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1. Introduction

The aim of this paper is to investigate the solvability of the following boundary
value problem{

Δu = a(x)up in Ω,
∂u
∂ν = λu on ∂Ω, u ≥ 0, u �≡ 0, on Ω,

(1.1)

where Ω ⊂ R
N , N ≥ 3, is a bounded domain with a smooth boundary ∂Ω,

ν denotes an outward normal to ∂Ω and λ > 0 is a parameter. It is assumed
that 0 < p ≤ 2∗ − 1. In fact, we consider three cases: (i) 1 < p < 2∗ − 1, (ii)
p = 2∗ − 1 and (iii) 0 < p < 1. Here 2∗ denotes the critical Sobolev exponent,
that is, 2∗ = 2N

N−2 , N ≥ 3. In the case (iii) we consider a modified problem
(1.1) by introducing the parameter λ into the equation, that is, we will look
for solutions of the following problem{

Δu = λa(x)up in Ω,
∂u
∂ν = λu on ∂Ω, u ≥ 0, u �≡ 0, on Ω.

(1.2)

In all these three cases we assume that the coefficient a(x) changes sign.
Further assumptions on a(x) will be formulated later. In this paper we
aim to establish the existence of weak solutions of problems (1.1) and
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(1.2). We show that there exist intervals (0, λ∗) and (0, λ̃) such problems
(1.1) and (1.2) admit a least two solutions in the respective intervals for
a parameter λ. One solution is obtained by applying the mountain-pass
principle [5] and a second one comes from a local minimizer with the aid
of the Ekeland variational principle ([11]) of the corresponding variational
functional.

Problem (1.1) with a(x) ≥ 0 and 1 < p < 2∗ − 1, under some regularity
assumptions on a(x) and ∂Ω and 1 < p < 2∗ − 1, has been investigated in
papers [13,14]. In particular, if a(x) > 0 on Ω̄ and 0 < p < 2∗ − 1, then
problem (1.1) has a classical solution. If 1 < p < 2∗ − 1, then this solution
is unique. If 0 < p < 1, then there exists a constant λ0 > 0 such that for
0 < λ < λ0 problem (1.1) has a unique solution. If a(x) vanishes on a smooth
sub-domain Ω0 ⊂ Ω with ∂Ω0 ∩ ∂Ω �= ∅, then a solution to problem (1.1)
with 1 < p < 2∗ − 1 exists for λ belonging to a bounded interval (0, σ1). The
constant σ1 is a principal eigenvalue for the Laplace equation Δu = 0 in Ω0

with mixed boundary conditions. For the description of the configuration of Ω0

and the definition of σ1 we refer to papers [13,14]. Also, the authors of these
papers derived a number of interesting asymptotic properties of solutions of
(1.1) when λ converges to one of the ends of the interval (0, σ1) in the case
when a(x) is positive.

The paper is organized as follows. In Sect. 2 we recall some basic defini-
tions. In Sect. 3 we discuss the mountain-pass structure of variational function-
als corresponding to problems (1.1) and (1.2). These functionals are denoted
by Jλ and J̄λ, respectively. Our approach is based on a qualitative property
of the embedding of the Sobolev space H1(Ω into the Lebesgue space Lq(Ω),
1 ≤ q < 2∗ (see property (P) in this section). It appears that this property has
been used for the first time in paper [6]. Section 4 is devoted to the boundedness
of Palais–Smale sequences of the functionals Jλ and J̄λ. The existence results
for the case 0 < p < 2∗ − 1 are given in Sect. 5. The existence of solutions for
the critical case p + 1 = 2∗ is discussed in Sect. 6. The main ingredient in our
approach is the P.L. Lions’ concentration–compactness principle [15]. We note
that the shape of the graph of the coefficient a(x) plays an important role (see
also paper [10]). We only consider the existence of solutions for λ > 0. In the
critical case with λ = 0 some existence results have been obtained in paper [9].
The results of this paper can be easily extended to the case 1 < p < 2∗ − 1.
Problem (1.2) with λ = 0 is a linear problem so it makes sense to consider
the behavior of solutions of problem (1.2) when λ → 0. Profiles of local min-
imizers and mountain-pass solutions when λ → 0 in the case 0 < p < 1 are
presented in Sect. 7. Finally, in Appendix we give a sketch of the proof of the
fact that solutions constructed in the case 1 < p ≤ 2∗ −1 are regular up to the
boundary, that is, they belong to C1,β(Ω̄) for some 0 < β < 1. We point out
that the continuity of a local minimizer in the case p = 2∗ − 1 has been used
in the proof of Proposition 6.2.

In this paper we use standard notations. In a given Banach space we
denote by “→” strong convergence and by “⇀” weak convergence. The norms
in the Lebesgue spaces Lp(Ω), 1 ≤ p ≤ ∞, are denoted by ‖ · ‖p.
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2. Preliminaries

Throughout this paper we assume that the coefficient a(x) is continuous on Ω̄
and changes sign with a dominant positive part a+(x) = max(a(x), 0), that is,
(A)

∫
Ω

a(x) dx > 0.
At the end of this section we give a short justification for this assumption.
Solutions of problem (1.1) are sought in a Sobolev space H1(Ω). We recall
that H1(Ω) is the usual Sobolev space equipped with norm

‖u‖2 =
∫

Ω

(|∇u|2 + u2) dx.

We frequently use the decomposition of the space H1(Ω):

H1(Ω) = V ⊕ R, V =
{

v ∈ H1(Ω);
∫

Ω

v(x) dx = 0
}

.

This decomposition yields the following equivalent norm on H1(Ω)

‖u‖2
V = ‖|∇v|‖2

2 + t2.

We also use a norm ‖ · ‖∗ given by

‖u‖2
∗ =

∫
Ω

|∇u|2 dx +
∫

∂Ω

u2 dSx.

Obviously these three norms on H1(Ω) are equivalent.
By Jλ(u) we denote a variational functional associated with problem

(1.1), that is,

Jλ(u) =
1
2

∫
Ω

|∇u|2 dx − λ

2

∫
∂Ω

u2 dSx +
1

p + 1

∫
Ω

a(x)|u|p+1 dx.

A critical point u of Jλ is a weak solution of problem (1.1), that is,∫
Ω

∇u∇φ dx − λ

∫
∂Ω

uφ dSx +
∫

Ω

a(x)|u|p−1uφ dx = 0 (2.1)

for every φ ∈ H1(Ω). The functional Jλ is of class C1 on H1(Ω).
The variational functional for problem (1.2) is denoted by J̄λ and is given

by

J̄λ(u) =
1
2

∫
Ω

|∇u|2 dx − λ

2

∫
∂Ω

u2 dSx +
λ

p + 1

∫
Ω

a(x)|u|p+1 dx

and critical points of J̄λ are solutions to problem (1.2).
Let us assume that problem (1.1) [or (1.2)] has a solution u. Testing (2.1)

with φ = (u2 + ε2)− p
2 we get

−p

∫
Ω

|∇u|2u(u2 + ε2)− p
2 −1 dx − λ

∫
∂Ω

u(u2 + ε2)− p
2 dSx

+
∫

Ω

a(x)up(u2 + ε2)− p
2 dx = 0.

Hence ∫
Ω

a(x)up(u2 + ε2)− p
2 dx > 0.
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Letting ε → 0 we obtain
∫
Ω

a(x) dx > 0 provided u(x) > 0 on Ω. Thus condition
(A) is necessary for the existence of a solution to problem (1.2).

If λ > 0, then the quadratic parts of both functionals Jλ and J̄λ change
sign. On the other hand if λ < 0, then the quadratic parts are positively
definite, and the corresponding problem requires a separate treatment. For
the present paper we opted for the case λ > 0 that we find more interesting.

3. The mountain-pass geometry for functionals Jλ and J̄λ

To apply the mountain-pass principle we need the following qualitative prop-
erty:
(P) there exists a constant η > 0 such that for every t ∈ R and v ∈ V the

inequality ( ∫
Ω

|∇v|2 dx

) 1
2

≤ η|t|
yields ∫

Ω

a(x)|v + t|p+1 dx ≥ |t|p+1

2

∫
Ω

a(x) dx.

This property follows from the continuity of the embedding of the space H1(Ω)
into the Lebesgue space Lp+1(Ω) with 0 < p ≤ 2∗ − 1 (see [6], Lemma 9).
Indeed, arguing by contradiction, suppose that (P) does not hold. Then for
every n ∈ N there exist tn ∈ R and vn ∈ V such that(∫

Ω

|∇vn|2 dx

) 1
2

≤ 1
n

|tn|
and

(∗)
∫

Ω

a(x)|vn + tn|p+1 dx <
|tn|p+1

2

∫
Ω

a(x) dx.

Setting wn = vn

tn
we see that ∇wn → 0 in L2(Ω) and, by continuous embedding

of V into Lp+1(Ω), wn → 0 in Lp+1(Ω). Dividing (*) by |tn|p+1 and letting
n → ∞ we derive ∫

Ω

a(x) dx ≤ 1
2

∫
Ω

a(x) dx,

that is
∫
Ω

a(x) dx ≤ 0, and this contradicts assumption (A).
We commence with the functional Jλ.

Proposition 3.1. Let 1 < p ≤ 2∗ − 1. Then there exist constants λ∗ > 0, κ > 0
and ρ > 0 such that

Jλ(u) ≥ κ

for 0 < λ < λ∗ and ‖u‖V = ρ.

Proof. We distinguish two cases: (i) ‖|∇v|‖2 ≤ η|t| and (ii) ‖|∇v|‖2 > η|t|,
where η > 0 is a constant from property (P). If (i) holds and ‖|∇v|‖2

2+t2 = ρ2,
then t2 ≥ ρ2

1+η2 and by property (P) we have
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∫
Ω

a(x)|u|p+1 dx ≥ |t|p+1

2

∫
Ω

a(x) dx =
|t|p+1

2
β,

where β =
∫
Ω

a(x) dx > 0. From this we derive that

Jλ(u) ≥ βρp+1

2(p + 1)(1 + η2)
p+1
2

− λ

2

∫
∂Ω

u2 dSx. (3.1)

In case (ii) we have

‖u‖V ≤ ‖|∇v|‖2

(
1 +

1
η2

) 1
2

. (3.2)

From the Sobolev embedding theorem we get
∣∣∣∣
∫

Ω

a(x)|u|p+1 dx

∣∣∣∣ ≤ C1‖u‖p+1
V ≤ C1‖|∇v|‖p+1

2

(
1 +

1
η2

) p+1
2

,

where C1 > 0 is a constant independent of u. Thus

Jλ(u) ≥ 1
2
‖|∇v|‖2

2 − C1‖|∇v|‖p+1
2

p + 1

(
1 +

1
η2

) p+1
2

− λ

2

∫
∂Ω

u2 dSx.

Taking ‖|∇v|‖2 ≤ ρ small enough we derive from this inequality that (observe
that 2 < p + 1)

Jλ(u) ≥ 1
4
‖|∇v|‖2

2 − λ

2

∫
∂Ω

u2 dSx.

If ‖u‖V = ρ, then by (3.2) we get

Jλ(u) ≥ ρ2η2

4 (1 + η2)
− λ

2

∫
∂Ω

u2 dSx. (3.3)

Both cases (3.1) and (3.3) lead to the estimate

Jλ(u) ≥ min
(

ρ2η2

4 (1 + η2)
,

βρp+1

2(p + 1) (1 + η2)
p+1
2

)
− λ

2

∫
∂Ω

u2 dSx.

Since norms ‖ · ‖V and ‖ · ‖∗ are equivalent we get

Jλ(u) ≥ min
(

ρ2η2

4 (1 + η2)
,

βρp+1

2(p + 1) (1 + η2)
p+1
2

)
− λC2ρ

2

for ‖u‖V = ρ, where C2 > 0 is a constant independent of u and ρ. Choosing

λ∗ =
1

2C2ρ2
min

(
ρ2η2

4 (1 + η2)
,

βρp+1

2(p + 1) (1 + η2)
p+1
2

)

the result follows with κ given by

κ =
1
2

min
(

ρ2η2

4 (1 + η2)
,

βρp+1

2(p + 1) (1 + η2)
p+1
2

)
.

�
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Proposition 3.2. Let 0 < p < 1. Then there exist constants λ∗∗ > 0 and ρ0 > 0
such that for every 0 < λ < λ∗∗ there exists a constant κ = κ(λ) > 0 with
property

J̄λ(u) ≥ κ

for ‖u‖V = ρ0.

Proof. As in the proof of Proposition 3.1 we distinguish two cases (i) and (ii).
If (i) holds, we get

J̄λ(u) ≥ λ

(
βρp+1

2(p + 1) (1 + η2)
p+1
2

− C2ρ
2

)
.

Since p + 1 < 2, we can choose ρ0 > 0 and α > 0 such that

J̄λ(u) ≥ αλ (3.4)

for ‖u‖V = ρ0 and for all λ > 0. In the case (ii) we have

ρ = ‖u‖V ≤ ‖|∇v|‖2

(
1 +

1
η2

) 1
2

.

Thus by the Sobolev embedding theorem we have
∣∣∣∣
∫

Ω

a(x)|u|p+1 dSx

∣∣∣∣ ≤ C1‖u‖p+1
V ≤ C1‖|∇v|‖p+1

2

(
1 +

1
η2

) p+1
2

≤ C1ρ
p+1

(
1 +

1
η2

) p+1
2

.

Thus

J̄λ(u) ≥ ρ2η2

2(1 + η2)
− λ

[
C1ρ

p+1

p + 1

(
1 +

1
η2

) p+1
2

+ C2ρ
2

]
.

We now apply this inequality with ρ = ρ0 and choose λ∗∗ > 0 and α1 > 0 so
that

J̄λ(u) ≥ α1 (3.5)

for ‖u‖V = ρ0 and 0 < λ < λ∗∗. Therefore (3.4) and (3.5) yield

J̄λ(u) ≥ min(λα, α1)

for ‖u‖V = ρ0 and 0 < λ < λ∗∗. �

If 1 < p ≤ 2∗ − 1, testing J̄λ(u) with a constant function u = t we get

Jλ(t) =
tp+1

p + 1

∫
Ω

a(x) dx − λt2

2
|∂Ω| = t2

(
tp−1

p + 1

∫
Ω

a(x) dx − λ

2
|∂Ω|

)
< 0

for t > 0 sufficiently small.
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If 0 < p < 1, taking a function φ ∈ H1(Ω) with supp φ ⊂ {x ∈ Ω̄, a(x) <
0} we obtain

J̄λ(tφ) = tp+1

(
t1−p

2

∫
Ω

|∇φ|2 dx − t1−pλ

2

∫
∂Ω

φ2 dSx

− λ

p + 1

∫
Ω

a−(x)|φ|p+1 dSx

)
< 0

for t > 0 sufficiently small. Therefore we have

inf
‖u‖V ≤ρ

Jλ(u) < 0 for 0 < λ < λ∗ (3.6)

and

inf
‖u‖V ≤ρ0

J̄λ(u) < 0 for 0 < λ < λ∗∗. (3.7)

4. Palais–Smale sequences

In this section we show that Palais–Smale sequences are bounded in H1(Ω) in
both cases 1 < p ≤ 2∗−1 and 0 < p < 1. We begin with the case 1 < p ≤ 2∗−1.

Proposition 4.1. Let 1 < p ≤ 2∗ − 1 and λ > 0. Assume that |{x ∈ Ω̄ : a(x) =
0}| = 0. Then every Palais–Smale sequence for Jλ is bounded in H1(Ω).

Proof. Let Jλ(un) → c ∈ R and J ′
λ(un) → 0 in H−1(Ω). Arguing by contra-

diction assume ‖un‖ → ∞ as n → ∞. We have

1
2
〈J ′

λ(un), un〉 − Jλ(un) =
(

1
2

− 1
p + 1

) ∫
Ω

a(x)|un|p+1 dx

= εn‖un‖ + c + o(1), (4.1)

where εn → 0. On the other hand we have
1
2

∫
Ω

|∇un|2 dx − λ

2

∫
∂Ω

u2
n dSx +

1
p + 1

∫
Ω

a(x)|un|p+1 dx = c + o(1). (4.2)

We derive from (4.1) and (4.2) that
∫

∂Ω
u2

n dSx → ∞ as n → ∞. We put

vn =
un(∫

∂Ω
u2

n dSx

) 1
2
.

It then follows from (4.1) and (4.2) that

1
2

∫
Ω

|∇vn|2 dx − λ

2
≤ C1

‖un‖
‖un‖2

L2(∂Ω)

+ o(1) ≤ C1
‖vn‖

‖un‖L2(∂Ω)
+ o(1). (4.3)

This shows that {vn} is bounded in H1(Ω). We may assume that vn ⇀ v in
H1(Ω), vn → v in L2(∂Ω) and vn → v in Lq(Ω) for 1 ≤ q < 2∗. For every
φ ∈ H1(Ω) we have∫

Ω

∇vn∇φ dx − λ

∫
∂Ω

vnφ dSx = ‖un‖p−1
L2(∂Ω)

∫
Ω

a(x)|vn|p−1vnφ dx + o(1).
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This yields (since 1 < p) ∫
Ω

a(x)|v|p−1vφ dx = 0

for every φ ∈ H1(Ω). Since a(x) vanishes on a set of measure 0 we must have
v = 0 a.e. on Ω and this contradicts the fact that

∫
∂Ω

v2 dSx = 1. Hence {un}
is bounded in H1(Ω). �

We now turn our attention to the case 0 < p < 1. We need some infor-
mation about the following eigenvalue problem{−Δu = 0 in Ω,

∂u
∂ν = λu on ∂Ω.

(4.4)

The smallest (principal) eigenvalue is obviously equal to 0 and the correspond-
ing eigenfunctions are constant functions. All eigenfunctions corresponding to
positive eigenvalues are orthogonal in L2(∂Ω) to 1. We denote by λ2 the first
positive eigenvalue to problem (4.4).

Proposition 4.2. Let 0 < p < 1. Then there exists 0 < λ̃ ≤ min(λ∗∗, λ2) such
that Palais–Smale sequences for J̄λ with 0 < λ < λ̃ are bounded in H1(Ω).

Proof. Let {un} ⊂ H1(Ω) be such that J̄λ(un) → c and J̄ ′
λ(un) → 0 in H−1(Ω.

We use the decomposition un = vn + tn, vn ∈ V and tn ∈ R. We claim that
{tn} is a bounded sequence. Arguing by contradiction assume that tn → ∞
(the case tn → −∞ can be treated in a similar way). We have∫

Ω

|∇vn|2 dx = 2c + λ

∫
∂Ω

(vn + tn)2 dSx − 2λ

p + 1

∫
Ω

a(x)|vn + tn|p+1 dx + o(1)

≤ 2c + 2λC1

∫
Ω

|∇vn|2 dx + 2λt2n|∂Ω|

+C2‖a‖∞

(∫
Ω

|∇vn|2 dx + t2n

) p+1
2

+ o(1).

Here we have used a trace embedding theorem for the space V . We put wn =
vn

tn
. We derive from the above inequality that

(1 − 2λC1)
∫

Ω

|∇wn|2 dx

≤ 2c

t2n
+ 2λ|∂Ω| + C2‖a‖∞tp−1

n λ

(∫
Ω

|∇wn|2 dx + 1
) p+1

2

+ o(1).

Choosing 2λ̃C1 < 1 we deduce from this inequality that {wn} is bounded in
H1(Ω). Hence we may assume that ∇wn ⇀ ∇w in L2(Ω) and wn → w in
L2(∂Ω). On the other hand for every φ ∈ H1(Ω) we have∫

Ω

∇wn∇φ dx − λ

∫
∂Ω

(wn + 1)φ dSx + tp−1
n λ

∫
Ω

a(x)|wn + 1|p−1(wn + 1)φ dx

=
εn

tn
‖un‖ → 0, (4.5)
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where εn → 0. Letting tn → ∞ we derive from (4.5) that∫
Ω

∇w∇φ dx − λ

∫
∂Ω

(w + 1)φ dx = 0

for every φ ∈ H1(Ω). If w = 0 on Ω we get a contradiction. So w �= 0 and the
function w cannot be constant as w ∈ V . Hence w + 1 is a nonzero solution
of (4.4) with 0 < λ < λ2. Since λ2 is the first positive eigenvalue of (4.4) we
have arrived at a contradiction. Therefore {tn} is bounded. This yields the
boundedness of {∇un} in L2(Ω) and the result follows. �

5. Existence of solutions (subcritical cases)

We prove in both cases 0 < p < 1 and 1 < p < 2∗ − 1 the existence of at least
two solutions.

Theorem 5.1. Let 1 < p < 2∗−1 and 0 < λ < λ∗. Assume that |{x ∈ Ω̄, a(x) =
0}| = 0. Then problem (1.1) has a solution u with Jλ(u) > 0 and a solution v
with Jλ(v) < 0.

Proof. Let 0 �= w ∈ H1(Ω) such that supp w ⊂ {x ∈ Ω̄, a(x) < 0}. Then

Jλ(tw) =
t2

2

(∫
Ω

|∇w|2 dx − λ

∫
∂Ω

w2 dSx

)
+

tp+1

p + 1

∫
Ω

a(x)|w|p+1 dx < 0

for t > 0 sufficiently large since p > 1. We set

0 < cλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)),

where

Γ = {γ ∈ C([0, 1],H1(Ω)), γ(0) = 0, γ(1) = tw},

where t > 0 is so large that ‖tw‖ > ρ and Jλ(tw) < 0. Here ρ is a constant
from Proposition 3.1. These observations show that the functional Jλ has a
mountain-pass structure in H1(Ω). Therefore there exists a sequence {un} ⊂
H1(Ω) such that Jλ(un) → cλ and J ′

λ(un) → 0 in H−1(Ω). By Proposition 4.1
the sequence {un} is bounded in H1(Ω). Hence we may assume that, up to a
subsequence, un ⇀ u in H1(Ω), un → u in Lq(Ω) for 1 ≤ q < 2∗ and un → u
in L2(∂Ω). Since J ′

λ(un) → 0 in H−1(Ω) we get for m > n∫
Ω

|∇um − ∇un|2 dx − λ

∫
∂Ω

(um − un)2 dSx

+
∫

Ω

a(x)(|um|p−1um − |un|p−1un)(um − un) dx = o(1).

The second and third integrals tend to 0 as m,n → ∞. This yields un → u in
H1(Ω) and u is a solution of (1.1) with a positive energy. Applying Theorem
10 in [6] we may assume that u is nonnegative on Ω. Since inf‖u‖≤ρ Jλ(u) < 0
for some ρ > 0, a solution with a negative energy is obtained by the Ekeland
variational principle. If v is a local minimizer then |v| is also local minimizer
so we may assume that v is nonnegative. By the elliptic regularity theory both
solutions u and v belong to C2,α

loc(Ω) (see Appendix B in [17]). It then follows
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from the Harnack inequality (Theorem 8.20 in [12]) that both solutions u and
v are positive on Ω. One can also show that these solution belong to C1,β(Ω̄)
for some 0 < β < 1 (see Appendix). �

We now consider the case 0 < p < 1. Testing J̄λ with a constant function
u = t we get

J̄λ(t) = −λt2

2
|∂Ω| +

λtp+1

p + 1

∫
Ω

a(x) dx < 0

for t > 0 large. So we can choose w = t so that ‖w‖ > ρ and J̄λ(t) < 0 for a
given λ belonging to the interval (0, λ̃) (see Propositions 3.2 and 4.2).

We can now formulate the following existence result.

Theorem 5.2. Let 0 < p < 1. Then for every 0 < λ < λ̃ problem (1.2) has a
solution u with J̄λ(u) > 0 and a solution v with J̄λ(v) < 0.

The proof is similar to that of Theorem 5.1 and is omitted. The bounded-
ness of Palais–Smale sequences follows from Proposition 4.2. In this case both
solutions are nonnegative and nonzero. The positivity argument employed in
the proof of Theorem 5.1 cannot be extended to this case.

6. Existence of solutions (critical case)

In this section we investigate the solvability of problem (1.1) with p = 2∗ − 1.
According to Proposition 3.1 the functional Jλ has a mountain-pass structure
for 0 < λ < λ∗. Moreover, inf‖u‖≤ρ Jλ(u) < 0. It is easy to show, using the
Ekeland variational principle (see [11]), that the infimum of Jλ on the ball
‖u‖ < ρ is attained by a function v, that is, Jλ(v) = inf‖u‖≤ρ Jλ(u). Repeating
the argument from the previous section we can assume that v > 0 on Ω.

In what follows we assume that a(x) is negative somewhere on ∂Ω. We
put

Am = max
x∈∂Ω

(−a(x)) and AM = max
x∈Ω̄

(−a(x)).

These constants play an important role in finding sufficient conditions for the
existence of solution of problem (1.1) in critical case. By S we denote the best
Sobolev constant for the continuous embedding of H1

0 (Ω) into L2∗
(Ω), that is,

S = inf
u∈H1

0 (Ω)−{0}

∫
Ω

|∇u|2 dx(∫
Ω

|u|2∗ dx

) 2
2∗

.

We recall that the best Sobolev constant S is attained only if Ω = R
N . The

minimizers are given by a family of functions

Uε,y(x) = ε− N−2
2 U

(
x − y

ε

)
, ε > 0, y ∈ R

N ,
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where

U(x) =
(

N(N − 2)
N(N − 2) + |x|2

)N−2
2

.

The function U , called an instanton, satisfies the equation

−ΔU = U2∗−1 in R
N .

We also have (see [17,18])∫
RN

|∇Uε,y|2 dx =
∫

RN

U2∗
ε,y dx = S

N
2 .

Let H(y) denote the mean curvature of ∂Ω at y ∈ ∂Ω. It is well-known (see
[3,4]) that

∫
Ω

|∇Uε,y|2 dx(∫
Ω

U2∗
ε,y dx

) 2
2∗

=

⎧⎪⎨
⎪⎩

2− 2
N S − ANH(y)ε log 1

ε + O(ε), N = 3,

2− 2
N S − ANH(y)ε + O

(
ε2

)
log 1

ε , N = 4,

2− 2
N S − ANH(y)ε + O

(
ε2

)
, N ≥ 5,

(6.1)

where AN is a positive constant depending only on N (see [1,2,19]).

Proposition 6.1. Let p = 2∗ − 1 and 0 < λ < λ∗. Assume that |{x ∈ Ω̄, a(x) =
0}| = 0 and that a(x) is negative somewhere on ∂Ω. Let un ⇀ u in H1(Ω). If

Jλ(un) → c < Jλ(u) +
1

N
min

⎛
⎝ S

N
2

A
N−2

2
M

,
S

N
2

2A
N−2

2
m

⎞
⎠ and J ′

λ(un)→0 inH−1(Ω),

then un → u in H1(Ω).

Proof. We may also assume that |∇un|2 ⇀ μ and |un|2∗
⇀ ν in the sense of

measures. Then by P.L.Lions’ concentration - compactness principle (see [15])
there exist an at most countable set J and sequences {xj} ⊂ Ω̄, {μj}, {νj} ⊂
(0,∞), j ∈ J , such that

|∇un|2 ⇀ μ ≥ |∇u|2 +
∑
j∈J

μjδxj

and

|un|2∗
⇀ ν = |u|2∗

+
∑
j∈J

νjδxj
,

where δxj
are the Dirac measures assigned to points xj . Moreover, we have

Sν
2
2∗
j ≤ μj if xj ∈ Ω (6.2)

and
S

2
2
N

ν
2
2∗
j ≤ μj if xj ∈ ∂Ω. (6.3)

Testing J ′
λ(un) → 0 in H−1(Ω) with a family {φδ}, δ > 0, of C1-functions

concentrating at 0 as δ → 0 we easily derive that

μj ≤ −a(xj)νj for j ∈ J. (6.4)
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This means that a concentration can only occur at points xj with a(xj) < 0.
We now observe that if νj > 0 for some j ∈ J then by (6.2) and (6.4) we get

μj ≥ S
N
2

(−a(xj))
N−2

2

if xj ∈ Ω (6.5)

and by (6.2) and (6.3) we get

μj ≥ S
N
2

2(−a(xj))
N−2

2

if xj ∈ ∂Ω. (6.6)

We set vn = un − u. It follows from the Brezis–Lieb lemma (see [7]) that∫
Ω

a(x)|un|p+1 dx =
∫

Ω

a(x)|u|p+1 dx +
∫

Ω

a(x)|vn|p+1 dx + o(1).

We also have∫
Ω

|∇un|2 dx =
∫

Ω

|∇u|2 dx +
∫

Ω

|∇vn|2 dx + o(1).

Since un → u in L2(∂Ω) we obtain

Jλ(u) +
1
2

∫
Ω

|∇vn|2 dx +
1

p + 1

∫
Ω

a(x)|vn|p+1 dx = c + o(1) (6.7)

and ∫
Ω

|∇u|2 dx − λ

∫
∂Ω

u2 dSx +
∫

Ω

a(x)|u|p+1 dx

+
∫

Ω

|∇vn|2 dx +
∫

Ω

a(x)|vn|p+1 dx = o(1). (6.8)

Since u is a weak solution of (1.1) we deduce from (6.8) that∫
Ω

|∇vn|2 dx +
∫

Ω

a(x)|vn|p+1 dx = o(1).

Substituting this into (6.7) we obtain

Jλ(u) +
1
N

∫
Ω

|∇vn|2 dx = c + o(1). (6.9)

Assume that μj0 > 0 for some j0 ∈ J . Then by (6.5), if xj0 ∈ Ω,

c ≥ Jλ(u) +
S

N
2

N(−a(xj0))
≥ S

N
2

NA
N−2

2
M

and if xj0 ∈ ∂Ω, then (6.6) yields

c ≥ Jλ(u) +
S

N
2

2NA
N−2

2
m

which is impossible and this contradiction completes the proof. �

In what follows we use notation A(x) = −a(x).
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We choose a point y ∈ ∂Ω such that A(y) = Am. Let φ be a C1-function
on R

N such that φ(x) = 1 on B(y, δ
2 ), φ(x) = 0 on R

N\B(0, δ) and 0 ≤
φ(x) ≤ 1 on R

N . We put wy,ε(x) = φ(x)Uε,y(x). The radius of the ball B(0, δ)
is chosen so that Ω ∩ B(0, δ) ⊂ {x ∈ Ω̄, a(x) < 0}.

We now prove the existence of a second solution of problem (1.1) in the
case

1
N

min
(

S
N
2

A
N−2

2
M

,
S

N
2

2A
N−2

2
m

)
=

S
N
2

2NA
N−2

2
m

,

that is, when AM ≤ 2
2

N−2 Am. The case AM > 2
2

N−2 Am seems to be more diffi-
cult and we were unable to find conditions on the coefficient a(x) guaranteeing
the existence of a second solution.

Proposition 6.2. Let p = 2∗ − 1, 0 < λ < 2∗ and AM ≤ 2
2

N−2 Am and N ≥ 5.
Assume that a(x) is negative somewhere on ∂Ω. Furthermore assume that there
exists a point y ∈ ∂Ω such that A(y) = Am, H(y) > 0 and

|A(y) − A(x)| = o(|x − y|) for x near y. (6.10)

If v is a local minimizer for Jλ then

max
0≤t

Jλ(v + twε,y) < Jλ(v) +
S

N
2

2NA
N−2

2
m

.

Proof. We follow some ideas from papers [8,16]. We need the following inequal-
ity (see [16]): given q > 2 and κ ∈ (1, q − 1) there exists a constant C > 0 such
that

(s + t)q ≥ sq + tq + qsq−1t + qstq−1 − Ctκsq−κ (6.11)

for s, t ≥ 0. We have

Jλ(v + twy,ε) =
1
2

∫
Ω

|∇v|2 dx +
t2

2

∫
Ω

|∇wy,ε|2 dx + t

∫
Ω

∇v∇wy,ε dx

−λt2

2

∫
∂Ω

w2
y,ε dSx − tλ

∫
∂Ω

wy,εv dSx − λ

2

∫
∂Ω

v2 dSx

− 1
2∗

∫
Ω

A(x)|v + twy,ε|2∗
dx.

Using (6.11) we get (with q = 2∗ and κ = N+1
N−2 )

Jλ(v + twy,ε) = Jλ(v) +
1
2∗

∫
Ω

A(x)|v|2∗
dx + t

∫
Ω

A(x)v2∗−1wy,ε dx

+
t2

2

∫
Ω

|∇wy,ε|2 dx − λt2

2

∫
∂Ω

w2
y,ε dSx

− 1
2∗

∫
Ω

A(x)|v + twy,ε|2∗
dx

≤ Jλ(v) +
t2

2

∫
Ω

|∇wε,y|2 dx − λt2

2

∫
∂Ω

w2
y,ε dSx
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− t2
∗

2∗

∫
Ω

A(x)w2∗
y,ε dx + t

∫
Ω

A(x)v2∗−1wy,ε dx

+Ct
N+1
N−2

∫
Ω

A(x)v
N−1
N−2 w

N+1
N−2
y,ε dx − t

∫
Ω

A(x)wy,εv
2∗−1 dx

−t2
∗−1

∫
Ω

A(x)w2∗−1
y,ε v dx

≤ Jλ(v) +
t2

2

∫
Ω

|∇wy,ε|2 dx − t2
∗

2∗

∫
Ω

A(x)w2∗
y,ε dx

+Ct
N+1
N−2

∫
Ω

A(x)v
N−1
N−2 w

N+1
N−2
y,ε dx. (6.12)

We now observe that ∫
Ω

A(x)v
N−1
N−2 w

N+1
N−2
y,ε dx ≤ Cε

N−1
2 ,

where C > 0 is a constant independent of ε. To obtain this estimate we have
used the fact that v ∈ C(Ω̄). From (6.12) we derive that

Jλ(v + twy,ε) ≤ Jλ(v) +
t2

2

∫
Ω

|∇wy,ε|2 dx − t2
∗

2∗

∫
Ω

A(x)w2∗
y,ε dx

+Ct
N+1
N−2 ε

N−1
2

:= Jλ(v) +
t2

2

∫
Ω

|∇wy,ε|2 dx − t2
∗

2∗

∫
Ω

A(x)w2∗
y,ε dx + Ψε(t).

As in paper [8] we show that for every ε > 0 (small) there exists tε > 0 such
that

max
t≥0

[
t2

2

∫
Ω

|∇wy,ε|2 dx − t2
∗

2∗

∫
Ω

A(x)w2∗
y,ε dx + Ψε(t)

]

=
t2ε
2

∫
Ω

|∇wy,ε|2 dx − t2
∗

ε

2∗

∫
Ω

A(x)w2∗
y,ε dx + Ψε(tε) < ∞

and there exist constants 0 < T1 < T2 < ∞ such that T1 ≤ tε ≤ T2. Hence,
using the expansion∫

Ω

A(x)wy,ε(x)2
∗
dx = Am

∫
Ω

w2∗
y,ε dx + o(1),

we obtain

max
t≤0

Jλ(v + twy,ε) ≤ Jλ(v) +
1
N

( ∫
Ω

|∇wy,ε|2 dx(
Am

∫
Ω

w2∗
y,ε dx + o(ε)

) 2
2∗

)N
2

+ T
N+1
N−2
1 ε

N−1
2 .

The asymptotic estimates (6.1) remain true for the truncated instantons wy,ε.
So combining them with the above inequality we get

max
t≥0

Jλ(v + twy,ε) < Jλ(v) +
S

N
2

2NA
N−2

2
m

provided N ≥ 5. �
We are now ready to prove the existence of a second solution.
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Theorem 6.3. Let p = 2∗ − 1, 0 < λ < λ∗ and AM ≤ 2
2

N−2 Am and N ≥ 5.
Assume that |{x ∈ Ω̄, a(x) = 0}| = 0 and that a(x) is negative somewhere on
the boundary. Furthermore assume that there exists a point y ∈ ∂Ω such that
A(y) = Am, H(y) > 0 and that (6.10) holds. Then problem (1.1) has a second
solution u with Jλ(u) > 0.

Proof. Since v is a local minimizer on the ball {‖u‖ ≤ ρ} (see (3.6) in Section
3), we can define a mountain-pass level around v

0 < dλ = inf
γ∈Γ

max
t∈[0,1]

Jλ(γ(t)),

where Γ = {γ ∈ C([0, 1],H1(Ω)), γ(0) = v and J(γ(1)) < 0}. It follows from
Proposition 6.2 that

0 < dλ < Jλ(v) +
S

N
2

2NA
N−2

2
m

<
S

N
2

2NA
N−2

2
m

.

Let {un} ⊂ H1(Ω) be such that Jλ(un) → dλ and J ′
λ(un) → 0 in H1(Ω).

Since {un} is bounded in H1(Ω) we may assume that un ⇀ u. If u = 0,
then by Proposition 6.1 un → 0 in H1(Ω). Since Jλ(un) → dλ > 0 we get a
contradiction. Hence u �= 0. If u �= v we are done. So it remains to consider
the case un → v. Again by Proposition 6.1 un → v in H1(Ω) and Jλ(un) →
Jλ(v) = dλ. Since Jλ(v) < 0 we have arrived at a contradiction. Hence u is a
nontrivial solution of (1.1) distinct from v and this completes the proof. As in
Sect. 5 we can assume that the mountain-pass solution u is positive on Ω. �

7. Behavior of solutions in the case 0 < p < 1

First we consider the collection of the mountain-pass solutions of problem
(1.2). Let {wλ} ⊂ H1(Ω) be the mountain-pass solutions of problem (1.2). We
begin by showing that the mountain-pass level around v for J̄λ behaves like
O(λ) when λ → 0. We need the following lemma.

Lemma 7.1. Let 0 < p < 2∗ − 1. Then there exists a constant C > 0 such that
∫

∂Ω

u2 dSx ≤ C

[∫
Ω

|∇u|2 dx +
∣∣∣∣
∫

Ω

a(x)|u|p+1 dx

∣∣∣∣
2

p+1
]

(7.1)

for every u ∈ H1(Ω).

Proof. Arguing by contradiction assume that there exists a sequence {un} ⊂
H1(Ω) such that

∫
∂Ω

u2
n dSx = 1 for each n ∈ N,

∫
Ω

|∇un|2 dx → 0 and∫
Ω

a(x)|un|p+1 dx → 0 as n → ∞. Note that {un} is bounded in H1(Ω). We
may assume that un ⇀ u in H1(Ω). By the lower semi-continuity of norm with
respect to a weak convergence we get that

∫
Ω

|∇u|2 dx = 0. Thus u is a con-
stant, say u = t. Since H1(Ω) is compactly embedded into Lp+1(Ω) we derive
that |t|p+1

∫
Ω

a(x) dx = 0. Since
∫
Ω

a(x) dx > 0 we must have t = 0. Thus by
the compact embedding of H1(Ω) into L2(∂Ω) we get that

∫
∂Ω

u2
n dSx → 0

which is impossible. �
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Remark 7.2. The square root of the right side of (7.1) defines a quasi-norm on
H1(Ω) (an equivalent norm if p ≥ 1).

In what follows we denote by C a positive constant which can change from
line to line and which is independent of λ. The functional J̄λ is unbounded
from below on H1(Ω) and by Proposition 3.2 it has a mountain-pass structure.
For 0 < λ < λ̃ we denote by d̄λ a mountain-pass level for J̄λ.

Lemma 7.3. Let 0 < p < 1. Then there exists a constant C > 0 such that
the mountain-pass level d̄λ for the functional J̄λ satisfies 0 < d̄λ ≤ Cλ for
0 < λ < λ̃.

Proof. First note that u = t > 0 (a constant) is an admissible test function
for d̄λ. Since 0 < p < 1 we get

J̄λ(t) = λ

(
tp+1

p + 1

∫
Ω

a(x) dx − t2

2
|∂Ω|

)
→ −∞ as t → ∞.

Therefore d̄λ ≤ maxt≥0 J̄λ(t) = Cλ, where

C = max
t≥0

(
tp+1

p + 1

∫
Ω

a(x) dx − t2

2
|∂Ω|

)
> 0.

�

Proposition 7.4. Let 0 < p < 1 and let {wλ}, 0 < λ < λ̃, be mountain-pass
solutions of problem (1.2). Then

wλ →
(

1
|∂Ω|

∫
Ω

a(x) dx

) 1
1−p

in H1(Ω) as λ → 0. (7.2)

Proof. Since

d̄λ = J̄λ(wλ) = J̄λ(wλ) − 1
2
〈J̄λ(wλ), wλ〉 =

(
1

p + 1
− 1

2

)
λ

∫
Ω

a(x)wp+1
λ dx,

by Lemma 7.3 we obtain that∣∣∣∣
∫

Ω

a(x)wp+1
λ dx

∣∣∣∣ ≤ C

for 0 < λ < λ̃. It then follows from Lemma 7.1 that∫
Ω

|∇wλ|2 dx ≤ λ

(∫
∂Ω

w2
λ dSx +

∣∣∣∣
∫

Ω

a(x)wp+1
λ dx

∣∣∣∣
)

≤Cλ

(∫
Ω

|∇wλ|2 dx+
∣∣∣∣
∫

Ω

a(x)wp+1
λ dx

∣∣∣∣ +
∣∣∣∣
∫

Ω

a(x)wp+1
λ dx

∣∣∣∣
2

p+1
)

for 0 < λ < λ̃. Taking λ̃ smaller if necessary, we derive from this∫
Ω

|∇wλ|2 dx ≤ Cλ (7.3)
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for 0 < λ < λ̃. Combining this with (7.1) we see that {wλ} is bounded in
H1(Ω). By (7.3) |∇wλ| → 0 in L2(Ω). Therefore we may assume that wλ →
t ≥ 0 (a constant) in H1(Ω). We now observe that∫

∂Ω

wλ dSx =
∫

Ω

a(x)wp
λ dx,

and letting λ → 0 we derive from this that

t|∂Ω| = tp
∫

Ω

a(x) dx.

Hence either t = 0 or t =
(

1
|∂Ω|

∫
Ω

a(x) dx

) 1
1−p

. Assuming that wλ → 0 in

H1(Ω) and observing that

‖∇wλ‖2 ≤ λ

( ∫
∂Ω

w2
λ dSx +

∣∣∣∣
∫

Ω

a(x)wp+1
λ dx

∣∣∣∣
)

≤ Cλ
(‖wλ‖2 + ‖wλ‖p+1

)
we check that J̄λ(wλ) = o(λ) as λ → 0. On the other hand by Proposition 3.2,
we see that J̄λ(wλ) ≥ Cλ for 0 < λ < λ̃ and we have arrived at a contradiction.
This shows that relation (7.2) holds. �

We point out here that the limiting value in (7.2) has already appeared
in paper [13] where problem (1.1) with a(x) > 0 on Ω̄ and 0 < p < 1 has been
investigated. The authors of [13] showed that if {uλ} is a collection of positive
classical solutions for λ > 0 then

lim
λ→0

λ
1

1−p uλ =
(

1
|∂Ω|

∫
Ω

a(x) dSx

) 1
1−p

in C2,α(Ω̄).

We notice that in formula (7.2) the factor λ
1

1−p does not appear. This is due
to the fact that {wλ} are solutions of problem (1.2) where the parameter λ
appears on the right hand side of the equation.

We now turn our attention to local minimizers {uλ}, 0 < λ < λ̃ of the
functional J̄λ which are solutions of problem (1.2). Below we will frequently
use the decomposition uλ = vλ + tλ, vλ ∈ V and tλ ∈ R.

Lemma 7.5. Local minimizers of J̄λ satisfy

‖uλ‖ ≤ Cλ
1

1−p

for 0 < λ < λ̃, where C > 0 is a constant independent of λ.

Proof. It follows from

J̄λ(uλ) − 1
2
〈J̄ ′

λ(uλ), uλ〉 < 0,

that (
1

p + 1
− 1

2

)∫
Ω

a(x)up+1
λ dx < 0.
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Hence ∫
Ω

a(x)up+1
λ dx < 0.

We now use the following inequality∣∣a(x)|1 + w|p+1 − a(x)
∣∣ ≤ C

(|w|p+1 + |w|)
for every w ∈ R, where C > 0 is a constant independent of w. Letting w = vλ

tλ

and assuming that tλ �= 0 we obtain∣∣a(x)|tλ + vλ|p+1 − |tλ|p+1a(x)
∣∣ ≤ C

(|vλ|p+1 + |tλ|p|vλ|) (7.4)

Inequality (7.4) remains true if tλ = 0. Integrating we get

|tλ|p+1

∫
Ω

a(x) dx ≤ |tλ|p+1

∫
Ω

a(x) dx −
∫

Ω

a(x)|vλ + tλ|p+1 dx

=
∫

Ω

a(x)
[|tλ|p+1 − |vλ + tλ|p+1

]
dx

≤ C

(∫
Ω

|vλ|p+1 dx + |tλ|p
∫

Ω

|vλ| dx

)

By the Sobolev embeddings of the space V we derive from this that

|tλ|p+1

∫
Ω

a(x) dx ≤ C(‖|∇vλ|‖p+1
2 + |tλ|p‖|∇vλ|‖2)

≤ ε|tλ|p+1 + Cε‖|∇vλ|‖p+1
2 .

Hence

|tλ| ≤ C‖|∇vλ|‖2 = C‖|∇uλ|‖2. (7.5)

On the other hand from 〈J̄ ′
λ(uλ), uλ〉 = 0, using (7.5), we derive that

‖uλ‖2
V ≤ ‖|∇uλ|‖2

2 ≤ Cλ(‖uλ‖p+1
V + ‖uλ‖2

V )

≤ Cλ(1 + ‖uλ‖1−p
V )‖uλ‖p+1

V ≤ Cλ‖uλ‖p+1
V .

This yields

‖uλ‖V ≤ Cλ
1

1−p .

The result follows from the equivalence of norms ‖ · ‖ and ‖ · ‖V . �

Lemma 7.6. Let 0 < p < 1 and let {uλ}, 0 < λ < λ̃, be local minimizers of J̄λ.
Then there exists a constant c < 0 such that

J̄λ(uλ) ≤ cλ
2

1−p

for 0 < λ < λ̃.

Proof. We choose a nonnegative function w ∈ H1(Ω) such that
∫
Ω

a(x)wp+1

dx < 0. For s > 0 we have

J̄λ(sw) =
s2

2

∫
Ω

|∇w|2 dx + λ
sp+1

p + 1

∫
Ω

a(x)wp+1 dx − λs2

2

∫
∂Ω

w2 dSx

≤ s2

2

∫
Ω

|∇w|2 dx + λ
sp+1

p + 1

∫
Ω

a(x)wp+1 dx := g(s).
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The function g(s) attains its minimum at

s̄ =
( ∫

Ω
|∇w|2 dx

−λ
∫
Ω

a(x)wp+1 dx

) 1
p−1

and

g(s̄) =
p − 1

2(p + 1)

(∫
Ω

|∇w|2 dx
) p+1

p−1

(−λ
∫
Ω

a(x)wp+1 dx
) 2

p−1
:= cλ

2
1−p

with c < 0 (we recall that
∫
Ω

a(x)wp+1 dx < 0). Hence

J̄λ(s̄w) ≤ cλ
2

1−p .

Taking λ̃ > 0 smaller, if necessary, we may assume that s̄w ∈ {u; ‖u‖ ≤ ρ}
(see Proposition 3.2). Hence we get

J̄λ(uλ) ≤ J̄λ(s̄w) ≤ cλ
2

1−p

for 0 < λ < λ̃. �

Proposition 7.7. Let 0 < p < 1. Then every sequence λj → 0 has a subsequence

such that λ
− 1

1−p

j uλj
→ v0 �= 0 in H1(Ω) and v0 is a solution of the following

problem {−Δv0 + a(x)vp
0 = 0 in Ω,

∂v0
∂ν = 0 on ∂Ω, v0 ≥ 0, v0 �≡ 0, on Ω.

(7.6)

Proof. We put wλ = λ− 1
1−p uλ. It then follows from Lemma 7.5 that wλ is

bounded in H1(Ω). Therefore we can select a sequence λj → 0 such that
wλj

⇀ v0 in H1(Ω). Obviously v0 is a solution of problem (7.6). By Lemma 7.6
we have

J̄λj
(uλj

) = J̄λj

(
λ

1
1−p

j wλj

)
≤ cλ

2
1−p

j ,

where c < 0 is a constant independent of λj . Multiplying by λ
− 2

1−p

j we get

1
2
‖|∇wλj

|‖2
2 +

1
p + 1

∫
Ω

a(x)wp+1
λj

dx = c +
λj

2

∫
∂Ω

w2
λj

dSx ≤ c

2
(7.7)

for j sufficiently large. From (7.7) we deduce that

1
2
‖|∇v0|‖2

2 +
1

p + 1

∫
Ω

a(x)vp+1
0 dx ≤ c

2
< 0.

This implies that v0 �= 0. Finally, to show that wλj
→ v0 in H1(Ω) we set

J0(v) =
1
2

∫
Ω

|∇v|2 dx +
1

p + 1

∫
Ω

a(x)|v|p+1 dx.
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We check that J ′
0(wλj

) → 0 in H−1(Ω). Indeed, for φ ∈ H1(Ω) we have

0 = 〈J̄λj

(
λ

1
1−p

j wλj

)
, φ〉

= λ
1

1−p

j

[∫
Ω

∇wλj
∇φ dx +

∫
Ω

a(x)wp
λj

φ dx − λj

∫
∂Ω

wλj
φ dSx

]
.

This can be rewritten as∫
Ω

∇wλj
∇φ dx +

∫
Ω

a(x)wp
λj

φ dx = λj

∫
Ω

wλj
φ dSx.

Hence ∣∣∣∣
∫

Ω

∇wλj
∇φ dx +

∫
Ω

a(x)wp
λj

φ dx

∣∣∣∣ ≤ λj‖wλj
‖‖φ‖ → 0

as j → ∞ uniformly in φ on a unit ball in H1(Ω). Thus J ′
0(wλj

) → 0 in
H−1(Ω). Since wλj

⇀ v0 in H1(Ω) and wλj
→ v0 in Lp+1(Ω), we derive from

this that wλj
→ v0 in H1(Ω). �

Appendix: regularity up to the boundary

Below we sketch the proof of the fact that solutions of problem (1.1), with
1 < p ≤ 2∗ − 1 belong to C1,β(Ω̄) for some 0 < β < 1.

First we prove that solutions to problem (1.1) belong to Lt(Ω) for every
t ≥ 1. This follows from Lemma 5.1 in [19]:

Lemma 7.8. Suppose that ∂Ω ∈ C1 and that u ∈ H1(Ω) is a weak solution of
the Neumann problem {−Δu = A(x)u in Ω,

∂u
∂ν = α(x)u on ∂Ω,

where A ∈ L
N
2 (Ω), α ∈ L∞(Ω). Then u ∈ Lt(Ω) for every t ≥ 1.

We apply this lemma to a solution to our problem (1.1) with A(x) =
−a(x)up−1 ∈ L

N
2 (Ω) and α(x) = λ (we may assume that u ≥ 0 and �= 0).

In the next step we follow argument of Proposition 5 in [14] (page 506).
We consider the auxiliary problem{−Δv + Mv = f(x) in Ω,

∂v
∂ν = λv on ∂Ω,

(7.8)

where f(x) = −a(x)up + Mu and M > 0 is a constant. By Lemma 7.8,
f ∈ Lt(Ω) for every t ≥ 1. Let h(x) be a C2 extension to Ω̄ of the distance
function dist(x, ∂Ω) in a neighbourhood of ∂Ω. Problem (7.8) can be trans-
formed into the Neumann problem by introducing a new unknown function
w = e−h(x)v. The new problem (transformed) is uniquely solvable in W 2,t(Ω)
if M is sufficiently large. Hence u ∈ W 2,t(Ω) for every t ≥ 1 and so u ∈ C1,β(Ω̄)
for some 0 < β < 1. Applying the strong maximum principle we see that u > 0
on Ω̄.
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In the case 0 < p < 1 one can also prove that solution of problem (1.2)
belong to C1,β(Ω̄) for some 0 < β < 1. This follows by adopting with some
obvious modifications argument used in the proof of Lemma 7 in [13].
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