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Abstract. We derive Hardy inequalities in weighted Sobolev spaces via
anticoercive partial differential inequalities of elliptic type involving A-
Laplacian −ΔAu = −divA(∇u) ≥ Φ, where Φ is a given locally integrable
function and u is defined on an open subset Ω ⊆ R

n. Knowing solutions we
derive Caccioppoli inequalities for u. As a consequence we obtain Hardy
inequalities for compactly supported Lipschitz functions involving certain
measures, having the form∫

Ω

FĀ(|ξ|)μ1(dx) ≤
∫

Ω

Ā(|∇ξ|)μ2(dx),

where Ā(t) is a Young function related to A and satisfying Δ′-condition,
while FĀ(t) = 1/(Ā(1/t)). Examples involving Ā(t) = tp logα(2+t), p ≥ 1,
α ≥ 0 are given. The work extends our previous work (Skrzypczaki, in
Nonlinear Anal TMA 93:30–50, 2013), where we dealt with inequality
−Δpu ≥ Φ, leading to Hardy and Hardy–Poincaré inequalities with the
best constants.
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1. Introduction

In this paper we derive Hardy–Sobolev inequalities having the form∫
Ω

FĀ(|ξ|)μ1(dx) ≤
∫

Ω

Ā(|∇ξ|)μ2(dx), (1.1)

where ξ : Ω → R is compactly supported Lipschitz function, Ω is an open
subset of R

n not necessarily bounded, Ā(t) is an N -function satisfying Δ′-
condition and FĀ(t) = 1/(Ā(1/t)). The involved measures μ1(dx), μ2(dx)
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depend on u—a nonnegative weak solution to the anticoercive partial dif-
ferential inequality of elliptic type involving A-Laplacian:

− ΔAu = −divA(∇u) = −div
(

Ā(|∇u|)
|∇u|2 ∇u

)
≥ Φ in Ω, (1.2)

with a locally integrable function Φ. Rather general function Φ is allowed. It
can be even negative or sign changing if only there exists σ ∈ R such that

Φ + σ
Ā(|∇u|)

g(u)
χ{∇u�=0} ≥ 0 a.e., (1.3)

where nonnegative function g satisfies some compatibility conditions (see
Assumption (Ψ), i.e. (2.11) and (2.12)).

Operators related to this type of Ā are considered in regularity theory
[10,31,32,58,62].

The motivation to consider Hardy–Sobolev-type inequalities (1.1) is clear.
They are widely spread in various fields of analysis playing significant role
among others in functional analysis, harmonic analysis, probability theory,
and PDEs. In the theory of PDEs they are used to obtain a priori estimates,
existence, regularity results, and to study qualitative properties of solutions
and their asymptotic behaviour [3,6,12,13,33,34,57,72]. Hardy inequalities are
applied to derivation of embedding theorems, Gagliardo–Nirenberg interpola-
tion inequalities and in real interpolation theory [21,22,29,38–40,45]. More-
over, functions achieving the best constants in Hardy–Sobolev-type inequalities
satisfy some nonlinear eigenvalue problems [16, Chapter 5]. Weighted Sobolev
spaces related to inequalities with various weights are investigated e.g. in books
[51,63] and papers [48,49,64]. Furthermore, Orlicz–Sobolev spaces are consid-
ered e.g. in [2,5,20,27,35].

Hardy–Sobolev-type inequalities are also interesting on their own [52–
54,61]. Many authors consider generalized versions of the inequalities with
remainder terms [1,4,28] as well as those expressed in Orlicz setting [15,17,
44,46]. Recently, Hardy-type inequalities are investigated also on Riemannian
manifolds [26].

Hardy-type inequalities in Orlicz framework are considered in particular
in [19]. We find there balance conditions for A,B—a pair of (not necessarily
equal) Young functions for the validity of inequalities of the form∥∥∥∥ ξ(x)

d1+θ(x)

∥∥∥∥
LB(Ω)

≤
∥∥∥∥∇ξ(x)

dθ(x)

∥∥∥∥
LA(Ω)

, (1.4)

where d is distance from the boundary of open and bounded domain Ω with
Lipschitz-continuous boundary and ξ is sufficiently smooth function with com-
pact support in Ω. We note that in (1.4), unlike in our inequality (1.1), B is
the function of ξ/d1+θ(x) and A is the function of (∇ξ)/dθ(x).

Similar results dealing with conditions for validity of inequality
∫

Ω

Ψ
( |ξ(x)|

d1+θ(x)

)
dx ≤ C

∫
Ω

Ψ
( |∇ξ(x)|

dθ(x)

)
dx, (1.5)
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where d(x) is distance from the boundary of open and bounded Ω (sufficiently
regular) and ξ is sufficiently smooth function with compact support in Ω, we
find in the recent paper [14]. The conditions are expressed in the terms of
capacities. Note that the left-hand side of (1.1) is of similar, but different type
than left hand side in (1.5).

Our purpose is to give the constructive method of derivation of Hardy–
Sobolev inequalities on the basis of nonlinear problems. We find such an
approach in papers by Barbatis, Filippas, and Tertikas [7,8], where Hardy–
Sobolev inequalities are derived on a domain where certain power of distance
function is p-superharmonic. Futhermore, in papers of D’Ambrosio [23–25] the
author derives inequality related to (1.1) involving Ā(λ) = FĀ(λ) = λp as the
consequence of inequality −Δp(uα) ≥ 0 with certain constant α.

Our cosiderations are based on the methods from [47] developed further
in [68]. The idea is as follows. In [47] the authors investigate nonexistence of
nontrivial nonnegative weak solutions to the A-harmonic problem

− ΔAu ≥ Φ(u) on R
n, (1.6)

where Φ is a nonnegative function. Among other results, the authors derive
Caccioppoli-type estimate for nonnegative weak solutions to (1.6).

In [68] we considered the case when

− Δpu ≥ Φ in Ω, (1.7)

with a locally integrable function Φ satisfying less restrictive conditions than in
[47]. As it is shown in [68], the certain substitution in the derived Caccioppoli-
type inequality for solutions, implies the family of Hardy-type inequalities
having the form ∫

Ω

|ξ|pμ1,β(dx) ≤
∫

Ω

|∇ξ|pμ2,β(dx),

where 1 < p < ∞, ξ : Ω → R is compactly supported Lipschitz function, and
Ω is an open subset of R

n. The involved measures μ1,β(dx), μ2,β(dx) depend
on a certain parameter β and on u—a nonnegative weak solution to (1.7). It
leads among other results to classical Hardy and Hardy–Poincaré inequalities
with optimal constants (see [68,69], respectively). We retrieve this results as
the special case here and therefore we confirm all the examples from [68,69].

Our goal now is to extend techniques from [68] to the more general sit-
uation when we deal with (1.2) instead of (1.7). We supply new weighted
power-logarithmic Hardy–Sobolev inequalities of the form∫

Ω

|ξ|p log−α(2 + 1/|ξ|) μ1(dx) ≤ C̃

∫
Ω

|∇ξ|p logα(2 + |∇ξ|) μ2(dx)

for compactly supported Lipschitz functions ξ, which result from the methods
introduced in this paper.

The method may be used not only to construct new inequalities. We
indicate also estimates for constants in the inequalities, which can be useful
in investigating existence, as well as regularity in theory of partial differential
equations in weighted Sobolev and Orlicz–Sobolev spaces.
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2. Preliminaries

Notation
In the sequel we assume that Ω ⊆ R

n is an open subset not necessarily
bounded.

By A-harmonic problems we understand those, which involve A-Laplace
operator ΔAu = div(A(∇u)), understood in the weak sense, where A : R

n →
R

n is a C1-function. Choosing A(λ) = |λ|p−2λ we deal with the usual p-
Laplacian.

We restrict ourselves to A’s such that A(λ) = B(|λ|)λ, λ ∈ R
n, and we

set
Ā(s) = B(s)s2, where s ∈ [0,∞). (2.1)

We assume that Ā is a Young function, i.e. it is an integral of nonzero,
nonnegative nondecreasing function. In particular it is increasing, convex,
and lims→0 Ā(s) = 0. We refer to the monographs [55,66] for basic prop-
erties of Orlicz spaces. By Ā∗ we denote the Legendre transform of Ā, i.e.
Ā∗ = supt>0(st − Ā(t)).

As usual, Ck(Ω) (respectively Ck
0 (Ω)) denotes functions of class Ck

defined on an open set Ω ⊂ R
n (respectively Ck-functions on Ω with compact

support). If f is defined on Ω, by fχΩ we understand function f extended by
0 outside Ω. When V ⊆ R

n, by |V | we denote its Lebesgue’s measure. Having
an arbitrary u ∈ L1

loc(Ω) it is possible to define its value at every point by the
formula

u(x) := lim sup
r→0

∫
B(x,r)∩Ω

u(y)dy. (2.2)

We write f ∼ g if function f is comparable with function g, i.e. if there
exist positive constants c1, c2 such that for every x

c1g(x) ≤ f(x) ≤ c2g(x).

We deal with Δ2 and Δ′ conditions defined below.

Definition 2.1. We say that the function F : [0,∞) → [0,∞) satisfies the Δ2-
condition (denoted F ∈ Δ2), if there exists a constant C̄F > 0 such that for
every s > 0 we have

F (2s) ≤ C̄F F (s). (2.3)

Definition 2.2. We say that the function F : [0,∞) → [0,∞) satisfies the Δ′-
condition (denoted F ∈ Δ′), if there exists a constant CF > 0 such that for
every s1, s2 > 0 we have

F (s1s2) ≤ CF F (s1)F (s2). (2.4)

Remark 2.1. Let us note that the Δ′-condition is stronger than the Δ2-
condition.

Typical examples of functions satisfying the Δ′-condition can be found
among Zygmund-type logarithmic functions. Their construction is based on
the following easy observation.



Vol. 21 (2014) Hardy inequalities resulted from nonlinear problems 845

Fact 2.1. [42] The family of functions satisfying Δ′-condition is invariant under
multiplications and compositions.

Example 2.1. [42] The following functions satisfy Δ′-condition:
1. F (s) = sp, 1 ≤ p < ∞,
2. Mp,α(s) = sp(log(2 + s))α, 1 ≤ p < ∞, α ≥ 0,
3. M1

p,α(s) = sp(log(1 + s))α, 1 ≤ p < ∞, α ≥ 0,
4. F (s) = Mp1,α1 ◦ Mp2,α2 ◦ · · · ◦ Mpk,αk

(s), α1, . . . , αk ≥ 0, pi ≥ 1 for i =
1, . . . , k.

Let us state some useful facts and lemmas.

Fact 2.2. Let F (s) = sp logα(b + s), b > 1, p ≥ 1, α > 0. Then F satisfies the

Δ′-condition (see Definition 2.2) and CF ≤
(

2
log b

)α

.

Proof. Suppose 0 < s1 ≤ s2. Then

log(b + s1s2) ≤ log(b + s2
2) ≤ log(b + s2)2

= 2 log(b + s2) ≤ 2 log(b + s2) · log(b + s1)
log b

and

F (s1s2) = (s1s2)p logα(b + s1s2) ≤
(

2
log b

)α

sp
1s

p
2 logα(b + s1) logα(b + s2)

=
(

2
log b

)α

F (s1)F (s2).

�
The following lemma comes from [44] (Lemma 4.2 therein), where the

authors require F to be an N -function, whereas its proof holds for every Young
function as well.

Lemma 2.1. Suppose that F is a differentiable Young function satisfying Δ2-
condition. Then there exists constants 1 ≤ dF ≤ DF , such that for every r > 0

dF
F (r)

r
≤ F ′(r) ≤ DF

F (r)
r

. (2.5)

Moreover for every r, s > 0 the following estimate holds true
F (r)

r
s ≤ DF − 1

dF
F (r) +

1
dF

F (s). (2.6)

Remark 2.2. We have the following observations.
1. When F (r) = rp, 1

p + 1
p′ = 1, we get rp−1s ≤ 1

p′ r
p + 1

psp, equivalent to

Young inequality qs ≤ qp′

p′ + sp

p .

2. For general convex function F the latter inequality in (2.5) with finite con-
stant DF is equivalent to F ∈ Δ2, while the condition dF > 1 is equivalent
to F ∗ ∈ Δ2 (see [55], Theorem 4.3, or [43], Proposition 4.1). If dF and DF

are the best possible in (2.5), they are called Simonenko lower and upper
index of F , respectively (see e.g. [11,30,37,67]) for definition and discussion
of their properties.
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Fact 2.3. Let F (s) = sp logα(b + s), b > 1, p ≥ 1, α ≥ 0. Then the constants
in (2.5) satisfy DF ≤ p + α

log b and dF = p.

Proof. F ′(s) = (sp logα(b + s))′ = psp−1 logα(b+s)+α sp

b+s logα−1(b+s)

= sp−1 logα(b+s)
(
p+α s

(b+s) log(b+s)

)
≤ F (s)

s

(
p+ α

log(b+s)

)
≤

(
p+ α

log b

)
F (s)

s ,

thus DF ≤ p+ α
log b . Moreover, F ′(s) ≥ dF

F (s)
s , with

dF = infs>0

(
p + α s

(b+s) log(b+s)

)
. �

Orlicz–Sobolev spaces

By W 1,Ā(Ω) we mean the completion of the set

{u ∈ C∞(Ω) : ‖u‖W 1,Ā(Ω) := ‖u‖LĀ(Ω) + ‖∇u‖LĀ(Ω) < ∞},

under the Luxemburg norm

‖f‖LĀ(Ω) = inf
{

K > 0 :
∫

Ω

Ā

( |f(x)|
K

)
dx ≤ 1

}

(in the sequel we assume that inf ∅ = +∞). By W 1,Ā
loc (Ω) we denote such

functions u : Ω → R that uφ ∈ W 1,Ā(Ω) for every φ ∈ C1
0 (Ω) (analogous

notation is used for local Orlicz spaces LĀ
loc(Ω)). Observe that we always have

W 1,Ā
loc (Ω) ⊆ W 1,1

loc (Ω). By W 1,Ā
0 (Ω) we denote the completion of smooth com-

pactly supported functions in W 1,Ā(Ω).
The following fact holds true.

Fact 2.4. ([47], Fact 2.3) If Ā is a Young function and u ∈ W 1,Ā
loc (Ω), then

B(|∇u|)∇u =
Ā(|∇u|)

|∇u| χ{|∇u|�=0} ∈ LĀ∗
loc(Ω, Rn),

where B and Ā are the same as in (2.1).

Remark 2.3. Despite the formulation given in [47] involves N -functions instead
of Young functions, the proof therein works for Young functions as well.

Let u ∈ W 1,Ā
loc (Ω). For w ∈ W 1,Ā(Ω) with compact support we define

〈ΔAu,w〉 := −
∫

Ω

B(|∇u|)〈∇u,∇w〉 dx. (2.7)

According to Fact 2.4 the right-hand side in (2.7) is well defined.

Differential inequality

The differential inequality we want to analyze is given by the following
definition.

Definition 2.3. Let Ω be any open subset of R
n and Φ be the locally integrable

function defined in Ω, such that for every nonnegative compactly supported
w ∈ W 1,Ā(Ω) ∣∣∣∣

∫
Ω

Φw dx

∣∣∣∣ < ∞. (2.8)
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Let u ∈ W 1,Ā
loc (Ω). We will say that

− ΔAu ≥ Φ (2.9)

if for every nonnegative compactly supported w ∈ W 1,Ā(Ω) we have

〈−ΔAu,w〉 =
∫

Ω

B(|∇u|)〈∇u,∇w〉 dx ≥
∫

Ω

Φw dx. (2.10)

Remark 2.4. We may choose Φ = Φ(x, u,∇u).

Set of assumptions.

In the sequel we will consider functions satisfying the following assump-
tions.
(Ā) Ā is a Young function satisfying Δ′-condition;
(Ψ) there exists a function Ψ : [0,∞) → [0,∞), which is nonnegative, belongs

to C1((0,∞)), and satisfies the following conditions
(i) inequality

g(t)Ψ′(t) ≤ −CΨ(t) (2.11)
holds for all t > 0 with C > 0 independent of t and certain continuous
function g : (0,∞) → (0,∞), such that Ψ(t)/g(t) is nonincreasing.

(ii) function

s �→ Θ(s) :=
Ā (g(s)) Ψ(s)

g(s)
(2.12)

is nonincreasing or bounded in certain neighbourhood of 0.

(u) u ∈ W 1,Ā
loc (Ω) is a given nonnegative solution to (2.9) which is nontrivial,

i.e. u �≡ const, and there exists σ ∈ R such that

Φ + σ
Ā(|∇u|)

g(u)
χ{∇u�=0} ≥ 0 a.e. (2.13)

We define
σ0 = inf{σ ∈ R : (2.13) is satisfied}, (2.14)

recalling that inf ∅ = +∞.

Remark 2.5. Examples when those conditions are satisfied in the case Ā(s) =
sp, p > 1, g(s) = s, Ψ(s) = s−β , β > 0 can be found in [68,69].

Remark 2.6. Let us discuss the assumption (Ψ) i). It implies that Ψ is decreas-
ing. Elementary calculation confirms that pairs of Ψ and g from Table 1 satisfy
condition g(t)Ψ′(t) ≤ −CΨ(t) a.e.

To ensure that additionally Ψ(t)/g(t) is nonincreasing we have to assume
that g′(t) ≥ − C with C as in (2.11). Indeed, Ψ/g is nonincreasing because(

Ψ(t)
g(t)

)′
= Ψ′(t)g(t)−Ψ(t)g′(t)

g2(t) ≤ −CΨ(t) − Ψ(t)g′(t)
g2(t)

= − Ψ(t)
g2(t) (C + g′(t)) ≤ 0,

This condition is also satisfied by pairs from Table 1.
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Table 1. Good pairs of Ψ and g

Ψ(t) g(t) C Remarks
t−α t α α > 0
(t log(a + t))−1

t log(a + t) log a a > 1
e−t Bounded by C, g′ ≥ −C C C > 0
e−t/t t/(1 + t) 1 –
e

1
2 log2(t) t/| log t| 1 Considered on (0, 1)

3. Caccioppoli estimates for solutions to −ΔAu ≥ Φ

Our main goal in this section is to obtain the following result.

Theorem 3.1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI −ΔAu ≥ Φ,

in the sense of Definition 2.3, where Φ is locally integrable and assumptions
(Ā), (Ψ), (u) are satisfied with C > 0 and σ ∈ [σ0, C), where σ0 is given
by (2.14). Let CĀ > 0 be a constant coming from Δ′-condition for Ā (see
Definition 2.2) and DĀ ≥ dĀ ≥ 1, DĀ > 1 be constants coming from (2.5)
applied to Ā.

Then the inequality

∫
Ω

(
Φ + σ

Ā(|∇u|)
g(u)

χ{∇u�=0}

)
Ψ(u)φ dx

≤ K

∫
Ω∩{∇u�=0}∩suppφ

Ā (g(u)) Ψ(u)
g(u)

· Ā

( |∇φ|
φ

)
φ dx, (3.1)

holds for every nonnegative Lipschitz function φ with compact support in Ω,
such that the integral

∫
supp φ∩{∇u�=0} Ā

(
|∇φ|

φ

)
φ dx is finite and K = (C −

σ)Ā
(

DĀ−1
(C−σ)dĀ

)
C2

Ā

DĀ−1 .

We call (3.1) Caccioppoli inequality because it involves ∇u on the left-
hand side and only u on the right-hand side (see e.g. [18,41]).

We note that we do not assume that the right-hand side in (3.1) is finite.
The proof is based on the idea of the proof of Theorem 3.1 from [68]

inspired by the proof of Proposition 3.1 from [47].
Proof of Theorem 3.1 The proof follows by three steps.
Step 1. Derivation of local inequality.

We obtain the following lemma.

Lemma 3.1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI −ΔAu ≥ Φ,

in the sense of Definition 2.3, where Φ is locally integrable and assumptions
(Ā), (Ψ), (u) are satisfied with C > 0 and σ ∈ [σ0, C), where σ0 is given by
(2.14). Let K be the constant from Theorem 3.1.
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Then for every 0 < δ < R and every nonnegative Lipschitz function φ
with compact support in Ω the inequality

∫
{u≤R−δ}

(
Φ + σ

Ā(|∇u|)
g(u + δ)

χ{∇u�=0}

)
Ψ(u + δ)φ dx (3.2)

≤ K

∫
Ω∩{∇u�=0, u≤R−δ}

Θ(u + δ) · Ā

( |∇φ|
φ

)
φ dx + C̃(δ,R),

holds with Θ(u) given by (2.12) and

C̃(δ, R) := Ψ(R)

[∫
Ω∩{∇u �=0, u>R−δ}

B(|∇u|)〈∇u, ∇φ〉 dx −
∫
Ω∩{u>R−δ}

Φφ dx

]
.

(3.3)

Before we prove the theorem let us formulate the following facts.

Fact 3.1. [47] For u, φ as in the assumptions of Theorem 3.1 we fix 0 < δ < R
and denote

uδ,R(x) := min (u(x) + δ,R) , G(x) := Ψ(uδ,R(x))φ(x). (3.4)

Then uδ,R ∈ W 1,Ā
loc (Ω) and G ∈ W 1,Ā

0 (Ω) ⊆ W 1,Ā(Ω).

Fact 3.2. [47] Let u ∈ W 1,1
loc (Ω) be defined everywhere by the formula (2.2) and

let t ∈ R. Then

{x ∈ Ω : u(x) = t} ⊆ {x ∈ Ω : ∇u(x) = 0} ∪ N, (3.5)

where |N | = 0.

Proof of Lemma 3.1.

Let us introduce some notation

Ã(δ,R) =
∫

Ω∩{∇u�=0, u≤R−δ}
Ā(|∇u|)Ψ′(u + δ)φ dx,

Ã1(δ,R) =
∫

Ω∩{∇u�=0, u≤R−δ}
Ā(|∇u|)

(
Ψ(u + δ)
g(u + δ)

)
φ dx,

B̃(δ,R) =
∫

Ω∩{∇u�=0, u≤R−δ}
B(|∇u|)〈∇u,∇φ〉Ψ(u + δ) dx,

C̃1(δ,R) = Ψ(R)
∫

Ω∩{u>R−δ}
Φφ dx, (3.6)

C̃2(δ,R) = Ψ(R)
∫

Ω∩{∇u�=0, u>R−δ}
B(|∇u|)〈∇u,∇φ〉 dx, (3.7)

D̃(ε̄, δ, R) = ε̄Ā

(
1
ε̄

)
C2

Ā

dĀ

∫
supp φ∩{∇u�=0, u≤R−δ}

Θ(u + δ)Ā
( |∇φ|

φ

)
φ dx,

where Θ(u) is given by (2.12). Let us consider uδ,R and G defined by (3.4).
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We note that

I :=
∫

Ω

ΦGdx =
∫

Ω

ΦΨ(uδ,R)φ dx

=
∫

Ω∩{u≤R−δ}
ΦΨ(u + δ)φ dx + Ψ(R)

∫
Ω∩{u>R−δ}

Φφ dx

=
∫

Ω∩{u≤R−δ}
ΦΨ(u + δ)φ dx + C̃1(δ,R). (3.8)

On the other hand, inequality (2.9) implies

I :=
∫

Ω

ΦGdx ≤ 〈−ΔAu,G〉 =
∫

Ω∩{∇u�=0}
B(|∇u|)〈∇u,∇G〉 dx

=
∫

Ω∩{∇u�=0, u≤R−δ}
Ā(|∇u|)Ψ′(u + δ)φ dx

+
∫

Ω∩{∇u�=0, u≤R−δ}
B(|∇u|)〈∇u,∇φ〉Ψ(u + δ) dx

+Ψ(R)
∫

Ω∩{∇u�=0, u>R−δ}
B(|∇u|)〈∇u,∇φ〉 dx

= Ã(δ,R) + B̃(δ,R) + C̃2(δ,R). (3.9)

Note that all integrals above are finite, what follows from Fact 2.4 (for 0 ≤
u ≤ R − δ we have δ ≤ u + δ ≤ R). Using assumption (Ψ) we get

Ã(δ,R) ≤ −C

∫
Ω∩{∇u�=0, u≤R−δ}

Ā(|∇u|)
(

Ψ(u + δ)
g(u + δ)

)
φ dx = −CÃ1(δ,R).

(3.10)

Moreover, for an arbitrary ε̄ > 0,

B̃(δ,R)

≤
∫

Ω∩{∇u�=0, u≤R−δ}
B(|∇u|)|∇u||∇φ|Ψ(u+δ) dx

= ε̄

∫
supp φ∩{∇u�=0, u≤R−δ}

(B(|∇u|)|∇u|) ·
( |∇φ|

φ

g(u+δ)
ε̄

)(
Ψ(u+δ)
g(u+δ)

φ

)
dx.

As B(|∇u|)|∇u| = Ā(|∇u|)
|∇u| , we can apply (2.6) for the Young function Ā with

r = |∇u|, s =
(

|∇φ|
φ

g(u+δ)
ε̄

)
to get

B̃(δ,R) ≤ ε̄
DĀ − 1

dĀ

∫
supp φ∩{∇u�=0, u≤R−δ}

Ā(|∇u|)Ψ(u + δ)
g(u + δ)

φ dx

+
ε̄

dĀ

∫
supp φ∩{∇u�=0, u≤R−δ}

Ā

( |∇φ|
φ

g(u + δ)
ε̄

)
Ψ(u + δ)
g(u + δ)

φ dx.
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Then, applying Δ′-condition for Ā twice in the second expression above, we
obtain

B̃(δ,R) ≤ ε̄
DĀ − 1

dĀ

Ã1(δ,R) + D̃(ε̄, δ, R). (3.11)

Combining estimates (3.9), (3.10) and (3.11) we get

I ≤ −CÃ1(δ,R) + B̃(δ,R) + C̃2(δ,R)

≤
(

−C + ε̄
DĀ − 1

dĀ

)
Ã1(δ,R) + D̃(ε̄, δ, R) + C̃2(δ,R).

Moreover, C̃1(δ,R) and Ã1(δ,R) are finite (and D̃(ε, δ, R) is finite as well).
This and (3.8) imply

∫
Ω∩{u≤R−δ}

ΦΨ(u + δ)φ dx +
(

C − ε̄
DĀ − 1

dĀ

)
Ã1(δ,R)

≤ D̃(ε̄, δ, R) + (C̃2(δ,R) − C̃1(δ,R)).

This is (3.2). Indeed, we have C̃(δ,R) = C̃2(δ,R) − C̃1(δ,R). Moreover, when
we substitute σ := C − ε̄DĀ−1

dĀ
we get

ε̄Ā

(
1
ε̄

)
C2

Ā

dĀ

=
(C − σ)dĀ

DĀ − 1
Ā

(
DĀ − 1

(C − σ)dĀ

)
C2

Ā

dĀ

=
(C − σ)
DĀ − 1

Ā

(
DĀ − 1

(C − σ)dĀ

)
C2

Ā = K.

We notice that ε̄ > 0 is arbitrary and we may always choose 0 < ε̄ ≤ (C−σ0)dĀ

DĀ−1 ,
so that σ0 ≤ σ < C. �

We have to introduce parameters δ and R to make sure that some quan-
tities in the estimates, which we move to opposite sides of inequalities, are
finite.

Step 2. Passing to the limit with δ ↘ 0.

In this step we show that when assumptions (Ā), (Ψ) and (Φ) are satisfied
with ε > 0, K is the constant from Theorem 3.1, then for any R > 0 inequality

∫
{u≤R}

(
Φ + σ

Ā(|∇u|)
g(u)

χ{∇u�=0}

)
Ψ(u)φ dx (3.12)

≤ K

∫
{∇u�=0, u≤R}

Ā (g(u)) Ψ(u)
g(u)

Ā

( |∇φ|
φ

)
φ dx + C̃(R),

where

C̃(R) = Ψ(R)

[∣∣∣∣∣
∫

Ω∩{u≥ R
2 }

B(|∇u|)|∇u| · |∇φ| dx

∣∣∣∣∣ +

∣∣∣∣∣
∫

Ω∩{u≥ R
2 }

Φφ dx

∣∣∣∣∣
]

(3.13)
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holds for every nonnegative Lipschitz function φ with compact support in
Ω, such that the integral

∫
supp φ∩∇u�=0

Ā
(

|∇φ|
φ

)
φ dx is finite. Moreover, all

quantities appearing in (3.12) are finite.
For this, we show first that under our assumptions when δ ↘ 0 we have∫

Ω∩{∇u�=0, u+δ≤R}
Θ(u + δ) · Ā

( |∇φ|
φ

)
φ dx

→
∫

Ω∩{∇u�=0, u≤R}
Θ(u) · Ā

( |∇φ|
φ

)
φ dx. (3.14)

Note that Θ(u + δ)χu+δ≤R
δ→0→ Θ(u)χu≤R, a.e. This follows from Lemma 3.2

(which gives that the sets {u = 0, |∇u| �= 0} and {u = R, |∇u| = 0} are of
measure zero) and the continuity outside zero of the involved functions.

We assumed in (Θ) that Θ is nonincreasing or bounded in the neighbour-
hood of zero. We start with the case when there exists κ > 0 such that for
λ < κ the function Θ(λ) is nonincreasing. Without loss of generality we may
consider κ ≤ R.

We divide the domain of integration∫
Ω∩{∇u�=0, u+δ≤R}

Θ(u + δ) · Ā

( |∇φ|
φ

)
φ dx

=
∫

Eκ

Θ(u + δ) · Ā

( |∇φ|
φ

)
φ dx +

∫
Fκ

Θ(u + δ)χ{u+δ≤R} · Ā

( |∇φ|
φ

)
φ dx,

where

Eκ =
{

u <
κ

2
, ∇u �= 0

}
∩ supp φ, Fκ =

{κ

2
≤ u, ∇u �= 0

}
∩ supp φ.

Let us begin with integral over Eκ. We consider δ → 0, so we may assume
that δ < κ/2. Then for x ∈ Eκ we have u + δ < κ. As function λ → Θ(λ) is
nonincreasing when λ < κ, thus for fixed u and δ ↘ 0 the function δ → Θ(u+δ)
is nondecreasing and so convergent monotonically almost everywhere to Θ(u).
Therefore, due to the Lebesgue’s Monotone Convergence Theorem

lim
δ→0

∫
Eκ

Θ(u + δ)Ā
( |∇φ|

φ

)
φ dx =

∫
Eκ

Θ(u)Ā
( |∇φ|

φ

)
φ dx.

In the case of Fκ we have κ/2 ≤ u + δ ≤ R. Over this domain Θ is a
bounded function, so in particular on Fκ

Θ(u + δ)χ{u+δ≤R}Ā
( |∇φ|

φ

)
φ ≤ sup

t∈[κ/2,R]

Θ(t) · Ā

( |∇φ|
φ

)
φ ∈ L1(Fκ).

We apply the Lebesgue’s Dominated Convergence Theorem to deduce that

lim
δ→0

∫
Fκ

Θ(u + δ)χ{u+δ≤R}Ā
( |∇φ|

φ

)
φ dx =

∫
Fκ∩{u≤R}

Θ(u)Ā
( |∇φ|

φ

)
φ dx.

This completes the case of Θ nonincreasing in the neighbourhood of 0.
In the case when Θ is bounded in the neighbourhood of 0, we note that

Θ is bounded also on every interval [0, R], where R > 0. Hence, we can use
previous computations dealing with Fκ in case κ = 0.
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To finish the proof of this step we note that (3.14) says that when δ ↘ 0
the first integral on the right-hand side of (3.2) is convergent to the first integral
on the right-hand side of (3.12). To deal with the second expression we note
that for δ ≤ R

2

|C̃(δ,R)| ≤ |C̃2(δ,R)| + |C̃1(δ,R)| ≤ C̃(R),

where C̃(δ,R), C̃2(δ,R), C̃1(δ,R), C̃(R) are given by (3.3), (3.6), (3.7), (3.13),
respectively.

We can pass to the limit with δ → 0 on the left-hand side of (3.2) due to
the Lebesgue’s Monotone Convergence Theorem as an expression in brackets
is nonnegative by (2.13) and the whole integrand therein is nonincreasing by
assumption (Ψ).

Step 3. We let R → ∞ and finish the proof.

We are going to let R → ∞ in (3.12). Without loss of generality we can
assume that the integral in the right–hand side of (3.1) is finite, as otherwise
the inequality follows trivially. Note that as B(|∇u|)〈∇u,∇φ〉 and Φφ are
integrable, we have limR→∞ C̃(R) = 0. Therefore, (3.1) follows from (3.12) by
the Lebesgue’s Monotone Convergence Theorem. �

4. Hardy type inequalities

Our most general conclusion resulting from Theorem 3.1 reads as follows.

Theorem 4.1. Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI −ΔAu ≥ Φ,

in the sense of Definition 2.3, where Φ is locally integrable and assumptions
(Ā), (Ψ), (u) are satisfied with C > 0 and σ ∈ [σ0, C), where σ0 is given by
(2.14) (in the case σ0 = −∞ we assume σ ∈ (−∞, C)). Set

FĀ(λ) =
1

Ā (1/λ)
, when λ > 0 and FĀ(0) = 0. (4.1)

Then for every Lipschitz function ξ with compact support in Ω we have∫
Ω

FĀ(|ξ|)μ1(dx) ≤ C̃

∫
Ω

Ā(|∇ξ|)μ2(dx). (4.2)

where

μ1(dx) = Ψ(u)
[
Φ + σ

Ā(|∇u|)
g(u)

]
χ{u>0} dx, (4.3)

μ2(dx) =
Ā (g(u)) Ψ(u)

g(u)
χ{∇u�=0} dx, (4.4)

C̃ = (C − σ)Ā
(

DĀ − 1
(C − σ)dĀ

)
Ā(DĀ)C4

Ā

DĀ − 1
. (4.5)

with the constants CĀ > 0 coming from Δ′-condition for Ā (see Definition
2.2) and DĀ ≥ dĀ ≥ 1, DĀ > 1 coming from (2.5) applied to Ā.



854 I. Skrzypczak NoDEA

Proof. Let ξ be a compactly supported Lipschitz function. We define φ =
FĀ(ξ) and apply Theorem 3.1. For this we have to verify that φ is compactly
supported Lipschitz function and

∫
Ω∩supp φ

Ā
(

|∇φ|
φ

)
φ dx < ∞. We observe

that φ is compactly supported, because FĀ(t) is continuous at 0. Indeed,

lim
t→0

FĀ(t) = lim
t→0

1
Ā (1/t)

= lim
s→∞

1
Ā (s)

= 0,

which ensures that supp φ = supp ξ. This holds because as a Young function
Ā is superlinear and we have lims→∞ Ā(s) = ∞.

Furthermore, FĀ(t) is a locally Lipschitz function. We obtain it from
Lemma 2.1 which implies

F ′̄
A(t) =

(
1

Ā (1/t)

)′
∼ 1

tĀ(1/t)
.

The last term above is bounded for bounded t. Indeed, when t ≤ C0, we
have 1

t ≥ 1
C0

, and so

Ā(1/t)
1/t

≥ Ā(1/C0)
1/C0

.

Therefore, FĀ(t) is locally Lipshitz. The composition of locally Lipshitz func-
tion FĀ(t) with Lipschitz and bounded ξ, i.e. FĀ(ξ) = φ, is Lipschitz.

We verify that
∫
Ω∩supp φ

Ā
(

|∇φ|
φ

)
φ dx < ∞. Note that for every com-

pactly supported Lipschitz function ξ we have
∫
Ω

Ā(|∇ξ|) dx < ∞. Therefore,
it suffices to prove that

Ā

( |∇φ|
φ

)
φ ≤ C2

ĀĀ(DĀ)Ā(|∇ξ|). (4.6)

Let Ā−1 be the inverse function of Ā. As Ā ∈ Δ′ we note that for each pair of
x, y ≥ 0 we have

Ā(x)y = Ā

(
x

Ā−1( 1
y )

Ā−1

(
1
y

))
y

≤ CĀĀ

(
x

Ā−1( 1
y )

)
Ā

(
Ā−1

(
1
y

))
y = CĀĀ

(
x

Ā−1( 1
y )

)
. (4.7)

Hence, taking x = |∇φ|
φ and y = φ, we obtain from (4.7)

Ā

( |∇φ|
φ

)
φ ≤ CĀĀ

(
|∇φ|

φ

1
Ā−1( 1

φ )

)
(4.8)

on every x where φ(x) > 0.
Now we show that on every x where φ(x) > 0 we have

|∇φ(x)|
φ(x)

1

Ā−1
(

1
φ(x)

) ≤ DĀ|∇ξ(x)|. (4.9)
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Indeed, we have φ = 1
Ā(1/ξ)

, so that

∇φ = F ′̄
A(ξ) = − 1

Ā2
(

1
ξ

) Ā′
(

1
ξ

) (
− 1

ξ2

)
∇ξ.

Applying (2.5) to Ā ∈ Δ2 we have Ā′(λ) ≤ DĀ
Ā(λ)

λ with the constant DĀ.
Therefore

|∇φ| ≤ 1

Ā2
(

1
ξ

) DĀĀ

(
1
ξ

) |∇ξ|
ξ

= DĀφ
|∇ξ|

ξ
.

Hence, we have |∇φ|
φ ξ ≤ DĀ|∇ξ|, which is exactly (4.9).

Summing up the estimates (4.8) and (4.9) we obtain (4.6)

Ā

( |∇φ|
φ

)
φ ≤ CĀĀ

(
|∇φ|

φ

1
Ā−1( 1

φ )

)
≤ CĀĀ (DĀ|∇ξ|) ≤ C2

ĀĀ(DĀ)Ā(|∇ξ|).

Thus the assumptions of Theorem 3.1 are satisfied and we obtain (3.1). The
substitution φ = FĀ(ξ), equivalently taking

ξ(x) =
{ 1

Ā−1(1/φ(x))
, when φ(x) �= 0,

0, when φ(x) = 0,

transforms the left-hand side of (3.1) into the left-hand side of (4.2). What
remains to show is that the right-hand side in (3.1) is estimated as follows∫

{∇u�=0}

Ā (g(u)) Ψ(u)
g(u)

Ā

( |∇φ|
φ

)
φ dx

≤ C2
ĀĀ(DĀ)

∫
{∇u�=0}

Ā (g(u)) Ψ(u)
g(u)

Ā(|∇ξ|) dx.

This is a direct consequence of (4.6). The proof is complete. �
Examples dealing with various Ā, Ψ and g are given in the following

sections.

5. Links with existing results

In this section we present how our result is related to several other ones.

Results of Cianchi [19]

In paper by Cianchi [19] one finds necessary and sufficient conditions for the
Hardy inequality ∥∥∥∥ ξ(x)

d1+θ(x)

∥∥∥∥
LB(Ω)

≤ C

∥∥∥∥∇ξ(x)
dθ(x)

∥∥∥∥
LA(Ω)

, (5.1)

where d = dist(x, ∂Ω) is distance from the boundary of bounded Lipschitz-
continuous boundary domain Ω and ξ is sufficiently smooth function with
compact support in Ω. Note that (5.1) involves the internal measures: 1/d1+θ

and 1/dθ, while in our Theorem 4.1 the internal measures are trivial. On the
other hand, in Cianchi’s inequality (5.1) the external measure on the both
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sides of the inequality is the Lebegue’s measure, while in our case the external
measures on the both sides of the inequality are different and nontrivial. It
would be interesting to generalize both issues to the inequality involving the
nontrivial external and internal measures.

Results of Buckley and Hurri–Syrjänen [14] and Buckley and Koskela [15]

In [14] the authors consider inequality∫
Ω

Ψ
( |ξ(x)|

d1+θ(x)

)
dx ≤ C

∫
Ω

Ψ
( |∇ξ(x)|

dθ(x)

)
dx, (5.2)

where d(x) is distance from the boundary of Lipschitz domain Ω and ξ is suf-
ficiently smooth function with compact support in Ω ⊆ R

n. It is assumed
that complement of Ω satisfies the fatness condition, while Ψ belongs to
the class of functions called G(p, q, C). The typical representants of such
functions are power-logarithmic type functions like e.g. Ψ(t) = tp logα

+ t,
Ψa(t) = tp logα(a + t), p, a > 1, α ≥ 0.

The case of (5.2) with θ = 1 is considered in [15].
Let us mention that when one considers Theorem 4.1 with

Ā(t) = Ψa(t) = tp logα(a + t), p > 1, a > e, α > 0,

we get FĀ(t) = tp log−α(a + 1/t) �∼ Ā(t). Thus our inequality (4.2) cannot
be compared directly with (5.2). Furthermore, we deal also with the weight
functions outside FĀ.

Stein LLogL-type results [71]

When we consider Ā(t) = t logα(e + t), we obtain the following corollary.

Corollary 5.1. Suppose Ā(t) = t logα(a + t), α > 0, a > 1. Let u ∈ W 1,Ā
loc (Ω)

be a nonnegative solution to PDI −ΔAu ≥ Φ, in the sense of Definition 2.3,
where Φ is locally integrable and assumptions (Ψ), (u) are satisfied with C > 0
and σ ∈ [σ0, C), where σ0 is given by (2.14) (in the case σ0 = −∞ we assume
σ ∈ (−∞, C)).

Then for every Lipschitz function ξ with compact support in Ω we have∫
Ω

|ξ|
logα (a + 1/|ξ|) μ1(dx) ≤ C̃

∫
Ω

|∇ξ| logα(a + |∇ξ|)μ2(dx). (5.3)

where

μ1(dx) = Ψ(u)
[
Φ + σ

|∇u| logα(e + |∇u|)
g(u)

]
χ{u>0} dx, (5.4)

μ2(dx) = logα (e + g(u)) Ψ(u)χ{∇u�=0} dx (5.5)

Proof. We apply Theorem 4.1 with Ā(t) = t logα(a+t). We note that according
to (4.1) we have

FĀ(λ) =
λ

logα (a + 1/λ)
, when λ > 0 and FĀ(0) = 0. (5.6)

For the constant estimate (4.5) we note that if Ā(t) = t logα(a+ t), α > 0, a >
1, then CĀ ≤ (2/ log a)α, dĀ = 1 and DĀ ≤ 1 + α/ log a. �



Vol. 21 (2014) Hardy inequalities resulted from nonlinear problems 857

The reverse Stein inequality has the form [50,70]∫
B

(Mφ)(x)dx ≤ cφ + c

∫
Rn

|φ| log+ |φ|dx,

and deals with measurable functions φ supported in some ball B ⊆ R
n, where

log+(λ) = log(λ)χλ>1, Mφ(x) = supB�x
1

|B|
∫

B
|φ(y)|dy, where supremum is

taken over all balls containing x, is the Hardy–Littlewood maximal function.
In the one-dimensional case one can deduce from the above inequality the
following Hardy inequality∫

(0,R)

(
1
x

∫ x

0

|φ(t)|dt

)
dx ≤ cφ + c

∫
R+

|φ| log+ |φ|dx,

where R > 0 and φ has bounded support in R+, as we have 1
x

∫ x

0
|φ(t)|dt ≤

Mφ(x). The substitution of ξ(x) =
∫ x

0
|φ(t)|dt allows to interpret the above

inequality as ∫
(0,R)

|ξ(x)| 1
x

dx ≤ cξ + c

∫
R

|ξ′| log+ |ξ′|dx. (5.7)

When in our inequality (5.3) we consider Ā(t) = t log(a + t) where a > 1, we
obtain inequalities having the form:∫

Ω

FĀ(|ξ|) μ1(dx) ≤ C̃

∫
Ω

|∇ξ| log(a + |∇ξ|)μ2(dx).

As for big arguments λ we have FĀ(λ) ∼ λ, (5.3) is similar to (5.7). That is
why we call it Stein-type inequality.

Below we derive inequalities which are similar to (5.7) and come as a
consequence of Corollary 5.1. For the related results we refer e.g to [56,59,60]
and their references.

Theorem 5.1. Let Ā(λ) = t log(a + t), FĀ(λ) = t log−1(a + 1/t), a > 1 and
α ∈ (0, 1). For every Lipschitz function ξ with compact support we have

C−1
t

∫
(1,∞)∩{|ξ|≥t}

( |ξ(x)|
x

)
e−xdx ≤

∫
(1,∞)

(
FĀ(|ξ(x)|)

x

)
e−xdx

≤ C

∫
(1,∞)

Ā(|ξ′(x)|)e−xdx, (5.8)

B−1
t

∫
(0,1)∩{|ξ|≥t}

( |ξ(x)|
x

)
x−αdx ≤

∫
(0,1)

(
FĀ(|ξ(x)|)

x

)
x−αdx

≤ C

∫
(0,1)

Ā(|ξ′(x)|)x−αdx, (5.9)

where the constants Ct, C,Bt, B are independent of ξ.

Proof. We apply Corollary 5.1 with Ψ(t) = 1
Ā(t)

and g(t) = Ā(t), which satisfy
assumption (Ψ). Indeed, easy computations shows that g(t)Ψ′(t) ≤ − log a · Ψ
and Θ(t) = log(a + t log(a + t))/t log(a + t) is decreasing in the neighbourhood
of zero.



858 I. Skrzypczak NoDEA

To obtain (5.8) we observe that u(x) = ex solves the equation

−ΔAu = − ex

a + ex
= Φ.

Due to Corollary 5.1 (5.3) holds with

μ1(dx) =
(

2 − ex

a + ex

)
1

ex log(a + ex)
dx � 1

xex
dx on (1,∞),

μ2(dx) = log(a + ex log(a + ex))
1

ex log(a + ex)
dx ≺ 1

ex
dx on (1,∞),

because σ = 2 is admissible. The estimates �,≺ hold up to the constant. Thus,
we have (5.8).

To obtain (5.9) we observe that u(x) = xα solves the equation

−ΔĀu =
α(1 − α)xα−2

a − αxα−1
= Φ > 0.

Due to Corollary 5.1 (5.3) holds with

μ1(dx) = α(1 − α)
xα−2

a + xα−1

1
xα log(a + xα)

� 1
xα+1

on (1,∞),

μ2(dx) =
log(a + xα log(a + xα))

xα log(a + xα)
≺ 1

xα
on (1,∞).

Thus, we have (5.9). �

Retrieving author’s results from [68]

Let us mention the following result of [68], which is the special case of our
Theorem 4.1, when we apply Ā(t) = tp = FĀ(t), g(t) = t, Ψ(t) = t−β , C =
β > 0.

Theorem 5.2. ([68], Theorem 4.1) Assume that 1 < p < ∞ and u ∈ W 1,p
loc (Ω) is

a nonnegative solution to PDI −Δpu ≥ Φ, in the sense of Definition 2.3, where
Φ is locally integrable and σ0 := inf {σ ∈ R : Φ · u + σ|∇u|p ≥ 0 a.e. in Ω} ∈
R, where inf ∅ = +∞. Assume further that β and σ are arbitrary numbers such
that β > 0 and β > σ ≥ σ0. Then for every Lipschitz function ξ with compact
support in Ω we have ∫

Ω

|ξ|pμ1(dx) ≤
∫

Ω

|∇ξ|pμ2(dx), (5.10)

where

μ1(dx) =
(

β − σ

p − 1

)p−1

[Φ · u + σ|∇u|p] · u−β−1χ{u>0} dx,

μ2(dx) = up−β−1χ{|∇u|�=0} dx.

In [68] we show that the above theorem implies classical Hardy inequality
with the optimal constant, as well as various other weighted Hardy inequalities
e.g. with radial and exponential weights.
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Another special case of Theorem 4.1, specializing in Hardy–Poincaré
inequalities, which have the form

C̄γ,n,p

∫
Rn

|ξ|p
[
(1 + |x| p

p−1 )p−1
]γ−1

dx ≤
∫

Rn

|∇ξ|p
[
(1 + |x| p

p−1 )p−1
]γ

dx,

with the analysis of constants is obtained in [69]. See also the related papers
[9,36].

Theorem 4.1 enables us to derive inequalities
∫

Ω

|ξ|pμ1,β(dx) ≤
∫

Ω

|∇ξ|pμ2,β(dx),

with various measures, which can have more general form than those from
[68]. In the construction of measures we are not restricted to the pair Ψ(t) =
t−β , g(t) = t as in [68], but we can consider also other pairs of admitted
functions satisfying assumption (Ψ), e.g. pairs from Table 1.

6. New results. Inequalities with power-logarithmic functions

We collect here a few examples of the inequality (4.2) with several choices of
Ā.

Preliminary preparations

In this part we derive two lemmas which will be used in the sequel.

Lemma 6.1. Suppose p ≥ 1, α > 0, Ā(t) = tp logα(2 + t) and Ω ⊆ R
n, n ≥ 1.

Let u ∈ W 1,Ā
loc (Ω) be a nonnegative solution to PDI −ΔAu ≥ Φ, in the

sense of Definition 2.3, where Φ is locally integrable and assumptions (Ψ), (u)
are satisfied with σ ∈ R and g : R+ → R+. Then there exists a constant C̃ > 0
such that for every Lipschitz function ξ with compact support in Ω we have

∫
Ω∩{ξ �=0}

|ξ|p log−α(2 + 1/|ξ|)μ1(dx) ≤ C̃

∫
Ω

|∇ξ|p logα(2 + |∇ξ|)μ2(dx),

where

μ1(dx) = Ψ(u)
(

Φ +
σ

g(u)
|∇u|p logα(2 + |∇u|)

)
χ{u>0} dx, (6.1)

μ2(dx) = gp−1(u) logα(2 + g(u))Ψ(u)χ{∇u�=0} dx, (6.2)

Proof. We apply Theorem 4.1. We remark first that assumption (Ā) is satisfied
as, according to Example 2.1, Ā ∈ Δ′ if p ≥ 1, α > 0. We notice, that

FĀ(t) =
1

Ā(1/t)
=

1
(1/t)p logα(2 + 1/t)

= tp log−α(2 + 1/t), FĀ(0) = 0.

(6.3)
�
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Lemma 6.2. Suppose p ≥ 1, α > 0, β ∈ (0, 1), Ā(t) = tp logα(2 + t) and
Ω ⊆ R+. Assume further that assumption (Ψ) is satisfied with functions Ψ, g
and (u) is satisfied with

σ > −(1/β − 1)(p − 1) inf
x>0

g(xβ)x−β = σ0.

Then there exists a constant C̃ > 0 such that for every Lipschitz function
ξ with compact support in Ω we have∫

Ω

|ξ|p log−α(2 + 1/|ξ|)μ1(dx) ≤ C̃

∫
Ω

|ξ′|p logα(2 + |ξ′|)μ2(dx), (6.4)

where

μ1(dx) =
Ψ(xβ)
g(xβ)

xp(β−1) logα
(
2 + βxβ−1

)
dx, (6.5)

μ2(dx) =
Ψ(xβ)
g(xβ)

gp(xβ) logα(2 + g(xβ)) dx. (6.6)

Moreover,

C̃ ≤ β1−p

(1 − β)(p − 1) + σβ
(C − σ)Ā

(
p + α

log 2 − 1

(C − σ)p

) Ā
(
p + α

log 2

)(
2

log 2

)4α

p − 1
.

(6.7)

Proof. We apply Lemma 6.1 with Ā(t) = tp logα(2+ t). The assumption (Ā) is
satisfied as, according to Example 2.1, Ā ∈ Δ′ for p ≥ 1, α > 0. We notice, that
FĀ(t) = tp log−α(2 + 1/t), when t > 0 and FĀ(0) = 0 (see (6.3)). Moreover,
u = uβ(x) = xβ , with β ∈ (0, 1), is the solution to PDI −ΔAu ≥ Φ, where

Φ = −(β − 1)βp−1(p − 1)xpβ−β−p logα
(
2 + βxβ−1

)
. (6.8)

Indeed, we have ∇u = βxβ−1, |∇u| = |β|xβ−1 and we compute the function Φ

−ΔAu = −div
(

Ā(|∇u|)
|∇u|2 ∇u

)
= −β|β|p−2

(
x(p−1)(β−1) logα

(
2 + |β|xβ−1

))′

= −β|β|p−2(β − 1)x(p−1)(β−1)−1 logα−1
(
2 + |β|xβ−1

)

·
(

(p − 1) log
(
2 + |β|xβ−1

)
+ α

|β|xβ−1

2 + |β|xβ−1

)

≥ −β|β|p−2(β − 1)(p − 1)xpβ−p−β logα
(
2 + |β|xβ−1

)
= |β|p(1/β − 1)(p − 1)xpβ−p−β logα

(
2 + |β|xβ−1

)
= Φ,

where the inequality holds for β ∈ (0, 1), thus we remove the absolute value of
β and write (6.8).

Now let us verify assumption (u).
We note first that Ā(|∇u|) = βpxp(β−1) logα

(
2 + βxβ−1

)
. Therefore

g(u)Φ + σĀ(|∇u|)
= βpxp(β−1) logα

(
2 + βxβ−1

) [
(1/β − 1)(p − 1)g(xβ)x−β + σ

]
is positive for σ > −(1/β − 1)(p − 1) infx>0 g(xβ)x−β = σ0.
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We reach the goal by computing the weights according to Lemma 6.1 and
dividing both sides by the constant.

We notice that we can estimate the constant C̃ as in (6.7). Indeed, due
to the above method, we have

C̃ ≤ β1−p

(1 − β)(p − 1) + σβ
(C − σ)Ā

(
DĀ − 1

(C − σ)dĀ

)
Ā(DĀ)C4

Ā

DĀ − 1
.

Moreover, according to Facts 2.2 and 2.3, CĀ ≤ ( 2
log 2 )α, dĀ = p ≤ DĀ ≤

p + α
log 2 . �

Inequalities on (0, ∞).
Applying Ψ(t) = t−C , g(t) = t in Lemma 6.2, we obtain the following result.

Theorem 6.1. (Power-logarithmic Hardy–Sobolev inequality on (0,∞)) Let
p ≥ 1, α > 0, β ∈ (0, 1), C > 0, C > σ > −(1/β − 1)(p − 1).

Then there exists c > 0 such that for every compactly supported Lipschitz
function ξ we have

∫ ∞

0

|ξ|p log−α(2 + 1/|ξ|)μ1(dx) ≤ c

∫ ∞

0

|ξ′|p logα(2 + |ξ′|)μ2(dx),

where

μ1(dx) = xγ−p logα

(
2 +

1
x

)
dx,

μ2(dx) = xγ logα (2 + x) dx,

with γ = −β(C + 1 − p) and the constant c is dependent on Ā, p, C, β, σ.

Proof. We apply Lemma 6.2. It suffices now to check that the pair Ψ(t) = t−C ,
g(t) = t with C > 0 satisfies the assumption (Ψ) i) and ii) and finally we
compute the weights.

(i) The mentioned Ψ, g are positive functions. Ψ is locally Lipschitz, Ψ/g is
decreasing, moreover

Ψ′(t)g(t) = −Ct−C−1g(t) = −Ct−C−1t = −Ct−C−1+1 = −CΨ(t).

(ii) The function Θ = tp−1−C logα (2 + t) (see (2.12)) is bounded in the neigh-
bourhood of 0 when p − 1 − C ≥ 0 and decreasing when p − 1 − C < 0.

We note that

σ > −(1/β − 1)(p − 1) inf
0<x

g(xβ)x−β = −(1/β − 1)(p − 1) inf
0<x

xβx−β

= −(1/β − 1)(p − 1) = σ0.

As σ0 < 0, there exists σ ∈ [σ0, C) for any C > 0.
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We apply Lemma 6.2 and obtain the following measures in inequality
(6.4)

μ1(dx) = (xβ)−C−1βpxp(β−1) logα
(
2 + βxβ−1

)
[(1/β − 1)(p − 1) + σ] dx

∼ x−β(C+1−p)−p logα

(
2 +

1
x

)
dx,

μ2(dx)

∼ x−β(C+1−p) logα(2 + x) dx.

Now it suffices to take γ = −β(C + 1 − p).
�

Remark 6.1. We may estimate c due to (6.7).

Inequalities on (0, 1)
This kind of inequalities is important in the further derivation of Hardy
inequalities on Lipschitz boundary domains with measures involving distance
from the boundary. It can be done by deriving the related inequality on the
cube, then using the suitable covering and change of variables. Similar issues
can be found for example in [51], proof of Theorem 8.2, Sec. 8.

We are now to present another application of g(λ) different from the
identity function. For this, it is convenient to consider the extension of previous
results where we consider the restriction of Ψ to the codomain of u.

We have the following remark.

Remark 6.2. Theorems 3.1 and 4.1, and Lemma 6.2 are valid when instead
of assumption (Ψ) we use weaker assumption (Ψ)2 enclosed below. As their
proofs in this case are easy modifications of the proofs from previous sections,
we leave them to the reader.

(Ψ)2 for a given nonnegative u ∈ W 1,Ā
loc (Ω), there exists a function Ψ :

[0,∞) → [0,∞), which is nonnegative and belongs to C1(u(Ω) \ {0}),
where u(Ω) = {u(x) : x ∈ Ω}. Furthermore, the following conditions are
satisfied

(i) inequality

g(t)Ψ′(t) ≤ −CΨ(t),

holds for all t ∈ u(Ω) \ {0} with C > 0 independent of t and certain con-
tinuous function g : (0,∞) → (0,∞), such that Ψ(t)/g(t) is nonincreasing
for t ∈ u(Ω). Moreover, we set Ψ(t) ≡ 0 for t �∈ u(Ω).

(ii) function Θ(t) given by (2.12) is nonincreasing or bounded in the neigh-
bourhood of 0.
Let us restrict ourselves to Ω = (0, 1), u(Ω) ⊆ (0, 1) and choose Ψ(t) =

e
1
2 log2(t), g(t) = t/| log t|. They do not satisfy assumption (Ψ), but only (Ψ)2.

In particular assumption (Ψ) i) requires Ψ to be a decreasing function, but it
does not hold outside (0, 1). This generalization applied to Lemma 6.2 leads
to the following result.
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Theorem 6.2. (Hardy–Sobolev inequality on (0, 1)) Let p ≥ 1, α > 0, β ∈ (0, 1)
and Ā(t) = tp logα(2 + t).

Then there exists a constant c > 0 such that for every Lipschitz function
ξ with compact support in (0, 1) we have

∫ 1

0

|ξ|p log−α(2 + 1/|ξ|)μ1(dx) ≤ c

∫ 1

0

Ā(|ξ′|)μ2(dx),

where

μ1(dx) = e
β2
2 log2(x)| log x|x

(p−1)β

xp
logα

(
2 +

1
x

)
dx, (6.9)

μ2(dx) = e
β2
2 log2(x)| log x|x

(p−1)β

| log x|p logα(2 + x) dx. (6.10)

Proof. We apply Lemma 6.2, where u = uβ(x) = xβ is considered, with
assumption (Ψ)2 instead of (Ψ). It suffices now to check that the pair
Ψ(t) = e

1
2 log2(t), g(t) = t/| log t|, with C = 1 (for t ∈ (0, 1)) satisfies the

assumption (Ψ)2 i) and ii).

(i) The functions Ψ, g are positive. Ψ is locally Lipschitz. Moreover

Ψ′(t)g(t) = − t

log t
· 1

2
(log2 t)′e

1
2 log2(t) = − t

log t
· 1

2
2

log t

t
e

1
2 log2(t)

= −e
1
2 log2(t) = −Ψ(t).

As t ∈ (0, 1), we have log t < 0. Therefore

g′(t) =
(

− t

log t

)′
= − t′ log t − t log′ t

log2 t
= − log t − 1

log2 t

=
1 + | log t|

log2 t
≥ 0 > −1.

According to Remark 2.6 it is enough to ensure that Ψ/g is nonincreasing.

(ii) The function Θ(s) = Ā(g(s))Ψ(s)
g(s) =

(
s

| log s|
)p−1

logα
(

2 + s
| log s|

)
e

1
2 log2(s)

is decreasing in the neighbourhood of 0. Indeed, it is easy to show that for
sufficiently small positive s we have Θ′(s) < 0.

We note that there exists σ ∈ [σ0, C) = [0, 1). Indeed, the only condition
for σ is the following one

σ ≥ σ0 = −(1/β − 1)(p − 1) inf
0<x<1

g(xβ)x−β

= −(1/β − 1)(p − 1) inf
0<x<1

xβ | log xβ |x−β

= −(1/β − 1)(p − 1) inf
0<x<1

| log xβ | = 0.

We apply generalization of Lemma 6.2 (see Remark 6.2) and obtain the fol-
lowing measures in inequality (6.4)
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μ̄1(dx) = e
1
2 log2(xβ)| log(xβ)|xpβ−β−p logα

(
2 + βxβ−1

)
dx ∼ μ1,

μ̄2(dx) = e
1
2 log2(xβ)| log(xβ)|−p+1xpβ−β logα

(
2 +

xβ

| log xβ |
)

dx ∼ μ2.

�
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