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Abstract. In this paper we introduce an isospectral flow (Lax flow) that
deforms real Hessenberg matrices to Jacobi matrices isospectrally. The
Lax flow is given by

dA

dt
= [[AT , A]du, A],

where brackets indicate the usual matrix commutator, [A, B] := AB−BA,
AT is the transpose of A and the matrix [AT , A]du is the matrix equal
to [AT , A] along diagonal and upper triangular entries and zero below
diagonal. We prove that if the initial condition A0 is upper Hessenberg
with simple spectrum and subdiagonal elements different from zero, then
limt→+∞ A(t) exists, it is a tridiagonal symmetric matrix isospectral to
A0 and it has the same sign pattern in the codiagonal elements as the
initial condition A0. Moreover we prove that the rate of convergence is
exponential and that this system is the solution of an infinite horizon
optimal control problem. Some simulations are provided to highlight some
aspects of this nonlinear system and to provide possible extensions to its
applicability.
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1. Introduction

Isospectral flows for (pseudo)-differential operators were introduced at the end
of the 1960s by Peter Lax, providing an explanation for the existence of the infi-
nite sequence of conservation laws appearing in certain classes of nonlinear evo-
lutionary PDEs like the Korteweg–de Vries equation (see [1]). After their intro-
duction, it was immediately realized that they could provide a suitable set-up
for certain classes of finite dimensional integrable systems, like the Toda lattice
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(see [2]) and the Calogero–Moser systems (see for instance [3]). In this frame-
work, isospectral flows (Lax equations) appear as ODEs of the following form:

dA

dt
= [B,A], (1.1)

where A is a n × n matrix, B is a matrix function whose entries are functions
of the entries of A, [A,B] := AB − BA is the matrix commutator. The pair
(B,A) is usually called a Lax pair. If the matrix function B has entries that
are smooth functions of the entries of A, the standard existence and unique-
ness theorem for ODEs shows that the Cauchy problem for (1.1) has locally
a solution and this solution is unique. In our case, the entries of B will be
quadratic forms in the entries of A.

Besides their use in the field of integrable systems (see [2,4,5]) and their
relation with representation theory via coadjoint orbits (see [6]), systems of
Lax type started to be used in numerical linear algebra at the beginning of the
1980s when it was realized that suitably constructed isospectral flows provide
a continuous interpolation for discrete algorithms like the QR-factorization
(see [5]). This area of research has been vastly expanded in subsequent years
(see [7]), including also the realization of continuous algorithms for which no
discrete version is currently available. For many more examples in this set-up
see the paper [8] and the book [9].

Our paper follows this line of investigation. More specifically we con-
struct a Lax flow that deforms real Hessenberg matrices to tridiagonal matrices
isospectrally. Moreover using this flow it is possible to construct tridiagonal
matrices with prescribed characteristic polynomials as presented in the Sect. 5.

The flow we consider leaves invariant the vector space of upper Hessen-
berg matrices and we prove that if the initial condition A0 is upper Hessenberg
and lower triangular (so that the spectrum of A0 can be readily identified from
the diagonal elements of A0), with simple spectrum and with non-zero subdi-
agonal elements with given sign pattern, then limt→+∞ A(t) exists and it is a
tridiagonal symmetric matrix, isospectral to A0 and having the same sign pat-
tern for codiagonal elements as A0, (the codiagonal elements are the elements
immediately above or below the main diagonal). The fact that it is isospectral
to A0 follows from the structural properties of any Lax equation.

Let us recall the following definition:

Definition 1.1. A n × n real Jacobi matrix is a symmetric tridiagonal matrix
with strictly positive codiagonal elements. The set of all Jacobi matrices will
be denoted with J .

With this definition in mind, we can state the main result of our paper
(in the following brackets indicate the usual matrix commutator, [A,B] :=
AB − BA, AT is the transpose of A and the matrix [AT , A]du is the matrix
equal to [AT , A] along diagonal and upper triangular entries and zero below
diagonal):

Theorem 1.2. The flow associated to the following nonlinear system of ODEs
dA

dt
= [[AT , A]du, A], (1.2)
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provides an explicit deformation of a real upper Hessenberg matrix to a Jacobi
matrix with the same spectrum.

Another interesting result about this flow is that it is the solution of an
infinite time-horizon optimal control problem. This is given by the following
result proved in Sect. 4:

Theorem 1.3. Consider the following deterministic optimal control problem
over an infinite horizon:

min
U

∫ +∞

0

trace
(
([AT , A]du)T ([AT , A]du)

)
+ trace(UT U) ds,

subject to
dA

dt
= [U,A], (1.3)

where U(t) is a sufficiently smooth function taking value in the Lie algebra of
upper triangular matrices. Then the optimal value function is given by V (A) =
trace(AT A) and the optimal feedback is given by U = [AT , A]du, i.e the flow
(1.2) is the solution of this infinite horizon optimal control problem.

The paper is structured as follows. In Sect. 2 we introduce some notations
and we prove some preliminary results about the flow under study. These are
used to prove the convergence of the flow whenever the initial condition is
suitably chosen. Section 3 is the technical part of our work, where we prove
convergence. In particular, we show that if the flow is suitably initialized, then
the corresponding ω-limit set is indeed a single matrix of the desired form.

In Sect. 4, we show that the Hessenberg–Jacobi flow is the solution of
an infinite horizon optimal control problem. In the final Sect. 5 some simula-
tions, obtained using MatLabTM are presented. In particular, we show how to
construct tridiagonal matrices with prescribed characteristic polynomial using
the flow. We also show how the flow can be used to construct even dimen-
sional real skew-symmetric tridiagonal matrices with given simple imaginary
spectrum and with given sign pattern for the codiagonal elements.

In the sequel, we will work exclusively over the real field. All the matrices
involved will be real and will have real spectrum, except in the case of Sect. 5,
where one simulation will deal with real matrices with purely imaginary spec-
trum.

2. Some preliminary results

Given any n × n matrix A, we denote with Ad the matrix equal to A along
diagonal entries and zero everywhere else, with Au, the matrix equal to A along
strictly upper diagonal elements and zero everywhere else, and with Al the
matrix equal to A along strictly lower diagonal elements and zero everywhere
else. Here the subfix d stands for diagonal, u for strictly upper triangular
and l for strictly lower triangular. Moreover, we combine this notation in the
following way: the notation Adu stands for a matrix equal to A along diagonal
and strictly upper diagonal elements and zero everywhere else and similarly
for Adl.
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Let us indicate with H+ the vector space of upper real Hessenberg matri-
ces. Recall that a matrix A ∈ H+ if and only if Aij = 0 for i > j + 1. In other
terms A is an upper Hessenberg matrix if it is entirely zero below the first
subdiagonal. A completely analogous definition holds for a lower Hessenberg
matrix. Observe that H+ is not a Lie algebra under matrix commutator.

We will also denote with G0 the connected component containing the
identity of the Lie group of invertible upper triangular matrices with deter-
minant equal to one and with g0 the corresponding Lie algebra, consisting of
upper triangular matrices with trace equal to zero. Notice that matrices in G0

have necessarily positive diagonal entries.
As usual we denote with AT the transposition of A. Moreover, given a

matrix A0 with simple real spectrum Λ, we will denote with SΛ the compact
manifold consisting of all symmetric matrices isospectral to A0 and with TΛ the
manifold of all symmetric tridiagonal matrices isospectral to A0. In particular,
TΛ is a compact manifold of dimension n − 1 (for more information about TΛ

see [10] and [11]).
In this work we introduce the following nonlinear system of ODEs in Lax

form:
dA

dt
= [[AT , A]du, A] (2.1)

and we show that we can use (2.1) to obtain an explicit deformation from real
upper Hessenberg matrices to Jacobi matrices. For this reason we call it the
Hessenberg–Jacobi isospectral flow. We used it previously to diagonalize some
non-symmetric matrices with special structure in [12].

Notice that (2.1) can be viewed as a polynomial vector field on the vector
space of all n×n matrices with real coefficients; therefore the classical Theorem
of Existence and Uniqueness implies that the corresponding Cauchy problem
has always a unique (local) solution.

It is also well known that the flow associated to (2.1), being a Lax flow is
isospectral (see [13]), meaning that the eigenvalues of A(t) are first integrals.

The next lemma highlights some of the relevant properties of (2.1):

Lemma 2.1. For the vector field (2.1) the following properties hold:
1. H+ is an invariant vector space, namely if the initial condition A(0) is an

upper Hessenberg matrix, A(t) will remain upper Hessenberg for all times
for which the solution is defined.

2. The flow is forward complete, so A(t) exists for all t ≥ 0. More precisely
we have A(t) ∈ B(0, R], for all t ≥ 0 where B(0, R] is the closed ball in
R

n×n centered at zero, with radius R :=
√

trace(A(0)T A(0)).
3. Equilibria are symmetric matrices, hence tridiagonal within the vector space

of upper Hessenberg matrices.
4. If A(0) ∈ H+ and with simple real spectrum Λ, then the ω-limit set Ω(A(0))

is contained in the vector space of symmetric tridiagonal matrices, in par-
ticular Ω(A(0)) ⊂ TΛ.

Proof. To prove the first point, it is sufficient to observe that the right-hand
side of (2.1) is upper Hessenberg because the upper Hessenberg matrices form
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a vector space and because the product of an upper triangular matrix and an
upper Hessenberg matrix is necessarily upper Hessenberg.

To prove the second claim, we show that the Frobenius norm of A is
actually monotonically decreasing along (2.1), as long as [A(t)T , A(t)] �= 0.
Consider the positive definite function

V (A) := ‖A‖2
F := trace(AT A). (2.2)

Differentiating (2.2) with respect to (2.1) and using the facts trace(AB) =
trace(BA), trace(AT ) = trace(A) one obtains:

V̇ (A) = −2 trace([AT , A][AT , A]du). (2.3)

Since [AT , A] is a symmetric matrix, we can use the following fact to prove
that V̇ (A) is negative as long as [A(t)T , A(t)] �= 0. For a symmetric matrix X
the following decomposition holds:

XXdu =
(
(Xdu)T + Xu

)
Xdu and trace(XuXdu) = 0.

This implies that

V̇ (A) = −2 trace([AT , A][AT , A]du) = −2 trace
(
([AT , A]du)T [AT , A]du

)
= −2‖[AT , A]du‖2

F ≤ 0. (2.4)

Therefore the Lie derivative of V (A) along the vector field (2.1) is negative
definite, as long as [AT , A]du is nonzero, or equivalently as long as [AT , A] is
nonzero. Indeed, since [AT , A] is symmetric, [AT , A] and [AT , A]du contain the
same information. In particular the Frobenius norm of A remains bounded
and so the flow (2.1) is forward complete, since V (A) is a proper function. The
statement about A(t) ∈ B(0, R] follows immediately.

As for the third point, we observe that at an equilibrium V̇ (A) = 0, so
from (2.4) we get [AT , A]du = 0, which in turn implies [AT , A] = 0. Therefore
A is normal and together with the simplicity and reality of the spectrum we
conclude that A is symmetric (see [14]). Vice versa, if V̇ (A) = 0, then A is an
equilibrium as it is immediate to see.

Finally, for the fourth item we observe the following: since A(t) stays
in a closed ball and ‖A(t)‖F is strictly decreasing as long as A(t) is not an
equilibrium, we can extract a sequence of times {tn} converging to infinity, such
that A(tn) converges to a matrix A∞ ∈ Ω(A(0)), with ‖A∞‖F = inf ‖A(tn)‖F .
If A∞ were not an equilibrium, restarting the flow with initial data A∞ and
then taking ε > 0 and sufficiently small, we would get a matrix A∞(ε) with
‖A∞(ε)‖F < ‖A∞‖F . On the other hand, A∞(ε) is the limit of the matrices
A(tn + ε), as it is immediate to see using the properties of the flow map, but
‖A(tn + ε)‖F > ‖A∞‖F , which contradicts ‖A∞(ε)‖F < ‖A∞‖F . Therefore,
any accumulation point A∞ ∈ Ω(A(0)) is an equilibrium, hence symmetric
by the previous item. Moreover, since the flow preserves upper Hessenberg
matrices and A(0) is upper Hessenberg, then any accumulation point is actually
given by a tridiagonal symmetric matrix. In particular, the ω-limit set Ω(A(0))
is contained in SΛ, the compact manifold consisting of all symmetric matrices
isospectral to A(0). �
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While the forward completeness of flow (2.1) is easily proved in the previ-
ous lemma, it is not possible to conclude directly that T (t) and T (t)−1 remain
bounded from the fact that A(t) = T (t)A0T (t)−1, where T (t) ∈ G0.

We remark also that by the fourth point of Lemma 2.1, if A0 is upper
Hessenberg with simple real spectrum, then limt→+∞ A(t) converges to the
manifold TΛ, that properly contains the set J of Jacobi matrices.

The following lemma provides some further information about the evo-
lution of subdiagonal elements of an upper Hessenberg matrix A0 subject to
the evolution of (2.1):

Lemma 2.2. Assume A0 := A(0) is an upper Hessenberg matrix and suppose it
evolves according to (2.1). Then each subdiagonal element Ai+1,i i = 1, . . . , n−
1 evolves in the following way: if (A0)i+1,i = 0 then (A(t))i+1,i = 0 for all
future times, and if (A0)i+1,i �= 0, then (A(t))i+1,i can not change sign.

Proof. The proof is based on the following claim: the equation for the time
evolution of a subdiagonal element Ai+1,i has the form

dAi+1,i

dt
= Ai+1,i f(Ak,l),

where f is a suitable function of the entries of A. From this claim the lemma
follows immediately: if (A0)i+1,i = 0, then Ai+1,i stays zero, and if (A0)i+1,i �=
0, then Ai+1,i can not change sign. Indeed, a simple computation left to the
reader shows that in our case we have:

dAi+1,i

dt
= Ai+1,i

[(
[AT , A]du

)
i+1,i+1

−
(
[AT , A]du

)
i,i

]
, i = 1, . . . , n − 1,

and the lemma is proved. �

3. Convergence

We study the convergence properties of the flow (2.1) starting with an initial
datum A0 which is lower triangular, upper Hessenberg with simple spectrum
Λ and subdiagonal elements with given sign pattern (in particular they are all
different from zero). We call such an initial condition A0 admissible. We could
equally well use upper Hessenberg matrices with simple real spectrum Λ and
subdiagonal elements with given sign pattern, the only difference is that for
the initial data we consider the spectrum can be immediately read from the
matrix.

By Lemma 2.1 we know that if the flow (2.1) is initialized with an admis-
sible initial condition A0 with spectrum Λ, then the ω-limit set Ω(A0) is con-
tained in the compact manifold of symmetric tridiagonal matrices isospectral
to A0, i.e. Ω(A0) ⊂ TΛ. However, we still do not know if Ω(A0) is actually a
singleton and if it is a matrix of the desired form, since in principle, it could
also be a matrix in which some of the codiagonal elements are zero. Indeed, it
is not immediate to prove that the solution of (2.1) with an admissible initial
condition A0 will converge to a tridiagonal symmetric matrix with the given
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sign pattern for the codiagonal elements and to achieve this goal we will use a
series of intermediate results.

First of all, we can give a more precise description of the ω-limit set after
the following lemma:

Lemma 3.1. Let A0 be an admissible initial condition for (2.1). Then there is
no T upper triangular and with determinant one and belonging to G0 such that
(TA0T

−1)i+1,i = 0, for i = 1, . . . , n − 1. Moreover, for all T upper triangular,
with determinant one and belonging to G0, we have that sign((A0)i+1,i) =
sign((TA0T

−1)i+1,i), i = 1, . . . , n − 1.

Proof. A simple computation left to the reader shows that

(TA0T
−1)i+1,i = Ti+1,i+1(A0)i+1,i(T−1)ii, (3.1)

for i = 1, . . . , n − 1. Since (A0)i+1,i �= 0 and T has determinant one, all its
diagonal entries are different from zero and the same is true for T−1. In this
way the first claim is proved. Since T belongs to the connected component
containing the identity of the Lie group of upper triangular matrices with
determinant one, it follows that all of its eigenvalues are positive, and the
same is true for its inverse T−1. Therefore from Eq. (3.1) the second claim
about preservation of signs follows. The second claim follows also directly from
Lemma 2.2. �

In the following we outline and prove that T (t) and T (t)−1, with
A(t) := T (t)A0T (t)−1 remain bounded for t ≥ 0 based on the fact that
‖[AT (t), A(t)]du‖F converges to zero exponentially fast.

First observe that since A evolves following (2.1), it is immediate to see
that T evolves according to

dT

dt
= [AT , A]duT =

[
(TA0T

−1)T , TA0T
−1

]
du

T, (3.2)

where (3.2) holds on [0, tmax), the maximal interval of existence. The fact that
A(t) is bounded for all future times, does not imply that T (t) is also bounded
for all future times.

Considering ‖T‖2
F := trace(TTT ) we have

d‖T‖2
F

dt
= 2 trace([AT , A]duTTT ) ≤ 2 ‖TTT ‖F ‖[AT , A]du‖F

≤ 2 ‖T‖2
F ‖[AT , A]du‖F ,

using the Cauchy–Schwarz inequality for the scalar product 〈A,B〉 :=
trace(ABT ) and the sub-multiplicative property of the Frobenius norm:
‖AB‖F ≤ ‖A‖F ‖B‖F . After a straightforward simplification, we get imme-
diately

1
‖T (t)‖F

d‖T (t)‖F

dt
≤ ‖[AT (t), A(t)]du‖F (3.3)

and integrating both sides of (3.3) along the solution of (2.1) starting at an
admissible initial condition A0 we obtain the following estimate:
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ln(‖T (t)‖F ) − ln(‖T (0)‖F ) ≤
∫ t

0

‖[AT (s), A(s)]du‖F ds. (3.4)

Therefore, to prove that ‖T (t)‖ remains bounded, it is sufficient to show that
the integral on the right hand side of (3.4) is convergent as t goes to +∞. This
is the case if ‖[AT (t), A(t)]‖F converges to zero sufficiently fast. Moreover, to
prove that ‖T−1(t)‖ remains bounded, we just observe that from TT−1 = Id
we get immediately dT −1

dt = −T−1[AT , A]du. Using the same estimates we used
above we obtain

d‖T−1‖2
F

dt
≤ 2 ‖T−1‖2

F ‖[AT , A]du‖F ,

from which we get the counterpart of inequality (3.4) for T−1:

ln(‖T (t)−1‖F ) − ln(‖T (0)−1‖F ) ≤
∫ t

0

‖[AT (s), A(s)]du‖F ds. (3.5)

Next, we are going to prove that ‖[AT (t), A(t)]du‖F converges to zero
exponentially fast along a solution of (2.1) starting at an admissible initial
condition A0. To do this, we actually prove a more general statement, namely
that ‖[AT (t), A(t)]du‖F converges to zero exponentially fast starting from any
A0 with simple real spectrum Λ.

The main idea is to prove that the compact manifold SΛ of all symmetric
matrices isospectral to A0 is exponentially attracting for the flow (2.1), where
A0 is any matrix with simple real spectrum Λ. This manifold contains all the
ω-limit sets for initial data A0 with simple real spectrum Λ due to Lemma 2.1.

Now we recall some results and definitions from [15].

Definition 3.2. [15] An invariant manifold Q ⊂ R
n for a vector field dx

dt =
f(x) is called exponentially attracting for this vector field if there exists a
neighborhood W of Q and positive constants K and γ such that for any point
x0 = x(0) ∈ W and for t ≥ 0 the following inequality holds:

d(x(t),Q) ≤ Ke−γtd(x0,Q),

where d is a distance function.

Following [15], consider along with the vector field dx
dt = f(x) the system

dx

dt
= f(x)

dξ

dt
= Df(x)ξ, (3.6)

where Df is the Jacobian of f . System (3.6) can be interpreted as the family
of all linearizations of dx

dt = f(x) along its solutions; in fact if x(t) is a solution
of dx

dt = f(x), then dξ
dt = Df(x(t))ξ is a non-autonomous linear system. In the

following, x(t) will be assumed to be a solution lying on Q. For each x ∈ Q,
let us denote with TxQ the tangent space at x to Q and NxQ its orthogonal
complement (for a choice of a Riemannian metric in the environment). Let us
also denote with Px : TxR

n → NxQ the projection operator sending vector
ξ ∈ TxR

n onto NxQ.
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Definition 3.3. [15] An invariant manifold Q of dx
dt = f(x) is called exponen-

tially stable in linear approximation if for any trajectory x(t) lying on Q and
any ξ(0) the corresponding solution of system (3.6) satisfies for t ≥ 0 the
following inequality

‖ν(t)‖ ≤ Ke−βt‖ν(0)‖, ν(t) = Px(t)ξ(t), β > 0 (3.7)

where the constants K and β can be chosen to be independent on the choice
of x(0) and ξ(0).

The following result highlights the connection between the two definitions
above:

Theorem 3.4. [15] An invariant compact manifold Q is exponentially attracting
if and only if Q is exponentially stable in linear approximation.

We apply the previous result taking SΛ for the manifold Q. In this case
Q consists of a manifold of equilibria, so to check that property (3.7) holds it is
sufficient to linearize the flow (2.1) at an arbitrary equilibrium point S0 ∈ SΛ

and check that the normal directions to TS0SΛ are decreasing exponentially
fast.

First we need to define the projection to the normal space NS0SΛ, which
is achieved in the next lemma:

Lemma 3.5. Call S0 any point in SΛ and denote with TS0SΛ the tangent space
to SΛ at S0. For any P tangent vector to the space Mn×n of n×n matrices at
S0, P = [U, S0], its projection to the orthogonal complement NS0SΛ of TS0SΛ

in the space of all matrices is given by

πN (P ) :=
P − PT

2
,

where the orthogonal complement NS0SΛ of TS0SΛ is taken with respect to the
Riemannian metric 〈A,B〉 := trace(ABT ).

Proof. The space TS0SΛ is given described by vectors of the form [V, S0] where
V varies in the Lie algebra of skew symmetric matrices. Therefore, the projec-
tion πT : TS0Mn×n → TS0SΛ is given by

πT (P ) = πT ([U, S0]) =
[
U − UT

2
, S0

]
with P = [U, S0] ∈ TS0Mn×n.

Therefore, πN = Id − πT is given by

πN (P ) = P − πT (P ) =
[
U + UT

2
, S0

]
=

P − PT

2
.

It is immediate to check that πN (P ) and πT (P ) are orthogonal to each other
with respect to 〈A,B〉 := trace(ABT ) because πN (P ) is skew-symmetric while
πT (P ) is symmetric. �

To prove that SΛ is indeed linearly exponentially stable, we need to lin-
earize the flow (2.1) at a point S0 ∈ SΛ. Recall that such an S0 is a symmetric
matrix with simple spectrum. In order to obtain the linearization, we write a
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first order deformation of S0 as dS0 = S0 + P (t) and we obtain an equation
for P (t):

Lemma 3.6. The linearization of (2.1) at S0 is given by

Ṗ (t) =
[
([PT , S0] + [S0, P ])du, S0

]
= [[S0, P − PT ]du, S0]. (3.8)

Proof. Equation (3.8) can be obtained substituting S0 + P (t) instead of A in
(2.1), and then using the fact that S0 is an equilibrium and collecting the terms
linear in P and disregarding those that have a quadratic or cubic dependence
on P . �

We are interested to show that if P (t) evolves according to the lineariza-
tion (3.8) than its normal component

ν(t) := πN (P (t)) =
P − PT

2
∈ NS0SΛ (3.9)

is converging to zero exponentially fast. This will allow us to conclude that SΛ

is linearly exponentially stable.
We have the following key result:

Proposition 3.7. The normal component ν(t) = P (t)−P (t)T

2 , where P (t) evolves
according to (3.8) converges to zero exponentially fast.

Proof. To prove this we consider the Lie derivative of the Frobenius norm
‖ν(t)‖2

F along the vector field (3.8). Notice that this is proportional to ‖P −
PT ‖2

F up to a constant. We obtain

d‖ν‖2
F

dt
= 2 trace

(
νT

(
−

[
[ν, S0]du + ([ν, S0]du)T , S0

]))

= 2 trace
(
[νT , S0]

(
[ν, S0]du + ([ν, S0]du)T

))
,

which is equal, since νT = −ν to

−2 trace
(
[ν, S0]

(
[ν, S0]du + ([ν, S0]du)T

))
.

Now [ν, S0] is clearly symmetric, therefore, [ν, S0]du + ([ν, S0]du)T = [ν, S0] +
[ν, S0]d. Thus

d‖ν‖2
F

dt
= −2 trace ([ν, S0] ([ν, S0] + [ν, S0]d))

= −2 trace ([ν, S0][ν, S0]) − 2 trace ([ν, S0][ν, S0]d) ,

and both terms on the right are negative semidefinite. To prove that the qua-
dratic form obtained from d‖ν(t)‖2

F

dt is indeed negative definite on NS0SΛ it
is sufficient to look at trace([ν, S0][ν, S0]). This term is zero iff [ν, S0] = 0,
but S0 is symmetric with simple spectrum, being isospectral to A0, while ν
is skewsymmetric and therefore (see [14]) [ν, S0] = 0 iff ν = 0. This means
that the quadratic form d‖ν(t)‖2

F

dt is indeed negative definite on NS0SΛ and this
shows that ν converges to zero exponentially fast due to Lyapunov linearization
theorem. �

We can now prove the following.
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Theorem 3.8. The manifold SΛ is exponentially attracting for the flow (2.1)

Proof. From Proposition 3.7 we have that ν(t) is converging to zero exponen-
tially fast because the quadratic form d‖ν(t)‖2

F

dt is negative definite on NS0SΛ,

for each S0 ∈ SΛ. In particular the eigenvalues of the quadratic form d‖ν(t)‖2
F

dt
are negative and they are bounded away globally from 0 as S0 varies on SΛ

because SΛ is compact and the quadratic form is continuous. Therefore there
exist positive constants K and β, independent on S0 such that the bound in
the Definition 3.3 holds (see for instance Observation 9.3 in [15]). Therefore
SΛ is linearly exponentially stable and by Theorem 3.4 it follows that SΛ is
exponentially attracting. �

The time evolution of ‖ν(t)‖F is related to the time evolution of
‖[A(t)T , A(t)]du‖F , at least in the linearization. Indeed we have the follow-
ing lemma.

Lemma 3.9. Let A(t) be a solution of the flow (2.1). The quantity [AT (t),
A(t)]du converges to zero exponentially fast if ν(t), evolving according to (3.8)
converges to zero exponentially fast.

Proof. First it is immediate to check that [AT , A] = 2[Asym, Ask], where Asym

is the symmetric part of A and Ask is the skew-symmetric part of A. Then we
have ‖[AT , A]‖F ≤ 4‖Asym‖F ‖Ask‖F . Since ‖Asym‖F is bounded because of
‖Asym‖2

F ≤ ‖Asym‖2
F + ‖Ask‖2

F = ‖A‖2
F which is bounded by Lemma 2.1, we

can write

‖[AT , A]‖F ≤ C‖Ask‖F , (3.10)

for some constant C > 0. On the other hand, the time evolution of the lin-
earization of the skew-symmetric part Ask at S0 is given by

1
2

[
dU

dt
, S0

]
− 1

2

[
dU

dt
, S0

]T

=
Ṗ − ṖT

2
=

dν

dt
,

since Ask = A−AT

2 and due to Eqs. (3.8) and (3.9). By Proposition 3.7 we
have that ‖ν(t)‖F is converging to zero exponentially fast, and likewise it is
‖[AT , A]‖F by inequality (3.10). Therefore ‖[AT , A]du‖F is also converging to
zero exponentially fast, since ‖[AT , A]du‖F ≤ ‖[AT , A]‖F . �

Let us remark that Lemma 3.9 proves that the integral
∫ t

0
‖[AT (s),

A(s)]du‖F ds is convergent for t → +∞ along a solution of (2.1), for any
initial data A0 with simple spectrum, not just for the class of A0 which are
upper Hessenberg and lower diagonal with simple real spectrum. However, we
apply this convergence result to that case.

Combining the results so far obtained, we can prove the following.

Theorem 3.10. Let A(t) be the solution of (2.1) starting from an admissible
initial condition A0. Then limt→+∞ A(t) converges exponentially fast to the set
of tridiagonal symmetric matrices isospectral to A0 with the given sign pattern
for codiagonal elements.
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Proof. By Lemma 3.9 we know that ‖[A(t)T , A(t)]du‖F is converging expo-
nentially fast to zero. In particular, this implies that ‖T (t)‖F and ‖T−1(t)‖F

remain bounded because of inequality (3.4) and inequality (3.5), respectively.
Therefore the eigenvalues of T (t) and T−1(t) remain bounded and bounded
away from zero. This allows us to apply Lemma 3.1 in the limit for t → +∞
and to conclude that A(t) can not converge to the set of diagonal matri-
ces, in particular limt→+∞ A(t)i+1,i �= 0 for i = 1, . . . , n − 1. Moreover, since
by Lemma 2.1 A(t) converges to the set of symmetric tridiagonal matrices
isospectral to A0 and the subdiagonal elements of A(t) can not change sign by
Lemma 2.2, we have that A(t) has to converge to the set of tridiagonal sym-
metric matrices isospectral to A0 with the same sign pattern for codiagonal
elements as the sign pattern of subdiagonal elements of A0. �

Our final goal is to show that the ω-limit for an admissible initial con-
dition A0 is indeed a single point. Since SΛ is exponentially attracting, it is
in particular normally hyperbolic, so one could invoke the theory of normal
hyperbolic manifolds to claim that the ω-limit set is in this case a singleton.
However, in our case, we prefer to give a self-consistent elementary proof of
this fact.

We conclude with the following:

Theorem 3.11. Let A0 be an admissible initial condition for (2.1). Then Ω(A0)
is a singleton and it is a symmetric tridiagonal matrix, isospectral to A0 with
codiagonal elements having the same sign pattern as the subdiagonal elements
of A0. Therefore the flow (2.1) performs an explicit deformation from a upper
Hessenberg matrix to a symmetric tridiagonal matrix preserving the spectrum.

Proof. The only claim we need to prove is that Ω(A0) is a singleton. Since the
Frobenius norm is sub-multiplicative we obtain

‖[[AT , A]du, A]F ‖ ≤ 2‖[AT , A]du‖F ‖A‖F .

Therefore we have:

lim
t→+∞

∫ t

0

‖[[AT (s), A(s)]du, A(s)]‖F ds

≤ 2 lim
t→+∞

∫ t

0

‖[AT (s), A(s)]du‖F ‖A(s)‖F ds

≤ lim
t→+∞

∫ t

0

‖[AT (s), A(s)]du‖F K ds < +∞,

since ‖A‖ can be bounded by a constant K due to Lemma 2.1, and the integral
of ‖[AT , A]du‖ along a solution is convergent by Lemma 3.9. This is enough
to conclude that Ω(A0) is indeed a singleton, since the convergence of the
improper integral above says that the length of the solution curve is finite. �
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4. Optimality of the flow

Let us observe that Eq. (1.1) can be also viewed as a realization of the choice
of a feedback for a controlled Lax system of the form

dA

dt
= [U,A], (4.1)

where matrix function U = U(t) is the control input. Then one can view
Eq. (4.1) as a general control system; to obtain a specific behavior, one has
not only to select a admissible initial condition A(0) := A0 but also to choose
a specific feedback control law that substituted in place of U(t) makes the
system behave in a desired way.

In this section, we show that the system introduced is the solution of
an infinite time horizon optimal control problem, using the Hamilton–Jacobi–
Bellman approach.

Theorem 4.1. Consider the following deterministic optimal control problem
over an infinite horizon:

min
U

∫ +∞

0

trace
(
([AT , A]du)T ([AT , A]du)

)
+ trace(UT U) ds,

subject to
dA

dt
= [U,A], (4.2)

where U(t) is a sufficiently smooth function taking value in the Lie algebra of
upper triangular matrices. Then the optimal value function is given by V (A) =
trace(AT A) and the optimal feedback is given by U = [AT , A]du, i.e the flow
(2.1) is the solution of this infinite horizon optimal control problem.

Before proving Theorem 4.1, observe that U is not assumed to have zero
trace, but just to be upper triangular. The fact that U has zero trace is then
a consequence of the form of the optimal solution.

Proof. The Hamilton–Jacobi–Bellman equation which determines the optimal
U(t) for the problem above is given by

min
U

[
trace

(
([AT , A]du)T ([AT , A]du) + UT U

)
+

d

dt
V (A)

]
= 0. (4.3)

If the value function is smooth, the fulfillment of the above equation is a suffi-
cient condition for optimality (see for instance [16]). With V (A) = trace(AT A)
and after some straightforward manipulations, Eq. (4.3) reads

min
U

[
trace

(
([AT , A]du)T ([AT , A]du) + UT U − 2[AT , A]U

)]
= 0.

Notice that since U is upper triangular, we have in the previous equation
that trace(2[AT , A]U) = trace(2[AT , A]dlU) = trace(2UT [AT , A]du), since
([AT , A]dl)T = [AT , A]du. Therefore, the Hamilton–Jacobi–Bellman equation
becomes

min
U

[
trace

(
([AT , A]du)T ([AT , A]du) + UT U − 2[AT , A]duUT

)]
= 0.
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To find the optimal U we just take the gradient with respect to U of

trace
(
([AT , A]du)T ([AT , A]du) + UT U − 2[AT , A]duUT

)
,

and set it to zero. Since
d

dt
trace(UT U) = 2trace

(
UT dU

dt

)
=

〈
∇U trace(UT U),

dU

dt

〉
,

where 〈A,B〉 is the usual Riemannian metric trace(AT B), using the definition
of gradient we have that

∇U trace(UT U) = 2U.

Analogously, one finds in a similar manner

∇U

(
2trace([AT , A]duUT

)
= 2[AT , A]du.

Therefore the optimal U upper triangular is given by [AT , A]du and it is indeed
a minimum since the expression

trace(([AT , A]du)T ([AT , A]du) + UT U − 2[AT , A]duUT )

is quadratic in U and convex. Substituting U = [AT , A]du in the above expres-
sion yields zero identically and consequently V (A) = trace(AT A) is the value
function and U is the optimal feedback control. �

5. Some applications and simulations

In this section we present some applications of the flow introduced and some
simulations partly illustrating the convergence and also extending the scope
of applicability of the flow. Simulations are implemented using MatLabTM ODE
solvers ode15s and ode23s.

We use the notation introduced in [17] in which two row vectors are
used to describe tridiagonal symmetric matrices, one for the diagonal entries,
the other for codiagonals. First we examine some simulations illustrating the
convergence properties of the system introduced.

We show that one can indeed generate an arbitrary sign pattern in the
codiagonal elements, choosing the same sign pattern in the lower diagonal
elements of A0. Suppose A0 is a 7 × 7 lower bidiagonal matrix with diagonal
entries given by [1, 2, 3,−4, , 5,−6, 7] and with lower diagonal entries given by
[−10,−10,−10, 10,−10, 10].

Using our flow, a numerical approximation of the corresponding ω-limit
point is a symmetric tridiagonal matrix Ω(A0) with diagonal entries given
by [2.1623, 1.5243,−0.9848, 1.9942,−0.8570, 1.6415, 2.5195] and with codi-
agonal entries given by [−1.0552,−3.6127, −3.4461, 3.2230,−4.4945, 1.5824].
The spectrum σ(Ω(A0)) = {−6.0002,−3.9988, 1.0004, 1.9994, 2.9993, 4.9992,
7.0007} is within the third decimal digit from the spectrum of A0. It can be
seen that the sign pattern has been faithfully reproduced.

Secondly, let us observe that instead of using an admissible initial condi-
tion A0 for the flow as previously defined, one can initialize the flow with an
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initial condition that is the Frobenius companion matrix associated to the char-
acteristic polynomial. Indeed, it could be useful to construct a Jacobi matrix
by specifying the eigenvalues (inverse problem for Jacobi matrices) or the char-
acteristic polynomial without computing the eigenvalues (but assuming that
the roots of the polynomial are simple and real). For instance, suppose we want
to construct an 8 × 8 symmetric tridiagonal with the following characteristic
polynomial:

p(x) = x8 + 2x7 − 67
2

x6 − 52x5 +
5689
16

x4 +
3019

8
x3

−21549
16

x2 − 5769
8

x +
2832

2
.

The Frobenius companion matrix (which is automatically in upper Hessen-
berg form) of this characteristic polynomial is easily computed. From what we
proved previously we know that Ω(A0) corresponds to a Jacobi matrix with
the given spectrum. Indeed the simulation shows that a numerical approxima-
tion to Ω(A0) has diagonal entries given by [0.5871,−1.0067, 0.9614,−1.4554,
1.2097,−1.7632, 1.3971,−1.9301] and with codiagonal entries given by [1.0132,
0.7670, 1.9364, 1.1970, 2.7854, 1.2024, 3.4866]. Notice that using the companion
matrix there are no additional parameters involved in the determination of A0.

Finally we give an example to show that the scope of applicability of
this flow might be extended beyond what has been proved in the main part
of the paper. We construct an even dimensional real skew-symmetric tridi-
agonal matrices with given simple imaginary spectrum and with given sign
pattern for the codiagonal elements. Suppose we want to construct such a
matrix with dimension n = 8 and with a sign pattern for subdiagonal ele-
ments given by {+,−,+,+,+,−,−} and with spectrum {±i,±3i,±

√
2i,±4i}.

Then we consider as initial condition for the flow the following tridiagonal
non-symmetric matrix A. The entries of the upper codiagonal are given by
[−1, 0,−3, 0,−1.4142, 0, 4]. The entries of the main diagonal are all zero and
the entries of the lower codiagonal are given by [1,−1, 3, 1, 1.4142,−1,−4].
Now it is immediate to see that A0 has the specified spectrum, because it is
block-diagonal. Moreover, the sign pattern for subdiagonal elements in A0 is
indeed given by {+,−,+,+,+,−,−}. Using the flow (2.1) we obtain the fol-
lowing skew-symmetric tridiagonal matrix Ω(A0) with lower codiagonal entries
given by [1.0827,−0.7826, 2.7384, 0.8289, 1.4986,−1.0929,−3.8196]. This has
the right sign pattern for codiagonal elements and has spectrum given by
{±1, 000i,±1.4142i,±3.000i,±4.000i}.

We plan to further address this possible application, studying the flow
on complex matrices.
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