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Abstract. We prove sharp existence and nonexistence results for minimal
energy solutions of the nonlinear Schrödinger system

−Δu + u = |u|2q−2u + b|u|q−2u|v|q in R
n,

−Δv + ω2v = |v|2q−2v + b|u|q|v|q−2v in R
n

(1)

in the cooperative and subcritical case b > 0, 1 < q < n
(n−2)+

. The proofs

are accomplished by minimizing the Euler functional of (1) over the two
associated Nehari manifolds. In the special case 1 < q < 2 we find that a
positive solution of (1) with minimal energy among all nontrivial solutions
exists if and only if b > 0.
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1. Introduction

During the past ten years many authors have contributed to a better under-
standing of nonlinear Schrödinger systems of the type

− Δu + u = |u|2q−2u + b|u|q−2u|v|q,
− Δv + ω2v = |v|2q−2v + b|u|q|v|q−2v, (2)

ω > 0, b ∈ R, 1 < q < n
(n−2)+

, u, v ∈ H1(Rn)

where the case of a cubic nonlinearity q = 2 is of particular mathematical
and physical interest. One of the most powerful methods to prove existence
results for nontrivial low energy solutions of (2) is the constrained minimiza-
tion method. Exploiting the variational structure of the nonlinear Schrödinger
system (2) the existence of a nontrivial solution is proved by minimizing the
associated Euler functional

I(u, v) =
1
2
(‖u‖2 + ‖v‖2

ω) − 1
2q

(‖u‖2q
2q + ‖v‖2q

2q + 2b‖uv‖q
q) (3)
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over the so-called Nehari set or Nehari manifold. For a definition of the norms
appearing in (3) we refer to Sect. 2. In the context of the nonlinear
Schrödinger system (2) there are two natural choices for the Nehari set which
we will denote by Nb,Mb. In this paper we investigate the minimization
problems

cb := inf
Nb

I, κb := inf
Mb

I (4)

in order to improve known existence and nonexistence results for nontrivial
minimal energy solutions of (2). Here, according to the definition of Nb,Mb,
minimality will either refer to the class of nontrivial finite energy solutions
(u, v) �= (0, 0) or to the class of fully nontrivial finite energy solutions (u, v)
satisfying both u �= 0 and v �= 0.

First we consider the minimization problem over the Nehari set Nb given
by

Nb =
{

(u, v) ∈ H1(Rn) × H1(Rn) : (u, v) �= (0, 0),

‖u‖2 + ‖v‖2
ω = ‖u‖2q

2q + ‖v‖2q
2q + 2b‖uv‖q

q

}
.

The Lagrange multiplier rule implies that every minimizer of I|Nb
is a non-

trivial solution of (2) having minimal energy among all nontrivial finite energy
solutions. Following [11] we call such a solution a ground state and it is called
a vector ground state in case both components are nontrivial. The existence of
ground states for all b ≥ 0, ω > 0 and all subcritical exponents 1 < q < n

(n−2)+

has been proved by Maia, Montefusco, Pellacci (cf. Theorem 2.1 in [11]) so
that the main problem is to find sufficient or necessary conditions for these
ground states to be vector ground states. In the case of a cubic nonlinearity
q = 2 sufficient conditions have been found by Ambrosetti, Colorado [1] and
de Figueiredo, Lopes [5] whereas the general case 1 < q < n

(n−2)+
was investi-

gated in [11]. More details concerning these results will be provided later, see
Remark 1. Our contribution to this problem is the proof of a sharp condition
for existence and nonexistence of vector ground states. Denoting the uniquely
determined positive finite energy solution of −Δu + u = u2q−1 in R

n by u0

and setting ĉ0 := ‖u0‖‖u0‖−1
2q we will show that for ω ≥ 1 the value

b(ω, q, n) = inf

{
ĉ−2q
0 (‖u‖2 + ‖v‖2

ω)q − ‖u‖2q
2q − ‖v‖2q

2q

2‖uv‖q
q

: u, v ∈ H1(Rn)

}
(5)

defines a threshold for existence or nonexistence of vector ground states.

Theorem 1. Let n ∈ N, 1 < q < n
(n−2)+

and ω ≥ 1.

(i) If b < b(ω, q, n) then cb = I(u0, 0) and (2) has no vector ground states.
(ii) If b > b(ω, q, n) then cb < I(u0, 0) and (2) has a vector ground state.

Notice that the assumption ω ≥ 1 is not restrictive given the fact that
(u, v) solves (2) with parameter ω−1 if and only if (ω1/(q−1)v(ω·), ω1/(q−1)u(ω·))
solves (2) with parameter ω. Accordingly the threshold value for ω ∈ (0, 1) is
given by b(ω−1, q, n). The borderline case b = b(ω, q, n) appears to be more
complicated and our results and open questions related to this issue will be
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addressed in Appendix B. In the following two Lemmas we estimate the value
b(ω, q, n) from above and below in order to get explicit sufficient respectively
necessary conditions for the existence of a vector ground state.

Lemma 1. Let n ∈ N, 1 < q < n
(n−2)+

and ω ≥ 1. Then the following holds:

(i) In case 1 < q < 2 we have b(ω, q, n) ≥ 0.
(ii) In case q ≥ 2 we have b(ω, q, n) ≥ ω

2q−n(q−1)
2 (2q−1 − 1).

In the next Lemma we will use the symbol μ(ω, n) to denote the reciprocal
of the largest eigenvalue of the compact operator (−Δ+ω2)−1(u2

0·) which maps
H1(Rn) to itself. Let us mention that this value equals Λ′ from [1] and λ−1

1 (ω2)
from [5].

Lemma 2. Let n ∈ N, 1 < q < n
(n−2)+

and ω ≥ 1. Then the following estimates
hold:
(i) In case 1 < q < 2 we have b(ω, q, n) ≤ 0.
(ii) In case q = 2 we have b(ω, 2, n) ≤ μ(ω, n), in particular b(ω, 2, 1) ≤

ω(ω+1)
2 and b(ω, 2, n) ≤ 4−n

4 ω2 + n
4 for n ∈ {2, 3}. In case n = 3, ω2 > 5

we moreover have

b(ω, 2, n) ≤ ω(1+ω2−√
1+3ω2)

1
2 (−1+3ω2−√

1+3ω2)
3
2

4ω2(−1+ω2−√
1+3ω2)

+−5ω4−ω2−2+2(ω2−1)
√

1+3ω2

4ω2(−1+ω2−√
1+3ω2)

.
(6)

(iii) In case q > 2 we have

b(ω, q, n) ≤
(

2q−1 − 1
2

)
ω

q+2
2 − 1

2
ω− q

2 (n = 1),

b(ω, q, n) ≤ (1 + ω2)
2q−n(q−1)

2 2
n(q−1)−2

2 − 1 (n = 2, 3).

In particular Lemma 1 (i) and Lemma 2 (i) imply b(ω, q, n) = 0 for all
q ∈ (1, 2). Moreover we will show in Appendix B that for b = 0 vector ground
states do not exist so that Theorem 1 yields the following result.

Corollary 1. Let n ∈ N, 1 < q < n
(n−2)+

, ω ≥ 1 and q ∈ (1, 2). Then a vector
ground state of (2) exists if and only if b > 0.

Remark 1.

(a) Our estimates for ω = 1 are sharp and yield b(1, q, n) = 0 for q ∈ (1, 2) and
b(1, q, n) = 2q−1 − 1 for q ≥ 2 in concordance with [11]. The corresponding
vector ground states are given in Appendix A.

(b) Lemma 1 implies that b(·, q, n) is bounded from below by a coercive func-
tion whenever q ≥ 2. This property of the function b(·, q, n) has only been
known for q = 2, see Theorem 2.9 in [11]. Moreover, in the special case
n = 1 our upper estimate b(ω, q, n) = O(ω(q+2)/2) is asymptotically better
than the estimate b(ω, q, n) = O(ωq+1) from Theorem 2.3 in [11].

(c) In the case of a cubic nonlinearity q = 2 the existence of a vector ground
state for b > μ(ω, n) was proved by Ambrosetti, Colorado when n ∈ {2, 3}
and by de Figueiredo, Lopes in the one-dimensional case, cf. Theorem 2
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in [1] and Theorem 1.4 in [5]. Therefore the estimate (6) represents the
only new upper bound in Lemma 2 (ii) which, however, raises an inter-
esting question which we address in part (d). The necessary condition
b ≥ ω(4−n)/2 from Lemma 1 (ii) goes back to [11], Theorem 2.9.

(d) At least for n ∈ {1, 2} we can not exclude b(ω, 2, n) = μ(ω, n). In view
of the equality b(1, 2, n) = μ(1, n) = 1 for all n ∈ {1, 2, 3} it would be
interesting to know for which parameters ω > 1, n ∈ {1, 2, 3} this equation
holds. We want to stress that the upper bound (6) implies b(ω, 2, 3) = O(ω)
as ω → ∞ so that this equation can not hold when n = 3 and ω is
sufficiently large because of the inequality μ(ω, 3) ≥ ‖u0‖−2

∞ ω2 which we
will prove in (18).

Theorem 1 raises the question whether positive solutions of (2) with low
energy also exist for coupling parameters b < b(ω, q, n). Lin and Wei [9,10] and
Sirakov [14] proved the existence of such solutions when q = 2 and b ∈ [0, 1)
is small. They considered the minimization problem

inf
Mb

I (7)

where the Nehari set Mb is given by

Mb =
{

(u, v) ∈ H1(Rn) × H1(Rn) : u, v �= 0,

‖u‖2 = ‖u‖2q
2q + b‖uv‖q

q, ‖v‖2
ω = ‖v‖2q

2q + b‖uv‖q
q

}
.

(8)

This set contains all fully nontrivial solutions of (2) and Mb ⊂ Nb implies

κb ≥ cb (b ∈ R) for κb = inf
Mb

I, cb = inf
Nb

I. (9)

We will investigate the problem (7) for all exponents q ∈ (1, n
(n−2)+

). As in the
case of the minimization problem for I|Nb

we will obtain that minimizers of
I|Mb

are solutions of (2). By definition of Mb such a solution is fully nontrivial
and has minimal energy among all fully nontrivial solutions. First we show that
me may restrict ourselves to the case 0 ≤ b ≤ b(ω, q, n) by proving that in any
other case the problem (7) is either trivially solvable or unsolvable. Indeed, for
b > b(ω, q, n) the solutions of the minimization problem will turn out to be the
vector ground states from Theorem 1. For b < 0 we prove the nonexistence of
minimizers of I|Mb

for all 1 < q < n
(n−2)+

which generalizes a result of Lin
and Wei (cf. [9], Theorem 1).

Lemma 3. Let n ∈ N, 1 < q < n
(n−2)+

and ω ≥ 1.

(i) If b < 0 then κb = I(u0, 0) + I(0, v0) and κb is not attained.
(ii) If b > b(ω, q, n) then κb = cb and κb is attained precisely in the vector

ground states of (2).

Remark 2. For negative b the existence of radially symmetric low energy solu-
tions was shown in [13] by proving the existence of a minimizer of the functional
I|M∗

b
where M∗

b = {(u, v) ∈ Mb : u, v radially symmetric}. In the special case
ω = 1 further existence results for positive solutions were proved by Bartsch,
Dancer, Wang [2] using global bifurcation theory and by Wei and Weth [15]
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exploiting compactness properties of G-symmetric functions where G is a non-
trivial subgroup of the orthogonal group O(n).

In view of Lemma 3 and b(ω, q, n) = 0 for q ∈ (1, 2) we may assume
n ∈ {1, 2, 3}, 2 ≤ q < n

(n−2)+
. Our result for exponents q > 2 is the following.

Theorem 2. Let n ∈ {1, 2, 3}, 2 < q < n
(n−2)+

, ω ≥ 1 and b ∈ [0, q − 1). Then
κb > I(0, v0) and κb is attained at a positive solution of (2).

Finally let us turn our attention to the minimization problem (7) for
q = 2. It was shown by Sirakov (cf. [14], Theorem 2 (i)) that 0 ≤ b < μ̃(ω, n)
is sufficient for the existence of a minimizer of I|Mb

where μ̃(ω, n) ∈ (0, 1] is
given by

μ̃(ω, n) :=
2

ω(4−n)/2 + ω(n−4)/2 +
√

ω4−n + ωn−4 + 2 − 4ω−n/2
. (10)

In Theorem 3 we improve this result by showing that for ω > 1, b ∈ [0, 1) the
condition b < μ(ω, n) is necessary and sufficient for the existence of a minimizer
of I|Mb

where μ(ω, n) is the reciprocal of the largest eigenvalue of the compact
operator (−Δ + 1)−1(v2

0 ·) which maps H1(Rn) to itself. Here, the positive
function v0 := ωu0(ω·) ∈ H1(Rn) is the uniquely determined positive finite
energy solution of −Δv + ω2v = v3 in R

n. The unique positive normalized
first eigenfunction of (−Δ + 1)−1(v2

0 ·) will from now on be denoted by ϕ.
Additionally, we show that (0, v0, μ(ω, n)) is a bifurcation point for (2) by
proving that the positive minimizers of I|Mb

converge to (0, v0) as b tends to
μ(ω, n) from the left.

Theorem 3. Let n ∈ {1, 2, 3}, q = 2 and ω > 1.

(i) If 0 ≤ b < μ(ω, n) then κb > I(0, v0) and κb is attained at a positive
solution of (2).

(ii) If μ(ω, n) ≤ b < 1 then κb = I(0, v0) and κb is not attained.
(iii) For every sequence (bj) converging to μ(ω, n) from the left and every

sequence of positive minimizers of I|Mbj
we have (uj , vj) → (0, v0) and

uj

‖uj‖ → ϕ.

In Theorem 3 we excluded the case ω = 1 which is of different nature.
The minimizers of I|Mb

for ω = 1 can be determined explicitly and we refer
the reader to Appendix A.

Remark 3. (i) Using different methods Ambrosetti and Colorado [1] and de
Figueiredo and Lopes [5] proved the existence of positive solutions of (2)
for b < μ(ω, n) as well. However, their papers do not contain any state-
ment about the energy level of the constructed solutions. In particular it
was not clear whether Sirakov’s bound μ̃(ω, n) was smaller than μ(ω, n)
or vice versa. Now we know μ̃(ω, n) ≤ μ(ω, n) and that μ(ω, n) is sharp.
Moreover let us add that in the three-dimensional case μ̃(ω, 3) vanishes as
ω → ∞ whereas μ(ω, 3) stays away from zero. This observation is based
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on Birman–Schwinger bounds (cf. [6], p.6) for the number of eigenval-
ues of the Schrödinger operator −Δ + V below −1 where the Rollnik
potential V is given by V = −μ(ω, 3)v2

0 , see [5], p.151
(ii) It would be interesting to know if there are positive solutions of (2) for

b lying in (μ(ω, n), b(ω, 2, n)) when q = 2 or for b in (q − 1, b(ω, q, n))
when q > 2. For ω ≈ 1 and b �= q − 1 the existence of such solutions
near (1+ b)−1/(q−1)(u0, u0) can be proved using the nondegeneracy of u0

and the implicit function theorem. A variational approach proving the
existence of a positive solution for a given ω �= 1 is missing, however.

Having submitted our paper we learned that the results of Chen and Zou [4]
are almost identical to ours from Theorem 3, see Theorem 1.2 (ii), (iii) in
[4]. Let us add that Remark 1(d) gives a partial answer to the question from
remark 3.2 (1) in [4].

2. Preliminaries

Throughout the paper we assume n ∈ N, 1 < q < n
(n−2)+

and ω ≥ 1. As in [11]
the Sobolev norms ‖ · ‖, ‖ · ‖ω are defined by

‖u‖ :=

⎛
⎝
∫

Rn

|∇u|2 + u2 dx

⎞
⎠
1/2

, ‖v‖2
ω :=

⎛
⎝
∫

Rn

|∇v|2 + ω2v2 dx

⎞
⎠
1/2

and ‖ · ‖2, ‖ · ‖q, ‖ · ‖2q denote the standard norms on L2(Rn), Lq(Rn), L2q(Rn),
respectively. We will say that a function (u, v) is nontrivial in case (u, v) �=
(0, 0) and it is called fully nontrivial if we have u �= 0 and v �= 0. At several
instances we will make use of the identity

I|Nb
(u, v) =

q − 1
2q

(‖u‖2 + ‖v‖2
ω) for all (u, v) ∈ Nb (11)

which in particular holds for all (u, v) ∈ Mb.
The functions u0 and v0 := ω1/(q−1)u0(ω·) having the property

−Δu0 + u0 = u2q−1
0 in R

n, u0 > 0, −Δv0 + ω2v0 = v2q−1
0 in R

n, v0 > 0

will play a crucial role in the following analysis being the uniquely determined
minimal energy solutions of the scalar equations associated to (2). As a con-
sequence one has the inequalities

‖u‖ ≥ ĉ0‖u‖2q, ‖v‖ω ≥ ω
2q−n(q−1)

2q ĉ0‖v‖2q for all u, v ∈ H1(Rn) (12)

where ĉ0 = ‖u0‖‖u0‖−1
2q . It is known that the equality cases occur if and only

if u, v are multiples of translates of u0, v0. Notice that the second inequality in
(12) follows from the first by considering u = v(ω−1·). Moreover, we use

I(u0, 0) =
q − 1
2q

‖u0‖2 =
q − 1
2q

‖u0‖2 ·
(

‖u0‖2

‖u0‖2q
2q

) 1
q−1

=
q − 1
2q

ĉ
2q

q−1
0 (13)
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as well as

I(0, v0) = ω
2q−n(q−1)

q−1 I(u0, 0), ‖u0‖2 = ‖u0‖2q
2q, ‖v0‖2

ω = ‖v0‖2q
2q. (14)

Let us now make a preliminary remark concerning the proof of Theorem
1 where the sharp criterion for the existence of a vector ground state is proved.
From Theorem 2.1 in [11] we know that for all b ≥ 0 a nonnegative minimizer of
I|Nb

exists which, by Lemma 3.3 in the same paper, is a ground state solution
of (2). This ground state solution (u, v) is either a vector ground state or it is
semitrivial. In the latter case we must have (u, v) = (u0, 0) or (u, v) = (0, v0) so
that the existence of a vector ground state is guaranteed if there is a function
(u, v) ∈ Nb which satisfies I(u, v) < min{I(u0, 0), I(0, v0)}. This idea has been
worked out in [11], p.754. From (14) and ω ≥ 1 we infer that this is equivalent
to

I(u, v) < I(u0, 0) for some (u, v) ∈ Nb. (15)

We will use this criterion in the proof of Theorem 1. Notice that in this case
we automatically have cb < I(u0, 0).

Moreover we will use the fact that in case b ≥ 0 every ground state of (2)
is radially symmetric, radially nonincreasing and that it does not change sign
in each component. Indeed, since (u, v) ∈ Nb is equivalent to (|u|, |v|) ∈ Nb

and since every minimizer of I|Nb
is a solution of (2) the strong minimum

principle implies |u|, |v| > 0 or |u| > 0, v = 0 or u = 0, |v| > 0 in R
n. Hence,

the symmetry results of Busca and Sirakov [3] and Ikoma [7] imply the radial
symmetry and monotonicity of the functions u, v. Similarly, using Proposi-
tion 1, one shows that minimizers of I|Mb

are radially symmetric and do not
change sign.

Finally we give the variational characterizations for μ(ω, n), μ(ω, n). Since
these numbers are the smallest characteristic values of the compact operators
(−Δ + ω2)−1(u2

0·), (−Δ + 1)−1(v2
0 ·) we obtain from the Corant–Fischer min–

max-principle

μ(ω, n) = min
{ ‖v‖2

ω

‖u0v‖2
2

: v ∈ H1(Rn), v �= 0
}

, (16)

μ(ω, n) = min
{ ‖u‖2

‖uv0‖2
2

: u ∈ H1(Rn), u �= 0
}

, (17)

see also [1], p.454. Replacing v by v(ω−1·) in (16) we obtain the identity
μ(ω, n) = μ(ω−1, n) for all ω > 0 and in particular we get the inequality
μ(ω, n) > μ(1, n) = 1 = μ(1, n) > μ(ω, n) for all ω > 1. Moreover, (16) and
the estimates ‖φ‖2

ω ≥ ω2‖φ‖2
2 and ‖u0φ‖2

2 ≤ ‖u0‖2
∞‖φ‖2

2 imply

μ(ω, n) ≥ ‖u0‖−2
∞ ω2 (18)

which we claimed to hold in Remark 1 (d).

3. Proof of Theorem 1

Proof of Theorem 1, part (i):
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Let b < b(ω, q, n). We assume for contradiction that a vector ground state
(u, v) ∈ Nb of (2) exists. The unique continuation principle implies uv �≡ 0 so
that the definition of b(ω, q, n) given in (5) gives the following inequality

ĉ−2q
0 (‖u‖2 + ‖v‖2

ω)q − ‖u‖2q
2q − ‖v‖2q

2q

2‖uv‖q
q

> b. (19)

Moreover (u, v) ∈ Nb implies ‖u‖2 + ‖v‖2
ω = ‖u‖2q

2q + ‖v‖2q
2q +2b‖uv‖q

q and thus

I(u, v)
(11)
=

q − 1
2q

(‖u‖2 + ‖v‖2
ω) =

q − 1
2q

(
(‖u‖2 + ‖v‖2

ω)q

‖u‖2q
2q + ‖v‖2q

2q + 2b‖uv‖q
q

)1
q−1

so that elementary rearrangements of (19) and (u0, 0) ∈ Nb yield

I(u, v) >
q − 1
2q

ĉ
2q

q−1
0

(13)
= I(u0, 0) ≥ cb.

In particular (u, v) is not a ground state which contradicts our assumption.
Hence, every minimizer of I|Nb

is semitrivial and we obtain cb = I(u0, 0) for
all b < b(ω, q, n).

Proof of Theorem 1, part (ii):
Now let b > b(ω, q, n). Then there are functions u, v ∈ H1(Rn) satisfying

uv �= 0 and

ĉ−2q
0 (‖u‖2 + ‖v‖2

ω)q − ‖u‖2q
2q − ‖v‖2q

2q

2‖uv‖q
q

< b.

Replacing (u, v) by (ru, rv) for

r =

(
‖u‖2 + ‖v‖2

ω

‖u‖2q
2q + ‖v‖2q

2q + 2b‖uv‖q
q

) 1
2q−2

we may assume (u, v) ∈ Nb. Then the same rearrangements as in the proof
of part (i) give I(u, v) < I(u0, 0) so that the sufficient criterion (15) for the
existence of a vector ground state with energy cb < I(u0, 0) is satisfied. This
proves the claim.

4. Proof of Lemma 1

Let u, v ∈ H1(Rn) satisfy uv �= 0 and set r := ‖v‖2q‖u‖−1
2q . From Hölder’s

inequality we get ‖uv‖q
q ≤ ‖u‖q

2q‖v‖2q = r‖u‖2q
2q so that (12) implies

ĉ−2q
0 (‖u‖2 + ‖v‖2

ω)q − ‖u‖2q
2q − ‖v‖2q

2q

2‖uv‖q
q

≥
(
1 + ω

2q−n(q−1)
q r2

)q

− 1 − r2q

2rq
.

Since this number is nonnegative we obtain b(ω, q, n) ≥ 0 so that claim (i) is
proved. In case q ≥ 2 we set ω̂ := ω(2q−n(q−1))/(2q) ≥ 1 and the estimate from
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part (ii) of the Lemma follows from

ĉ−2q
0 (‖u‖2 + ‖v‖2

ω)q − ‖u‖2q
2q − ‖v‖2q

2q

2‖uv‖q
q

≥ inf
r>0

(1 + ω̂2r2)q − 1 − r2q

2rq

≥ ω̂q · inf
r>0

(1 + (ω̂r)2)q − 1 − (ω̂r)2q

2(ω̂r)q

= ω̂q · inf
t>0

(1 + t2)q − 1 − t2q

2tq

= ω
2q−n(q−1)

2 (2q−1 − 1).

5. Proof of Lemma 2

Throughout the proof we will use the identities

‖u0‖2
2 =

2q − n(q − 1)
2q

‖u0‖2, ‖∇u0‖2
2 =

n(q − 1)
2q

‖u0‖2 (20)

which are taken from (4.13)–(4.16) in [11].
First we show b(ω, 2, n) ≤ μ(ω, n). In (5) we use the test function (u0, αφ)

for α > 0 and φ ∈ H1(Rn), φ �= 0. From ‖u0‖2 = ‖u0‖4
4 and ĉ0 = ‖u0‖‖u0‖−1

4

we obtain

b(ω, 2, n) ≤ inf
α>0

ĉ−4
0 (‖u0‖2 + ‖αφ‖2

ω)2 − ‖u0‖4
4 − ‖αφ‖4

4

2‖u0(αφ)‖2
2

= inf
α>0

2ĉ−4
0 ‖u0‖2‖φ‖2

ω · α2 + α4(ĉ−4
0 ‖φ‖4

ω − ‖φ‖4
4)

2α2‖u0φ‖2
2

=
‖φ‖2

ω

‖u0φ‖2
2

so that (16) yields b(ω, 2, n) ≤ μ(ω, n) since φ was arbitrary. Theorem 1.4 in
[5] gives μ(ω, 1) = ω(ω+1)

2 which proves the estimate for n = 1. In order to
prove the explicit bounds for n ∈ {2, 3} we take φ = u0 and use the identities
(20) to get

b(ω, 2, n) ≤ μ(ω, n) ≤ ‖u0‖2
ω

‖u0‖4
4

=
‖u0‖2

ω

‖u0‖2
=

‖∇u0‖2
2

‖u0‖2
+ ω2 ‖u0‖2

2

‖u0‖2
=

4 − n

4
ω2 +

n

4
.

It therefore remains to prove part (i),(iii) of the Lemma and the estimate (6).
For u, v ∈ H1(Rn) satisfying uv �= 0 we consider the test functions (u(k·),

v(k·)) where k is chosen in an optimal way. From ‖u(k·)‖2 = k2−n‖∇u‖2
2 +

k−n‖u‖2
2 and ‖v(k·)‖2

ω = k2−n‖∇v‖2
2 + k−nω2‖v‖2

2 ee obtain

b(ω, q, n)

= inf
k>0

kn(1−q)ĉ−2q
0

(‖u‖2
2 + ω2‖v‖2

2 + k2(‖∇u‖2
2 + ‖∇v‖2

2)
)q − ‖u‖2q

2q − ‖v‖2q
2q

2‖uv‖q
q

=
Cn,q(‖u‖2

2 + ω2‖v‖2
2)

2q−n(q−1)
2 (‖∇u‖2

2 + ‖∇v‖2
2)

n(q−1)
2 − ‖u‖2q

2q − ‖v‖2q
2q

2‖uv‖q
q
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where Cn,q is given by

Cn,q =
(

n(q − 1)
2q − n(q − 1)

)n(1−q)
2

(
2q

2q − n(q − 1)

)q

ĉ−2q
0

=
(

2q

n(q − 1)

)n(q−1)
2

(
2q

2q − n(q − 1)

)2q−n(q−1)
2

ĉ−2q
0

=
( ‖u0‖2

‖∇u0‖2
2

)n(q−1)
2

(‖u0‖2

‖u0‖2
2

)2q−n(q−1)
2

( ‖u0‖
‖u0‖2q

)−2q

=
‖u0‖2q

2q

‖∇u0‖n(q−1)
2 ‖u0‖2q−n(q−1)

2

,

see (20). Notice that the infimum over all positive k is attained at

kmin =
( ‖u‖2

2 + ω2‖v‖2
2

‖∇u‖2
2 + ‖∇v‖2

2

· n(q − 1)
2q − n(q − 1)

)1/2

Now we choose (u, v) := (u0, αu0(β·)) for α > 0, β ≥ 1. Since β ≥ 1 and
u0 is radially symmetric and radially decreasing we have ‖u0u0(β·)‖q

q ≥ ‖u0

(β·)u0(β·)‖q
q = β−n‖u0‖2q

2q. This and the above estimate give

b(ω, q, n) ≤ (1 + ω2α2β−n)
2q−n(q−1)

2 (1 + α2β2−n)
n(q−1)

2 − 1 − α2qβ−n

2αqβ−n
.

Now it remains to pick special values for α > 0, β ≥ 1. The assertion
b(ω, q, n) ≤ 0 for 1 < q < 2 results from the choice (α, β) = (αk, 1) where
(αk) is a positive null sequence. In case q = 2, n = 3, ω2 > 5 we choose β = 1
and the corresponding optimal value for α is α = 1√

2ω

√
−1 + ω2 − √

1 + 3ω2.
This gives the estimate (6). The bounds for q > 2 result from the choices
α = ω−1/2, β = ω in case n = 1 and α = β = 1 in case n ∈ {2, 3}. �

6. Proof of Lemma 3

First we prove part (i), so let b < 0. For all (u, v) ∈ Mb we have

‖u‖2 = ‖u‖2q
2q + b‖uv‖q

q ≤ ‖u‖2q
2q, ‖v‖2

ω = ‖v‖2q
2q + b‖uv‖q

q ≤ ‖v‖2q
2q.

This implies

I(u, v)
(11)
=

q − 1
2q

(‖u‖2 + ‖v‖2
ω)

≥ q − 1
2q

⎛
⎝‖u‖2 ·

(
‖u‖2

‖u‖2q
2q

) 1
q−1

+ ‖v‖2
ω ·
(

‖v‖2
ω

‖v‖2q
2q

) 1
q−1
⎞
⎠

=
q − 1
2q

(( ‖u‖
‖u‖2q

)2q
q−1

+
(‖v‖ω

‖v‖2q

)2q
q−1
)

(12)

≥ q − 1
2q

(
1 + ω

2q−n(q−1)
q−1

)
ĉ

2q
q−1
0



Vol. 22 (2015) Minimal energy solutions 249

(13)
= (1 + ω

2q−n(q−1)
q−1 )I(u0, 0)

(14)
= I(u0, 0) + I(0, v0)

where equality holds if and only if uv ≡ 0 and u, v are multiples of translates
of u0, v0, respectively. This being impossible we obtain

I(u, v) > I(u0, 0) + I(0, v0) for all (u, v) ∈ Mb.

The proof of (i) will be accomplished once we show κb ≤ I(u0, 0)+I(0, v0).
To this end let χ ∈ C∞

0 (Rn) denote a cut-off function satisfying supp(χ) ⊂ B1,
χ|B1/2 ≡ 1. We set ũk(x) := u0(x)χ(x

k ), ṽk(x) := v0(x)χ(x
k ) and

uk(x) :=

(
‖ũk‖
‖ũk‖q

2q

) 1
q−1

· ũk(x + 2ke1),

vk(x) :=

(
‖ṽk‖ω

‖ṽk‖q
2q

) 1
q−1

· ṽk(x − 2ke1).

Then we have supp(uk) ⊂ Bk(−2ke1) and supp(vk) ⊂ Bk(2ke1) which implies
ukvk ≡ 0. From ‖uk‖2 = ‖uk‖2q

2q, ‖vk‖2
ω = ‖vk‖2q

2q we infer (uk, vk) ∈ Mb for
all k ∈ N and thus

κb ≤ lim
k→∞

I|Mb
(uk, vk)

(11)
=

q − 1
2q

lim
k→∞

(‖uk‖2 + ‖vk‖2
ω)

=
q − 1
2q

lim
k→∞

(( ‖ũk‖
‖ũk‖2q

) 2q
q−1

+
(‖ṽk‖ω

‖ṽk‖2q

) 2q
q−1
)

=
q − 1
2q

(( ‖u0‖
‖u0‖2q

) 2q
q−1

+
(‖v0‖ω

‖v0‖2q

) 2q
q−1
)

=
q − 1
2q

(
1 + ω

2q−n(q−1)
q−1

)
ĉ

2q
q−1
0

= I(u0, 0) + I(0, v0)

which proves part (i).
Now let us prove part (ii), so let b > b(ω, q, n). By Theorem 1 there is a

vector ground state (u, v) of (2) so that (u, v) ∈ Mb and I(u, v) = cb. From (9)
we infer

cb ≤ κb ≤ I(u, v) = cb

which implies that κb = cb is attained at (u, v). Vice versa, if κb is attained at
(u, v) ∈ Mb then I(u, v) = κb. From above we get κb = cb so that I(u, v) = cb

implies that (u, v) minimizes I|Nb
. Hence, (u, v) is a vector ground state of (2)

which is all we had to show. �
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7. Proof of Theorem 2

First we show that minimizers of I|Mb
are solutions of (2). The corresponding

result for q = 2 can be found in [14], Proposition 1.1. Our proof follows the
same ideas.

Proposition 1. Let n ∈ {1, 2, 3}, 2 ≤ q < n
(n−2)+

, ω ≥ 1 and b ∈ [0, q −1). Then
every minimizer of I|Mb

is a solution of (2).

Proof. For (u, v) ∈ Mb we set H1(u, v) := ‖u‖2 −‖u‖2q
2q − b‖uv‖q

q and H2(u, v)
:= ‖v‖2

ω − ‖v‖2q
2q − b‖uv‖q

q so that b(q − 2) ≥ 0 implies

H ′
1(u, v)[u, 0] = 2‖u‖2 − 2q‖u‖2q

2q − qb‖uv‖q
q

= −2(q − 1)‖u‖2q
2q − (q − 2)b‖uv‖q

q < 0,

H ′
2(u, v)[0, v] = 2‖v‖2

ω − 2q‖v‖2q
2q − qb‖uv‖q

q

= −2(q − 1)‖v‖2q
2q − (q − 2)b‖uv‖q

q < 0

and thus ran(H ′
1(u, v),H ′

2(u, v)) = R
2. As in [14] the Lagrange multiplier rule

gives real numbers L1, L2 ∈ R such that

I ′(u, v) + L1H
′
1(u, v) + L2H

′
2(u, v) = 0. (21)

Our aim is to show L1 = L2 = 0 and we assume (L1, L2) �= (0, 0) for contra-
diction. Testing (21) with (u, 0) and (0, v) we obtain the linear system

0 =
(
(2 − 2q)‖u‖2q

2q + (2 − q)b‖uv‖q
q

)
L1 − qb‖uv‖q

qL2,

0 =
(
(2 − 2q)‖v‖2q

2q + (2 − q)b‖uv‖q
q

)
L2 − qb‖uv‖q

qL1

where we used I ′(u, v)[(u, 0)]= H1(u, v) = 0, I ′(u, v)[(0, v)] = H2(u, v) = 0 and
(u, v) ∈ Mb. From (L1, L2) �= (0, 0) we infer that the determinant vanishes
and thus

0 =
(
(2 − 2q)‖u‖2q

2q + (2 − q)b‖uv‖q
q

)
·
(
(2 − 2q)‖v‖2q

2q + (2 − q)b‖uv‖q
q

)

− (−qb‖uv‖q
q)

2

= 4(1 − q)
(

(b‖uv‖q
q)

2 − q − 2
2

b‖uv‖q
q(‖u‖2q

2q + ‖v‖2q
2q) − (q − 1)‖u‖2q

2q‖v‖2q
2q

)
.

Solving this equation for b‖uv‖q
q gives

4b‖uv‖q
q = (q − 2)(‖u‖2q

2q + ‖v‖2q
2q)

+
√

(q − 2)2(‖u‖2q
2q + ‖v‖2q

2q)2 + 16(q − 1)‖u‖2q
2q‖v‖2q

2q

≥ 2(q − 2)‖u‖q
2q‖v‖q

2q

+
√

4(q − 2)2‖u‖2q
2q‖v‖2q

2q + 16(q − 1)‖u‖2q
2q‖v‖2q

2q

= 4(q − 1)‖u‖q
2q‖v‖q

2q

≥ 4(q − 1)‖uv‖q
q
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which contradicts b < q − 1. Notice that in case uv ≡ 0 the last inequality is
strict. Hence, L1 = L2 = 0 which is all we had to show. �

We rewrite the minimization problem inf I|Mb
with the aid of a fibering

map. For all u, v ∈ H1(Rn) satisfying u, v �= 0 we define βu,v : R≥0 ×R≥0 → R

by

βu,v(s, t) := I(
√

su,
√

tv) (22)

which implies

∂sβu,v(s, t) = (2s)−1(‖√
su‖2 − ‖√su‖2q

2q − b‖(
√

su)(
√

tv)‖q
q),

∂tβu,v(s, t) = (2t)−1(‖√
tv‖2

ω − ‖√tv‖2q
2q − b‖(

√
su)(

√
tv)‖q

q) (23)

for all s, t > 0 and in particular (
√

su,
√

tv) ∈ Mb if and only if (s, t) is
a critical point of βu,v. In the following Proposition we prove that βu,v has
exactly one critical point.

Proposition 2. Let n ∈ {1, 2, 3}, 2 < q < n
(n−2)+

, ω > 1, b ∈ [0, q − 1) and
let u, v ∈ H1(Rn) satisfy u, v �= 0. Then βu,v has precisely one critical point
(s(u, v), t(u, v)) in R>0 × R>0 and the critical value is a strict global maxi-
mum over R≥0 × R≥0. In particular (

√
su,

√
tv) ∈ Mb if and only if (s, t) =

(s(u, v), t(u, v)).

Proof. Let u, v ∈ H1(Rn) and u, v �= 0. From

βu,v(s, t) =
1
2
(s‖u‖2 + t‖v‖2

ω) − 1
2q

(
sq‖u‖2q

2q + tq‖v‖2q
2q + 2s

q
2 t

q
2 b‖uv‖q

q

)

we infer that β := βu,v is continuous on R≥0 × R≥0 and that −β is coercive.
This and ∂sβ(0, t), ∂tβ(s, 0) > 0 for all s, t ≥ 0 implies that β attains a global
maximum at some point (s̄, t̄) with s̄, t̄ > 0. It remains to show that the
maximum is strict and that β has no other critical points in R>0 × R>0.

In R>0 × R>0 the map β is twice continuously differentiable and satisfies

∂ssβ(s, t) = −q − 1
2

sq−2‖u‖2q
2q − b(q − 2)

4
t

q
2 s

q−4
2 ‖uv‖q

q,

∂ttβ(s, t) = −q − 1
2

tq−2‖v‖2q
2q − b(q − 2)

4
s

q
2 t

q−4
2 ‖uv‖q

q,

∂stβ(s, t) = −q

4
(st)

q−2
2 b‖uv‖q

q.
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From b(q − 2) ≥ 0 we infer ∂ssβ̄(s, t), ∂ttβ̄(s, t) < 0 as well as

4 det(D2β(s, t)) = 4 ·
(
∂ssβ(s, t) · ∂ttβ(s, t) − (∂stβ(s, t)

)2)

= −(q − 1)(st)q−2
(
(b‖uv‖q

q)
2 − (q − 1)‖u‖2q

2q‖v‖2q
2q

− q − 2
2

(( t

s

) q
2 ‖v‖2q

2q +
(s
t

) q
2 ‖u‖2q

2q

)
b‖uv‖q

q

)

≥ −(q − 1)(st)q−2
(
(b‖uv‖q

q)
2 − (q − 1)‖u‖2q

2q‖v‖2q
2q

− (q − 2)‖u‖q
2q‖v‖q

2qb‖uv‖q
q

)

= −(q − 1)(st)q−2
(
b‖uv‖q

q − (q − 1)‖u‖q
2q‖v‖q

2q

)·(
b‖uv‖q

q + ‖u‖q
2q‖v‖q

2q

)
> 0

where the last inequality follows from Hölder’s inequality and b ∈ [0, q − 1).
Hence the Hessian of β is negative definite in R>0 × R>0 which proves that
the maximum is strict and that (s̄, t̄) is the only critical point of β. �

As a consequence, for any given u, v ∈ H1(Rn) with u, v �= 0 we have

I(
√

s(u, v)u,
√

t(u, v)v)

= max
s,t>0

I(
√

su,
√

tv)

= max
α>0

max
r>0

I(
√

ru,
√

rαv)

=
q − 1
2q

max
α>0

(
(‖u‖2 + α2‖v‖2

ω)q

‖u‖2q
2q + α2q‖v‖2q

2q + 2bαq‖uv‖q
q

) 1
q−1

(24)

where the last identity result from the explicit computation of the maximizer.
For notational convenience we set

Ĵ(u, v) = max
α>0

J(u, αv) (25)

where J is given by

J(u, v) =
q − 1
2q

(
(‖u‖2 + ‖v‖2

ω)q

‖u‖2q
2q + ‖v‖2q

2q + 2b‖uv‖q
q

) 1
q−1

Now the proof of Theorem 2 is basically reduced to finding a nonnegative fully
nontrivial minimizer of Ĵ .

Proof of Theorem 2:
Let us first prove the estimate κb > I(0, v0). Since we will prove below

that κb is attained at a positive solution (u, v) ∈ Mb of (2) it is sufficient to
prove the inequality I(u, v) > I(0, v0) for all (u, v) ∈ Mb. So let (u, v) ∈ Mb.
Proposition 2 implies s(u, v) = t(u, v) = 1 and (24) implies that the value
I(u, v) is given by maxα>0 J(u, αv) and the maximum is strict. Hence we
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obtain

I(u, v) > max
{

lim
α→0

J(u, αv), lim
α→∞ J(u, αv)

}

=
q − 1
2q

max

{
‖u‖2q

‖u‖2q
2q

,
‖v‖2q

ω

‖v‖2q
2q

} 1
q−1

(26)

so that ω ≥ 1 implies

I(u, v)
(12)
>

q − 1
2q

· ω
2q−n(q−1)

q−1 ĉ
2q

q−1
0

(13),(14)
= I(0, v0). (27)

Next we show that Ĵ has a nonnegative fully nontrivial minimizer. The
functional Ĵ satisfies Ĵ(λu, μv) = Ĵ(u, v) for all λ, μ �= 0 and Ĵ(|u|∗, |v|∗) ≤
Ĵ(u, v) where the ∗-operator denotes the Schwarz symmetrization (i.e. the
spherical rearrangement) of the given function. For this reason there is a min-
imizing sequence (uj , vj) of Ĵ consisting of Schwarz symmetric functions that
satisfy ‖uj‖2q = ‖vj‖2q = 1. Then (26) implies that (uj , vj) is bounded in
H1(Rn) × H1(Rn). Hence, there is a function (ũ, ṽ) ∈ H1(Rn) × H1(Rn) and
a subsequence of (uj , vj), again denoted by (uj , vj), which satisfies (uj , vj) ⇀
(ũ, ṽ), (uj , vj) → (ũ, ṽ) in L2q(Rn)×L2q(Rn) and pointwise almost everywhere.
This implies ũ, ṽ ≥ 0, ‖ũ‖2q = ‖ṽ‖2q = 1 and that (ũ, ṽ) is a minimizer of Ĵ .
Indeed, we have

J(ũ, αṽ) ≤ lim inf
j→∞

J(ũj , αṽj) ≤ lim inf
j→∞

Ĵ(ũj , ṽj) for all α > 0

and this implies

inf Ĵ = lim inf
j→∞

Ĵ(uj , vj) ≥ max
α>0

J(ũ, αṽ) = Ĵ(ũ, ṽ).

From this we infer that (u, v) := (
√

s(ũ, ṽ)ũ,
√

t(ũ, ṽ)ṽ) ∈ Mb is a minimizer
of I|Mb

since (24) and (25) give the following inequality for all (u, v) ∈ Mb

I(u, v) = I(
√

s(u, v)u,
√

t(u, v)v)

= Ĵ(u, v)

≥ Ĵ(ũ, ṽ)

= I
(√

s(ũ, ṽ)ũ,
√

t(ũ, ṽ)ṽ
)

= I(u, v).

Now Lemma 1 implies that (u, v) is a nonnegative fully nontrival solution of (2)
which, by the strong minimum principle, is positive. �

8. Proof of Theorem 3

In the following let the function βu,v be given by formula (22) for q = 2. As in
the proof of Theorem 2 we first collect some properties of the fibering map.
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Proposition 3. Let n ∈ {1, 2, 3}, ω > 1, b ∈ [0, 1) and let u, v ∈ H1(Rn) satisfy
u, v �= 0. Then βu,v has a critical point in R>0 × R>0 if and only if

b‖uv‖2
2

‖u‖2
4‖v‖2

4

< min
{ ‖u‖2‖v‖2

4

‖u‖2
4‖v‖2

ω

,
‖u‖2

4‖v‖2
ω

‖u‖2‖v‖2
4

}
. (28)

In this case the critical point is unique and the critical value is a strict global
maximum over R≥0 × R≥0. The maximizer (s(u, v), t(u, v)) is given by

s(u, v) =
‖v‖4

4‖u‖2 − b‖uv‖2
2‖v‖2

ω

‖u‖4
4‖v‖4

4 − b2‖uv‖4
2

,

t(u, v) =
‖u‖4

4‖v‖2
ω − b‖uv‖2

2‖u‖2

‖u‖4
4‖v‖4

4 − b2‖uv‖4
2

. (29)

In particular we have (
√

su,
√

tv) ∈ Mb if and only if (s, t) = (s(u, v), t(u, v)).

Proof. From (23) we infer that (s, t) ∈ R>0 ×R>0 is a critical point βu,v if and
only if

‖u‖2 = s‖u‖4
4 + tb‖uv‖2

2, ‖v‖2
ω = t‖v‖4

4 + sb‖uv‖2
2.

Due to b‖uv‖2
2 ≤ b‖u‖2

4‖v‖2
4 < ‖u‖2

4‖v‖2
4 this linear system has a unique so-

lution which, formally, is given by (29). From s(u, v), t(u, v) > 0 we get that
condition (28) is necessary and sufficient for the existence of a critical point
in R>0 × R>0. As in the proof of Proposition 2 one finds that in this case the
Hessian of βu,v is negative definite in R>0 × R>0 and β̄s(0, t), β̄t(s, 0) > 0 for
all s, t ≥ 0 so that the critical value associated to (s(u, v), t(u, v)) is a strict
global maximum over R≥0 × R≥0. �

As in (24) we obtain I(
√

s(u, v)u,
√

t(u, v)v) = maxα>0 J(u, αv) when-
ever (u, v) satisfies (28). When (28) is not satisfied, however, the supremum
of the function α → J(u, αv) over (0,∞) need not be attained in (0,∞).
Nevertheless it will turn out to be useful to define

Ĵ(u, v) := sup
α>0

J(u, αv) =
1
4

sup
α>0

(‖u‖2 + α2‖v‖2
ω)2

‖u‖4
4 + α4‖v‖4

4 + 2α2b‖uv‖2
2

. (30)

In the proof of Theorem 3 we will need the following result.

Proposition 4. Let n ∈ {1, 2, 3}, ω > 1. Then b �→ κb is continuous from the
left on [0, 1).

Proof. Let (bj) be a sequence converging to b ∈ (0, 1) from the left. Continuity
of translation in L4(Rn) implies that for all (u, v) ∈ Mbj

there is a vector
zj ∈ R

n such that bj‖uv‖2
2 = b‖u(· + zj)v‖2

2, hence (u(· + zj), v) ∈ Mb and in
particular

I|Mbj
(u, v)

(11)
=

1
4
(‖u‖2 + ‖v‖2

ω)

=
1
4
(‖u(· + zj)‖2 + ‖v‖2

ω)

(11)
= I|Mb

(u(· + zj), v)
≥ κb.
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Since (u, v) ∈ Mbj
and bj < b were chosen arbitrarily we obtain κbj

≥ κb for
all j ∈ N and thus lim infj→∞ κbj

≥ κb.
Now let (u, v) ∈ Mb be arbitrary. Then (u, v) satisfies condition (28) and

for sufficiently large j (28) is also satisfied for b replaced by bj . This implies
(
√

sbj
(u, v)u,

√
tbj

(u, v)v) ∈ Mbj
where sbj

(u, v), tbj
(u, v) are given by (29) for

b replaced by bj . From (u, v) ∈ Mb and (29) we infer sbj
(u, v), tbj

(u, v) → 1 as
j → ∞ and thus

lim sup
j→∞

κbj
≤ lim sup

j→∞
I|Mbj

(√
sbj

(u, v)u,
√

tbj
(u, v)v

)

(11)
= lim sup

j→∞
1
4
(sbj

(u, v)‖u‖2 + tbj
(u, v)‖v‖2

ω)

=
1
4
(‖u‖2 + ‖v‖2

ω)

(11)
= I|Mb

(u, v)

and thus lim supj→∞ κbj
≤ κb since (u, v) ∈ Mb was arbitrary. This proves

the claim. �

In contrast to the case q > 2 we find that for b > 0 the closure of Mb

in H1(Rn) × H1(Rn) may contain semitrivial elements when q = 2. In the
next Proposition we prove that the particular semitrivial element (0, v0) lies
in closure of Mb precisely for b ≥ μ(ω, n).

Proposition 5. Let n ∈ {1, 2, 3}, ω > 1, b ≥ 0. Then we have (0, v0) ∈ Mb if
and only if b ≥ μ(ω, n).

Proof. First we assume b ≥ μ(ω, n), let ϕ be the normalized positve eigenfunc-
tion of the operator (−Δ + ω2)−1(u2

0·) associated to the eigenvalue μ(ω, n)−1.
By the variational characterization of μ(ω, n) given by (17) and by continuity
of translation in L4(Rn) there is a sequence (zj) in R

n such that the functions
uj := ϕ(· − zj) satisfy

‖uj‖2

‖ujv0‖2
4

> b for j ∈ N and
‖uj‖2

‖ujv0‖2
4

→ b as j → ∞. (31)

Then Hölder’s inequality and ‖v0‖ < ‖v0‖ω, ‖v0‖2
ω = ‖v0‖4

4 imply

‖uj‖2

‖uj‖2
4

=
‖ϕ‖2

‖ϕ‖2
4

· ‖v0‖2
4

‖v0‖2
4

≤ ‖ϕ‖2

‖ϕv0‖2
2

· ‖v0‖2
4

(17)

≤ ‖v0‖2

‖v0v0‖2
2

· ‖v0‖2
4 <

‖v0‖2
ω

‖v0‖2
4

(32)

and thus
b‖ujv0‖2

2

‖uj‖2
4‖v0‖2

4

(31)
<

‖uj‖2

‖uj‖2
4‖v0‖2

4

(32)
= min

{ ‖uj‖2‖v0‖2
4

‖uj‖2
4‖v0‖2

ω

,
‖uj‖2

4‖v0‖2
ω

‖uj‖2‖v0‖2
4

}
.

Therefore (uj , v0) satisfies (28) which, according to Proposition 3, implies
(
√

s(uj , v0)uj ,
√

t(uj , v0)v0) ∈ Mb. The explicit formulas for s(uj , v0),
t(uj , v0) from (29) and (31) give s(uj , v0) → 0, t(uj , v0) → 1 and hence(√

s(uj , v0)uj ,
√

t(uj , v0)v0

)
→ (0, v0) as j → ∞.
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This implies (0, v0) ∈ Mb.
Now assume (0, v0) ∈ Mb and let (uj , vj) be a sequence in Mb that

satisfies (uj , vj) → (0, v0). Then the sequence φj := uj‖uj‖−1
4 is bounded in

H1(Rn) because of

‖φj‖2 =
‖uj‖4

4 + b‖ujvj‖2
2

‖uj‖2
4

= ‖uj‖2
4 + b‖φjvj‖2

2

≤ b‖φj‖2
4‖vj‖2

4 + o(1)

= b‖v0‖2
4 + o(1) (j → ∞).

Hence, we may take a subsequence (φj) that converges weakly and in L4
loc(R

n)
to some function φ ∈ H1(Rn). From (uj , vj) → (0, v0) and φj → φ in L4

loc(R
n)

we obtain

‖φj‖2 = ‖uj‖2
4 + b‖φjvj‖2

2 = b‖φjv0‖2
2 + o(1) = b‖φv0‖2

2 + o(1) (33)

as j → ∞. By Sobolev’s embedding theorem we moreover have ‖φj‖ =
‖uj‖‖uj‖−1

4 ≥ c for some positive number c so that (33) gives φ �= 0. This
implies

b
(33)
= lim inf

j→∞
‖φj‖2

‖φv0‖2
2

≥ ‖φ‖2

‖φv0‖2
2

(17)

≥ μ(ω, n).

�

Proof of Theorem 3, part (i):
The same reasoning as in the proof of Theorem 2 shows that the func-

tional Ĵ defined in (30) attains its infimum over the set of all functions u, v ∈
H1(Rn) satisfying u, v �= 0. We denote the minimizer by (ũ, ṽ). In view of
Proposition 3 we have to show that (ũ, ṽ) satisfies condition (28) provided
0 ≤ b < μ(ω, n). Once we have shown this we obtain as in the proof of Theo-
rem 2 that (u, v) := (s(ũ, ṽ)ũ, t(ũ, ṽ)ṽ) is a nonnegative minimizer of I|Mb

and
hence a positive solution of (2).

So let 0 ≤ b < μ(ω, n) and we assume for contradiction that (ũ, ṽ) does
not satisfy (28). Then we have ‖ṽ‖ω

‖ṽ‖4
�= ‖ũ‖

‖ũ‖4
, for otherwise Hölder’s inequality

would imply

b ≥ b‖ũṽ‖2
2

‖ũ‖2
4‖ṽ‖2

4

≥ min
{ ‖ũ‖2‖ṽ‖2

4

‖ũ‖2
4‖ṽ‖2

ω

,
‖ũ‖2

4‖ṽ‖2
ω

‖ũ‖2‖ṽ‖2
4

}
= 1

which contradicts our assumption b < 1. The formula for Ĵ from (30) gives

Ĵ(u, v) = f

(‖u‖2

‖u‖2
4

,
‖v‖2

ω

‖v‖2
4

,
b‖uv‖2

2

‖u‖2
4‖v‖2

4

)

where the function

f(x, y, z) :=

{
x2+y2−2zxy

1−z2 , z < min{x
y , y

x},

max{x2, y2}, z ≥ min{x
y , y

x}
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is differentiable in {(x, y, z) ∈ R>0 × R>0 × [0, 1) : x �= y} with

∇f(x, y, z) = (0, 2y, 0) if 1 > z ≥ x

y
,

∇f(x, y, z) = (2x, 0, 0) if 1 > z ≥ y

x
.

Hence, Ĵ is differentiable at (ũ, ṽ). Since (ũ, ṽ) minimizes Ĵ we get Ĵ ′(ũ, ṽ) = 0.
In case ‖ṽ‖ω

‖ṽ‖4
> ‖ũ‖

‖ũ‖4
this implies that the nonnegative function ṽ is a

critical point of the functional w �→ ‖w‖2
ω

‖w‖2
4

and thus −Δṽ+ω2ṽ = λṽ3 in R
n for

some λ > 0. Kwong’s uniqueness result [8] then implies that ṽ is a translate
of λ−1/2v0. Translating (ũ, ṽ) if necessary we may assume ṽ = λ−1/2v0. Since
(ũ, ṽ) does not satisfy condition (28) we obtain

b =
b‖ũv0‖2

2

‖ũ‖2
4‖v0‖2

4

· ‖ũ‖2
4‖v0‖2

4

‖ũv0‖2
2

≥ ‖ũ‖2‖v0‖2
4

‖ũ‖2
4‖v0‖2

ω

· ‖ũ‖2
4‖v0‖2

4

‖ũv0‖2
2

=
‖ũ‖2

‖ũv0‖2
2

(17)

≥ μ(ω, n)

which contradicts b < μ(ω, n). In case ‖ũ‖
‖ũ‖4

> ‖ṽ‖ω

‖ṽ‖4
the analogous reasoning

gives, up to translation, ũ = μ−1u0 for some μ > 0 and thus
‖ṽ‖ω

‖ṽ‖4
<

‖ũ‖
‖ũ‖4

=
‖u0‖
‖u0‖4

= ĉ0

which contradicts (12). In total we obtain that (ũ, ṽ) must satisfy condition
(28) which is all we had to show.

Proof of Theorem 3, part (ii):
Let μ(ω, n) ≤ b < 1. Then Proposition 5 gives (0, v0) ∈ Mb and (14) im-

plies κb ≤ I(0, v0). On the other hand we have I|Mb
> I(0, v0) which follows

precisely as in the proof of (27). Both inequalities together give κb = I(0, v0)
and that κb is not attained.

Proof of Theorem 3, part (iii):
Let (bj) be a sequence converging to μ(ω, n) from the left and let (uj , vj)

be a sequence of nonnegative minimizers of I|Mb
. The first claim will be proved

once we show that (uj , vj) has a subsequence which converges to (0, v0). As has
been outlined in Sect. 2 the function (uj , vj) is a positive radially symmetric
and radially decreasing solution of (2) for b replaced bj . By (11) the sequence
(uj , vj) is bounded in H1(Rn)×H1(Rn) and has a subsequence, again denoted
by (uj , vj), which converges weakly, in L4(Rn)×L4(Rn) and almost everyhere
to a nonnegative solution (u, v) of (2) for b := μ(ω, n). Using these properties
of the sequence (uj , vj) as well as ‖u‖2 = ‖u‖4

4 + b‖uv‖2
2, ‖v‖2

ω = ‖v‖4
4 + b‖uv‖2

2

we infer ‖uj‖ → ‖u‖, ‖vj‖ω → ‖v‖ω and thus (uj , vj) → (u, v) in H1(Rn) ×
H1(Rn) as j → ∞. From Proposition 4 and part (ii) we get

I(u, v) = lim
j→∞

I(uj , vj) = lim
j→∞

κbj
= κμ(ω,n) = I(0, v0). (34)

In particular, we have (u, v) �= (0, 0) and the inequality I|Mb
> I(0, v0) from

part (ii) implies (u, v) /∈ Mb. Hence, (u, v) is a semitrivial nonnegative solution
of (2) so that (34), (14) and ω > 1 implies (u, v) = (0, v0).
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Now set φj := uj‖uj‖−1 for j ∈ N and it suffices to show φj → ϕ for a
suitable subsequence. Every φj is radially symmetric and radially decreasing
and (φj) is bounded in H1(Rn). Hence, we have φj ⇀ φ for some nonnegative
φ ∈ H1(Rn) and hence φj → φ in L4(Rn). From ‖uj‖2 = ‖uj‖4

4 + bj‖ujvj‖2
2

and (uj , vj) → (0, v0) we infer

1 =
‖uj‖4

4 + bj‖ujvj‖2
2

‖uj‖2

= ‖φj‖2
4‖uj‖2

4 + bj‖φjvj‖2
2

= o(1) + μ(ω, n)‖φv0‖2
2 (35)

which implies φ �= 0. Moreover, ‖φj‖ = 1 and φj → φ in L4(Rn) gives

μ(ω, n)
(17)

≤ ‖φ‖2

‖φv0‖2
2

≤ lim
j→∞

‖φj‖2

‖φjv0‖2
2

=
1

‖φv0‖2
2

(35)
= μ(ω, n).

This implies ‖φj‖ → ‖φ‖ and hence φj → φ, ‖φ‖ = 1 so that φ is the first
eigenfunction of (−Δ + 1)−1(v2

0 ·) with ‖φ‖ = 1 and φ ≥ 0, hence φ = ϕ. This
proves φj → ϕ as j → ∞. �

Appendix A

In this section we first determine all positive vector ground states of (2) and
thus all nontrivial minimizers of I|Nb

in the special case ω = 1. According to
Remark 1 (a) we only need to consider parameters b and q satisfying

1 < q < 2, b > 0 or q ≥ 2, b ≥ 2q−1 − 1. (36)

In the special case 1 < q < 2, 0 < b < q − 1 we set μb := (1 + bkq
b )− 1

2q−2 where
kb ∈ (0, 1) denotes the unique solution of 1 + bkq − bkq−2 − k2q = 0 in (0, 1).

Lemma 4. Let n ∈ N, 1 < q < n
(n−2)+

, ω = 1 and let b, q satisfy (36). Then all
positive vector ground states of (2) are translates of the following functions:

(μbkbu0, μbu0) or (μbu0, μbkbu0) in case 1 < q < 2, 0 < b < q − 1,

(1 + b)− 1
2q−2 (u0, u0) in case 1 < q < 2, b ≥ q − 1,

(cos(α)u0, sin(α)u0) (0 < α < π
2 ) in case q = 2, b = 1,

(1 + b)− 1
2q−2 (u0, u0) in case q = 2, b > 1,

(1 + b)− 1
2q−2 (u0, u0) in case q > 2, b ≥ 2q−1 − 1.
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Proof. Let (u, v) ∈ Nb be a positive function. Then the following holds

I(u, v) =
q − 1
2q

(
(‖u‖2 + ‖v‖2)q

‖u‖2q
2q + ‖v‖2q

2q + 2b‖uv‖q
q

) 1
q−1

(12)

≥ q − 1
2q

(
(ĉ2

0‖u‖2
2q + ĉ2

0‖v‖2
2q)

q

‖u‖2q
2q + ‖v‖2q

2q + 2b‖u‖q
2q‖v‖q

2q

) 1
q−1

≥
(

inf
k>0

(1 + k2)q

1 + k2q + 2bkq

) 1
q−1

· q − 1
2q

ĉ
2q

q−1
0

(13)
=
(

inf
k>0

(1 + k2)q

1 + k2q + 2bkq

) 1
q−1

· I(u0, 0).

Here equality holds if and only if (u, v) is a translate of (λu0, μu0) where λ, μ >
0 and k∗ := μλ−1 minimizes the function k �→ (1+k2)q(1+k2q +2bkq)−1 over
(0,∞). In case 1 < q < 2 and 0 < b < q − 1 this implies k∗ = kb or k∗ = k−1

b

and (u, v) ∈ Nb gives (u, v) = (μbkbu0, μbu0) or (u, v) = (μbu0, μbkbu0). In all
other cases except q = 2, b = 1 a similar discussion leads to k∗ = 1 and thus
(u, v) = (1 + b)− 1

2q−2 (u0, u0). In case q = 2, b = 1 we find that k∗ is arbitrary
which results in (u, v) = (cos(α)u0, sin(α)u0) for some α ∈ (0, π

2 ). �
Finally we determine the minimizers of the functional I|Mb

when ω = 1.
By Lemma 3 we may restrict ourselves to the case q ≥ 2, b ≥ 0. We will make
use of the inequality

min{1 + brq, r2q−2 + brq−2}
(1 + r2)q−1

≤ 1 + b

2q−1
(b ≥ 0, r > 0) (37)

and the additional information that in case q > 2 or q = 2, b �= 1 equality is
achieved only at r = 1. For a proof of this technical result we refer to [12],
p.132.

Lemma 5. Let n ∈ {1, 2, 3}, 2 ≤ q < n
(n−2)+

and ω = 1, b ≥ 0. All positive
minimizers of I|Mb

are translates of

(1 + b)− 1
2q−2 (u0, u0) in case q = 2, b �= 1, b ≥ 0,

(cos(α)u0, sin(α)u0) (0 < α < π
2 ) in case q = 2, b = 1,

(1 + b)− 1
2q−2 (u0, u0) in case q > 2, b ≥ 0.

Proof. Let (u, v) ∈ Mb be a positive function and set r := ‖v‖2q‖u‖−1
2q . From

‖u‖2 = ‖u‖2q
2q + b‖uv‖q

q, ‖v‖2 = ‖v‖2q
2q + b‖uv‖q

q and Hölder’s inequality we get

I(u, v) =
q − 1
2q

(‖u‖2 + ‖v‖2)

(12)

≥ q − 1
2q

ĉ2
0(‖u‖2

2q + ‖v‖2
2q)

(37)

≥ q − 1
2q

ĉ2
0(‖u‖2

2q + ‖v‖2
2q) ·

(
2q−1

1+b
· min{1 + brq, r2q−2+brq−2}

(1+r2)q−1

) 1
q−1

.
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Using r = ‖v‖2q‖u‖−1
2q and

=
q − 1

q
ĉ2
0(1 + b)− 1

q−1 ‖u‖2
2q min{1 + brq, r2q−2 + brq−2} 1

q−1 .

‖u‖2 = ‖u‖2q
2q + b‖uv‖q

q ≤ ‖u‖2q
2q(1 + brq)

‖v‖2 = ‖v‖2q
2q + b‖uv‖q

q ≤ ‖u‖2q−2
2q ‖v‖2

2q(r
2q−2 + brq−2)

we infer

I(u, v) ≥ q − 1
q

ĉ2
0(1 + b)− 1

q−1 min
{ ‖u‖2

‖u‖2
2q

,
‖v‖2

‖v‖2
2q

} 1
q−1

(12)

≥ q − 1
q

ĉ
2q

q−1
0 (1 + b)− 1

q−1

(13)
= 2(1 + b)− 1

q−1 I(u0, 0).

Here, equality holds if and only if (u, v) is a translate of (λu0, μu0) and r =
μλ−1 satisfies

min{1 + brq, r2q−2 + brq−2}
(1 + r2)q−1

=
1 + b

2q−1
.

In the case q = 2, b = 1 this does not respresent a restriction and we obtain
(u, v) = (cos(α)u0, sin(α)u0) for some 0 < α < π

2 . In all other cases, however,
this implies r = 1 and thus (u, v) = (1 + b)− 1

2q−2 (u0, u0). �

Appendix B

In this final section we discuss the borderline case b = b(ω, q, n) in Theo-
rem 1. First we answer the question whether vector ground states exist for
b = b(ω, q, n) in the case q �= 2.

Lemma 6. Let n ∈ N, 1 < q < n
(n−2)+

and ω ≥ 1.

(i) In case 1 < q < 2, b = b(ω, q, n) = 0 no vector ground state exists.
(ii) In case q > 2, b = b(ω, q, n) a vector ground state exists.

In both cases we have cb = I(u0, 0).

Proof. Let b = 0. Since u0 and v0 are the minimal energy solutions of the
scalar equations associated to (2) we obtain that a nonnegative ground state
is, up to translation, given by (u0, 0) or (0, v0) or (u0, v0). From I(u0, v0) =
I(u0, 0) + I(0, v0) > I(0, v0) ≥ I(u0, 0) we obtain that (u0, 0) minimizes I|Nb

which proves (i).
Now let q > 2 and let (bj) be a sequence that converges to b := b(ω, q, n)

from the right. The corresponding radially symmetric and radially decreasing
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vector ground states will be denoted by (uj , vj). From (uj , vj) ∈ Mbj
and

Sobolev’s inequality we infer

‖uj‖2
2q ≤ c‖uj‖2 = c(‖uj‖2q

2q + bj‖ujvj‖q
q)

≤ c(1 + b + o(1))‖uj‖q
2q(‖uj‖q

2q + ‖vj‖q
2q),

‖vj‖2
2q ≤ c‖vj‖2

ω = c(‖vj‖2q
2q + bj‖ujvj‖q

2q)

≤ c(1 + b + o(1))‖vj‖q
2q(‖uj‖q

2q + ‖vj‖q
2q)

for some positive number c > 0 so that q > 2 implies c̃ ≤ ‖uj‖2q, ‖vj‖2q ≤
c̃−1 for some c̃ > 0. Here we used that the sequence (uj , vj) is bounded in
H1(Rn) × H1(Rn) and thus in L2q(Rn) × L2q(Rn). We may pass to a weakly
convergent subsequence (uj , vj) which converges in L2q(Rn) × L2q(Rn) to
its weak limit (u, v). Since (u, v) solves (2) we have ‖u‖2 = ‖u‖2q

2q + b‖uv‖q
q,

‖v‖2
ω = ‖v‖2q

2q + b‖uv‖q
q which gives (uj , vj) → (u, v) in H1(Rn) × H1(Rn). The

above estimates for ‖uj‖2q, ‖vj‖2q show that (u, v) is fully nontrivial and hence
(u, v) is a vector ground state due to

I(u, v) = lim
j→∞

I(uj , vj) = lim
j→∞

cbj
= cb.

�

Finally let us mention that in the case of the cubic nonlinearity it is
not known whether vector ground states exist for b = b(ω, 2, n). If one could
prove b(ω, 2, n) < μ(ω, n) for some parameters ω, n then the vector ground
states (uj , vj) associated to coupling parameters bj > b(ω, q, n) would not
converge to the semitrivial solution (u0, 0) but to a vector ground state as
bj → b(ω, q, n). In the other case b(ω, 2, n) = μ(ω, n) one would expect that
(uj , vj) converges to (u0, 0) so that bifurcation from the semitrivial solution
branch {(u0, 0, b) : b ∈ R} occurs at b = μ(ω, n). The question which of these
alternative applies is particularly interesting. Unfortunately, we have to leave
it unanswered.
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