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Abstract. In this paper, we obtain the critical exponent for a wave equa-
tion with structural damping and nonlinear memory:

utt − �u + µ (−�)
1
2 ut =

∫ t

0

(t − s)−γ |u(s, ·)|p ds,

where µ > 0. In the supercritical case, we prove the existence of small data
global solutions, whereas, in the subcritical case, we prove the nonexis-
tence of global solutions for suitable arbitrarily small data, in the special
case µ = 2.
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1. Introduction

We study the global existence of small data solutions to⎧⎪⎪⎨
⎪⎪⎩

utt − �u + μ (−�)
1
2 ut = F (t, u),

u(0, x) = u0(x),

ut(0, x) = u1(x),

(1.1)

where μ > 0, and the term

F (t, u) :=
∫ t

0

(t − s)−γ |u(s, ·)|p ds, (1.2)

for some γ ∈ (0, 1) and p > 1, represents a nonlinear memory.
Recently, fractional PDEs have been deeply investigated, since they are

particularly interesting for the real world applications. According to [23], frac-
tional derivatives provide an excellent instrument for the description of mem-
ory and hereditary process. The advantage of fractional derivatives become
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apparent in modelling mechanical and electrical properties of real materials
and in many other fields.

In particular, the linear part of the equation in (1.1), i.e.

utt − �u + μ (−�)
1
2 ut = 0, (1.3)

is frequently used in the determination of lifespan for primary or rechargeable
batteries [10]. The model in (1.3) is a special case of a wave equation with
structural damping:

utt − �u + μ (−�)σut = 0, σ > 0. (1.4)

Different kind of estimates in Sobolev spaces for (1.4) with σ ∈ (0, 1)
have been recently studied in [1,14,22]. In the limit case σ = 1, the damping
is also called visco-elastic and it has been studied in [18,26] and, in abstract
setting, in [13,16]. Some L2 − L2 estimates have been derived for (1.4) in the
case with time-dependent damping b(t)(−�)σut in [19,24]. Smoothing effects
for (1.4) are studied in [12], including the case σ ≥ 1.

The nonlinear term F (t, u) in (1.2) may be written as

F (t, u) = Γ(1 − γ)J1−γ
0|t (|u|p),

where Γ is the Euler Gamma function, and J1−γ
0|t (|u|p) is the fractional

Riemann–Liouville integral of |u(τ, ·)|p in [0, t]. Therefore, it is reasonable to
expect relations with the case of a power nonlinearity F (u) = |u|p, as γ → 1.
It has been recently proved [8] that small data global solutions to⎧⎪⎪⎨

⎪⎪⎩

utt − �u + μ (−�)
1
2 ut = |u|p,

u(0, x) = u0(x),

ut(0, x) = u1(x),

(1.5)

exist if p > 1 + 2/(n − 1), and that this exponent is optimal. On the other
hand, the optimal critical exponent for global small data solutions to⎧⎪⎪⎨

⎪⎪⎩

utt − �u + μut = F (t, u),

u(0, x) = u0(x),

ut(0, x) = u1(x),

(1.6)

is given by (see [4,11])

max
{
p̃γ(n), γ−1

}
, p̃γ(n) := 1 +

2(2 − γ)
[n − 2(1 − γ)]+

. (1.7)

From the point of view of the global existence argument, the transition
from the exponent p̃γ(n) to the exponent γ−1, which occurs at γ = (n − 2)/n,
is deeply related to the profile of the decay estimates for the solution to (1.6).

It is natural to ask in which way the critical exponent is influenced if we
replace the power nonlinearity in (1.5) by a nonlinear memory term.

The purpose of this paper is to give an answer to this question. We study
into details the model in (1.3), stating only partial results for the general case
(1.4) (see Sect. 5), for two reasons.
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• The special structure of (1.3) allows us to derive a global existence result
for (1.1) in any space dimension n ≥ 2 (see later, Remark 3.1).

• It is possible to use the test function method to prove a counterpart result of
nonexistence of global solutions thanks to a maximum principle (see later,
Lemma 2.10).

We will prove that the critical exponent for (1.1) is

p(n, γ) = max{pγ(n), γ−1}, pγ(n) := 1 +
3 − γ

n + γ − 2
, (1.8)

for any n ≥ 2. We notice that

p(2, γ) = pγ(2) = 3γ−1,

whereas for any n ≥ 3 it holds

p(n, γ) =

{
pγ(n) if (n − 2)/n ≤ γ < 1,

γ−1 if 0 < γ ≤ (n − 2)/n.

In particular, the threshold (n−2)/n for γ, which denotes the transition to
the critical exponent γ−1 is the same for both models (1.1) and (1.6). We notice
that p̃γ(n) < pγ(n) if, and only if, γ ∈ ((n − 2)/n, 1). This suggests that if the
nonlinear memory term is sufficiently strong in space dimension n ≥ 3, namely
γ ∈ (0, (n − 2)/n], then the influence from classical and structural damping is
the same. Otherwise, the critical exponent is larger in the structural damping
case, as it happens for the power nonlinearity |u|p.

2. Results

In each statement of this paper, we will briefly denote the normed space of
initial data of the Cauchy problem as A. Therefore, the definition of A will
be related to the statement in which it appears. By the letter ε > 0 we will
denote the smallness of initial data in the norm of A. On the other hand, in the
following, we will respectively denote sufficiently small and sufficiently large
positive constants by ε > 0 and C > 0.

In the following, we generalize the nonlinear term in (1.2) to

F (t, u) =
∫ t

0

(t − s)−γ g(u(s, ·)) ds, (2.1)

where g : R → R is a locally Lipsichitz function satisfying

g(0) = 0, |g(u) − g(v)| � |u − v| (|u|p−1 + |v|p−1), for some p > 1. (2.2)

Definition 2.1. For any q ∈ [1,∞), we define q� = q�(n, q) as

q� := max
{

nq

n + q
, 1
}

. (2.3)

If q = ∞, we put ∞� = n.

We notice that q� is the Sobolev conjugate of q if q ≥ n/(n − 1).
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Definition 2.2. For any function u ∈ C([0, T ],H1) ∩ C1([0, T ], L2) we define

E [u](t) := ‖∇u(t, ·)‖L2 + ‖ut(t, ·)‖L2 ,

which is equivalent to the square root of the classical energy of u.

We are now ready to state our results. For the sake of clarity, we first
deal with space dimension n ≥ 3.

Theorem 2.3. Let n ≥ 3, γ ∈ (0, 1) and p > p(n, γ). Let

r ≥ max
{

n(p − 1),
2n

n − 2

}
, (2.4)

and r� be defined as in (2.3). Then there exists ε > 0 such that for any initial
data

(u0, u1) ∈ A := (L1 ∩ H1 ∩ Lr) × (L1 ∩ Lr�

) with ‖(u0, u1)‖A ≤ ε, (2.5)

there exists a C([0,∞), L1 ∩ H1 ∩ Lr) ∩ C1([0,∞), L2) solution to (1.1). More-
over, the solution satisfies the estimates

‖u(t, ·)‖Lq ≤

⎧⎪⎪⎨
⎪⎪⎩

C(1 + t)−γ+2−n(1− 1
q )‖(u0, u1)‖A if q ∈ [1, n/(n − 2)),

C(1 + t)−γ ln(e + t)‖(u0, u1)‖A if q = n/(n − 2),

C(1 + t)−γ‖(u0, u1)‖A if q ∈ (n/(n − 2), r],
(2.6)

E [u](t) ≤ C (1 + t)−γ ‖(u0, u1)‖A. (2.7)

If we set r = ∞ in Theorem 2.7, we obtain a statement for any p > p(n, γ).

Remark 2.4. If (2.4) holds for some p > 1 and n ≥ 3, then it follows that,
in particular, r ≥ 2p. Indeed, if p ≤ n/(n − 2) the statement trivially follows
from r ≥ 2n/(n − 2). Otherwise, if p > n/(n − 2) then it holds

r ≥ n(p − 1) = 2p + (n − 2)p − n > 2p.

The bound r ≥ 2n/(n−2) in Theorem 2.3 is a consequence of the assump-
tion u0 ∈ H1, since H1 ⊂ L

2n
n−2 for n ≥ 3. Indeed, if we set r̄ = 2n/(n − 2),

then r̄� = 2 and we obtain the following.

Corollary 2.5. Let n ≥ 3, γ ∈ ((n − 2)/n, 1) and pγ(n) < p ≤ n/(n − 2). Then
there exists ε > 0 such that for any initial data

(u0, u1) ∈ A := (L1 ∩ H1) × (L1 ∩ L2) with ‖(u0, u1)‖A ≤ ε, (2.8)

there exists a C([0,∞), L1 ∩ H1) ∩ C1([0,∞), L2) solution to (1.1). Moreover,
the solution satisfies estimates (2.6) with r = 2n/(n − 2), and estimate (2.7).

The restriction p ≤ n/(n−2) in Corollary 2.5 is equivalent to assumption
(2.4) for r = 2n/(n−2), in Theorem 2.3. Moreover, the restriction p ≤ n/(n−2)
implies that the interval (p(n, γ), n/(n − 2)] is nonempty if, and only if, γ ∈
((n − 2)/n, 1). This gives p(n, γ) = pγ(n).

If n = 2, we have the following.
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Theorem 2.6. Let n = 2, γ ∈ (0, 1) and p > 3γ−1. Then there exists ε > 0
such that for any initial data as in (2.8), there exists a C([0,∞), L1 ∩ H1) ∩
C1([0,∞), L2) solution to (1.1). Moreover, the solution satisfies the estimates

‖u(t, ·)‖Lq ≤ C (1 + t)−γ+2/q ‖(u0, u1)‖A for any q ∈ [1,∞), (2.9)

E [u](t) ≤ C (1 + t)−γ ln(e + t) ‖(u0, u1)‖A. (2.10)

If we also assume that u0 ∈ L∞ and ‖u0‖L∞ ≤ ε, with ε as in (2.8),
then the solution u is also continuous from [0,∞) into L∞ and it satisfies the
following estimate:

‖u(t, ·)‖L∞ ≤ C (1 + t)−γ ln(e + t) ‖(u0, u1)‖A. (2.11)

If we are not interested in energy solutions, we may drop the assumption
u0 ∈ H1 in Theorem 2.3. In this case, we say that u ∈ C([0,∞), L1 ∩ Lr) is
a global solution to (1.1) if it solves (1.1) in a weak sense. We may now state
the following.

Theorem 2.7. Let n ≥ 2 and γ ∈ (0, 1). Let p > p(n, γ), r ≥ n(p − 1) and r�

as in (2.3). Then there exists ε > 0 such that for any initial data

(u0, u1) ∈ A := (L1 ∩ Lr) × (L1 ∩ Lr�

) with ‖(u0, u1)‖A ≤ ε, (2.12)

there exists a weak C([0,∞), L1 ∩ Lr) solution to (1.1). Moreover, the
solution satisfies estimate (2.6) if n ≥ 3, and estimate

‖u(t, ·)‖Lq ≤ C (1 + t)−γ+2/q ‖(u0, u1)‖A for any q ∈ (1, r], (2.13)

if n = 2 and r < ∞, or estimates (2.9) and (2.11), if n = 2 and r = ∞.

The Sobolev exponent r in Theorem 2.7 may be now lesser than 2n/(n−
2), since we dropped the hypothesis u0 ∈ H1. However, restriction r ≥ n(p−1)
implies that r > 2n/(n − 1) for any γ ∈ (0, 1) and p > p(n, γ). In particular,
the interval (n/(n − 2), r] in estimate (2.6) is never empty if n ≥ 3.

Remark 2.8. Assumptions r ≥ n(p − 1) and p > p(n, γ) imply that r > p + 1
for any γ ∈ (0, 1). Indeed, p(n, γ) > 1 + 2/(n − 1) for any γ ∈ (0, 1), hence

r ≥ p − 1 + (n − 1)(p − 1) > p − 1 + (n − 1)(p(n, γ) − 1) > p + 1.

Remark 2.9. In estimates (2.6), (2.7), (2.9), (2.10), (2.11) and (2.13) it does
not appear a decay rate better than (1 + t)−γ . This restriction comes from
the influence of the nonlinear memory term (see Lemma 3.2). In particular, if
q < n/(n − 2), a loss of decay (1 + t)1−γ with respect to the corresponding
linear estimates [see (3.3)] appears in estimate (2.6). This loss is larger if
q > n/(n − 2). This phenomenon has been described in [4].

2.1. Optimality of the critical exponent

The fractional Laplacian is a nonlocal operator, thus it is not easy, in general,
to prove the optimality of p(n, γ), by using the test function method. We are
able to do that if μ = 2 and u0 ≡ 0 in (1.1), thanks to a maximum principle
for (1.3).
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Lemma 2.10. The solution to⎧⎪⎪⎨
⎪⎪⎩

utt − �u + 2(−�)
1
2 ut = 0,

u(0, x) = 0,

ut(0, x) = u1(x) ≥ 0,

(2.14)

is nonnegative, and it is explicitly given by

u(t, x) = cn
t

(|x|2 + t2)
n+1

2

∗(x) u1(x),

where cn depends on the space dimension [22].

Thanks to Lemma 2.10, we can state the following.

Theorem 2.11. Let us consider the Cauchy problem⎧⎪⎪⎨
⎪⎪⎩

utt − �u + 2(−�)
1
2 ut =

∫ t

0
(t − s)−γ u(s, x)p ds,

u(0, x) = 0,

ut(0, x) = u1(x) ≥ 0,

(2.15)

with γ ∈ (0, 1), p > 1 and u1 ∈ L1
loc, non trivial. Then there exists no global

weak solution to (2.15) in the following four cases:
• if n = 1, for any γ ∈ (0, 1) and p > 1,
• if n ≥ 2, for any γ ∈ [(n − 2)/n, 1) and p ∈ (1, pγ(n)],
• if n ≥ 3, for any γ ∈ (0, (n − 2)/n) and p ∈ (1, γ−1).

In view of the previously stated results of global existence, Theorem 2.11
says that the critical exponent p(n, γ) is optimal, in general. It remains open
to study what happens if γ ∈ (0, (n− 2)/n) and p = γ−1, since this case is not
included in our global existence statements, neither in Theorem 2.11.

3. Proof of the global existence results

In [22] it has been proved that the solution to the linear problem⎧⎪⎪⎨
⎪⎪⎩

vtt − �v + μ(−�)
1
2 vt = 0,

v(0, x) = v0(x),

vt(0, x) = v1(x).

(3.1)

satisfies the estimate

‖v(t, ·)‖Lq ≤ t
−n

(
1

q0
− 1

q

)
‖v0‖Lq0 + t

1−n
(

1
q1

− 1
q

)
‖v1‖Lq1 , (3.2)

for any q0, q1 ≥ 1 and q ≥ max{q0, q1}. In particular, setting q0 = q1 = 1
for t ≥ 1, and q0 = q, q1 = q� for t ∈ [0, 1], we may derive

‖v(t, ·)‖Lq ≤ (1 + t)1−n(1− 1
q )(‖v0‖L1∩Lq + ‖v1‖L1∩Lq�

)
, (3.3)

where q� is as in (2.3). Indeed,

1 − n

(
1
q�

− 1
q

)
≥ 1 − n

(
n + q

nq
− 1

q

)
= 0.
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The solution to (3.1) satisfies the energy estimate (see, for instance, [8]):

E [v](t) ≤ (1 + t)− n
2
(‖v0‖L1∩H1 + ‖v1‖L1∩L2

)
. (3.4)

Remark 3.1. An important difference between linear estimates (3.2) for (1.1)
and the corresponding linear estimates for (1.6) is that, in this latter case, a
loss of regularity appears in the estimate for ‖u(t, ·)‖Lq when q �= 2 (see, for
instance, [21]). This loss of regularity increases as the space dimension n grows,
imposing an heavy restriction to the applicability of these estimates to prove
global existence in high space dimension. This restriction does not appear in
(1.1), so we may obtain a global existence result in any space dimension n ≥ 2,
and this motivated us to focus on this model.

We remark that in the case of the classical damped wave equation with
power nonlinearity |u|p this problem has been solved in [15,27] by using
weighted energy estimates for the nonlinear problem.

A fundamental role will be played by the following.

Lemma 3.2. Let α ∈ R, β > 1 and γ ∈ (0, 1). Then it holds

∫ t

0

(1 + t − τ)−α

∫ τ

0

(τ − s)−γ (1 + s)−β ds dτ �

⎧⎪⎪⎨
⎪⎪⎩

(1 + t)1−α−γ if α < 1,

(1 + t)−γ 	(t) if α = 1,

(1 + t)−γ if α > 1,

where 	(t) := ln(e + t).

Proof. First let us consider the interior integral. Since γ ∈ (0, 1) and β > 1,
we may estimate (see, for instance, Lemma 4.1 in [3])

∫ τ

0

(τ − s)−γ (1 + s)−β ds � (1 + τ)−γ .

Therefore,
∫ t

0

(1+t−τ)−α

∫ τ

0

(τ −s)−γ (1 + s)−β ds dτ �
∫ t

0

(1 + t − τ)−α (1 + τ)−γ dτ,

and the proof immediately follows (see, for instance, [9,20]). �

We also recall Gagliardo–Nirenberg inequality:

‖u‖Lq ≤ C‖u‖1−η
L2 ‖∇u‖η

L2 , η = n

(
1
2

− 1
q

)
, (3.5)

for any q ∈ [2,∞] if n = 1, for any q ∈ [2,∞) if n = 2, and for any
q ∈ [2, 2n/(n − 2)] if n ≥ 3.

We are now ready to prove our statements.

Proof of Theorem 2.3. For any T > 0, we introduce the space

X(T ) := C([0, T ], L1 ∩ H1 ∩ Lr) ∩ C1([0, T ], L2), (3.6)
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with norm given by

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−(2−γ)‖w(t, ·)‖L1

+(1 + t)γ
(
	(t)−1‖w(t, ·)‖Lq̄ + ‖w(t, ·)‖Lr + E [w](t)

)}
, (3.7)

where

q̄ = q̄(n) :=
n

n − 2
, (3.8)

and 	(t) := ln(e+ t) here and in the following. If w ∈ X(T ) then we derive, by
interpolation, that

‖w(t, ·)‖Lq ≤ (1 + t)−γ+[2−n(1−1/q)]+ 	(t) ‖w‖X(T ), for any q ∈ [1, r]. (3.9)

We consider the operator N defined by

Nw := ulin + Gw, with Gw :=
∫ t

0

E(t − τ, x) ∗(x) F (τ, w) dτ, (3.10)

where ulin(t, x) is the solution to (3.1) with (v0, v1) = (u0, u1), and E(t, x) is
the fundamental solution to (3.1) for v0 ≡ 0 and v1 = δ. A function w ∈ X(T )
is a solution to (1.1) for any t ∈ [0, T ] if, and only if, w = Nw in X(T ). If we
prove that

‖Nw‖X(T ) ≤ C1 ‖(u0, u1)‖A + C2 ‖w‖p
X(T ), (3.11)

‖Nw − Nw̃‖X(T ) ≤ C ‖w − w̃‖X(T )

(‖w‖p−1
X(T ) + ‖w̃‖p−1

X(T )

)
, (3.12)

where C1, C2 and C do not depend on T , by standard arguments (see, for
instance, [7]), we may derive the existence of a unique fixed point of N in
X(T ), and then the existence of small data global solutions to (1.1), satisfying

‖u‖X(T ) ≤ C̃‖(u0, u1)‖A, uniformly for any T > 0. (3.13)

Recalling the definition of A and setting u0 = v0 and u1 = v1 in estimates
(3.3) and (3.4), we immediately derive that

‖ulin‖X(T ) ≤ C1 ‖(u0, u1)‖A,

thus (3.11) follows once we prove that

‖Gw‖X(T ) ≤ C ‖w‖p
X(T ). (3.14)

On the other hand, it is clear that we may rewrite (3.12) as

‖Gw − Gw̃‖X(T ) ≤ C ‖w − w̃‖X(T )

(
‖w‖p−1

X(T ) + ‖w̃‖p−1
X(T )

)
. (3.15)

We first prove (3.14). Recalling the definition of the operator G in (3.10)
and (2.2), thanks to (3.3) and (3.4), we obtain
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‖Gw(t, ·)‖Lq ≤ C

∫ t

0

(1 + t − τ)1−n(1− 1
q )‖F (τ, w)‖

L1∩Lq� dτ

≤ C1

∫ t

0

(1 + t − τ)1−n(1− 1
q )
∫ τ

0

(τ − s)−γ‖w(τ, ·)‖p

Lp∩Lpq� ds dτ

E [Gw](t) ≤ C

∫ t

0

(1 + t − τ)− n
2 ‖F (τ, w)‖L1∩L2 dτ

≤ C1

∫ t

0

(1 + t − τ)− n
2

∫ τ

0

(τ − s)−γ‖w(τ, ·)‖p
Lp∩L2p ds dτ.

We can set q = p in (3.9) (see Remark 2.4), obtaining

‖w(t, ·)‖Lp ≤ (1 + t)−γ+[2−n(1−1/p)]+ 	(t) ‖w‖X(T ).

If, and only if, p > p(n, γ), then from the estimate above we may deduce
that there exists β(n, γ, p) > 1 such that

‖w(t, ·)‖p
Lp ≤ C (1 + t)−β(n,γ,p) ‖w‖p

X(T ), (3.16)

where C is independent of t and T . Having in mind (3.9), we see that
‖w(t, ·)‖p

Lpq� also satisfies (3.16), provided that pq� ≤ r,
for any q ∈ [1, r]. This latter holds if, and only if, r ≥ n(p − 1).
Similarly, ‖w(t, ·)‖p

L2p also satisfies (3.16) due to 2p ≤ r (see Remark 2.4).
We may now apply Lemma 3.2, since

‖Gw(t, ·)‖Lq ≤ C‖w‖p
X(T )

∫ t

0

(1 + t − τ)1−n(1− 1
q ) Iγ(τ) dτ, (3.17)

E [Gw](t) ≤ C‖w‖p
X(T )

∫ t

0

(1 + t − τ)− n
2 Iγ(τ) dτ, (3.18)

where Iγ(τ) =
∫ τ

0

(τ − s)−γ (1 + s)−β ds,

for some β > 1. Recalling that 1−n(1−1/q) < 1 if, and only if, q < q̄(n),
we obtain, in particular,

‖Gw(t, ·)‖L1 ≤ C (1 + t)2−γ ‖w‖p
X(T ), (3.19)

‖Gw(t, ·)‖Lq̄(n) ≤ C (1 + t)−γ 	(t) ‖w‖p
X(T ), (3.20)

‖Gw(t, ·)‖Lr ≤ C (1 + t)−γ ‖w‖p
X(T ), (3.21)

E [Gw](t) ≤ C (1 + t)−γ ‖w‖p
X(T ), (3.22)

and this concludes the proof of (3.14).
To prove (3.15), it is sufficient to use (2.2) and Hölder inequality, to

estimate

‖g(w) − g(w̃)‖
L1∩Lq� ≤ ‖w − w̃‖

Lp∩Lpq�

(
‖w‖p−1

Lp∩Lpq� + ‖w̃‖p−1

Lp∩Lpq�

)
,

and similarly for ‖g(w) − g(w̃)‖L1∩L2 , then we proceed as in the proof of
(3.14).

It remains to prove that the solution satisfies (2.6) and (2.7). For any
fixed t we may write u = Nu = ulin + Gu. The estimates for ulin directly
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follows from (3.3)–(3.4) with (v0, v1) = (u0, u1). Therefore, it is sufficient to
come back to (3.17) and to use again Lemma 3.2, to obtain

‖Gu(t, ·)‖Lq ≤ C ‖u‖p
X(t)

∫ t

0

(1 + t − τ)1−n(1− 1
q ) Iγ(τ) dτ

≤ C (1 + t)−γ+[2−n(1−1/q)]+ ‖u‖p
X(t),

for any t ≥ 0 and q �= q̄(n). The desired estimate follows thanks to (3.13)
and the smallness of ‖(u0, u1)‖A. Similarly, we derive the estimate in (2.6) for
q = q̄(n) and estimate (2.7), taking into account of (3.20) and (3.22). �

Proof of Theorem 2.6. We proceed as in the proof of Theorem 2.3, but we
replace the definitions (3.6) and (3.7) of X(T ) and its norm by

X(T ) := C([0, T ], L1 ∩ H1) ∩ C1([0, T ], L2), (3.23)

‖w‖X(T ) := max
t∈[0,T ]

(
(1 + t)−(2−γ)‖w(t, ·)‖L1 + (1 + t)γ	(t)−1E [w](t)

)
.

(3.24)

By interpolation if q ∈ [1, 2], or by Gagliardo–Nirenberg inequality (3.5)
if q > 2, we obtain

‖w(t, ·)‖Lq ≤ (1 + t)−γ+2/q 	(t) ‖w‖X(T ), for any q ∈ [1,∞). (3.25)

This allows us to prove (3.14) and (3.15). In particular, it is clear that
pq� < ∞ for any q ∈ (1,∞); hence, from (3.25) we obtain that

‖w(t, ·)‖
Lp∩Lpq� ≤ (1 + t)−(n(1−1/p)+γ−2) 	(t) ‖w‖X(T ).

The global existence of the solution follows, then we prove the desired
estimates, as in the proof of Theorem 2.3.

If we also assume ‖u0‖L∞ ≤ ε, then we modify (3.23)–(3.24) accordingly,

X(T ) := C([0, T ], L1 ∩ H1 ∩ L∞) ∩ C1([0, T ], L2), (3.26)

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−(2−γ)‖w(t, ·)‖L1

+ (1 + t)γ 	(t)−1
(‖w(t, ·)‖L∞ + E [w](t)

)}
, (3.27)

and we follow the proof of Theorem 2.3. �

Proof of Theorem 2.7. The proof of Theorem 2.7 is analogous to the proof of
Theorem 2.3, once we replace the definitions (3.6) and (3.7) of X(T ) and its
norm by

X(T ) := C([0, T ], L1 ∩ Lr),

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−(2−γ)‖w(t, ·)‖L1

+(1 + t)γ 	(t))−1‖w(t, ·)‖Lq̄

+(1 + t)γ ‖w(t, ·)‖Lr

}
if n ≥ 3,
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‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−(2−γ)‖w(t, ·)‖L1

+(1 + t)γ (	(t))−1 ‖w(t, ·)‖L∞
}

if (n, r) = (2,∞),

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−(2−γ)‖w(t, ·)‖L1

+(1 + t)γ−2/r ‖w(t, ·)‖Lr

}
if n = 2 and r < ∞.

The proof follows as in Theorem 2.3. �

4. Proof of Theorem 2.11

Following [11], for any α ∈ (0, 1) and for a fixed T > 0, we introduce the
fractional integral and differential operators J0|t,D0|t, Jt|T ,Dt|T defined by:

Jα
0|t f(t) :=

1
Γ(α)

∫ t

0

(t − s)−(1−α)f(s) ds, Dα
0|t := ∂t J1−α

0|t ,

Jα
t|T f(t) :=

1
Γ(α)

∫ T

t

(s − t)−(1−α)f(s) ds, Dα
t|T := −∂t J1−α

t|T .

We have the following properties (see (2.64), p. 46 in [25] and (2.106)
in [23]):

∫ T

0

(Dα
0|t f)(t) g(t)dt =

∫ T

0

f(t) (Dα
t|T g)(t)dt, (4.1)

Dα
0|tJ

α
0|t f(t) = f(t). (4.2)

Let us define

ω(t) :=

{
(1 − t/T ) if t ∈ [0, T ],

0 if t > T .
(4.3)

It follows that suppω = [0, T ] and ω(t)β ∈ Ck
c ([0,∞)), k ≥ 0, for any

β > k. Moreover, we have the following.

Lemma 4.1. For any α ∈ (0, 1), it follows that

Dα
t|T ω(t)β = C(α, β)T−αω(t)β−α, for any β > α, (4.4)

where

C(α, β) =
Γ(β + 1)

(β + 2 − α)Γ(β − α)
.

Proof. By the change of variables τ := (s − t)/(T − t), we get (see [23])
∫ T

t

(s − t)−α(1 − t/T )β ds = (T − t)−α+β+1 T−β

∫ 1

0

τ−α(1 − τ)β dτ

= ω(t)−α+β+1 T 1−α Γ(1 − α)Γ(β + 1)
Γ(−α + β + 2)

.
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Therefore,

J1−α
t|T ω(t)β =

Γ(β + 1)
Γ(β + 2 − α)

T 1−α ω(t)β+1−α,

Dα
t|T ω(t)β =

Γ(β + 1)
(β + 2 − α)Γ(β − α)

T−α ω(t)β−α.

�
Now we are ready to prove Theorem 2.11.

Proof of Theorem 2.11. We put α := 1−γ. By contradiction, let u be a global
weak solution to (1.1). Let Ψ ∈ C∞

c be a radial test function, such that:
• supp Ψ = B1;
• Ψ(x) = 1, for any x ∈ B1/2;
• Ψ(x1) ≥ Ψ(x2) if |x1| ≤ |x2|.

For any R ≥ 1, we denote ΨR(t, x) := Ψ(x/R). Let us fix

β > (α + 2)p′, and 	 > p′, (4.5)

where p′ := p/(p − 1) is the Hölder conjugate of p, and let

ΦR(t, x) := ω(t)β ΨR(x)	, ϕ := Dα
t|T ΦR(t, x).

Then, suppϕ ⊂ [0, T ] × BR, for any T,R ≥ 1, but supp (−�)
1
2 ϕ ⊂

[0, T ] × R
n, in general, since the fractional Laplacian is a nonlocal operator.

We may write∫ T

0

∫
BR

u(ϕtt − �ϕ) dx dt − 2
∫ T

0

∫
Rn

u(−�)
1
2 ϕt dx dt

=
∫

BR

u1(x)ϕ(0, x) dx + Γ(α)
∫ T

0

∫
BR

Jα
0|t(u

p)ϕdx dt.

We remark that ϕ ≥ 0 thanks to (4.4). By virtue of (4.1) and (4.2), we
get ∫ T

0

∫
BR

Jα
0|t(u

p)ϕdx dt = Γ(α)
∫ T

0

∫
BR

upΦR dx dt,

whereas, being u1 and ϕ nonnegative, we obtain

−
∫

BR

u1(x)ϕ(0, x) dx ≤ 0.

Now we use Young inequality to estimate∫ T

0

∫
BR

uϕtt dx dt ≤ ε

∫ T

0

∫
BR

upΦRdx dt + Cε

∫ T

0

∫
BR

ϕtt
p′

Φ
− 1

p−1
R dx dt,

and, thanks to

∂2
t Dα

t|T ω(t)β =
Γ(β + 1)

(β + 2 − α)Γ(β − α)
T−α∂2

t ω(t)β−α

=
Γ(β + 1)

(β + 2 − α)Γ(β − α − 2)
T−(α+2)ω(t)β−α−2,
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and

meas ([0, T ]) = T, meas (BR) ≈ Rn, (4.6)

we obtain
∫ T

0

∫
BR

ϕtt
p′

Φ
− 1

p−1
R dx dt

= CT−(α+2)p′
∫ T

0

∫
BR

ω(t)(β−α−2)p′− β
p−1 ΨR(x)	 dx dt

� T−(α+2)p′+1Rn.

We remark that the power of ω(t) in the integral above is positive, by
virtue of (4.5). Let us recall that

(−�)θΨ	 ≤ 	Ψ	−1 (−�)θΨ, (4.7)

holds for any θ ∈ (0, 1], 	 > 1, and for any nonnegative test function Ψ
(see [2,17]). Then, since u and Ψ are nonnegative, we may estimate

u(−�)θΨR(x)	 ≤ 	 u ΨR(x)	−1((−�)θΨR)(x).

It is clear that

((−�)θΨR)(x) = R−2θ((−�)θΨ)(x/R),

and that (−�)θΨ ∈ S, is a bounded function. Therefore, we obtain

∫ T

0

∫
BR

u(−�)ϕdx dt

≤ 	

∫ T

0

∫
BR

uDα
t|T ω(t)βΨR(x)	−1 (−�ΨR)(x) dx dt

≤ ε

∫ T

0

∫
BR

upΦRdx dt

+ CεT
−αp′

R−2p′
∫ T

0

∫
BR

(
Dα

t|T ω(t)βΨR(x)	−1
)p′

Φ
− 1

p−1
R dx dt.

Recalling (4.4) and (4.6), we may estimate the last term by

T−αp′
R−2p′

∫ T

0

∫
BR

ω(t)(β−α)p′− β
p−1 ΨR(x)(	−1)p′− �

p−1 dx dt

≤ CT−αp′+1 R−2p′+n.

We notice that the powers of β(t) and ΨR(x) in the integral above are
positive, by virtue of β. Similarly, since u and −ϕt are nonnegative, we derive
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−
∫ T

0

∫
Rn

u(−�)
1
2 ϕt dx dt

≤ 	

∫ T

0

∫
BR

u
(
−∂tD

α
t|T ω(t)β

)
Ψ	−1

R

(
(−�)

1
2 ΨR

)
(x) dx dt

≤ ε

∫ T

0

∫
BR

upΦRdx dt + Cε T−(α+1)p′+1 R−p′+n.

We remark that the first passage above is the key point of our approach,
since we may restrict the positive part of the integral over R

n to an integral
on BR thanks to properties (4.7) and supp ΨR = BR. In other words, even if
the fractional Laplacian is a nonlocal operator, we have

supp [(−�)θΨ(x)	]+ ⊂ supp Ψ, if 	 > 1.

This strategy motivated the use of a maximum principle for our problem.
Summarizing, we obtained:

(1 − 3ε)
∫ T

0

∫
BR

upΦR dx dt

≤ C̄ T−αp′+1Rn
(
T−2p′

+ R−2p′
+ T−p′

R−p′)
. (4.8)

In the following, we fix ε ∈ (0, 1/3). If p < pγ(n), it is sufficient to set
R = T in (4.8) to derive

∫ T

0

∫
BT

upΦT dx dt � T−(α+2)p′+n+1.

We notice that p < pγ(n) if, and only if, (α + 2)p′ > n + 1. By Beppo
Levi’s theorem on monotone convergence, being ΦT ↗ 1 as T → ∞, we derive

∫ ∞

0

∫
Rn

up dx dt = lim
T→∞

∫ ∞

0

∫
Rn

upΦT dx dt = 0 ;

hence u ≡ 0.
If p = pγ(n), we set R = TK−1 for some fixed K > 1 and from (4.8) we

get that
∫ T

0

∫
BT/K

upΦR dx dt ≤ C̄K−n(1 + Kp′
+ K2p′

),

in particular
∫ T

0

∫
Rn

up dx dt = lim
T→∞

∫ T

0

∫
BT/K

upΦT/K dx dt ≤ C(K), (4.9)

for some C(K) > 0, i.e. u ∈ Lp.
On the other hand, �ΨR(x)	 = 0 for |x| ≤ R/2, thus we may use Hölder

inequality to estimate
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∫ T

0

∫
Rn

u(−�)ϕdx dt =
∫ T

0

∫
|x|>T/(2K)

u(−�)ϕdx dt

≤
∫ T

0

∫
|x|>T/(2K)

u |�ϕ| dx dt

�
(∫ T

0

∫
|x|>T/(2K)

|�ϕ|p′
(ΦR)− p′

p dx dt

) 1
p′

×
(∫ T

0

∫
|x|>T/(2K)

upΦR dx dt

) 1
p

;

hence, we may replace (4.8) by

(1 − 2ε)
∫ T

0

∫
Rn

upΦT/K dx dt ≤ C̄K−n(1 + Kp′
)

+ C̃K− n
p′ +2

(∫ T

0

∫
|x|>T/(2K)

upΦT/K dx dt

) 1
p′

. (4.10)

Thanks to u ∈ Lp [see (4.9)], for any fixed K > 1, it holds

lim
T→∞

∫ T

0

∫
|x|>T/(2K)

upΦT/K dx dt = 0;

hence, from (4.10) we derive that∫ ∞

0

∫
Rn

up dx dt ≤ C̄K−n(1 + Kp′
),

which is an arbitrarily small quantity, since

p′ =
n + 1
α + 2

< n.

Therefore, u ≡ 0.
If p < γ−1, i.e. p′α > 1, we set R = ln T in (4.8) and we apply Beppo

Levi’s convergence theorem, obtaining∫ ∞

0

∫
Rn

up dx dt = C lim
T→∞

T−αp′+1(ln T )n
(
T−2p′

+(T ln T )−p′
+ (ln T )−2p′)

,

so that u ≡ 0 again.
Since u ≡ 0 contradicts the assumption of nontrivial data u1, we proved

our statement. �

Remark 4.2. It remains open the question about nonexistence of the global
solution only if p = γ−1 and γ < (n − 2)/n. Indeed, in this case, (4.8) gives∫ ∞

0

∫
Rn

upΦR dx dt ≤ C̄Rn−2p′
,

but n > 2p′. In other words, the test function method does not work even if
we try to apply it to
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−�u =
∫ t

0

(t − s)−γ |u(s, x)| 1
γ ds, 0 < γ <

n − 2
n

.

We expect that this effect is related to the fact that the test function
method does not work for

−�u = |u|p, if p >
n

n − 2
.

5. The general case σ ∈ (0, 1]

It is natural to ask which critical exponent one may expect for small data
solutions to⎧⎪⎪⎨

⎪⎪⎩

utt − �u + μ (−�)σut = F (t, u), σ ∈ (0, 1/2),

u(0, x) = u0(x),

ut(0, x) = u1(x),

(5.1)

taking into account that the critical exponent is given by (1.7) and (1.8) in the
two limit cases σ = 0 and σ = 1/2.

The linear estimates for (5.1) suggest that the critical exponent should
be

p(n, σ, γ) = max
{
pγ(n, σ), γ−1

}
, (5.2)

pγ(n, σ) := 1 +
2(2 − σ − γ(1 − σ))
[n − 2 + 2γ(1 − σ)]+

. (5.3)

For σ ∈ (0, 1/2) the transition from pγ(n, σ) to γ−1 happens at γ =
(n−2)/n, for n ≥ 3, as in the two limit cases σ = 0 and σ = 1/2. In particular,

p(2, σ, γ) = pγ(2, σ) =
2 − σ

1 − σ
γ−1.

To motivate our expectation, we extend Corollary 2.5 to the following.

Theorem 5.1. Let us consider the following cases:
• n = 1, σ ∈ (0, 1/4) and 1/(2(1 − σ)) < γ < 1,
• n = 2, σ ∈ (0, 1/2) and γ ∈ (0, 1).

Let p > pγ(n, σ). Then there exists ε > 0 such that for any initial data as
in (2.8), there exists a C([0,∞),H1) ∩ C1([0,∞), L2) solution to (5.1). More-
over, the solution satisfies the estimates

‖u(t, ·)‖L2 ≤ C (1 + t)1−(n
4 −σ) 1

1−σ −γ ‖(u0, u1)‖A,

‖∇u(t, ·)‖L2 ≤
⎧⎨
⎩

C (1 + t)1−( 3
4 −σ) 1

1−σ −γ ‖(u0, u1)‖A if n = 1,

C (1 + t)−γ ln(e + t) ‖(u0, u1)‖A if n = 2,

‖ut(t, ·)‖L2 ≤ C (1 + t)−γ ‖(u0, u1)‖A.

Remark 5.2. For the sake of brevity, in Theorem 5.1 we choose to use only
estimates on L2 basis. Indeed, linear Lq1 − Lq2 estimates are more difficult to
be derived for (1.4) if σ ∈ (0, 1/2); see, for instance, [5,6]. Unfortunately, our
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choice imposes the restriction p ≥ 2, hence we may prove global existence for
any p > p(n, σ, γ) and for any γ ∈ (0, 1) only in space dimension n = 1, 2.

The model’s properties in (1.4) completely change if σ ∈ (1/2, 1]. Indeed,
we can prove global existence of small data solutions to

⎧⎪⎪⎨
⎪⎪⎩

utt − �u + μ (−�)σut = F (t, u), σ ∈ (1/2, 1],

u(0, x) = u0(x),

ut(0, x) = u1(x),

(5.4)

if p > p(n, σ, γ), with p(n, σ, γ) as in (5.2) and

pγ(n, σ) := 1 +
1 + 2σ(2 − γ)

[n − 1 − 2σ(1 − γ)]+
. (5.5)

We remark that now the threshold for γ such that pγ(n, σ) = γ−1 is given
by

γ =
n − 1 − 2σ

n
, for n ≥ 3 if σ ∈ (1/2, 1) and for n ≥ 4 if σ = 1.

Theorem 5.3. Let us consider the following cases:

• n=2, σ ∈ (1/2, 1], γ ∈ ((2σ − 1)/(2σ), 1) and p > pγ(2, σ),
• n=3, σ ∈ (1/2, 3/4), γ ∈ ((3 − 4σ)/3, 1) and p ∈ (p(3, σ, γ), 3/(3 − 4σ)],
• n=3, σ ∈ [3/4, 1], γ ∈ (0, 1) and p > p(3, σ, γ),
• n=4, σ = 1, γ ∈ (0, 1) and p > p(4, 1, γ).

Then there exists ε > 0 such that for any initial data

(u0, u1) ∈ A := (L1 ∩ H2σ) × (L1 ∩ L2) with ‖(u0, u1)‖A ≤ ε, (5.6)

there exists a C([0,∞),H2σ)∩C1([0,∞), L2) solution to (5.4). Moreover,
the solution satisfies the estimates

‖u(t, ·)‖L2 ≤ C (1 + t)1− n−2
4σ −γ ‖(u0, u1)‖A,

E [u](t) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C (1 + t)1− 1
2σ −γ ‖(u0, u1)‖A if n = 2,

C (1 + t)1− 3
4σ −γ ‖(u0, u1)‖A if n = 3, σ ∈ (3/4, 1),

C (1 + t)−γ ln(e + t) ‖(u0, u1)‖A if n = 3, σ = 3/4,

C (1 + t)−γ ‖(u0, u1)‖A if n = 3, σ ∈ (1/2, 3/4),

C (1 + t)−γ ln(e + t) ‖(u0, u1)‖A if n = 4 and σ = 1,

‖u(t, ·)‖Ḣ2σ ≤
{

C (1 + t)−γ ln(e + t) ‖(u0, u1)‖A if n = 2,

C (1 + t)−γ ‖(u0, u1)‖A if n ≥ 3.

The limit case σ = 1 has a particular interest, since in the damping term
in (5.7) it appears an integer power of Laplacian; hence, we may use the test
function method to state the following result.
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Theorem 5.4. Let us consider Cauchy problem
⎧⎪⎪⎨
⎪⎪⎩

utt − �u − μ�ut =
∫ t

0
(t − s)−γ |u(s, x)|p ds,

u(0, x) = u0(x),

ut(0, x) = u1(x),

(5.7)

with μ > 0, γ ∈ (0, 1), p > 1 and initial data satisfying −�u0 + u1 ∈ L1

and
∫

Rn

(−�u0(x) + u1(x)) dx > 0. (5.8)

Then, there exists no global weak solution to (5.7) in the following four
cases:

• if n = 1, for any γ ∈ (0, 1) and p > 1,
• if n ≥ 2, for any γ ∈ [(n − 2)/n, 1) and p ∈ (1, pγ(n)],
• if n ≥ 3, for any γ ∈ (0, (n − 2)/n) and p ∈ (1, γ−1).

We remark that the nonexistence exponent in Theorem 5.4 is the same
obtained in the case σ = 1/2 in Theorem 2.11. Therefore, we did not prove
the optimality of p(n, 1, γ), in general, since the nonempty interval

(p(n, γ), p(n, 1, γ)],

is not covered by Theorem 5.3 neither by Theorem 5.4, for γ ∈ ([n −
3]+/n, 1).

However, if n ≥ 4 and γ ∈ (0, (n − 3)/n], it holds p(n, 1, γ) = p(n, γ) =
γ−1, that is, the influence of the nonlinear memory on (1.4) is so strong that
the global existence exponent is the same for any σ ∈ [0, 1]. In particular, if
n = 4 and γ ∈ (0, 1/4], combining Theorems 5.3 and 5.4, we showed that the
critical exponent γ−1 is optimal.

We now prove our statements.

Proof of Theorem 5.1. In [8] it has been proved that the solution to
⎧⎪⎪⎨
⎪⎪⎩

vtt − �v + μ(−�)σvt = 0, σ ∈ (0, 1/2),

v(0, x) = v0(x),

vt(0, x) = v1(x),

(5.9)

satisfies the estimates

‖v(t, ·)‖L2 ≤ (1 + t)−(n
4 −σ) 1

1−σ ‖(v0, v1)‖L1∩L2 ,

‖∇v(t, ·)‖L2 ≤ (1 + t)−(n+2
4 −σ) 1

1−σ (‖v0‖L1∩H1 + ‖v1‖L1∩L2),

‖vt(t, ·)‖L2 ≤ (1 + t)−(n
4 −σ) 1

1−σ −1(‖v0‖L1∩H1 + ‖v1‖L1∩L2),
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provided that σ ∈ (0, 1/4) if n = 1. We follow the proof of Theorem 2.3.
For a fixed T > 0, let

X(T ) := C([0, T ],H1) ∩ C1([0, T ], L2), (5.10)

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−1+(n

4 −σ) 1
1−σ +γ‖w(t, ·)‖L2

+ f(t)‖∇w(t, ·)‖L2 + (1 + t)γ ‖wt(t, ·)‖L2

}
, (5.11)

where

f(t) =

{
(1 + t)−1+( 3

4 −σ) 1
1−σ +γ if n = 1,

(1 + t)γ	(t)−1 if n = 2.

We recall that 	(t) := ln(e + t). Since p > pγ(n, σ) > 2 for n = 1, 2, by
Gagliardo–Nirenberg inequality (3.5), it follows from (5.11) that

‖w(t, ·)‖Lp∩L2p ≤
⎧⎨
⎩

C (1 + t)1−( 1
2 (1− 1

p )−σ) 1
1−σ −γ ‖w‖X(T ) if n = 1

C (1 + t)1−(1− 1
p −σ) 1

1−σ −γ 	(t) ‖w‖X(T ) if n = 2.

Therefore,

‖w(t, ·)‖p
Lp∩L2p ≤ (1 + t)−β ‖w‖p

X(T ),

for some β > 1 if, and only if, y

p

((
n

2

(
1 − 1

p

)
− σ

)
1

1 − σ
+ γ − 1

)
> 1,

that is, p > pγ(n, σ). By Duhamel’s principle, for j + k = 0, 1 we derive

‖∇j∂k
t Gw(t, ·)‖L2

≤ C ‖w‖X(T )

∫ t

0

(1 + t − τ)−(n+2j
4 −σ) 1

1−σ −k

∫ τ

0

(τ − s)−γ (1 + s)−β ds dτ.

Applying Lemma 3.2, we prove (3.14). Similarly, we prove (3.15). The
global existence of the solution follows and we may derive the desired estimates
as in the proof of Theorem 2.3. �

Proof of Theorem 5.3. The solution to⎧⎪⎪⎨
⎪⎪⎩

vtt − �v + μ(−�)σvt = 0, σ ∈ (1/2, 1],

v(0, x) = v0(x),

vt(0, x) = v1(x),

(5.12)

satisfies the following estimates (see [26] for σ = 1 and [8] for σ ∈
(1/2, 1)):

‖v(t, ·)‖L2 ≤ (1 + t)− n−2
4σ ‖(v0, v1)‖L1∩L2 ,

E [v](t) ≤ (1 + t)− n
4σ (‖v0‖L1∩H1 + ‖v1‖L1∩L2),

‖v(t, ·)‖Ḣ2σ ≤ (1 + t)− n−2
4σ −1(‖v0‖L1∩H2σ + ‖v1‖L1∩L2).
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First, let n = 2. We may follow the proof of Theorem 5.1, setting

X(T ) := C([0, T ],H2σ) ∩ C1([0, T ], L2), (5.13)

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−1+γ‖w(t, ·)‖L2

+ (1 + t)−1+ 1
2σ +γE [w](t) + (1 + t)γ	(t)−1 ‖w(t, ·)‖Ḣ2σ

}
.

Since p > pγ(2, σ) > 2, we may use Gagliardo–Nirenberg inequality (3.5)
to derive that

‖w(t, ·)‖Lp∩L2p ≤ C (1 + t)1+
1
2σ − 1

σ (1− 1
p )−γ 	(t) ‖w‖X(T ).

Therefore,

‖w(t, ·)‖p
Lp∩L2p ≤ (1 + t)−β ‖w‖p

X(T ),

for some β > 1 if, and only if, p > pγ(2, σ). The end of the proof follows.
If n = 3, 4, we should proceed in a different way, employing fractional

Sobolev embeddings instead of Gagliardo–Nirenberg inequality (3.5), as in [4].
We notice that the solution to (5.12) satisfies the estimate:

‖v(t, ·)‖Ḣk ≤ (1 + t)− n+2k−2
4σ (‖v0‖L1∩H2σ + ‖v1‖L1∩L2), for any k ∈ [0, 2σ].

Let n = 3 and let us denote κ = κ(σ) := 2σ − 1/2. Let X(T ) be as in
(5.13), with norm given by

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)−1+ 1

4σ +γ‖w(t, ·)‖L2 + fσ(t)E [w](t)

+ (1 + t)γ
(
	(t)−1 ‖w(t, ·)‖Ḣκ + ‖w(t, ·)‖Ḣ2σ

)}
,

where

fσ(t) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + t)γ if σ ∈ (1/2, 3/4),

(1 + t)γ	(t)−1 if σ = 3/4,

(1 + t)−1+ 3
4σ +γ if σ ∈ (3/4, 1].

For any p ≥ 2 we may use the fractional Sobolev embedding

‖w(t, ·)‖Lp∩L2p ≤ C ‖w(t, ·)‖Ḣk1∩Ḣk2 , with km :=
n

2

(
1 − 1

mp

)
;

hence, we derive

‖w(t, ·)‖Lp∩L2p ≤ C (1 + t)−γ+[1+ 1
2σ − 3

2σ (1− 1
p )]+ 	(t) ‖w‖X(T ).

for any p > p(3, σ, γ), provided that p < 3/(3−4σ) if σ ∈ (1/2, 3/4). The
end of the proof follows.

In the last case, n = 4 and σ = 1, we proceed as for n = 3, but we take

‖w‖X(T ) := max
t∈[0,T ]

{
(1 + t)− 1

2+γ‖w(t, ·)‖L2

+ (1 + t)γ
(
	(t)−1E [w](t) + ‖∇2w(t, ·)‖L2

)}
. (5.14)

This concludes the proof. �
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Proof of Theorem 5.4. The proof is similar to the proof of Theorem 2.11 but,
due to the fact that the damping term does not contain fractional powers of
the Laplacian, we do not need a maximum principle for (5.7).

We may write∫ T

0

∫
BR

u(ϕtt − �ϕ) dx dt + μ

∫ T

0

∫
BR

u�ϕt dx dt

=
∫

BR

(−μ�u0(x) + u1(x))ϕ(0, x) dx + Γ(α)
∫ T

0

∫
BR

Jα
0|t(|u|p)ϕdx dt.

Thanks to (5.8), we derive

−
∫

BR

(−�u0(x) + u1(x))ϕ(0, x) dx ≤ 0,

for any sufficiently large R > 0. We follow the proof of Theorem 2.11 to
estimate the term containing ϕtt − �ϕ. Indeed, it still holds∫ T

0

∫
BR

|u|ϕtt dx dt ≤ ε

∫ T

0

∫
BR

|u|pΦRdx dt + CεT
−(α+2)p′+1Rn,

as well as∫ T

0

∫
BR

|u| |�ϕ| dx dt ≤ ε

∫ T

0

∫
BR

|u|pΦRdx dt + CεT
−αp′+1R−2p′+n,

whereas the contribution coming from the damping term may now be
directly estimated as∫ T

0

∫
Rn

|u||�ϕt| dx dt ≤ ε

∫ T

0

∫
BR

|u|pΦRdx dt + Cε T−(α+1)p′+1 R−2p′+n.

Summarizing, we obtained

(1 − 3ε)
∫ T

0

∫
BR

upΦR dx dt ≤ C̄T−αp′+1Rn
(
T−2p′

+ R−2p′
+ T−p′

R−2p′)
,

which is equivalent to (4.8). Therefore, by taking T and R as in the proof
of Theorem 2.11, it follows u ≡ 0 for any p < p(n, γ). If p = pγ(n), we proceed
again as in the proof of Theorem 2.11.

The proof of the statement follows from the fact that u ≡ 0 contradicts
(5.8). �

References

[1] Charão, R.C., da Luz, C.R., Ikehata, R.: Sharp decay rates for wave equations
with a fractional damping via new method in the fourier space. J. Math. Anal.
Appl. 408(1), 247–255 (2013). doi:10.1016/j.jmaa.2013.06.016
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Boston (2013)

[23] Podlubny, I.: Fractional Differential Equations. Math. Sci. Eng. vol. 198. Acad-
emic Press, San Diego. ISBN 0-12 55840-2

[24] Reissig, M.: Rates of decay for structural damped models with strictly increasing
in time coefficients. Contemp. Math. 554, 187–206 (2011). Israel Mathematical
Conference Proceedings, Complex Analysis and Dynamical Systems IV, Part 2.
May 18–22, Nahariya, Israel

[25] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives,
theory and applications. Gordon and Breach Science Publishers, USA (1987)

[26] Shibata, Y.: On the rate of decay of solutions to linear viscoelastic equa-
tion. Math. Methods Appl. Sci. 23, 203–226 (2000)

[27] Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation
with damping. J. Differ. Equ. 174, 464–489 (2001)

Marcello D’Abbicco
Department of Mathematics
University of Bari
Via E. Orabona 4
70125 Bari
Italy
e-mail: m.dabbicco@gmail.com

Received: 5 November 2013.

Accepted: 16 February 2014.

http://dx.doi.org/10.1504/IJDSDE.2009.028034
http://dx.doi.org/10.1504/IJDSDE.2009.028034

	A wave equation with structural damping and nonlinear memory
	Abstract
	1. Introduction
	2. Results
	2.1. Optimality of the critical exponent

	3. Proof of the global existence results
	4. Proof of Theorem 2.11
	5. The general case σ in (0,1]
	References


