every x > 0 we have

ϑ(x, λ) ≤ ϑ(x, λ′);

passing to the limit for x → +∞ we obtain

lim
x→+∞ϑ(x, λ) ≤ lim

x→+∞ϑ(x, λ′),

i.e.

ν(λ) ≤ ν(λ′).

�
Proposition 3.5. The function ν∗ : Λ → R is continuous.
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Proof. Let us observe again that it is sufficient to prove the continuity of ν.
To this aim, let us fix λ̃ ∈ Λ; let us consider ε > 0 sufficiently small and apply
Proposition 2.21 and Proposition 2.22 with P̃ = P . Let δ1 = min(δ̃, δ̃0) and
let us denote by x∞ and x0 the numbers given in those Propositions.

Let us recall that a usual continuous dependence argument on the interval
[x0, x∞], on which the equation (2.1) is not singular, proves that there exists
δ2 > 0 such that if |λ− λ̃| < δ2 then

|(ϑ(x∞, λ) − ϑ(x0, λ)) − (ϑ(x∞, λ̃) − ϑ(x0, λ̃))| < ε. (3.6)

Consider now δ = min(δ1, δ2) and assume that |λ− λ̃| < δ; we can write

ν(λ) − ν(λ̃) = ϑ(+∞, λ) − ϑ(+∞, λ̃) = ϑ(+∞, λ) − ϑ(x∞, λ)

+ϑ(x∞, λ) − ϑ(x0, λ) + ϑ(x0, λ̃) − ϑ(x∞, λ̃) + ϑ(x0, λ) − ϑ(0, λ)

−ϑ(x0, λ̃) + ϑ(0, λ̃) + ϑ(x∞, λ̃) − ϑ(+∞, λ̃),

(3.7)

taking into account that ϑ(0, λ) = ϑ(0, λ̃). From Proposition 2.21 and Propo-
sition 2.22 we deduce that

|ϑ(+∞, λ) − ϑ(x∞, λ)| < ε, |ϑ(x∞, λ̃) − ϑ(+∞, λ̃)| < ε

|ϑ(x0, λ) − ϑ(0, λ)| < ε, |ϑ(x0, λ̃) − ϑ(0, λ̃)| < ε.

(3.8)

From (3.6), (3.7) and (3.8) we obtain

|ν(λ) − ν(λ̃)| < 5ε

and this concludes the proof. �

For every k ∈ Z, let us denote by λk ∈ Λ (if it exists) the number such
that

ν∗(λk) = kπ,

i.e.

ϑ(+∞, λk) = kπ + π − arctan

√
λk − μ−

μ+ − λk
. (3.9)

The number λk is the ’k-th eigenvalue’ of A0 (if it exists) and we denote by
zk ∈ D0 the corresponding eigenfunction; recalling (2.63), (2.65), from (3.9)
and the fact that ν∗ is strictly increasing we immediately deduce the following
result:

Proposition 3.6. For every k ∈ Z we have

rot (zk) ∈ (k, k + 1) if arctan
w∗

1,2

w∗
1,1

∈ (0, π/2)

rot (zk) ∈ (k − 1/2, k + 1/2) if arctan
w∗

1,2

w∗
1,1

∈ (π/2, π).

(3.10)



Vol. 22 (2015) Linear and nonlinear eigenvalue problems 285

Moreover, for every k, l ∈ Z with k �= l we also have

rot (zk) �= rot (zl). (3.11)

In what follows, we give some results on the accumulation of eigenvalues of
A0 at the boundary of Λ. We consider the (possible) accumulation at the end-
point μ+; conditions for accumulation at μ− can be obtained in an analogous
way.

From (3.5) and the definition of ν∗ we infer that the existence of eigenval-
ues accumulating at μ+ depends on the behaviour of ν∗ in a left neighbourhood
of μ+. This behaviour can be described by means of the limit

lim
λ→(μ+)−

ν∗(λ), (3.12)

whose existence is guaranteed from Proposition 3.4; more precisely, when the
limit in (3.12) is infinite, then there exists k0 ∈ Z such that for every k ∈ Z,
k ≥ k0, there exists λk ∈ Λ for which (3.9) holds true and

lim
k→+∞

λk = μ+,

i.e. there is accumulation of eigenvalues at μ+. On the other hand, when the
limit in (3.12) is finite, then there exists M+ ∈ R such that

ν∗
(
μ+ + μ−

2

)
< ν∗(λ) < M+, ∀ λ ∈

(
μ+ + μ−

2
, μ+

)
;

this implies that there is at most a finite number of eigenvalues of A0 in
((μ+ + μ−)/2, μ+), i.e. there is not accumulation of eigenvalues at μ+.

Now, let us observe that the fact that the limit in (3.12) is finite or infinite
depends on the analogous limit

lim
λ→(μ+)−

ν(λ), (3.13)

since the function ν∗ is bounded in Λ. We are able to show that the finiteness
of the limit in (3.13) depends on the behaviour of (2.1) when λ = μ+; to this
aim, let us observe that a more careful analysis proves that Proposition 2.11
and Proposition 2.17 hold true also when λ = μ+. This implies that we are
allowed to consider the solution ζ1,λ of (2.1) with λ = μ+ satisfying (2.50) and
the corresponding angular coordinate ϑ(·, μ+), normalized in such a way that
ϑ(0, μ+) ∈ (0, π).

Lemma 3.7. Assume
lim

x→+∞ϑ(x, μ+) = θ+ ∈ R; (3.14)

then we have
lim

λ→(μ+)−
ν(λ) < +∞. (3.15)

Proof. Let us observe that (3.14) implies that there exist Φ ∈ R and X > 0
such that

ϑ(x, μ+) < Φ, ∀ x ≥ X.
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Moreover, from the monotonicity of ϑ(x, ·), for every x ≥ X, we deduce that

ϑ(x, λ) ≤ ϑ(x, μ+) < Φ, ∀ λ < μ+.

Therefore, for every λ ∈ Λ the function ϑ(·, λ) is bounded from above by Φ in
[X,+∞), hence we have

ν(λ) = lim
x→+∞ϑ(x, λ) ≤ Φ, ∀ λ < μ+.

This is sufficient to conclude that (3.15) holds true. �

Lemma 3.8. Assume
lim

x→+∞ϑ(x, μ+) = +∞ (3.16)

and that there exists X > 0 such that

p11(x) < μ−, ∀ x ≥ X. (3.17)

Then we have
lim

λ→(μ+)−
ν(λ) = +∞. (3.18)

Proof. Let us first observe that for every λ ∈ R the angular function ϑ(·, λ)
satisfies the differential equation

θ′ = (λ− p11(x)) cos2 θ − 2p12(x) cos θ sin θ + (λ− p22(x)) sin2 θ. (3.19)

From (3.19) and (3.17) we deduce that

∀ x ≥ X, λ > μ− : ϑ(x, λ) = 0 (mod π) ⇒ ϑ′(x, λ) > 0;

hence, if there exist k ∈ Z and xk ≥ X such that

ϑ(xk, λ) > kπ,

for some λ > μ−, then we can conclude that

ϑ(x, λ) > kπ, ∀ x ≥ xk.

Now, let us note that (3.16) implies that for every M > 0 there exists
xM ≥ X such that

ϑ(x, μ+) > M + 2 + π, ∀ x ≥ xM

and let us fix X+ ≥ xM ; the continuity of ϑ(X+, ·) ensures that there exists
λM < μ+ such that

ϑ(X+, λ) > M + 1 + π, ∀ λ ∈ (λM , μ+).

According to the above remark, this implies that

ϑ(x, λ) > M + 1, ∀ x ≥ X+, λ ∈ (λM , μ+)

and then
ν(λ) = lim

x→+∞ϑ(x, λ) > M, ∀ λ ∈ (λM , μ+). (3.20)

Therefore, for every M > 0 there exists λM < μ+ such that (3.20) holds, i.e.

lim
λ→(μ+)−

ν(λ) = +∞.

�
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The question of the existence of eigenvalues can be dealt, arguing as in
the proof of Proposition 3.18 in [4], as follows.

Proposition 3.9. Assume that P has the form (2.8), where μa ∈ R, k ∈ Z\{0}
and V ∈ C1(0,+∞) is a strictly increasing negative potential satisfying (2.9),
with γ∞ < 0 and α∞ ∈ (0, 1], and (2.10).

Then, the selfadjoint extension A0 of the corresponding operator τ has a
sequence of eigenvalues in (−1, 1) accumulating at λ = 1.

Proof. We follow the same argument of [4, Prop. 3.15]. We first observe that
the differential equation satisfied by ϑ(·, 1) is

ϑ′(x, 1) = 1 − 〈QP (x)[cosϑ, sinϑ], [cosϑ, sinϑ]〉,
where QP (x) denotes the quadratic form associated to the matrix P (x). By
computing the eigenvalues of P (x), we can prove that

ϑ′(x, 1) ≥ 1 − V (x) −
√

1 +
(
k

x
+ μaV ′(x)

)2

, ∀ x ≥ 1.

From assumption (2.9) we infer that

1 − V (x) −
√

1 +
(
k

x
+ μaV ′(x)

)
= −γ∞

xα
+ o

(
1
xα

)
, x → +∞;

this is sufficient to conclude that

lim
x→+∞ϑ(x, 1) = +∞.

The result then follows from the application of Proposition 3.8. �

A similar result (under more restrictive conditions on α) has been ob-
tained by Schmid and Tretter [18]; however, in [18] no information on the
nodal properties of the eigenfunctions is provided.

4. The nonlinear eigenvalue problem

4.1. A bifurcation result

In this section we are interested in proving a global bifurcation result for a
nonlinear equation of the form

Jz′ + P (x)z = λz + S(x, z)z, λ ∈ R, x > 0, z ∈ R
2, (4.1)

where P ∈ Pμ and S ∈ C((0,+∞) × R
2,M2

S). We denote by S the set of
continuous functions S : (0,+∞) × R

2 −→ M2
S satisfying the conditions

(S1) there exist α ∈ L∞(0,+∞), ηij ∈ C(R2) such that ηij(0) = 0, i, j = 1, 2,
and

|Si,j(x, z)| ≤ α(x)ηij(z), ∀ x > 0, z ∈ R
2, i, j = 1, 2; (4.2)

(S2) for every compact K ⊂ R
2 there exists AK > 0 such that

||S(x, z) − S(x, z′)|| ≤ AK ||z − z′||, ∀ x > 0, z, z′ ∈ K. (4.3)
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Let Σ denote the set of nontrivial solutions of (4.1) in D0 × Λ and let
Σ′ = Σ∪{(0, λ) ∈ D0 ×Λ : λ is an eigenvalue of A0}, where D0 and A0 are as
in Sect. 3. We denote by || · ||0 the graph norm induced on D0 by A0, defined
as

||z||20 = ||z||2L2(0,+∞) + ||τz||2L2(0,+∞), ∀ z ∈ D0.

Let M denote the Nemitskii operator associated to S, given by

M(z)(x) = S(x, z(x))z(x), ∀ x > 0,

for every z ∈ D0. We can show the validity of the following:

Proposition 4.1. Assume that S ∈ S and that

lim
x→+∞α(x) = 0, (4.4)

where α is given in (4.2). Then M : D0 −→ L2(0,+∞) is a continuous compact
map and satisfies

M(z) = o(||z||0), z → 0. (4.5)

The proof of Proposition 4.1 is based on the application of the following
lemma:

Lemma 4.2. Assume that z0, f0 ∈ L2(0, 1) satisfy

τz0 = f0

and let {zn} ⊂ L2(0, 1) be a sequence such that

τzn = fn,

for some fn ∈ L2(0, 1). If zn ⇀ z0 and fn ⇀ f0 weakly in L2(0, 1), then
Mzn → Mz0 strongly in L2(0, 1).

Proof. Let us apply Theorem 2.15 to the functions z0 and zn, for every n ∈ N:
we have

z0(x) = ν0(x) + w0(x),

zn(x) = νn(x) + wn(x), ∀ x ∈ (0, 1),
(4.6)

where
νn(x) = cnζ1(x), ν0(x) = c0ζ1(x)

wn(x) =
∫ 1

0

G(x, ξ)fn(ξ) dξ, w0(x) =
∫ 1

0

G(x, ξ)f0(ξ) dξ, ∀ x ∈ (0, 1).

Since G ∈ L∞((0, 1) × (0, 1)), we deduce that

wn(x) → w0(x), ∀ x ∈ (0, 1) (4.7)

by the weak convergence of fn. Moreover, the estimate

||wn(x) − w0(x)|| ≤ ||G||L∞((0,1)2)||fn − f0||L2(0,1), ∀ x ∈ (0, 1), (4.8)

holds true; the convergence fn ⇀ f0 in L2(0, 1) implies that the sequence
{fn} is bounded in L2(0, 1) and (4.7)–(4.8) ensure then that wn → w0 in
L2(0, 1) by the dominated convergence theorem. This condition, together with
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the assumption zn ⇀ z0 in L2(0, 1), implies that νn ⇀ ν0 in L2(0, 1). Hence,
we obtain that cn → c0, for n → +∞, and

νn → ν0 in L∞(0, 1) and in L2(0, 1). (4.9)

From (4.7)–(4.9) we have

zn(x) → z0(x), ∀ x ∈ (0, 1). (4.10)

On the other hand, from (4.8) and the boundedness of {fn} in L2(0, 1) we
deduce also that {wn} is bounded in L∞(0, 1); as a consequence, using (4.9),
we get that {zn} is bounded in L∞(0, 1). Using assumption (S2), from this
fact we infer that there exists C1 > 0 such that

||S(x, zn(x)) − S(x, z0(x))|| ≤ C1||zn(x) − z0(x)||, ∀ x ∈ (0, 1); (4.11)

equations (4.10)–(4.11) guarantee that

S(x, zn(x)) → S(x, z0(x)) ∀ x ∈ (0, 1). (4.12)

Finally, from (4.11) and the boundedness of {zn} in L∞(0, 1) we also deduce
that there exists C2 > 0 such that

||S(x, zn(x))zn(x) − S(x, z0(x))z0(x)|| ≤ C2, ∀ x ∈ (0, 1), ∀ n ≥ 1;
(4.13)

an application of the Lebesgue convergence Theorem gives
∫ 1

0

||S(x, zn(x))zn(x) − S(x, z0(x))z0(x)||2 dx → 0, n → +∞,

i.e. Mzn → Mz in L2(0, 1). �
Proof of Proposition 4.1. First of all, let us observe that it is sufficient to prove
the result when x ∈ (0, 1). Indeed, the fact that P ∈ L∞(1,+∞) implies
that the graph norm || · ||0, when applied to functions defined on [1,+∞), is
equivalent to the H1(1,+∞) norm; hence, when x ∈ [1,+∞) we can apply [4,
Prop. 4.3].
1. We first show that Mz ∈ L2(0,+∞) when z ∈ D0; from Proposition 3.1

we deduce that z ∈ L∞(0, 1). Therefore there exists Cz > 0 such that

|S(x, z(x))| ≤ Cz, ∀ x ∈ (0, 1).

As a consequence we obtain Mz ∈ L∞(0, 1) ⊂ L2(0, 1).
2. Let us fix z0 ∈ D0 and let zn ∈ D0 such that zn → z0 when n → +∞; this

implies that

zn → z0 in L2(0, 1), τzn → τz0 in L2(0, 1) (4.14)

We can then apply Lemma 4.2 and obtain that Mzn → Mz0 in L2(0, 1).
3. As far as the compactness of M is concerned, let {zn} ⊂ L2(0, 1) be such

that

||zn||0 ≤ K,

for some K > 0. This implies that, up to a subsequence, we have

zn ⇀ z0 in L2(0, 1), τzn ⇀ τz0 in L2(0, 1). (4.15)

Hence, according to Lemma 4.2, we conclude that Mzn → Mz0 in L2(0, 1).
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4. Finally, let us prove (4.5). We have

||Mz||2L2(0,1) =
∫ 1

0

||Mz(x)||2 dz ≤
∫ 1

0

||S(x, z(x))||2 ||z(x)||2 dx, ∀ z ∈ D0.

(4.16)
Assume now that z → 0 in D0; this implies that z → 0 and τz → 0 in L2(0, 1);
arguing as in the proof of Lemma 4.2, we deduce that z → 0 in L∞(0, 1).
Therefore, assumption S2 implies that there exists C > 0 such that

||S(x, z(x))|| ≤ C||z(x)|| ≤ C||z||L∞(0,1), ∀ x ∈ (0, 1). (4.17)

From (4.16) and (4.17) we deduce that

||Mz||L2(0,1) ≤ C||z||L∞(0,1)||z||L2(0,1) ≤ C||z||L∞(0,1)||z||0,
which implies that Mz = o(||z||0) as ||z||0 → 0. �

Now, let us observe that, in view of the results on A0 given in Sect. 3 and
of Proposition 4.1, it is possible to write (4.1) as an abstract equation of the
form

A0u+M(u) = λu, (u, λ) ∈ D0 × R, (4.18)

where A0 : D0 ⊂ L2(0,+∞) → L2(0,+∞) is an unbounded self-adjoint oper-
ator such that

σess(A0) = (−∞, μ−] ∪ [μ+,+∞)

and M : D0 × R −→ L2(0,+∞) is a continuous and compact map such that

M(u) = o(||u||), u → 0. (4.19)

From an application of a global bifurcation result (see [22, Th. 1.2], [4, Th.
4.1]) to (4.18) we then obtain the following main result:

Theorem 4.3. Assume that P ∈ Pμ, S ∈ S and that (4.4) holds true. Then,
for every eigenvalue γ ∈ Λ of A0 there exists a continuum Cγ of nontrivial
solutions of (4.1) in D0 × R bifurcating from (0, γ) and such that one of the
following conditions holds true:
(1) Cγ is unbounded in D0 × Λ;
(2) sup{λ : (u, λ) ∈ Cγ} ≥ μ+ or inf{λ : (u, λ) ∈ Cγ} ≤ μ−;
(3) Cγ contains (0, γ′) ∈ Σ′, with γ′ �= γ.

Now, let us observe that a more precise description of the bifurcating
branch, eventually leading to exclude condition (3), can be obtained when
there exists a continuous functional i : Σ′ → Z (cf. [4, Th. 4.2]). In order
to define such a functional, we first define the rotation number of solutions
to (4.1) by means of a linearization procedure; to this aim for every solution
(w, μ) of (4.1) we consider the linear equation

Jz′ + P (x)z = μz + S(x,w(x))z, (4.20)

which obviously reduces to

Jz′ + P (x)z = μz (4.21)
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when w = 0. It is clear that w is a solution of (4.20); let us denote by Pw the
matrix defined by

Pw(x) = P (x) − S(x,w(x)), ∀ x > 0.

We can prove the following result:

Lemma 4.4. For every (w, μ) ∈ Σ we have Pw ∈ Pμ.

Proof. Let us first observe that w ∈ D0 implies that w ∈ H1(1,+∞) and
w ∈ L∞(0,+∞) (cf. Proposition 3.1). In particular we have

lim
x→+∞w(x) = 0 (4.22)

and there exists a compact set Kw ⊂ R
2 such that

w(x) ∈ Kw, ∀ x > 0.

Using (2.4), assumption (S1) and the fact that w ∈ L∞(0, 1), we obtain that

lim
x→0+

xβPw(x) = lim
x→0+

(xβP (x) − xβS(x,w(x))) = P ∗;

therefore Pw satisfies (2.4). Moreover, we have

R0,w(x) = xβPw(x) − P ∗ = R0(x) − xβS(x,w(x)), ∀ x > 0. (4.23)

Using again (S1), we plainly deduce that there exists η ∈ C(R2,R+) such that
∫ 1

0

1
xβ

||xβS(x,w(x))||q0 dx =
∫ 1

0

xβ(q0−1)α(x)η(w(x)) dx < +∞, (4.24)

since q0 ≥ 1 and α,w ∈ L∞(0, 1). From (2.5), (4.23) and (4.24) we can conclude
that R0,w satisfies (2.5).

Now, we pass to the proof of the validity of (P1). Using (2.2), assumption
(S1) and (4.22), we infer that

lim
x→+∞Pw(x) = lim

x→+∞(P (x) − S(x,w(x))) = P∞;

hence Pw satisfies (2.2).
Moreover, we have

R∞,w(x) = Pw(x) − P∞ = R∞(x) − S(x,w(x)), ∀ x > 0. (4.25)

From assumption (S2), with K = Kw and z′ = 0, we obtain
∫ +∞

1

||S(x,w(x))||2 dx ≤ A2
Kw

∫ +∞

1

||w(x)||2 dx < +∞. (4.26)

When q∞ ≥ 2 this allows to conclude that R∞,w satisfies (2.3), since
∫ +∞

1

||S(x,w(x))||q∞ dx =
∫ +∞

1

||S(x,w(x))||q∞−2 ||S(x,w(x))||2 dx

≤ Cw

∫ +∞

1

||S(x,w(x))||2 dx < +∞.

(4.27)
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Finally, also when q∞ < 2 it is possible to show that R∞,w satisfies (2.3) with
the same q∞ of R∞; indeed, at this point we can say that w ∈ H1(1,+∞) is
a nontrivial solution of the linear equation

Jz′ + Pw(x)z = μz,

where Pw ∈ Pμ and μ ∈ Λ. Therefore Proposition 2.4 applies and we deduce
that w satisfies the first condition in (2.26). As a consequence, w ∈ Lq∞(1,+∞)
and we are able to repeat (4.26) with the exponent q∞ instead of 2. �

As a consequence of Lemma 4.4, the results of Sect. 2 apply to (4.20); in
particular, when w �= 0 we can consider the number rot (w) defined in (2.65).

Definition 4.5. Assume that P ∈ Pμ and S ∈ S and let (w, μ) be a solution of
(4.1).

If (w, μ) �= (0, μ), then the rotation number j(w, μ) of (w, μ) is defined by

j(w, μ) = rot (w). (4.28)

If (w, μ) = (0, μ) and the linear problem (4.21) has a nontrivial solution zμ

belonging to H1(0,+∞), then the rotation number j(w, μ) of (w, μ) is defined
by

j(w, μ) = rot (zμ). (4.29)

By means of Definition 4.5 we have defined j : Σ′ → R; this functional will
be used in order to construct a continuous discrete functional whose values are
preserved in the bifurcating branches Cγ of solutions of (4.1). It is important
now to observe that every branch Cγ satisfies

Cγ ⊂ H1
0 (0,+∞) × R;

indeed, this is a consequence that (z, λ) ∈ Cγ is a solution of the linear equation

Jz′ + Pz(x)z = λz

such that z ∈ D0. According to Remark 3.2 this implies that z ∈ H1
0 (0,+∞).

Hence, it is sufficient to study the continuity properties of j with respect
to the H1

0 (0,+∞)-norm, denoted by ||| · |||.
Proposition 4.6. The function j : Σ′ → R is continuous.

Proof. We prove the continuity of j at every point (w, μ) ∈ Σ ∩ H1
0 (0,+∞).

In a very similar way it is possible to show that j is also continuous at every
point (0, λ), with λ eigenvalue of A0.

Let us fix (w, μ) ∈ Σ ∩H1
0 (0,+∞) and let ε > 0 small enough; consider

then the numbers δ, δ0, x∞ and x0 given in Proposition 2.21 and Proposition
2.22 (with λ̃ = μ and P̃ = Pw) and let δ1 = min(δ, δ0).

Using assumption (S1) and the continuous embedding H1
0 (0,+∞) ⊂

L∞(0,+∞), it is possible to show that there exist δ2 > 0 such that

||Pz − Pw||L∞(0,+∞) < δ1

if |||z − w||| < δ2.
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Hence, from Proposition 2.21 and Proposition 2.22 we deduce that for
every (z, λ) ∈ Σ ∩H1

0 (0,+∞) with |λ− μ| < δ2 and |||z − w||| < δ2 we have

|θz(x, λ) − θz(+∞, λ)| < ε, ∀ x ≥ x∞

|θz(x, λ) − θz(0)| < ε, ∀ x ∈ (0, x0].
(4.30)

Now, let us observe that we have

j(z, λ) − j(w, μ) =
θz(+∞, λ) − θz(0)

π
− θw(+∞, μ) − θw(0)

π

=
θz(+∞, λ) − θw(∞, μ)

π
,

since θz(0) = θw(0). Therefore, the result follows from the same argument used
in the proof of Proposition 3.5. �

Before defining the functional i a remark is in order; we recall that if
(w, λ) ∈ Σ ∩H1

0 (0,+∞) then

θw(0) = arctan
w∗

1,2

w∗
1,1

∈ (0, π) mod π

and

θw(+∞, λ) = π − arctan

√
λ− μ−

μ+ − λ
∈
(π

2
, π
)

mod π.

As a consequence, when

arctan
w∗

1,2

w∗
1,1

∈
(
0,
π

2

)
(4.31)

we have

j(w, λ) �∈ Z, ∀ (w, λ) ∈ Σ ∩H1
0 (0,+∞).

On the other hand, if

arctan
w∗

1,2

w∗
1,1

∈
(π

2
, π
)

(4.32)

we have

j(w, λ) +
1
2

�∈ Z, ∀ (w, λ) ∈ Σ ∩H1
0 (0,+∞).

This suggests to define i : Σ′ → Z as

i(w, λ) = [j(w, λ)] , ∀ (w, λ) ∈ Σ′, (4.33)

if (4.31) holds true, and

i(w, λ) =
[
j(w, λ) +

1
2

]
, ∀ (w, λ) ∈ Σ′, (4.34)

if (4.32) holds true (recall also Proposition 3.6). Let us observe that Proposi-
tion 3.6 also implies that

i(zγ , 0) �= i(zγ′ , 0), (4.35)
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for every γ �= γ′ ∈ Λ eigenvalues of A0 (with associated eigenfunctions zγ and
zγ′ , respectively).

From Proposition 4.6 and the definition of i we obtain the following result:

Proposition 4.7. The function i : Σ′ → R is continuous.

As a consequence, using Proposition 4.7 and (4.35), from Theorem 4.3
we deduce the final result:

Theorem 4.8. Assume that P ∈ Pμ, S ∈ S and that (4.4) hold true. Then,
for every eigenvalue γ ∈ Λ of A0 there exists a continuum Cγ of nontrivial
solutions of (4.1) in D0 × R bifurcating from (0, γ) and such that one of the
conditions (1)-(2) of Theorem 4.3 holds true and

i(w, λ) = i(zγ , 0), ∀ (w, λ) ∈ Cγ , (4.36)

where zγ is the eigenfunction of A0 associated to γ.

4.2. Application to the Dirac equation

Let us consider the partial differential equation

i

3∑
j=1

αj
∂ψ

∂xj
− βψ − V (||x||)ψ + ia

3∑
j=1

αj
∂V (||x||)
∂xj

ψ

= λψ + γ(||x||)F (〈βψ, ψ〉)βψ, x ∈ R
3, a ∈ R, (4.37)

where ψ : R
3 → C

4, V ∈ C((0,+∞),R) satisfies (2.9)–(2.10)–(2.11)–(2.12),
γ ∈ C((0,+∞),R) fulfills

lim
r→0+

r2γ(r) ∈ R, r2γ(r) = o(1), r → +∞, (4.38)

F ∈ C(R,R), 〈·, ·〉 denotes the scalar product in C
4 and αj (j = 1, 2, 3) and β

are the 4 × 4 matrices given by

αj =

⎛
⎝

0 σj

σj 0

⎞
⎠ , β =

⎛
⎝
σ0 0

0 − σ0

⎞
⎠ ,

where

σ0 =

⎛
⎝

1 0

0 1

⎞
⎠ , σ1 =

⎛
⎝

0 1

1 0

⎞
⎠ , σ2 =

⎛
⎝

0 −i

i 0

⎞
⎠ , σ3 =

⎛
⎝

1 0

0 −1

⎞
⎠ .

We remark that nonlinearities like the one in (4.37) give rise to the so-called
generalized Soler models (see [14]). In fact, Soler [21] formulated a model of
extended fermions by introducing a self interaction term which corresponds to
the choice F (s) = s in (4.37) (see [17] for a survey on interaction terms which
are interesting from a physical point of view).

We denote by H0 the (free) Dirac operator defined by

H0ψ = i

3∑
j=1

αj
∂ψ

∂xj
− βψ, ∀ ψ ∈ H1

0 (R3) ⊂ L2(R3). (4.39)
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In [23] a decomposition of H0 −V + ia α ·∇V has been performed, using polar
coordinates in R

3 and the unitary isomorphism

ϕ : L2(R3) → L2((0,+∞), dr;L2(S2))

ψ �→ ψ̃,
(4.40)

where ψ̃ is defined by

ψ̃(r, θ, φ) = rψ(x(r, θ, φ)), ∀ r > 0, (θ, φ) ∈ S2. (4.41)

In order to describe such a decomposition, for every l = 0, 1, 2, . . . and m =
−l,−l + 1, . . . , l let us denote by Y m

l the usual spherical harmonic; moreover,
for every j = 1/2, 3/2, 5/2, . . ., let mj = −j,−j + 1, . . . , j and kj = −(j +
1/2), j + 1/2 and define

Ψmj

j−1/2 =
1√
2j

⎛
⎜⎝
√
j +mj Y

mj−1/2

j−1/2

√
j −mj Y

mj+1/2

j−1/2

⎞
⎟⎠ ,

Ψmj

j+1/2 =
1√

2j + 2

⎛
⎜⎝
√
j + 1 −mj Y

mj−1/2

j+1/2

−√j + 1 +mj Y
mj+1/2

j+1/2

⎞
⎟⎠ (4.42)

and

Φ+
mj ,∓(j+1/2) =

⎛
⎝
i Ψmj

j∓1/2

0

⎞
⎠ , Φ−

mj ,∓(j+1/2) =

⎛
⎝

0

Ψmj

j±1/2

⎞
⎠ . (4.43)

We also set

Hmj ,kj
= span (Φ+

mj ,kj
,Φ−

mj ,kj
), ∀ j = 1/2, 3/2, . . . . (4.44)

Then, we have the following result:

Theorem 4.9. [23, Th. 4.14] For every j = 1/2, 3/2, . . . the subspace C∞
0 (0,+

∞)⊗Hmj ,kj
⊂ L2((0,+∞), dr;L2(S2)4) is invariant under the action of H0 −

V + ia α · ∇V . Moreover, with respect to the basis {Φ+
mj ,kj

,Φ−
mj ,kj

} of Hmj ,kj

the restriction of H0 − V + ia α · ∇V to Hmj ,kj
can be represented by the

operator hmj ,kj
given by

hmj ,kj
=

⎛
⎜⎜⎜⎝

−1 − V
d

dr
− kj

r
+ aV ′

− d

dr
− kj

r
+ aV ′ 1 − V

⎞
⎟⎟⎟⎠ . (4.45)

Moreover, the Dirac operator H0 − V + ia α · ∇V on C∞
0 (R3)4 is unitarily

equivalent to the direct sum of the partial waves operators hmj ,kj
, i.e.

H0 − V + ia α · ∇V ≈ ⊕+∞
j=1/2,3/2,...

⊕j
mj=−j

⊕
kj=±(j+1/2) hmj ,kj

.
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Remark 4.10. The partial wave subspaces can be considered as a suitable
generalization of radial functions adapted to the structure of the nonlinear
problem. More precisely, the vectors Φ±

mj ,kj
which are a basis for the partial

wave subspace Hmj ,kj
are the eigenfunctions of the spin orbit operator (cf.

([23]). We also observe that these subspaces are implicitly used in [1,2], where
(having in mind the Soler model) the system of ODEs is obtained from the PDE
by making the ansatz that solutions should be a linear combination of functions

of the form Φ+
1/2,1 = (

i

2
√
π

cos θ,
i

2
√
π
eiφ sin θ, 0, 0),Φ−

1/2,1 = (0, 0,
1

2
√
π
, 0). On

the same lines but in the context of the Schrödinger equation, we refer to [24,
Example 1.5].

Let us observe that the operators τkj
= hmj ,kj

, j = 1/2, 3/2, . . ., are
of the form (3.1) with P = PV,kj ,a as in (2.8). Therefore, we can apply the
theory developed in Sects. 2 and 3; in particular we can consider the selfadjoint
realization A0 of τkj

, j = 1/2, 3/2, . . ., defined in (3.2). We denote by Akj
this

operator, by Dkj
its domain and we define

Ekj
= {u+Φ+

mj ,kj
+ u−Φ−

mj ,kj
: u = (u+, u−) ∈ Dkj

}.
From Theorem 4.9 and the definition of Dkj

we immediately deduce that
the image of Ekj

via the operatorH0−V +ia α·∇V is contained in L2((0,∞))⊗
Hkj ,mj

, for every j = 1/2, 3/2, . . ..
Now, let us observe that Theorem 4.9 states that the subspaces

C∞
0 (0,+∞) ⊗ Hmj ,kj

⊂ L2((0,+∞), dr;L2(S2)4), j = 1/2, 3/2, . . . ,

are preserved by the linear operator in (4.37). It is important to note that
in the particular case of j = 1/2 the subspaces C∞

0 (0,+∞) ⊗ Hm1/2,k1/2 ⊂
L2((0,+∞), dr;L2(S2)4) are invariant also for the nonlinear term F (〈βψ, ψ〉)βψ
in (4.37) (cf. [3, Lemma 5.5]), when F is regular.

Indeed, let u ∈ L2(R3)4 such that ϕ(u) ∈ C∞
0 (0,+∞)⊗Hm1/2,k1/2 , where

ϕ is defined in (4.40)–(4.41). A simple computation, based on the expressions
of the functions Φ±

m1/2,k1/2
, shows that, if we have

(ϕ(u))(r, θ, φ) = u+(r)Φ+
m1/2,k1/2

(θ, φ) + u−(r)Φ−
m1/2,k1/2

(θ, φ),

then

〈βu(x), u(x)〉 =
1

4π2r2
[(u+(r))2 − (u−(r))2] (4.46)

and

F

(〈
β

(ϕ(u))(r, θ, φ)
r

,
(ϕ(u))(r, θ, φ)

r

〉)
β[(ϕ(u))(r, θ, φ)]

= F

(
1

4π2r2
(u+(r))2 − (u−(r))2

)(
u+(r)Φ+

m1/2,k1/2
(θ, φ)

−u−(r)Φ−
m1/2,k1/2

(θ, φ)
)
, (4.47)
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proving that

ψ̃ ∈ C∞
0 (0,+∞)⊗Hm1/2,k1/2 ⇒ F

(〈
β
ψ̃

r
,
ψ̃

r

〉)
βψ̃ ∈ C∞

0 (0,+∞)⊗Hm1/2,k1/2 .

(4.48)
Then, with an argument similar to the one developed in the proof of Proposi-
tion 4.1, we deduce that

ψ̃ ∈ Ek1/2 ⇒ γ(r)F

(〈
β
ψ̃

r
,
ψ̃

r

〉)
βψ̃ ∈ L2(0,+∞) ⊗ Hm1/2,k1/2 . (4.49)

This fact is important to obtain a relation between solutions of (4.37) and
solutions of a nonlinear ordinary differential equation of the form (4.1). Indeed,
for every function u ∈ L2(R3)4 with ϕ(u) ∈ Ek1/2 , let z = (u+, u−) ∈ Dk1/2

such that

ϕ(u) = u+Φ+
m1/2,k1/2

+ u−Φ−
m1/2,k1/2

. (4.50)

Then, (4.49) implies that u ∈ L2(R3)4 with ϕ(u) ∈ Ek1/2 is a nontrivial so-
lution of (4.37) if and only if z = (u+, u−) ∈ Dk1/2 is a nontrivial solution
of

τk1/2z = λz + γ(r)F
(

(u+)2 − (u−)2

4πr2

)[
1 0
0 −1

]
z, r > 0. (4.51)

Let us denote E = ϕ−1(Ek1/2); in view of the above arguments and choosing

S(r, z) = γ(r)F
(

(u+)2 − (u−)2

4πr2

)[
1 0
0 −1

]
,

from Theorem 4.8 we plainly obtain the following result:

Theorem 4.11. Let us suppose that V ∈ C(0,+∞) and γ ∈ C(0,+∞) satisfy
(2.9)–(2.10)–(2.11) and (4.38) and let F : R

2 → R
2 be a locally Lipschitz

continuous function such that |F (s)| ≤ C|s| for all s ∈ R
2 and some constant

C > 0. Then, for every eigenvalue μ ∈ (−1, 1) of Ak1/2 there exists a continuum
Cμ of nontrivial solutions of (4.37) in E × R such that one of the conditions

(1) Cμ is unbounded in E × (−1, 1)
(2) sup{λ : (u, λ) ∈ Cμ} ≥ 1 or inf{λ : (u, λ) ∈ Cμ} ≤ −1

holds true and

ĩ(w, λ) = i(zμ, 0), ∀ (w, λ) ∈ Cμ, (4.52)

where

ĩ(w, λ) = i((w+, w−), λ)

and zμ is the eigenfunction of Ak1/2 associated to μ.
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