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List of symbols
{ei}Ni=1 The canonical basis of R

N

xi The i-th component of a vector x ∈ R
N

|x| The norm of a vector x ∈ R
N

[x, y] The line segment {tx+ (1 − t)y, t ∈ [0, 1]}, x, y ∈ R
N

∂
∂xi

ψ = ∂xi
ψ The partial derivative of the function ψ with respect to the

variable xi
Dxψ Gradient of the function ψ with respect to x, that is

(∂x1ψ, . . . , ∂xN
ψ)

ẋ(t), ẍ(t) The first and second derivative of a function x : I ⊂ R → R
N

|ψ|∞ The L∞-norm of a function ψ
Ω̄ Closure of an open set Ω ⊂ R

N

∂Ω Boundary of an open set Ω ⊂ R
N

B(x, r) The Euclidean ball in R
N of radius r > 0 around x

Ωδ For any open set Ω ⊂ R
N , any δ > 0, the set

{x ∈ R
N |dist(x,Ω) < δ}

TxM The tangent space of a smooth manifold M at the point
x ∈ M

δx0 The Dirac mass concentrated at x0

μX(x) The projection on X of a measure μ(x, y) on X × Y
[[r(t)]]t0 The jump of the function r : I ⊂ R → R at t0, that is

limt→t+0
r(t) − limt→t−0

r(t)

1. Introduction

In this paper we develop the Aubry-Mather theory for Lagrangians that are
discontinuous with respect to the state variable. The motivation for such prob-
lem comes from the study of singular mechanical systems in which the potential
energy is discontinuous. In addition to discontinuities in the potential, low reg-
ularity Lagrangians arise in fluid mechanic problems, see for instance [16] for
properties of minimizers of mechanical Lagrangians with Sobolev potentials.

A natural question one can pose when faced with a potential energy that
is discontinuous is whether some of the results form Aubry-Mather theory
can be established. We are interested in existence and invariance under the
Euler–Lagrange flow of probability measures μ minimizing the average action

A(μ) :=
∫

TN ×RN

L(x, v) dμ(x, v)

under the so called holonomy constraint:∫
TN ×RN

v Dϕ(x) dμ(x, v) = 0, for all ϕ ∈ C1(TN ). (1.1)

The original formulation of the problem, just as it was stated by John Mather
in [19] for smooth Lagrangians, consisted in minimizing A(μ) among all prob-
ability measures invariant under the Euler–Lagrange flow. Afterwards, Mañé
in [18] observed that it is more convenient to consider the class of measures
satisfying the constraint (1.1). The two minimization problems are actually
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equivalent for a wide class of Lagrangians, since any minimizing holonomic
measure is invariant under the Euler–Lagrange flow.

In this paper we consider a Lagrangian L(x, v) : T
N × R

N → R lower
semicontinuous in x, convex in the velocity v and coercive. We are interested
in a situation where there exists a (N − 1)-dimensional closed smooth and
orientable hypersurface Σ ⊂ T

N where L(·, v) is discontinuous. Most of the
results of the paper work for Lagrangians satisfying very general assumptions;
however, to present ideas and techniques in the simplest possible setting, some
of them are proved for a model problem in which

L(x, v) = L0(x, v) + V (x),

with L0 continuous in both variables, coercive and convex in v, and V lower
semicontinuous and bounded.

In order to understand the behavior of minimizing measures in the discon-
tinuous setting, we study first optimality conditions for trajectories minimizing
the Lagrangian action

A(x) :=
∫ T

0

L(x(t), ẋ(t)) dt.

We relate to [10] and references therein for the study of minimizing trajectories
when L is not continuous. In analogy with the case of non-convex Lagrangians,
piecewise smooth curves that minimize the action solve the Euler–Lagrange
equations away from Σ. In addition, we show that minimizing trajectories must
satisfy certain jump conditions across the discontinuity set.

We establish existence of Mather measures and various results concern-
ing their approximation. Then, in order to study invariance under the Euler–
Lagrange flow of such measures, we focus on the associated Hamilton–Jacobi
equation, that is

H(x,Du) = H̄, x ∈ T
N , (1.2)

whereH(x, p) is the Legendre transform of L, and H̄ is the minimal value of the
average action A. We prove existence in T

N and partial regularity away from
the discontinuity set of viscosity solutions of (1.2). Since H is not continuous,
a suitable notion of viscosity solution has been taken into account.

Global invariance of minimizing Mather measures under the Euler–
Lagrange flow is clearly not possible, as the Euler–Lagrange equations are
not defined where the Lagrangian is discontinuous; then only local proper-
ties can be expected. Besides local invariance away from the singular set, we
proved several jump conditions on Σ. These properties rephrase, in terms of
Mather measures, the optimality conditions we established for optimal trajec-
tories, namely conservation of energy and conservation of tangential momen-
tum across the discontinuity surface.

Even though the general approach and the proofs follow the same lines as
in the continuous case (see, for instance, the survey paper [4]), the results pre-
sented in this paper are not a mere adaptation of those available in the litera-
ture for the continuous Lagrangians. The lack of continuity indeed required the
development of several nontrivial ad hoc arguments at every stage of the work.
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For example, techniques in Aubry-Mather theory are valid for smooth enough
Lagrangians (typically C3) and make use of viscosity solutions of Hamilton–
Jacobi equations. In contrast, in our setting we need to work with discon-
tinuous Hamiltonians, which creates several challenges in adapting standard
arguments. A key tool in our analysis is an approximation procedure based on
the use of inf-convolution.

In the continuous case, viscosity solution theory and Aubry-Mather the-
ory revealed to share many aspects as pointed out, for example, in the papers
[14,15] by Fathi and Siconolfi. Also in the discontinuous setting considered in
this paper, viscosity solutions turn out to be an essential tool in the analysis of
minimizing measures. Viscosity solutions of Hamilton–Jacobi equations with
discontinuous Hamiltonians have been studied extensively by many authors, in
different settings; we refer to the books by Barles [2] and Bardi and Capuzzo-
Dolcetta [1] for a general treatment. They have been used in the analysis
of geodesic distances and in the study of some discontinuous control prob-
lems, combustion phenomena in nonhomogeneous media, and geometric optic
propagation in the presence of layers; see [6,20,22,23]. Measurable Hamil-
tonians have been considered in [7–9,11]. The notion of viscosity solution
has been also adapted in a recent paper by Barles et al. [3] to study Bell-
man equations related to deterministic control problems in which dynamics
and costs are different in complementary domains, and consequently dis-
continuities may arise at the boundary of these domains. However, to the
best of our knowledge, this is the first time that viscosity solutions to dis-
continuous Hamilton–Jacobi equations are applied to the study of Mather
measures.

To study regularity properties of viscosity solutions we adapt to the
present context some techniques of [13]. We also developed a simple calcu-
lus of variation argument that permits to define a class of variations of an
holonomic measure that preserves the constraint (1.1). This type of variations
were introduced in [4] to prove invariance of minimizing measure, in the case in
which L is smooth. The same, argument adapted to the present discontinuous
setting, permits to establish local invariance of Mather measures outside the
discontinuity surface.

The paper is organized as follows. After describing the main assump-
tions in Sect. 2, we outline the main results of the paper in Sect. 3. Our
analysis begins in Sect. 4 with a brief discussion of necessary conditions for
trajectories minimizing the Lagrangian action. In Sect. 5 we prove existence
of Mather measures and some duality results, we discuss a one-dimensional
example and introduce holonomy preserving variations. In subsequent Sect. 6
various approximation results are presented. Existence, main properties and
partial regularity of viscosity solutions are investigated in Sect. 7. Finally,
in Sect. 8, after discussing some examples, we establish further properties of
Mather measures and main results of the paper. More precisely, local invari-
ance away from Σ is proved in Sect. 8.2 whereas properties and jump condi-
tions for minimizing measures across the discontinuity surface are studied in
Sect. 8.3.
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2. Setting and assumptions

We consider a Lagrangian L : T
N × R

N → R, where T
N is the N -dimensional

torus, which satisfy the following hypotheses.
Coercivity. For every fixed x ∈ T

N the mapping v �→ L(x, v) is continuous,
uniformly convex and coercive, that is

lim
|v|→+∞

L(x, v)
|v| = +∞. (H1)

We also assume that L is bounded by below, say L ≥ 1, which from the
coercivity entails no loss of generality.
Lower semicontinuity. We do not assume continuity in x. However, in order
to use standard methods in the calculus of variations, we suppose that, in
addition to continuity in v for fixed x we have that

L(·, v) is lower semicontinuous, that is,

for any (x, v) ∈ T
N × R

N lim inf
(y,w)→(x,v)

L(y, w) ≥ L(x, v). (2.1)

More precisely, we are interested in a situation where there exists a (N − 1)-
dimensional closed smooth and orientable hypersurface Σ ⊂ T

N , which we
call the discontinuity locus, where L(·, v) is discontinuous. Locally, around the
hypersurface Σ,TN is divided into two connected subsets Ω+ and Ω−, that is,
there exists a neighborhood U of Σ such that U = Ω+ ∪ Σ ∪ Ω−. Notice that
we are not assuming Σ connected, thus the discontinuity set could be also the
finite union of closed smooth disjoint hypersurfaces.

Since Σ is smooth, for any x ∈ Σ there exists ν(x), the unit normal to Σ
at x, that we agree to point towards Ω−. We assume then the following:

1. for any v ∈ R
N (2.1) holds;

2. the mapping (x, v) �→ L(x, v) is continuous and smooth
in Ω+ × R

N and Ω− × R
N ;

3. the mapping (x, v) �→ L(x, v) is continuous
in (Ω− ∪ Σ) × R

N and can be extended by continuity
from Ω+ × R

N to (Ω+ ∪ Σ) × R
N ,

since L is not continuous, these extensions will not agree on Σ;

4. the mappings (x, v) �→ DxL(x, v), (x, v) �→ DvL(x, v)
are continuous in Ω− × R

N and Ω+ × R
N ,

and can be extended by continuity to (Ω− ∪ Σ) × R
N

and (Ω+ ∪ Σ) × R
N , but, of course, these extensions

may not agree on Σ;

5. for any x ∈ Σ and v ∈ R
N there exist

lim
(y,w)→(x,v)

y∈Ω+

L(y, w) =: L+(x, v), lim
(y,w)→(x,v)

y∈Ω−

L(y, w) =: L−(x, v),

and L+(x, v) ≥ L−(x, v).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(H2)
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Remark 2.1. In consequence of the previous assumptions it follows that the
values L are also comparable in the neighborhood U of Σ:

there exists C > 0 such that for any x ∈ Ω+ ∩ U, and any y ∈ Ω− ∩ U,
L(y, v) ≤ L(x, v) + C|x− y|.

�

We now introduce the Hamiltonian H : T
N × R

N → R associated to L
through the Legendre–Fenchel transform:

H(x, p) := sup
v∈RN

{p · v − L(x, v)}.

Note thatH(·, p) is upper semicontinuous. Furthermore, by property 5 in (H2),
the values H+ and H− defined analogously as L+ and L− respectively satisfy

H+(x, p) ≤ H−(x, p) for any x ∈ Σ and p ∈ R
N .

Model problem. Results in Sects. 4 and 5 are valid under the general assump-
tions (H1)–(H2). In Sects. 6, 7 and 8, to simplify the setting, we will work
with a model problem where

L(x, v) = L0(x, v) + V (x), (H3)

with L0 continuous in both variables, coercive and convex in v, and V lower
semicontinuous and bounded.

Lagrangians of this type arise, in classical mechanics, for the study of the
motion of a particle with kinetic energy L0(x, v) = k(v) and potential energy
V (x). A particular case is

L(x, v) =
|v|2
2

+ V (x),

with V as before.
Most of the results of the paper work under more general Lagrangians

satisfying (H1)–(H2) with additional technical hypothesis. However, working
under a general setting would make the exposition harder to follow but the
key techniques of the paper would not change.

Remark 2.2. For L satisfying (H3) the corresponding Hamiltonian is

H(x, p) = H0(x, p) − V (x), (2.2)

where H0 is the Legendre transform of L0. In particular, if L0(x, v) = |v|2
2 ,

then

H(x, p) =
|p|2
2

− V (x).

�
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3. Outline of main results

We describe next the main results of the paper.
Necessary conditions for optimal trajectories. In Sect. 4 we discuss the main
properties of minimizing trajectories of discontinuous Lagrangians. We use a
classical calculus of variation approach to determine first order optimality con-
ditions. More precisely, we show that if a trajectory x : [0, T ] → T

N minimizes
the action functional

A(x) :=
∫ T

0

L(x(t), ẋ(t)) dt

then:
1. if x(t) crosses the discontinuity locus Σ at t = t0 then the tangential

component of the momentum is conserved, that is

for any ξ ∈ Tx(t0)Σ, [[ξ ·DvL(x(t), ẋ(t))]]t0 = 0

(see Proposition 4.3). The same condition holds when x(t) enters or exits
Σ at t = t0 (see Proposition 4.6);

2. if x(t) ∈ Σ for t ∈ (t1, t2) (t1 < t2) then the tangential component and
a unilateral condition for the normal component of the Euler–Lagrange
equation are satisfied (see Proposition 4.4);

3. the energy Ex(t) = ẋ(t) ·DvL(x(t), ẋ(t))+L(x(t), ẋ(t)) of x is conserved
on [0, T ] (see Proposition 4.7).

Mather measures. In Sect. 5 we prove existence of holonomic probability
measures minimizing ∫

L(x, v) dμ. (3.1)

This easily follows by the lower semicontinuity of the Lagrangian (see Propo-
sition 5.2); furthermore, as in the continuous case, minimizing holonomic
measures are supported on a graph of a measurable function v(x) (see Propo-
sition 5.5). For continuous Lagrangians, v turns out to be Lipschitz (see [4]); in
the discontinuous setting we will establish partial regularity results in Sects. 7
and 8.

In Sect. 5 we also define the value of the Mather problem:

inf
{∫

L(x, v) dμ
∣∣∣μ holonomic prob. measure

}
=: −H̄,

and in Corollary 5.11 we prove, using a duality argument, that

H̄ := inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x)),

where H is the Legendre transform of L.
Approximation. We start considering in Sect. 6 the model problem

L(x, v) = L0(x, v) + V (x)

described in the previous Section, and we prove the following result (Theo-
rem 6.1): let V ε be the inf-convolution of V , and με an holonomic probability
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measure minimizing (3.1), with L replaced by Lε(x, v) = L0(x, v) + V ε(x). If
με converges weak-star to some μ̄ as ε → 0, then μ̄ minimizes (3.1).
Viscosity solutions. In order to establish properties for the minimizing measure,
we study in Sect. 7 the Hamilton–Jacobi equation with Hamiltonian given by
the Legendre transform of L. For the model problem we are considering, it is
given by

H(x, p) = H0(x, p) − V (x),

where H0 is the Legendre transform of L0. Forced by the discontinuous setting,
we need to rely on a notion of viscosity solution for discontinuous Hamiltonians.
Our main results are the following: using an approximation argument, we prove
in Proposition 7.4 that there exists a Lipschitz continuous viscosity solution u
to the equation

H(x,Du) = H̄, x ∈ T
N . (3.2)

To prove uniqueness of the value λ such that the equation H(x,Du) = λ has
a viscosity solution in T

N we invoke a comparison argument due to Soner (see
[21]).

Concerning the regularity of u, solution to (3.2), in Proposition 7.9 we
show that Du(x) exists for μTN -a.e. x ∈ supp(μ̄)\Σ, and that the identity p =
Du(x) holds for any μ̄-a.e. (x, p) ∈ (supp(μ̄)\Σ) × R

N ; here μ̄ is a minimizing
measure for (3.1). Then, in Proposition 7.9, we prove an L2

loc(dμ̄TN ) estimate
for the gradient of u, that is:∫

TN

ϕ2(x)|Dxu(x+ h) −Dxu(x)|2 dμ̄TN ≤ C|h|2,

for any cutoff ϕ compactly supported away from Σ.
Properties of minimizing measures. Properties for Mather measures are studied
in Sect. 8. More precisely, in Sect. 8.2 we investigate the behavior of minimizing
measure away from the discontinuity set. Using the L2

loc estimates on Du above
mentioned, we can prove that vε := v ∗ηε (where ηε is a standard mollification
kernel) converges to v locally in L2, away from Σ. This is actually enough to
establish, in Theorem 8.4, invariance of a minimizing measure μ̄ with respect
to the Euler–Lagrange flow χ outside Σ:∫

χ ·Dφdμ̄ = 0,

for any φ ∈ C1(TN × R
N ), compactly supported in (TN\Σ) × R

N .
An example in Sect. 8.1 shows that in general we cannot expect a min-

imizing measure to be globally invariant under the Euler–Lagrange flow. To
deduce properties of a Mather measure on the discontinuity set, we impose
in Sect. 8.3 an extra assumption which implies that a minimizing measure μ̄
does not give mass to the discontinuity locus; see (8.14). Under this additional
requirement we prove that there exist measures σ+ and σ− on Σ × R

N such
that ∫

(TN \Σ)×RN

χ ·Dφdμ̄ =
∫

Σ×RN

φdσ+ −
∫

Σ×RN

φdσ+;
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see Theorem 8.8. Another example in Sect. 8.1 shows that such a representation
may fail to hold if μ̄ gives positive mass to the discontinuity set.

The statement of Theorem 8.8 also includes further properties of σ+

and σ− that—in strong analogy with the necessary conditions for minimiz-
ing trajectories—we interpret as conservation of total mass, conservation of
tangential momentum, and conservation of energy (see Remark 8.10).

4. Optimality conditions for minimizing trajectories

In this section we discuss the main properties of minimizing trajectories of
discontinuous Lagrangians. A well known result in classical calculus of varia-
tions is that for non-convex Lagrangians minimizing trajectories of the action
may fail to have continuous derivatives, see for instance [5, Chapter 1, §9]. In
this section we address the case of discontinuous Lagrangians, where similar
discontinuities can also arise.

Let T > 0 and a, b ∈ T
N be fixed. Define, for any curve x(t) belonging

to XT
a,b := {x ∈ W 1,∞([0, T ]; TN ) : x(0) = a, x(T ) = b} the action

A(x) :=
∫ T

0

L(x(t), ẋ(t)) dt. (4.1)

Consider the action-minimization problem, i.e. the problem of finding

minA(x) among all curves x ∈ XT
a,b.

Proposition 4.1. There exists x ∈ XT
a,b minimizing the action.

Proof. The result follows by the direct method of the calculus of variations.
Note that here we need to use the lower semicontinuity (2.1) of L to show that
the limit of a minimizing sequence is a minimizer. �

Necessary conditions for minimizing trajectories. We discuss next necessary
conditions satisfied by minimizing trajectories of the action functional. We
immediately observe that a minimizing trajectory x(·) satisfies the usual Euler–
Lagrange equation

− d
dt
DvL(x(t), ẋ(t)) +DxL(x(t), ẋ(t)) = 0, for any t such that x(t) /∈ Σ.

(4.2)

Conditions for a minimizing trajectory x passing through Σ are investi-
gated in the next propositions. To do this, we assume that such trajectories
are piecewise C2. The proof of the following propositions are postponed in the
Appendix 8.3 as they use standard techniques in calculus of variations. The
difficulty of having trajectories passing through the discontinuity set is handled
considering special variations of minimizers and isolating the singularities.

Definition 4.2. Let x : [0, T ] → T
N be a Lipschitz curve, t0 ∈ (0, T ) and

x0 ∈ Σ. We say that x crosses Σ in x0 at time t0 if x(t0) = x0, and there exists
δ > 0 such that x(t) /∈ Σ for any t in the punctured interval (t0−δ, t0+δ)\{t0}.
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According to the previous definition, a trajectory also crosses Σ if it
bounces or reflects in Σ. The next proposition is also valid in these cases.

Proposition 4.3. Let x ∈ XT
a,b be a piecewise C2 minimizer of the action.

Assume that x crosses Σ at x0 = x(t0), for some t0 ∈ (0, T ). Then,

for any ξ ∈ Tx(t0)Σ, [[ξ ·DvL(x(t), ẋ(t))]]t0 = 0. (4.3)

Proof. See Appendix 8.3. �

We consider in the next Proposition the case in which a minimizer stays
inside Σ during an interval:

Proposition 4.4. For any x ∈ Σ, let ν(x) ∈ R
N denote the unit normal to Σ

at x pointing towards Ω−. Let x ∈ XT
a,b be a piecewise C2 minimizer of the

action. Assume that there exist t1, t2, 0 < t1 < t2 < T such that x(t) ∈ Σ for
any t ∈ (t1, t2). Then
[
DxL(x(t), ẋ(t)) − d

dt
DvL(x(t), ẋ(t))

]
· ν(x(t)) ≥ 0, for any t ∈ (t1, t2).

(4.4)

Moreover, for any t ∈ (t1, t2) and any ξ ∈ Tx(t)Σ,
[
DxL(x(t), ẋ(t)) − d

dt
DvL(x(t), ẋ(t))

]
· ξ = 0. (4.5)

Proof. See Appendix 8.3. �

Definition 4.5. Let x : [0, T ] → T
N be a Lipschitz curve, t0 ∈ (0, T ) and

x0 ∈ Σ. We say that x enters Σ at x0 at time t0 if x(t0) = x0 and there
exists δ > 0 such that x(t) /∈ Σ for any t ∈ (t0 − δ, t0) and x(t) ∈ Σ for any
t ∈ [t0, t0 + δ). The definition of a curve exiting Σ at x0 is symmetric.

Proposition 4.6. Let x ∈ XT
a,b be a piecewise C2 minimizer of the action.

Assume that x enters (or exits) Σ at x0 at time t0 ∈ (0, T ). Then (4.3) holds.

Proof. See Appendix 8.3. �

Conservation of energy. The energy associated to a Lipschitz curve x ∈ XT
a,b

is the function Ex : (0, T ) → R defined as

Ex(t) := DvL(x(t), ẋ(t))ẋ(t) − L(x(t), ẋ(t)).

Proposition 4.7. Let x ∈ XT
a,b be a piecewise C2 minimizer of the action. Then

the energy of x is conserved on [0, T ], that is Ex(0) = Ex(T ).

Proof. See Appendix 8.3. �
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5. The Mather problem, minimizing measures and duality

In this section we establish existence of minimizing holonomic probability mea-
sures, a duality result and a representation formula for the value of the Mather
problem. We point out that the most part of this section is an adaptation of
known results, see for instance [4], and references therein.

By coercivity (H1), there exists a function γ which satisfies

lim
|v|→+∞

γ(v)
|v| = +∞, and lim

|v|→+∞
L(x, v)
γ(v)

= +∞. (5.1)

We consider the following set of σ-finite, γ-weighted signed Borel measures on
T
N × R

N :

M :=
{
μ signed measures on T

N × R
N such that

∫
γ(v)d|μ| < ∞

}
.

Recall that, for any Borel subset S, the total variation measure |μ|(S) is the
supremum of

∑∞
i=1 |μ(Si)| among all Borel partitions {Si} of S. Thus, |μ| is

σ-finite if and only if μ is so.

Remark 5.1. By applying the Riesz representation Theorem we see that M is
the dual of the set Cγ0 of continuous functions φ : T

N × R
N → R satisfying

‖φ‖γ := sup
TN ×RN

∣∣∣∣φ(x, v)
γ(v)

∣∣∣∣ < ∞, lim
|v|→+∞

φ(x, v)
γ(v)

= 0, unif. in x ∈ T
N . (5.2)

�
We further define the subsets of M of holonomic measures and probability

measures:

Mhol :=
{
μ ∈ M such that

∫
vDϕ dμ = 0 for any ϕ ∈ C1(TN )

}
;

M+
1 :=

{
μ ∈ M,nonnegative and such that

∫
dμ = 1

}
.

5.1. Existence of minimal holonomic probability measures

In the next proposition we revisit the well known result, due to Mañé [18],
concerning the existence of minimizing holonomic probability measures. The
main point that we make is that such existence holds even if L is only lower
semicontinuous. We also show, in Proposition 5.5, that, as in the continuous
case, the minimizing measure is supported on a graph.

Proposition 5.2. There exists a solution μ̄ ∈ Mhol ∩ M+
1 to the problem

inf
μ∈M+

1 ∩Mhol

∫
L(x, v) dμ. (5.3)

Proof. Let {μn}n ⊂ M+
1 ∩ Mhol be a minimizing sequence. The sequence∫

TN ×RN L(x, v) dμn is bounded (because μn is minimizing). Then, μn converges
weak-star to a measure μ̄, up to a subsequence. Such measure μ̄ belongs to
M+

1 ∩Mhol. In fact each μn is a probability measure, and for any ϕ ∈ C1(TN ),∫
vDϕ dμ̄ = lim

n

∫
vDϕ dμn = 0. (5.4)
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We now show that μ̄ is a minimizer. Since L(x, v) is lower semicontinuous in
x, there exists a sequence of continuous functions Lk(x, v), satisfying (5.2) and
converging pointwise to L(x, v) from below (see Remark 5.3 later). Further-
more, as L ≥ 1 we can assume Lk ≥ 0 for any k. We have for any k∫

L(x, v) dμn ≥
∫
Lk(x, v) dμn →

∫
Lk(x, v) dμ̄, as n → ∞

Then, by Fatou’s lemma, we conclude:

inf
μ∈Mhol∩M+

1

∫
L(x, v) dμ := lim

n

∫
L(x, v)dμn

≥ lim inf
k

∫
Lk(x, v) dμ̄ ≥

∫
L(x, v) dμ̄.

�

Remark 5.3. An example of function Lk approximating L as in the previous
proof can be constructed as follows: first define L̃k(x, v) := infy{L(y, v)+k|x−
y|2}, the inf convolution, which is continuous. Then take g : [0,∞) → R, a
non-negative decreasing compactly supported function, with g(r) = 1 for r in
a neighborhood of 0. Define

Lk(x, v) = L̃k(x, v)g
( |v|
k

)
.

For any k, Lk is continuous, compactly supported (and hence in Cγ0 ), and, for
any (x, v), Lk(x, v) ≤ L(x, v). Moreover Lk increases to L pointwise as k goes
to +∞. �

Remark 5.4. Let μ̄ ∈ Mhol ∩ M+
1 be a minimizing measure. Then, by disinte-

gration (see Evans [12]) there exists a probability measure θ(dx) on T
N and,

for θ-a.e. x in T
N there exists a probability measure η(dv;x) on R

N such that
μ̄(dx,dv) = θ(dx)η(dv;x). �

Proposition 5.5. If μ̄ ∈ Mhol ∩ M+
1 minimizes (5.3) then μ̄ is supported on a

graph. That is, there exists a measurable function v : T
N → R

N such that

supp(μ̄) ⊂ {(x, v) ∈ T
N × R

N such that v = v(x)
}
.

Proof. See Appendix 8.3. �

Remark 5.6. In Proposition 5.5 we only show that v is well defined μ-a.e.
in suppμ. The value of v is not assigned, in principle, everywhere, but it is
possible to extend it Lebesgue a.e. in T

N in a canonical way, as we will explain
in Remark 7.10. �

5.2. Duality

The main purpose of this section is to prove the following duality result:

Theorem 5.7. The following identity holds:
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inf
μ∈M+

1

sup
ϕ∈C1(TN )

∫
[L(x, v) − vDxϕ(x)] dμ

= sup
ϕ∈C1(TN )

inf
μ∈M+

1

∫
[L(x, v) − vDxϕ(x)] dμ.

The proof of Theorem 5.7 uses the following well known fact:

Theorem 5.8. (Legendre–Fenchel–Rockafellar duality Theorem) Let E be a
locally convex topological vector space over R with dual E′. Let h : E →
(−∞,+∞] a convex function and g : E → [−∞,+∞) a concave function
and let ĥ and ĝ their Legendre–Fenchel transform that is

ĥ(y) = sup
x∈E

{x · y − h(x)},
ĝ(y) = inf

x∈E
{x · y − g(x)}.

Assume also that there exists x0 ∈ E such that g(x0) and h(x0) are finite, and
at least one of them is continuous. Then

min
y∈E′

[ĥ(y) − ĝ(y)] = sup
x∈E

[g(x) − h(x)].

Proof. See [24] or [4]. �

Consider the following convex subset of Cγ0 introduced in Remark 5.1:

C :=
{
ψ ∈ Cγ0 (TN × R

N )
∣∣∣ψ(x, v) = vDϕ(x), ϕ ∈ C1(TN )

}
, (5.5)

and define g, h : Cγ0 (TN × R
N ) → R as follows:

g(ψ) := min
x∈TN

v∈RN

{L(x, v) + ψ(x, v)}; h(ψ) :=

{
0, if ψ ∈ C
+∞, if ψ /∈ C. (5.6)

Observe that Mhol = {μ ∈ M such that
∫
ψ dμ = 0 for any ψ ∈ C}. We

immediately note that h is finite on C and convex, because C is so. The function
g is concave, because is the infimum of an affine function and finite on C,
because L is superlinear. Consequently, the Legendre–Fenchel transform of h
and g can be defined. In the next Lemmas we establish further properties of
h and g we will use in the proof of Theorem 5.7.

Lemma 5.9. The function g defined in (5.6) is continuous in Cγ0 (TN × R
N ).

Proof. Let ψn → ψ in Cγ0 . Then ‖ψn‖γ , and ‖ψ‖γ are uniformly bounded.
Thus, by (H1), there exists R > 0 such that the minima of L+ ψ and L+ ψn
in T

N × R
N are achieved on T

N × B(0, R). As in T
N × B(0, R) the sequence

ψn converges to ψ uniformly, we get the conclusion:

min
TN ×RN

L+ ψn = min
TN ×B(0,R)

L+ ψn → min
TN ×B(0,R)

L+ ψ = min
TN ×RN

L+ ψ.

�
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Lemma 5.10. The Legendre–Fenchel transform of h and g defined in (5.6) are
respectively

ĥ(μ) :=

{
0, if μ ∈ Mhol

+∞, otherwise

ĝ(μ) :=

{
− ∫ L(x, v) dμ if μ ∈ M+

1

−∞, otherwise.

Proof. See Appendix 8.3. �

Proof of Theorem 5.7. Observe that, for any ϕ ∈ C1(TN ),

inf
μ∈M+

1

∫
[L(x, v) − vDϕ(x)] dμ = min

x,v
{L(x, v) − vDϕ(x)},

then

sup
ϕ∈C1(TN )

inf
μ∈M+

1

∫
[L(x, v) − vDϕ(x)] dμ = sup

ψ∈Cγ
0

[g(ψ) − h(ψ)]

where g, h : Cγ0 → R are defined in (5.6). Note also that g and h are finite on
C, and g is continuous by Lemma 5.9. Then, by applying Theorem 5.8 with
E = Cγ0 (thus E′ = M by Remark 5.1), and taking into account Lemma 5.10,
we conclude the proof:

sup
ϕ∈C1(TN )

inf
μ∈M+

1

∫
[L(x, v) − vDϕ(x)] dμ = sup

ψ∈Cγ
0

[g(ψ) − h(ψ)]

= inf
μ∈M

[ĥ(μ) − ĝ(μ)] = inf
μ∈M+

1 ∩Mhol

∫
L(x, v) dμ

= inf
μ∈M+

1

sup
ϕ∈C1(TN )

∫
[L(x, v) − vDϕ(x)] dμ.

�

As a consequence of Theorem 5.7, we have the following

Corollary 5.11. Let H(x, p) be the Legendre transform of L(x, v). The quantity

H̄ := inf
ϕ∈C1(TN )

sup
x∈TN

H(x,Dϕ(x)) (5.7)

is well defined, and coincides with

− inf
μ∈M+

1 ∩Mhol

∫
L(x, v) dμ.

Proof. By applying the Legendre transform, we first observe that

sup
μ∈M+

1

∫
[vDϕ(x) − L(x, v)] dμ = sup

x
sup
v

(vDϕ(x) − L(x, v))

= sup
x
H(x,Dϕ(x)). (5.8)
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Moreover, since H is upper semicontinuous, the supremum in the right hand
side of (5.8) is well defined. Using Theorem 5.7, and taking into account (5.8),
we compute:

inf
μ∈M+

1 ∩Mhol

∫
L(x, v) dμ = inf

μ∈M+
1

sup
ϕ∈C1(TN )

∫
[L(x, v) − vDϕ(x)] dμ

= sup
ϕ∈C1(TN )

inf
μ∈M+

1

∫
[L(x, v) − vDϕ(x)] dμ

= − inf
ϕ∈C1(TN )

[
− inf
μ∈M+

1

∫
[L(x, v) − vDϕ(x)] dμ

]

= − inf
ϕ∈C1(TN )

[
sup
μ∈M+

1

∫
[vDϕ(x) − L(x, v)] dμ

]

= − inf
ϕ∈C1(TN )

[
sup
x
H(x,Dϕ(x))

]
.

�

5.3. Holonomy preserving variations

We next describe a class of variations, introduced in [4], that preserves the
holonomy constraint. This type of variation will be used in Sect. 8 to establish
the properties of a minimal holonomic measure.

We consider next a C1 vector field ξ : T
N → R

N which is either com-
pactly supported on T

N\Σ or tangent to Σ and compactly supported in a
neighborhood of it. Due to the lack of continuity of L we cannot make varia-
tions in the normal direction to Σ, and this explains the previous conditions
on ξ.

Proposition 5.12. Let μ̄ be a minimizing holonomic measure and ξ : T
N → R

N ,
a C1 vector field. If

– either ξ is compactly supported in T
N\Σ,

– or ξ is compactly supported in a neighborhood of Σ and tangent to it,
then,∫

TN ×RN

[
ξs(x)

∂L

∂xs
(x, v) + vk

∂L

∂vs
(x, v)

∂ξs
∂xk

(x)
]

dμ̄ = 0. (s = 1, . . . N).

(5.9)

Proof. The proof goes along the same lines of that of [4, Theorem 41]. Let
Ψ(t, x) the flow generated by ξ, that is, Ψ(0, x) = x for any x ∈ T

N and
d
dt

Ψ(t, x) = ξ(Ψ(t, x))

for any t > 0 and x ∈ T
N . The flow of ξ can be extended to T

N × R
N by

considering {
ẋs(x, v) = ξs(x),

v̇s(x, v) = vk
∂
∂xk

ξs(x),
(s = 1, . . . , N). (5.10)
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A direct computation shows that flow (X(t, x, v), V (t, x, v)) associated to
(5.10) is

Xs(t, x, v) = Ψs(t, x), Vs(t, x, v) = vk
∂

∂xk
Ψs(t, x). (5.11)

The flow (5.11) induces a flow on functions ψ : T
N × R

N → R given, for any
t > 0, by

ψt(x, v) := ψ(X(t, x, v), V (t, x, v)). (5.12)

We next use the flow (5.11) and formula (5.12) to define a flow on measures.
For any t > 0 and any measure μ over T

N × R
N we set μt to be such that∫

TN ×RN

ψ(x, v) dμt(x, v) =
∫

TN ×RN

ψt(x, v) dμ(x, v), for any ψ. (5.13)

An easy computation shows that the flow (5.11) preserves the set C
defined in (5.5). Thus the flow on measures (t, μ) �→ μt given by (5.13) pre-
serves the holonomy constraint; in fact, for any ψ ∈ C,∫

ψ dμt =
∫
ψt dμ = 0

because ψt ∈ C. Then, since μ̄ is a minimizing holonomic measure

d
dt

∣∣∣
t=0

(∫
Ldμ̄t

)
= 0,

which gives (5.9), taking into account (5.10). �

5.4. An example in one dimension

We consider, for (x, v) ∈ [0, 1] × R, the Lagrangian

L(x, v) :=
|v|2
2

+ V (x),

with V (x) = 0 for any x ∈ [0, 1
3 ] ∪ [ 23 , 1], and V (x) = 1 for any x ∈ ( 1

3 ,
2
3 ). The

discontinuity locus, for such L, is then the set Σ = { 1
3 ,

2
3}. We exhibit next a

solution to the problem

min
{∫

L(x, v) dμ
∣∣∣μ holonomic probability measures over [0, 1] × R

}
.

(5.14)

Consider for any λ ∈ R the set

M̃(λ) :=
{
μ : dμ(x, v) =

λ

v1
δv1(v) dx

∣∣∣
[0, 13 ]∪[ 23 ,1)

+
λ

v2
δv2(v) dx

∣∣∣
( 1
3 ,

2
3 )
,

such that v1, v2 > 0 and λ =
3v1v2
v1 + 2v2

}
.

The quantity λ is the so called rotation number associated to measures in
M̃(λ). In fact it is easy to verify that for any μ ∈ M̃(λ),∫

v dμ = λ. (5.15)
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Lemma 5.13. Let λ > 0 be fixed. The minimum in (5.14), under the constraint
(5.15) is attained on the set M̃(λ).

Proof. Observe that any measure μ ∈ M̃(λ) is an holonomic probability mea-
sure. In fact the condition

λ =
3v1v2
v1 + 2v2

readily implies that the total mass of μ is 1. Moreover, for any ϕ ∈ C1([0, 1]),
such that ϕ(0) = ϕ(1),

∫
[0,1]×R

vϕ′(x) dμ(x, v) =
∫

R

[
λ

∫
[0,1]

ϕ′(x) dx

]
dv = 0.

Let μ̄ be the solution of (5.14). By Remark 5.4, μ̄(x, v) = θ(x)η(v;x).
Furthermore, by Proposition 5.5 there exists v : [0, 1] → R measurable whose
graph supports μ̄; thus, taking into account (5.15) we can write

θ(x) =
λ

|v(x)| , η(v;x) = δv(x)(v).

The function v(x) never changes its sign, otherwise it is easy to obtain a
contradiction with μ being holonomic. In addition, since we assumed λ >
0,v(x) must be positive. Finally, since L is convex in v, we have that v(x)
is constant in each of the three subintervals of [0, 1]. In fact if, for instance,
v(x) is non constant in (1

3 ,
2
3 ), then we can define the averaged velocity in this

interval by

ṽ :=

(∫ 2
3

1
3

v(x)θ(x) dx

)(∫ 2
3

1
3

θ(x) dx

)−1

.

Then by convexity the measure

μ̃(x, v) :=

{
λ
ṽ δṽ(v), if x ∈ ( 1

3 ,
2
3

)
μ̄(x, v), otherwise

would satisfy
∫
L dμ̃ ≤ ∫ L dμ̄. That is μ̄ would not be a minimizer. �

We assume, for simplicity, λ = 1, and consider the problem

min
μ∈M̃(1)

∫
L(x, v) dμ(x, v). (5.16)

By condition

1 =
3v1v2
v1 + 2v2

(5.17)

the admissible values for the pair (v1, v2) must satisfy

v1 =
2v2

3v2 − 1
.

In particular, any v2 in the interval (0, 1
3 ) is not admissible, as the corre-

sponding value for v1 would be negative. A direct computation shows that the
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minimum in (5.16) is attained for a unique pair (v̄1, v̄2), satisfying (5.17), with
v̄2 > 1/3. By Lemma 5.13 the measure

dμ̄(x, v) =
1
v̄1
δv̄1(v) dx

∣∣∣∣[0, 13 ]∪[ 23 ,1)
+

1
v̄2
δv̄2(v) dx

∣∣∣∣
( 1
3 ,

2
3 )

(5.18)

solves (5.14) under the constrain
∫
v dμ = 1.

6. Approximation of minimizing measures

In Proposition 5.2 we proved the existence of a minimizing measure for the
Mather problem for a lower semicontinuous Lagrangian. In this Section we
show that it is possible to obtain such a measure as a weak-star limit of a
sequence of minimizing measures for continuous approximating Lagrangians.
Suppose L satisfies assumption (H3) of Sect. 2 that we rewrite for convenience,

L(x, v) = L0(x, v) + V (x), (6.1)

and consider the Yosida inf-convolution of V , which is defined as

V ε(x) := inf
y∈TN

{
V (y) +

|x− y|2
ε

}
, ε > 0. (6.2)

Then set

Lε(x, v) := L0(x, v) + V ε(x). (6.3)

Inf-convolution is a natural way to construct a continuous approximation to
V from below. The aim of this Section is to prove that any weak-star limit of
a sequence of minimizers for the approximating problems is a solution to the
Mather problem, that is:

Theorem 6.1. Assume that L has the form (6.1). For any ε > 0, let με be the
solution of

min
μ∈M+

1 ∩Mhol

∫
Lε(x, v) dμ, (6.4)

where Lε is defined in (6.3). Assume that με converges μ̄ weak–star, as ε → 0.
Then μ̄ is a solution to

min
μ∈M+

1 ∩Mhol

∫
L(x, v) dμ.

We postpone the proof of theorem in the end of this Section, and estab-
lish first some preliminary result. We denote by P(TN ) the space of Radon
probability measures on T

N ;P(TN ) is compact with respect to the weak-star
topology.

Lemma 6.2. The function G : P(TN ) → R defined by

G(ν) :=
∫

TN

V (x) dν(x) (6.5)

is lower semicontinuous with respect to the weak–star convergence.
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Proof. Take a sequence {νε}ε ⊂ P(TN ) converging weak-star to some ν̄ as
ε → 0. Since V is lower semicontinuous, there exists a sequence of continu-
ous functions Vn converging to V from below. Then, for any n, by weak-star
convergence,

lim inf
ε→0

∫
TN

V (x) dνε(x) ≥ lim inf
ε→0

∫
TN

Vn(x) dνε(x) =
∫

TN

Vn(x) dν̄(x).

Thus, by the monotone convergence theorem,

lim inf
ε→0

∫
TN

V (x) dνε(x) ≥ lim
n→+∞

∫
TN

Vn(x) dν̄(x) =
∫

TN

V (x) dν̄(x).

�

The space P(TN ) can be metrized with the Wasserstein distance, defined,
for any couple of probability measures ν1 and ν2 in P(TN ) through the formula

[W (ν, ν′)]2 = inf
π∈Π(ν,ν′)

{∫
TN ×TN

|x− y|2 dπ(x, y)
}
,

where Π(ν, ν′) is the set of Radon probability measures on T
N × T

N , whose
marginal on the first coordinate is ν and the marginal on the second coordinate
is ν′. We can use W to define Gε, the inf-convolution of the function G given
in (6.5), that is:

Gε(ν) = inf
ν′∈P(TN )

{
G(ν′) +

W (ν, ν′)2

ε

}
.

Lemma 6.3. For any ν̄ ∈ P(TN ) and any sequence {νε}ε ⊂ P(TN ) converging
weak-star to ν̄ as ε → 0,

G(ν̄) ≤ lim inf
ε→0

Gε(νε). (6.6)

Proof. The statement is valid in general for lower semicontinuous functions
defined in compact metric spaces, and we do not use the explicit expression of
the Wasserstein distance to prove the lemma.

Suppose by contradiction that (6.6) does not hold for some ν̄ ∈ P(TN )
and some sequence νε → ν̄. Then there exists β > 0 such that G(ν̄) − β >
Gε(νε), if ε is sufficiently small. By the definition of Gε and by compactness
we have, for some ν̃ε ∈ P(TN ),

G(ν̃ε) +
W (νε, ν̃ε)2

ε
= Gε(νε) < G(ν̄) − β.

Using again the compactness of P(TN ), ν̃ε converges weak-star, up to a sub-
sequence, to some ν0 ∈ P(TN ) as ε → 0. Passing to the lim inf as ε → 0 and
taking into account Lemma 6.2 we get:

G(ν̄) − β > lim inf
ε→0

{
G(ν̃ε) +

W (νε, ν̃ε)2

ε

}
≥ G(ν0) + lim inf

ε→0

{
W (νε, ν̃ε)2

ε

}
.

Now, if ν0 
= ν̄, since G(ν0) is bounded, we reach a contradiction as the right
hand side of the previous inequality is +∞. Thus ν0 = ν̄ and we have
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G(ν̄) − β ≥ G(ν̄) + lim inf
ε→0

{
W (νε, ν̃ε)2

ε

}
≥ G(ν̄),

which is impossible. �

Lemma 6.4. For any ν ∈ P(TN ) and any ε > 0

Gε(ν) =
∫

TN

V ε(x)dν(x).

Proof. Let ν ∈ P(TN ) and ε > 0 be fixed. We have by definition

Gε(ν) = inf
ν′∈P(TN )

{∫
TN

V (y) dν′(y) + inf
π∈Π(ν,ν′)

[∫
TN ×TN

|x− y|2
ε

dπ(x, y)
]}

= inf
ν′∈P(TN )

inf
π∈Π(ν,ν′)

{∫
TN ×TN

[
V (y) +

|x− y|2
ε

]
dπ(x, y)

}
.

Now observe that for each x, the minimizing π should be supported on
the minima of the function V (y) + |x−y|2

ε , and so

Gε(ν) =
∫

TN

inf
y∈TN

[
V (y) +

|x− y|2
ε

]
dν(x) =

∫
TN

V ε(x) dν(x).

�

The proof of Theorem 6.1 is based on the following lower semicontinuity
result:

Proposition 6.5. Assume that L has the form (6.1) and let Lε be the function
defined in (6.3). Let με be a sequence of probability measures on T

N ×R
N and

assume that με converges weak-star to a probability measure μ̄ as ε → 0. Then

lim inf
ε→0+

∫
Lε(x, v) dμε(x, v) ≥

∫
L(x, v) dμ̄(x, v).

Proof. By using Lemma 6.4 and Lemma 6.3 we have

lim inf
ε→0

∫
TN

V ε(x) dμε
TN (x) = lim inf

ε→0
Gε(με

TN )

≥ G(μ̄TN ) =
∫

TN

V (x) dμ̄TN (x).

Then taking into account that L0 is continuous, by weak–star convergence
we conclude

lim inf
ε→0

∫
TN ×RN

Lε(x, v) dμε(x, v)

≥ lim inf
ε→0

∫
TN ×RN

L0(x, v)dμε(x, v) + lim inf
ε→0

∫
TN

V ε(x) dμε
TN (x)

≥
∫

TN ×RN

L0(x, v) dμ̄(x, v)+

∫
TN

V (x) dμ̄TN (x)=

∫
TN ×RN

L(x, v) dμ̄(x, v).

�

We conclude this section with the proof of Theorem 6.1.
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Proof of Theorem 6.1. Since V ε ≤ V for any ε,∫
Lε(x, v) dμ ≤

∫
L(x, v) dμ, for any μ.

Moreover, because με is a minimizer,∫
Lε(x, v) dμε ≤

∫
Lε(x, v) dμ, for any ε and any μ.

Thus, by Proposition 6.5 we get, for any μ,∫
L(x, v) dμ̄ ≤ lim inf

ε→0

∫
Lε(x, v) dμε ≤ lim inf

ε→0

∫
Lε(x, v) dμ ≤

∫
L(x, v) dμ.

�

7. Viscosity solutions

Let H(x, p) be the Legendre transform of L(x, v), as in Sect. 2. In this sec-
tion we study viscosity solutions to the Hamilton–Jacobi equation with H as
Hamiltonian.

Observe that, since H is uniformly convex in p, we have, for some κ > 0,

H(x, p) ≥ H(x, q) +DpH(x, q)(p− q) +
κ

2
|p− q|2, for all x, p, q ∈ R

N .

(7.1)

We are particularly interested in the Hamiltonian associated to the
Lagrangian L defined in (6.1), that is:

H(x, p) = H0(x, p) − V (x). (7.2)

where H0 is the Legendre transform of L0.
Since H(x, p) is not continuous in x, we rely on a special notion of viscos-

ity solution for discontinuous equations; see [1], [2]. Recall first the definition
of lower and upper envelopes of a locally bounded function ψ(z):

ψ∗(z) := lim inf
zn→z

ψ(zn), ψ∗(z) := lim sup
zn→z

ψ(zn). (7.3)

Whenever ψ is a function of several variables, the envelopes have to be under-
stood with respect to all variables.

Definition 7.1. We say that an upper semicontinuous function u, locally
bounded in T

N is a viscosity subsolution of the equation

H(x,Du(x)) = 0, x ∈ T
N (7.4)

if H∗(x,Dϕ(x)) ≤ 0 for every ϕ ∈ C1(TN ) and any local maximum point x of
u− ϕ.

Symmetrically, a lower semicontinuous function u, locally bounded in T
N

is a viscosity supersolution of (7.4) if H∗(x,Dϕ(x)) ≥ 0 for every ϕ ∈ C1(TN )
and any local minimum point x of u− ϕ.

A continuous function that satisfies both the conditions above is called a
viscosity solution of (7.4).
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Observe that any viscosity solution of (7.4) is a viscosity solution (in
the usual sense) in T

N\Σ. In fact the lower and upper envelopes H∗ and H∗

coincide with H in (TN\Σ) × R
N .

Remark 7.2. For viscosity solutions of discontinuous Hamiltonians introduced
in Definition 7.1, the following stability result holds; see [2]. Let uα be an
upper semicontinuous subsolution (resp. lower semicontinuous supersolution)
to the equation

Hα(x,Duα(x)) = 0, x ∈ T
N

with Hα locally uniformly bounded in T
N ×R

N . Consider the lower and upper
semilimits of the family Hα defined respectively as:

H�(x, p) := lim inf�Hα(x, p) = lim inf
(xn,pn)→(x,p)

αn→0

Hαn(xn, pn),

H�(x, p) := lim sup�Hα(x, p) = lim sup
(xn,pn)→(x,p)

αn→0

Hαn(xn, pn).

If uα are locally uniformly bounded in T
N then

u�(x) := lim sup�uα(x) := lim sup
y→x
α→0

uα(y) (resp. u� := lim inf
�

uα)

is a subsolution (resp. a supersolution) to the equation

H�(x,Du) = 0 (resp. H�(x,Du) = 0) in T
N .

�
We will need to consider the following approximating problems. For any

fixed ε, let V ε be the inf-convolution of V , already considered in Sect. 6 and
set

Hε(x, p) = H0(x, p) − V ε(x). (7.5)

For these functions, the lower and upper semilimits introduced in the
previous Remark 7.2 are:

H�(x, p) := lim inf�Hε(x, p) = H0(x, p) − lim sup
xn→x
εn→0

V εn(xn),

H�(x, p) := lim sup�Hε(x, p) = H0(x, p) − lim inf
xn→x
εn→0

V εn(xn).

In the next lemma we compare the upper and lower semilimits of Hε(x, p) with
the envelopes of H(x, p) defined through the formula (7.3).

Lemma 7.3. Assume H has the form (7.2). For any x and p, H∗(x, p) ≥
H�(x, p) and H∗(x, p) ≤ H�(x, p).

Proof. Because of the structure of H(x, p) displayed in (7.2) we concentrate
just on the discontinuous function V . Moreover, since V (x) is continuous out-
side Σ, we need to prove the statement only in the case in which x ∈ Σ. We
first compare H∗ with H�.
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Fix ρ > 0 and take sequences zn → x and ε̄n → 0 such that

lim inf
n

V ε̄n(zn) ≤ ρ+ inf
xn→x
εn→0

lim inf
n

V εn(xn).

Since zn → x, then there exists βn → 0 with |βn| ≥ 2ε̄n such that for any n,

B

(
zn − βn,

βn
2

)
⊂ Ω−.

This ensures that the inf-convolution V ε̄n at the point zn − βn do not depend
on V in points in Ω+. Hence

|V (zn − βn) − V ε̄n(zn − βn)| → 0,

as n → ∞. Moreover, because zn−βn ∈ Ω−, V ε̄n(zn−βn) ≤ V ε̄n(zn)+O(|βn|).
Consequently we have

inf
xn→x

lim inf
n

V (xn) ≤ lim inf
n

V (zn − βn) = lim inf
n

V ε̄n(zn − βn)

≤ lim inf
n

V ε̄n(zn) +O(|βn|).
Thus,

inf
xn→x

lim inf
n

V (xn) ≤ ρ+ inf
xn→x
εn→0

lim inf
n

V εn(xn),

which implies H∗(x, p) ≥ H�(x, p), as ρ is arbitrarily small. The other inequal-
ity in the statement can be established with a symmetric argument. �

7.1. Existence of viscosity solutions

Proposition 7.4. Assume H has the form (7.2) and let H̄ be the number defined
in (5.7). Then there exists a Lipschitz continuous viscosity solution to the
equation

H(x,Du(x)) = H̄ in T
N . (7.6)

Proof. The proof is divided in two parts. We first prove that there exists Ĥ ∈ R

such that the equation

H(x,Du(x)) = Ĥ in T
N . (7.7)

has Lipschitz continuous viscosity solutions. Then we prove that Ĥ = H̄.
Consider Hε(x, p) defined in (7.5). By standard theory, for any ε there

exists H̄ε such that the equation

Hε(x,Du) = H̄ε (7.8)

admits a viscosity solution, denoted by uε. The sequence {uε} is equi-bounded
up to addition of a constant and equi-Lipschitz. We denote by u a uniform
limit of uε as ε → 0.

Notice that H̄ε ≥ −C for some constant C for any ε; moreover a direct
computation shows that the sequence {H̄ε} is monotone non increasing. Then
there exists

lim
ε→0

H̄ε =: Ĥ. (7.9)
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To conclude the proof we show that u is a viscosity solution of (7.7).
Because the limit equation is discontinuous we need to use the notion of vis-
cosity solutions introduced in Definition 7.1, but of course from the proof it
follows that u is Lipschitz.

Notice first that Hε(x, p) converges uniformly to H(x, p) as ε → 0, in
compact subsets of (TN\Σ) × R

N . Then, by stability, u is a solution to (7.7)
in T

N\Σ. Furthermore uε is, in particular, a subsolution to (7.8) in T
N . Then,

combining Remark 7.2 and Lemma 7.3 we discover that the function

u�(x) := lim sup�uε(x) := lim sup
y→x
ε→0

uε(y)

satisfies

H∗(x,Du�) ≤ H�(x,Du�) ≤ H̄, in T
N .

Analogously, u� := lim inf�uε satisfies

H∗(x,Du�) ≥ H�(x,Du�) ≥ H̄, in T
N .

But since u is continuous, u�, u� and u agree in T
N . Thus u is a viscosity

solution of (7.7) in the sense of Definition 7.1. The first part of the proof is
then completed.

It remains to prove that Ĥ coincides with

H̄ = − inf
μ∈M+

1 ∩Mhol

∫
L(x, v) dμ.

Let Lε(x, v) be the approximation of L(x, v) defined in (6.3). For any ε
we have

−H̄ε = inf
μ∈M+

1 ∩Mhol

∫
Lε(x, v) dμ(x, v) =

∫
Lε(x, v) dμε(x, v),

for some measure με ∈ M+
1 ∩ Mhol. Furthermore, since Hε is uniformly coer-

cive, the supports of με are uniformly bounded. Thus με converges weak-star
to some μ̄ up to subsequence. By Theorem 6.1 μ̄ minimizes

∫
L dμ. Then

recalling that Lε ≤ L for any ε we obtain

−H̄ε =
∫
Lε dμε ≤

∫
Lε dμ̄ ≤

∫
L dμ̄ = −H̄ for any ε.

Passing to the limit as ε → 0 this gives Ĥ ≥ H̄. Using Proposition 6.5 we get
the opposite inequality:

−H̄ =
∫
L dμ̄ ≤ lim inf

ε→0

∫
Lε dμε = lim inf

ε→0
−H̄ε = −Ĥ.

This completes the proof. �
Remark 7.5. A function is locally semiconcave on an open set if it is semicon-
cave in every compact subset. The solution u of (7.6) is locally semiconcave in
T
N\Σ, because it is the uniform limit of the sequence of locally semiconcave

functions uε satisfying (7.8), and for each compact subset of T
N\Σ we can

obtain an estimate on the semiconcavity constant uniform in ε. The semicon-
cavity constant is, of course, not globally bounded. �
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Proposition 7.6. There exists at most one λ ∈ R such that the equation

H(x,Du) = λ (7.10)

admits a Lipschitz viscosity solution u in T
N .

Proof. The statement is a direct consequence of the comparison between
sub- and super-solutions of state-constraint problems. This property has been
shown by Soner in [21]; we repeat here the argument for completeness. Assume
that u and v are two functions defined on T

N satisfying respectively

H(x,Du) ≤ a, H(x,Dv) ≥ b, x ∈ T
N .

Assume further that v is lower semicontinuous on T
N . We claim that a ≥ b.

Let ν(x) be a vector field defined on Σ, pointing toward Ω− and η : T
N → R

N

such that η(x) = η(x) for every x ∈ Σ. For every small ε > 0 define

Φ(x, y) = u(x) − v(y) −
∣∣∣∣x− y

ε
− η(y)

∣∣∣∣
2

, (x, y) ∈ T
2N .

By coercivity of H, u is Lipschitz continuous on T
N , with Lipschitz constant

M > 0. Then, since v is assumed to be lower semicontinuous, the function Φ
achieves a maximum over T

2N . Let us denote by (xε, yε) the point of maximum
of Φ, then Φ(xε, yε) ≥ Φ(yε + εη(yε), yε), which yields∣∣∣∣xε − yε

ε
− η(yε)

∣∣∣∣
2

≤ u(xε) − u(yε + εη(yε)) ≤ εM

∣∣∣∣xε − yε
ε

− η(yε)
∣∣∣∣ .

Hence, ∣∣∣∣xε − yε
ε

− η(yε)
∣∣∣∣ ≤ εM. (7.11)

This implies that xε = yε + εη(yε) +O(ε2), as ε → 0. Then, for ε small enough
we get the following property:

yε ∈ Ω̄− =⇒ xε ∈ Ω−. (7.12)

Set further

φ(x, y) =
∣∣∣∣x− y

ε
− η(y)

∣∣∣∣
2

, (x, y) ∈ T
2N

and observe that

Dxφ(x, y) =
2
ε

(
x− y

ε
− η(y)

)

−Dyφ(x, y) = 2
(
I

ε
+Dη(y)T

)(
x− y

ε
− η(y)

)

= Dxφ(x, y) + 2Dη(y)T
(
x− y

ε
− η(y)

)
,

where Dη(y)T denotes the transposed matrix of Dη(y). Notice also that, by
(7.11), Dxφ(xε, yε) ≤ 2M and

−Dyφ(xε, yε) = Dxφ(xε, yε) +O(ε), as ε → 0.
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By extracting a subsequence if necessary, we can assume that either yε ∈ Ω̄−

as ε → 0, or yε ∈ Ω+. If yε ∈ Ω̄−, then xε ∈ Ω̄−. By definition of viscosity
solution, in view of (7.12) we get,

H−(yε,−Dyφ(xε, yε)) ≥ b and H−(xε,Dxφ(xε, yε)) ≤ a (7.13)

Since yε − xε → 0, and Dyφ(xε, yε) − Dxφ(xε, yε) → 0 we conclude a ≥ b. If
instead yε ∈ Ω+ we get

H+(yε,−Dyφ(xε, yε)) ≥ b (7.14)

If xε ∈ Ω+ infinitely often, by extracting a further subsequence we can assume
that

H+(xε,Dxφ(xε, yε)) ≤ a,

from which we conclude a ≥ b. Alternatively, xε ∈ Ω̄− infinitely often. Then,
since xε − yε → 0, taking into account the discontinuity at Σ we have

a ≥ H−(xε,Dxφ(xε, yε)) ≥ H+(yε,Dxφ(xε, yε)).

Then, using Dyφ(xε, yε) −Dxφ(xε, yε) → 0 we conclude a ≥ b. �

Remark 7.7. Putting together Proposition 7.4 and Proposition 7.6 we discover
that H̄ is the unique value λ for which Eq. (7.10) admits a Lipschitz continuous
viscosity solution. �

7.2. Regularity

We know, by Proposition 7.4 that there are Lipschitz solutions of (7.6). In this
subsection we are interested in local L2(dμTN \Σ) estimates for the gradient
quotient of solutions of such equation, where μ is a minimizing holonomic
measure. The estimates presented in this section are actually a localized version
of those in [13].

Given μ probability measure on T
N × R

N , we denote as in the preceding
section with μTN its projection onto the state space T

N . We introduce next the
push-forward of μ. Since L is strictly convex and superlinear, there exists a one
to one correspondence between the Hamiltonian space and the Lagrange space
of coordinates, (x, p) and (x, v), respectively. Such correspondence is expressed
through the map Φ : T

N × R
N → T

N × R
N

Φ(x, v) := (x,−DvL(x, v)).

Even though L is discontinuous, since we are assuming hypothesis (H3) holds,
DvL = DvL0 is a smooth diffeomorphism.

The push-forward of any measure μ with respect to Φ is the measure
μ# := Φ#μ defined by:∫

ψ(x, p) dμ#(x, p) :=
∫
ψ(x,−DvL(x, v)) dμ(x, v), (7.15)

for every ψ ∈ C(TN × R
N ) compactly supported.

Next Lemma 7.8 is a version for this problem of the well known fact
that, for continuous Hamiltonians, there exist smooth strict subsolutions of
the equation (7.6) (Cfr. [15]).
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Lemma 7.8. Let H̄ be the number defined in (5.7). Then for any a > H̄ there
exists ua smooth such that

H(x,Dua(x)) ≤ a in T
N .

Proof. For every ε, let H̄ε be the sequence of values such that Eq. (7.8) admits
a viscosity solution uε. Since H̄ε converges to H̄ from above and is monotonic
non increasing, a > H̄ε for every ε sufficiently small. Fix such an ε; by the usual
theory for continuous Hamiltonians, we know that a smooth strict subsolution
ua of Hε = a there exists. We conclude:

a > Hε(x,Dua) ≥ H(x,Dua) in T
N .

�

Proposition 7.9. Let u be a solution of (7.6) and μ̄ a minimizing holonomic
probability measure. Then, for μ̄TN -a.e. x ∈ supp(μ̄TN )\Σ, Du(x) exists. More-
over

p = Du(x), for μ̄#-a.e. (x, p) ∈ (supp(μ̄TN )\Σ) × R
N .

Proof. Consider the following two sequence of functions. Let {un} be a
sequence of of smooth approximate subsolutions of

H(x,Dun(x)) ≤ H̄ +
1
n

uniformly converging to u as n → +∞. Such a sequence exists in force of
Lemma 7.8. Consider further the sequence {vn} of functions obtained by con-
volving the solution u for some mollification kernel ηn of size 1/n; of course vn
fail to be an approximate subsolutions around the singular set. Fix a radius
k0 and consider a tube Σk0 around Σ. Define also a function λ on T

N with
0 ≤ λ ≤ 1 in such a way that λ is supported in Σk0 and 1 − λ is supported in
T
N\Σk0 . Finally set

wn(x) := λ(x)un(x) + (1 − λ(x))vn(x).

By convexity of H, wn is a smooth approximate subsolution, that is

H(x,Dwn(x)) ≤ H̄ +
1
n

;

moreover it coincides with vn outside Σk0 . By (7.1), with p = Dvn(y) and
q = Dwn(x),

H(x,Dvn(y)) ≥ H(x,Dwn(x)) +DpH(x,Dwn(x))(Dvn(y) −Dwn(x))

+
κ

2
|Dvn(y) −Dwn(x)|2.

Multiplying by ηn(x− y), integrating with respect to y we get

H(x,Dwn(x)) +
κ

2

∫
TN \Σk0

ηn(x− y)|Dvn(y) −Dwn(x)|2 dy

≤
∫

TN \Σk0

ηn(x− y)H(x,Dvn(y)) dy ≤ H̄ +
1
n
. (7.16)
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Using again (7.1) we have

κ

2

∫
|Dwn(x) − p|2 dμ̄#(x, p)

≤
∫

[H(x,Dwn(x)) −H(x, p) −DpH(x, p)(Dwn(x) − p)] dμ̄#(x, p)

= −H̄ +
∫
H(x,Dwn(x)) dμ̄#(x, p). (7.17)

In the last identity we have used the fact that, by Corollary 5.11,∫
[pDpH(x, p) −H(x, p)] dμ̄#(x, p) =

∫
L(x, v) dμ̄(x, v) = −H̄

and that, by holonomy,∫
DpH(x, p)Dwn(x) dμ̄#(x, p) = 0.

Putting together (7.16) and (7.17) we obtain

κ

2

∫
|Dwn(x) − p|2 dμ̄#(x, p) +

∫
βn(x) dμ̄TN (x) ≤ 1

n
, (7.18)

where we denoted

βn(x) :=
κ

2

∫
TN \Σk0

ηn(x− y)|Dvn(y) −Dwn(x)|2 dy.

Then for μ̄TN -a.e. x, βn(x) → 0 as n → +∞. Now, notice that, by (7.18),
Dwn(x) converges to p in L2(dμ̄#). Moreover, μ̄TN -a.e. x in T

N\Σk0 is a point
of approximating continuity for Du. Then, since wn and vn agree outside Σk0 ,
Dwn(x) converges to Du(x) for μ̄TN -a.e. x in T

N\Σk0 . This in turn entails
p = Du(x). The statement is then established, as k0 can be chosen arbitrarily
small. �

Remark 7.10. By arguing as in [4, Corollary 33], we can rephrase the statement
of Proposition 7.9 by saying that Dxu(x) exists for μ̄TN -a.e. x ∈ T

N\Σ and
satisfies

DvL(x, v) = Dxu(x), μ̄-a.e. in (TN\Σ) × R
N . (7.19)

Moreover, we will prove, under an additional assumption, that Σ is negligible
with respect to μ̄TN

; see Remark 8.9 and Lemma 8.11 in the next Section.
Thus we can assume, for our purposes, that (7.19) holds μ̄-a.e. in T

N × R
N .

Another important consequence of the previous Proposition is the fol-
lowing. In Proposition 5.5 we proved that a minimizing holonomic measure
is supported on the graph of a function v which is defined, in principle, on
supp(μ̄); see Remark 5.6. But then, thanks to Proposition 7.9, there is a canon-
ical extension Lebesgue a.e. in T

N given by

v(x) = −DpH(x,Dxu(x)).

In particular this implies |v| bounded. �
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Remark 7.11. By (7.6) and Proposition 7.9 immediately follows that

H(x, p) − H̄ = 0 μ̄#(x, p) a.e. in (TN\Σ) × R
N .

�
In the next proposition we provide an L2

loc estimate of the gradient quo-
tient of a solution of (7.6).

Proposition 7.12. Assume H has the form (7.2). Let u be a viscosity solution
of (7.6), μ̄ a minimizing holonomic measure and μ̄TN its projection onto T

N .
Then there exists C > 0 such that, for any δ > 0 and any C∞ cutoff function
ϕ supported in T

N\Σδ,∫
TN

ϕ2(x)|Dxu(x+ h) −Dxu(x)|2 dμ̄TN ≤ C|h|2,

for any h ∈ R
N with |h| < δ/2.

The proof of Proposition 7.12 makes use of the following:

Lemma 7.13. Let u be a solution to (7.6) and uε the convolution of u with a
standard mollifier ηε supported in B(0, ε), ε > 0. Then there exists C > 0 such
that, for any δ > 0,

H(x,Duε(x)) ≤ H̄ + Cε in T
N\Σδ. (7.20)

if ε is sufficiently small.

Proof. Recall first that, by Remark 7.10 |Du(x)| ≤ M for μ-a.e. x ∈ T
N \ Σ,

for a minimizing holonomic measure μ. Then we set

C := sup{|DxH(x, p)| : x ∈ T
N\Σ, |p| ≤ M} < ∞.

For any x ∈ T
N\Σδ and y ∈ B(x, ε) with ε < δ, we have

|H(x, p) −H(x− y, p)| ≤ C|y|, for any |p| ≤ M.

Thus, by Jensen’s inequality

H̄ ≥
∫
ηε(y)H(x,Du(x− y)) dy − C

∫
|y|ηε(y) dy

≥ H

(
x,

∫
ηε(y)Du(x− y) dy

)
− C

∫
|y|ηε(y) dy

= H(x,Duε(x)) − C

∫
|y|ηε(y) dy ≥ H(x,Duε(x)) − C,

that is (7.20) holds. �
Proof of Proposition 7.12. Let uε be the convolution of u with a standard
smooth mollifier supported in B(0, ε). Let x ∈ T

N\Σδ and h ∈ R
N with

|h| < δ/2. Then x± h /∈ Σδ/2 and, by Lemma 7.13, for ε sufficiently small,

H(x± h,Duε(x± h)) ≤ Cε+ H̄.

Thus,

H(x,Duε(x± h)) −H(x,Du(x))
≤ Cε+H(x,Duε(x± h)) −H(x± h,Duε(x± h))
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and consequently, by convexity (7.1),
κ

2
|Duε(x± h) −Du(x)|2 +DpH0(x,Du(x))(Duε(x± h) −Du(x))

≤ H(x,Duε(x± h)) −H(x,Du(x))
≤ Cε+H0(x,Duε(x± h)) −H0(x± h,Duε(x± h)) − V (x) + V (x± h)
≤ C(ε+ |h|2) ± h ·DV (x) ± h ·DxH0(x,Duε(x± h)).

Now notice that, for some ξ ∈ [Duε(x± h),Du(x)],

±h ·DxH0(x,Duε(x± h))
= ±h ·DxH0(x,Du(x)) ± h ·D2

x,pH0(x, ξ) · (Duε(x± h) −Du(x));

then, observing that |D2
xpH0(x, ξ)| ≤ C for some constant C > 0, for any

ξ ∈ [Duε(x ± h),Du(x)] and any ε, and using a Cauchy inequality weighted
with β > 0, we can write

±h ·DxH0(x,Duε(x± h))

≤ ±h ·DxH0(x,Du(x)) +
1
β

|h|2 + β|Duε(x± h) −Du(x)|2.

Then, by choosing β appropriately small,

C|Duε(x± h) −Du(x)|2
≤ C(ε+ |h|2) ± h ·DV (x) ± h ·DxH0(x,Du(x))

−DpH0(x,Du(x))(Duε(x± h) −Du(x))

and, after some cancellations, we get

|Duε(x+ h) −Du(x)|2 + |Duε(x− h) −Du(x)|2
≤ C(ε+ |h|2) − CDpH0(x,Du(x))(Duε(x+ h) − 2Du(x) +Duε(x− h)).

Multiplying by ϕ2 and integrating with respect to μ̄TN (x) we have∫
TN

ϕ2|Duε(x+ h) −Du(x)|2 dμ̄TN

≤ C(ε+ |h|2)
−C

∫
TN

ϕ2DpH0(x,Du(x)) · (Duε(x+h)−2Du(x)+Duε(x−h)) dμ̄TN .

(7.21)

Now, integrating by parts we can rewrite the integral in the right hand
side of the previous inequality as

−
∫

TN

ϕ2DpH0(x,Du(x)) · (Duε(x+ h) − 2Du(x) +Duε(x− h)) dμ̄TN (x)

=
∫

TN

2ϕDϕDpH0(x,Du(x)) · [uε(x+ h) − 2u(x) + uε(x− h)] dμ̄TN (x).

Moreover, since uε is semiconcave, being the convolution of a smooth mollifier
with u which is semiconcave (see Remark 7.5), we have

uε(x+ h) − 2u(x) + uε(x− h) ≤ C|h|2 + 2|uε − u|∞.
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From this, taking into account that |DpH0(x,Du(x))| is bounded because u
is Lipschitz, that |ϕ| and |Dϕ| are also bounded in T

N , and that uε converges
uniformly to u, we conclude after (7.21) that∫

TN

ϕ2|Duε(x+ h) −Du(x)|2 dμ̄TN (x) ≤ C(ε+ |h|2).

We send ε → 0. Up to subsequences, Duε(x + h) → p(x) weakly in
L2

loc(dμ̄TN ) and ∫
TN

ϕ2|p −Du|2 dμ̄TN ≤ C|h|2.

To complete the proof we must show that p ∈ Du(x + h) μ̄TN -a.e. namely,
that for μ̄TN -a.e. x there exists C > 0 such that

u(y + h) ≤ u(x+ h) + p · (y − x) + C|y − x|2 for any y. (7.22)

First note that uε(· + h) is semiconcave, that is

uε(y + h) ≤ uε(x+ h) +Duε(x) · (y − x) + C|y − x|2, for any x, y.

Then, for any nonnegative function g ∈ L2(dμ̄TN ),

0 ≤
∫

[−uε(y + h) + uε(x+ h) +Duε(x) · (y − x) + C|y − x|2]g(x) dμ̄TN .

By sending ε → 0 and taking into account that uε → u uniformly,

0 ≤
∫

[−u(y + h) + u(x+ h) + p · (y − x) + C|y − x|2]g(x) dμ̄TN .

Since g is arbitrary, (7.22) is then established, and the proof is completed. �

8. Properties of minimizing measures

We study now some examples and additional properties of minimizing mea-
sures. As in the previous Sections, we assume hypothesis (H3) concerning the
structure of L.

Definition 8.1. Let Ω be an open subset of T
N × R

N . We say that a measure
μ is invariant in Ω under the flow generated by the Euler–Lagrange equation
if for any function φ ∈ C1(TN × R

N ), compactly supported in Ω,∫
TN ×RN

χ(x, v)Dφ(x, v) dμ(x, v) = 0,

where χ is the vector filed corresponding to the Euler–Lagrange equation, or
more explicitly, if

∫
vk

∂φ

∂xk
+
∂φ

∂vj

(
∂2L

∂v

)−1

js

[
∂L

∂xs
− vk

∂2L

∂xk∂vs

]
dμ(x, v) = 0. (8.1)
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Remark 8.2. It is sometimes convenient to use the following equivalent defi-
nition of invariance (see [4] and [17]), that is, μ is invariant in Ω under the
flow generated by the Euler–Lagrange equation if and only if for any function
φ ∈ C1(TN × R

N ), compactly supported in Ω,∫
TN ×RN

{φ,H} dμ#(x, p) = 0, (8.2)

where μ# is the push-forward of μ, defined in (7.15), and the notation {·, ·}
stands for the Poisson bracket, which is defined, for any couple of functions
A(x, p), B(x, p) in C1(TN × R

N ) as

{A,B} := DpA ·DxB −DxA ·DpB.

�
Remark 8.3. Note that if μ# does not give mass to the set where H is non-
differentiable, the integral in (8.2) is well defined if we use the convention that
we identify {φ,H} with a function defined almost everywhere in the support
of μ# and not as a distribution. �
8.1. Examples

A minimizing measure not giving mass to the singular set. We continue the
study of the example of Sect. 5.4. With μ̄ we denote the measure obtained in
(5.18), and with μ̄# its push-forward. Observe that μ̄(Σ × R

N ) = 0. We have
H(x, p) = |p|2

2 −V (x). It is easy to check that μ̄ is invariant outside Σ. In fact,
if φ ∈ C1([0, 1] × R), compactly supported in ([0, 1]\Σ) × R,∫

[0,1]×R

{H,φ} dμ̄#(x, p) = 0,

because H(x, p) is differentiable in ([0, 1]\Σ) × R; see Remark 8.3.
In the general case of a φ differentiable and compactly supported in [0, 1]×

R, taking into account (7.15) and the representation (5.18) for μ̄ we have,∫
([0,1]\Σ)×R

DpH(x, p) ·Dxφ(x, p) dμ̄#(x, p)

=
∫

([0,1]\Σ)×R

v ·Dxφ(x, v) dμ̄(x, v)

= −
∫

[0, 13 )

Dxφ(x, v̄1) dx−
∫

( 1
3 ,

2
3 )

Dxφ(x, v̄2) dx−
∫
( 2

3 ,1)
Dxφ(x, v̄1) dx

= φ

(
1
3
, v̄2

)
+ φ

(
2
3
, v̄1

)
− φ

(
1
3
, v̄1

)
− φ

(
2
3
, v̄2

)

where v̄1 and v̄2 are the two values in (5.18). Furthermore,∫
([0,1]\Σ)×R

DxH(x, p)Dpφ(x, p) dμ# = 0,

because DxH = 0 on ([0, 1]\Σ) × R. Thus, we can write∫
([0,1]\Σ)×R

{H,φ} dμ̄# =
∫

Σ×R

φdσ+ −
∫

Σ×R

φdσ−, (8.3)
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where

σ+ := δ( 1
3 ,v̄2)

+ δ( 1
3 ,v̄1)

, σ− := δ( 1
3 ,v̄1)

+ δ( 2
3 ,v̄2)

.

Observe that σ+ and σ− are not probability measures.
A minimizing measure giving mass to the singular set. In the previous example
the minimizing measure is supported away from the singular set. We consider
now an example in which the Mather measure is concentrated on the singu-
larity.

We consider again the Lagrangian L(x, v) = |v|2
2 +V (x), (x, v) ∈ [0, 1]×R;

we are assuming now V (x) to be lower semicontinuous, with only one jump at
the point of minimum x0 ∈ (0, 1), and smooth elsewhere. We further assume
that the minimum is strict. It is easy to check that in this case the minimizing
measure is μ̄(x, v) = δ0(v)δx0(x). In fact,∫

[0,1]×R

L(x, v) dμ̄(x, v) = V (x0) = min
x∈[0,1]

V (x).

As in the previous example, if φ is a C1 function compactly supported
away from x0, we have∫

[0,1]×R

{H,φ} dμ̄#(x, p) =
∫

[0,1]×R

V ′(x)Dpφ(x, p) dμ̄#(x, p) = 0.

Thus μ̄ is invariant on [0, 1]\{x0}, under the Euler–Lagrange flow, which is
obvious since μ̄ gives no mass to that set. However because μ̄# gives mass
1 to the set where H is not differentiable, the integral

∫ {φ,H} dμ̄# is not
defined if x0 ∈ suppμ̄#. In this case is unclear whether an analog to (8.3) can
be established.

8.2. Invariance of minimizing measures outside the singular set

The goal of this Section is to prove the following

Theorem 8.4. Assume (H3) holds. Let μ̄ be a minimizing holonomic measure.
Then μ̄ is invariant under the Euler–Lagrange flow in (TN\Σ) × R

N .

The result is a direct application of the following

Proposition 8.5. Assume (H3) holds. Let μ̄ be a minimizing holonomic measure
and v(x) be a function as in Proposition 5.5 whose graph supports μ̄. Let vε

be the convolution of v with a smooth mollifier. Then vε converges to v in
L2

loc(dμ̄TN \Σ) as ε → 0.

Proof. First of all observe that, by Remark 7.10,

v(x) = −DpH(x,Du(x)), (8.4)

where u is a solution to (7.6). The previous identity holds for μ̄TN -a.e. x, and
also for Lebesgue a.e x. Let ηε be a smooth mollifier supported in B(0, ε/2).
By (8.4) we can then write

vε(x) − v(x) =
∫

TN

[DpH(x+ y,Du(x+ y)) −DpH(x,Du(x))] ηε(y) dy.
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Let ϕ(x) be a cutoff function compactly supported in T
N\Σε. Adding and

subtracting the quantity DpH(Du(x + y), x) in the right hand side of the
previous line, multiplying by ϕ, taking the square, integrating with respect to
μ̄TN (x) and using Jensen’s inequality we get∫

TN

ϕ2(x)|vε(x) − v(x)|2 dμ̄TN

≤ C

∫
TN ×TN

ϕ2(x)|DpH(x,Du(x+ y)) −DpH(x,Du(x))|2ηε(y) dy dμ̄TN

+C
∫

TN ×TN

ϕ2(x)|DpH(x+ y,Du(x+ y))

−DpH(x,Du(x+ y))|2ηε(y) dy dμ̄TN ,

for some constant C > 0. Let us denote by I1 and I2 respectively the first and
the second integral in the right hand side of the previous inequality.

By the mean value theorem we have

|DpH(x,Du(x+ y)) −DpH(x,Du(x))|
≤ ‖D2

ppH(x, ξ)‖|Du(x+ y) −Du(x)|,
for some ξ ∈ [Du(x),Du(x+ y)]. Then, after observing that

sup
x∈TN

p∈B(0,|Du|∞)

‖D2
ppH(x, p)‖ ≤ C

and by applying the estimate of Proposition 7.12 we obtain

I1 ≤ C

∫
TN ×TN

ϕ2(x)|Du(x+ y) −Du(x)|2ηε(y) dy dμ̄TN (x)

≤ C

∫
B(0,ε/2)

|y|2ηε(y) dy ≤ Cε2.

We claim that I2 is also bounded by Cε2. To see this notice that, using
again the mean value theorem, we can write

I2 ≤
∫

TN ×(TN \Σ)

ϕ2(x)‖D2
xpH(z,Dxu(x+ y))‖2|y|2ηε(y) dy dμ̄TN (x)

for some z ∈ [x, x+ y], t ∈ [0, 1]. Observe also that

sup
z∈TN \Σε/2

p∈B(0,|Du|∞)

‖D2
xpH(z, p)‖ ≤ C, for any ε.

So I2 ≤ Cε2 as claimed. In conclusion we have∫
TN

ϕ2(x)|vε(x) − v(x)|2 dμ̄TN (x) ≤ Cε2.

as desired. �

To prove Theorem 8.4 we need the following two technical results whose
proofs are postponed in the Appendix 8.3.
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Lemma 8.6. Let μ̄ be a minimizing holonomic measure, vε as in Proposition 8.5
and φ(x, v) any smooth function compactly supported in (TN\Σ) × R

N . Then
∫ {

vk
∂φ

∂xk
(x, vε(x)) +

∂φ

∂vj
(x, vε(x))

(
∂2L

∂v

)−1

js

(x, vε(x))

×
[
∂L

∂xs
(x, v) − vk

∂2L

∂xk∂vs
(x, vε(x))

]}
dμ̄

=
∫
vk

(
∂L

∂vs
(x, vε(x)) − ∂L

∂vs
(x, v)

)
∂

∂xk
ξεs dμ̄, (8.5)

where

ξεs(x) :=
∂φ

∂vj
(x, vε(x))

(
∂2L

∂v

)−1

js

(x, vε(x)). (8.6)

Proof. See Appendix 8.3 �

Lemma 8.7. Assume (H3) holds. Let μ̄ be a minimizing holonomic measure
and ξε the vector field defined in (8.6). Then there exists C > 0 such that, for
any δ > 0 sufficiently small,∫

TN \Σδ

∣∣∣∣ ∂∂xk ξ
ε(x)

∣∣∣∣
2

dμ̄TN (x) ≤ C,

for any k, and any ε small enough.

Proof. See Appendix 8.3. �

Proof of Theorem 8.4. According to Definition 8.1 we must prove that∫
vk

∂φ

∂xk
+
∂φ

∂vj

(
∂2L

∂v

)−1

js

[
∂L

∂xs
− vk

∂2L

∂xk∂vs

]
dμ̄ = 0 (8.7)

for any smooth function φ(x, v) compactly supported in (TN\Σδ) × R
N , for

any δ arbitrarily small.
Let vε be as in Proposition 8.5 and Lemma 8.6. The idea is to approximate

the left hand side of (8.7) with the left hand side of (8.5) and then to prove
that the right hand side of (8.5) converges to zero as ε → 0. To see this we first
approximate separately each summand in the left hand side of (8.7) with the
correspondent term in the left hand side of (8.5). To do this we use repeatedly
Proposition 8.5.

Fix δ > 0 and assume that the function φ used in the definition of ξε,
(8.6), is compactly supported in (TN\Σδ) × R

N . For any β > 0 we have∣∣∣∣∣
∫

(TN \Σδ)×RN

vk

[
∂φ

∂xk
(x, vε(x)) − ∂φ

∂xk
(x,v(x))

]
dμ̄

∣∣∣∣∣
≤
∣∣∣∣Lip

∂φ

∂xk

∣∣∣∣
∫

(TN \Σδ)×RN

|vk| |vε − v| dμ̄

≤ β

∣∣∣∣Lip
∂φ

∂xk

∣∣∣∣
2

|vk|2∞ +
1
β

∫
(TN \Σδ)×RN

|vε − v|2 dμ̄. (8.8)
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Remind (see Remark 7.19) that |vk| is bounded because |v| is so.
Analogously∣∣∣∣∣

∫
(TN \Σδ)×RN

∂L

∂xs
(x, v)

[
∂φ

∂vj
(x, vε(x))

(
∂2L

∂v

)−1

js

(x, vε(x))

− ∂φ

∂vj
(x,v(x))

(
∂2L

∂v

)−1

js

(x,v(x))

]
dμ̄

∣∣∣∣∣
≤ βK2

1

∫ ∣∣∣∣ ∂L∂xs
∣∣∣∣
2

dμ̄+
1
β

∫
(TN \Σδ)×RN

|vε − v|2 dμ̄, (8.9)

where K1 denotes the Lipschitz constant of the function

v �→ ∂φ

∂vj
(x, v)

(
∂2L

∂v

)−1

js

(x, v),

and ∣∣∣∣∣
∫

(TN \Σδ)×RN

vk

[
∂φ

∂vj
(x, vε(x))

(
∂2L

∂v

)−1

js

(x, vε(x))
∂2L

∂xk∂vs
(x, vε(x))

− ∂φ

∂vj
(x,v(x))

(
∂2L

∂v

)−1

js

(x,v(x))
∂2L

∂xk∂vs
(x,v(x))

]
dμ̄

∣∣∣∣∣
≤ βK2

2 |vk|2∞ +
1
β

∫
(TN \Σδ)×RN

|vε − v|2 dμ̄, (8.10)

where K2 denotes the Lipschitz constant of the function

v �→
(
∂φ

∂vj

(
∂2L

∂v

)−1

js

∂2L

∂xk∂vs

)
(x, v).

Putting together (8.8), (8.9) and (8.10), and passing to the limit first for ε → 0
and taking into account Proposition 8.5, and then for β → 0, we see that the
left hand side of (8.5) approximates the left hand side of (8.7) as ε → 0.

We claim now that the right hand side of (8.5) converges to zero as ε → 0.
To see this, taking into account the very definition of ξεs, (8.6), notice that for
any β > 0 we have∣∣∣∣∣

∫
(TN \Σδ)×RN

vk

(
∂L

∂vs
(x, vε(x)) − ∂L

∂vs
(x, v)

)
∂

∂xk
ξεs dμ̄

∣∣∣∣∣
≤
(

Lip
∂L

∂vs

)∫
(TN \Σδ)×RN

|vk||vε(x) − v(x)|
∣∣∣∣ ∂∂xk ξ

ε
s

∣∣∣∣ dμ̄

≤ β

(
Lip

∂L

∂vs

)2 ∫
(TN \Σδ)×RN

|vk|2
∣∣∣∣ ∂∂xk ξ

ε
s

∣∣∣∣
2

dμ̄

+
1
β

∫
(TN \Σδ)×RN

|vε(x) − v(x)|2 dμ̄.
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By Lemma 8.7, ∫
TN \Σδ

∣∣∣∣ ∂∂xk ξ
ε(x)

∣∣∣∣
2

dμ̄TN (x) ≤ C,

for any ε small enough. Thus, since |vk| is bounded,∣∣∣∣
∫
vk

(
∂L

∂vs
(x, vε(x)) − ∂L

∂vs
(x, v)

)
∂

∂xk
ξεs dμ̄

∣∣∣∣
≤ Cβ|vk|2∞ +

1
β

∫
|vε(x) − v(x)|2 dμ̄.

The claimed convergence to zero of the right hand side of (8.5) then follows
by sending first ε → 0 and using Proposition 8.5, and finally sending β → 0.

The proof is then fulfilled, thanks to Lemma 8.6 and the arbitrariness
of δ. �

8.3. Properties of minimizing measures on the singular set

For any k > 0 small enough consider the signed distance from Σ in Σk, i.e. the
function wk solution to the problem{

|Dwk| = 1, in Σk\Σ
wk = 0, on Σ.

(8.11)

For any k,wk is smooth and, for any x ∈ Σ,Dwk(x) coincides with ν(x), the
unit normal to Σ pointing towards Ω−. Thus, wk extends ν smoothly in an
appropriate neighborhood of Σ. Furthermore, we can assume without loss of
generality that

|Dwk| ≤ Ck, in T
N\Σk. (8.12)

We then denote

ν̃k(x) =

{
ν(x) if x ∈ Σ
Dwk(x) if x ∈ Σk\Σ.

Remind (see Remark 5.4) that a minimizing measure μ̄(x, v) can be writ-
ten as dμ̄(x, v) = θ(dx)η(dv;x) for some θ and η, where θ is a probability
measure and η, for θ-a.e. x, is a probability measure in v. Moreover, by Propo-
sition 5.5 we have a representation for η(dv;x):

μ̄(x, v) = δv(x)(v)θ(x). (8.13)

We assume in this Section that
there exist α, β > 0 such that|v(x)| ≤ β, for any x ∈ T

N ,
and for any k large enough α ≤ v(x) · ν̃k(x) for any x ∈ Σk.

(8.14)

The main result of this Section is the following:

Theorem 8.8. Assume that L satisfies assumption (H3). Let μ̄(x, v) be a min-
imizing measure, and μ̄#(x, p) its push-forward by the Legendre transform.
Assume also that (8.14) holds. Then there exist measures σ+ and σ− on Σ×R

N

such that:
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1. For any φ ∈ C1(TN × R
N ),∫

(TN \Σ)×RN

{φ,H}dμ̄#(x, p) =
∫

Σ×RN

φdσ+(x, p) −
∫

Σ×RN

φdσ−(x, p).

(8.15)

2. For any ϕ ∈ C1(TN ) and any ψ ∈ C1(R)∫
Σ×RN

ϕ(x) dσ+(x, p) =
∫

Σ×RN

ϕ(x) dσ−(x, p), (8.16)
∫

Σ×RN

ϕ(x)ψ(H(x, p)) dσ+(x, p) =
∫

Σ×RN

ϕ(x)ψ(H(x, p)) dσ−(x, p).

(8.17)

3. For any C1 vector field ξ, tangent to Σ,∫
Σ×RN

p · ξ(x) dσ+(x, p) =
∫

Σ×RN

p · ξ(x) dσ−(x, p). (8.18)

Remark 8.9. Concerning the assumption (8.14) we observe the following:
1. The results in this Section are valid also if the second condition in (8.14)

is replaced by v(x)·ν̃k(x) < −α. Remind also that, as already pointed out
in Remark 7.10, since v(x) = −DpH(x,Du(x)) and |Du|∞ is bounded,
|v| is bounded. So the only nontrivial assumption on v is the lower bound.

2. We observed in Sect. 8.1 that, if μ̄(Σ × R
N ) > 0, formula (8.15) may

fail to hold. Notice now that condition (8.14) actually implies that the
minimizing measure μ̄ gives no mass to the discontinuity set, that is
μ̄(Σ × R

N ) = 0. To check this fact, consider for any k the function wk
solving (8.11). By holonomy, (8.13) and (8.12), we get

0 =
∫

TN ×RN

vDwk(x) dμ̄(x, v) ≥ αμ̄(Σk × R
N ) − k

∫
TN \Σk

|v|dθ(x).

Thus we have

μ̄(Σk × R
N ) ≤ Ck, for any k

and by sending k → 0 we get the conclusion. �

Remark 8.10. The properties listed in Theorem 8.8 rephrase in terms of min-
imizing measures the results obtained in Sect. 4 for minimizing trajectories.

First of all observe that, by taking ϕ ≡ 1 in formula (8.16),∫
Σ×RN

dσ+(x, p) =
∫

Σ×RN

dσ−(x, p);

that is the two measures σ+ and σ− give the same mass to Σ × R
N . We

interpret formula (8.18) as conservation of the tangential momentum.
Moreover, we read formula (8.17) as conservation of energy. To see this,

fix x0 ∈ Σ and ρ0 > 0 and consider, for any ρ > 0, a C1(TN ) function
ϕ(x) ≥ 0, compactly supported in Σ, with ϕ ≡ 0 in Σ\B(x0, ρ0 + ρ) and
ϕ ≡ 1 in Σ ∩ B(x0, ρ0). Let also ψ(z) be a positive function in C1(R), with
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ψ ≡ 1 if z ≤ ρ0 and ψ ≡ 0 if z ≥ ρ0 + ρ. Then the support of the function
ϕ(x)ψ(H(x0, p)) is the subset of Σ × R

N

Uρ := B̄(x0, ρ0 + ρ) × {p ∈ R
N : |H(x0, p)| ≤ ρ0 + ρ

}
.

By (8.17), for any ρ we have

σ+(Uρ) ≥
∫
Uρ

ϕ(x)ψ(H(x0, p)) dσ+(x, p)

=
∫
Uρ

ϕ(x)ψ(H(x0, p)) dσ−(x, p) ≥ σ−(U0)

and

σ−(Uρ) ≥
∫
Uρ

ϕ(x)ψ(H(x0, p)) dσ−(x, p)

=
∫
Uρ

ϕ(x)ψ(H(x0, p)) dσ+(x, p) ≥ σ+(U0).

Thus, since U0 = ∩ρ>0Uρ, passing to the limit as ρ → 0 in the previous
inequalities we get σ+(U0) = σ−(U0).

By taking φ compactly supported outside Σ in formula (8.15) we imme-
diately see that a minimizing holonomic measure is invariant under the Euler
Lagrange flow away from the singular set. On the other hand, to prove formula
(8.15) we will use (see Proposition 8.12 below) invariance of minimizing mea-
sure in T

N\Σ. Then the analysis performed in the previous Sect. 8.2 cannot
be avoided. �

We postpone the proof of Theorem 8.8 at the end of the Section, and
establish now some preliminary technical result.

Lemma 8.11. Under the assumption (8.14), there exists a constant C > 0 such
that, for any k small enough,

θ(Σk) ≤ Ck. (8.19)

Proof. By holonomy we have

0 =
∫

TN

v(x)Dwk(x) dθ(x).

By (8.12) and (8.14),

αθ(Σk) ≤
∫

Σk

v(x) ·Dwk(x) dθ(x) = −
∫

TN \Σk

v(x) ·Dwk(x) dθ(x) ≤ Cβk.

�
Proposition 8.12. Let μ̄(x, v) be a minimizing measure, and μ̄#(x, p) its push-
forward by the Legendre transform. Assume that (8.14) holds. Then there exists
C > 0 such that ∣∣∣∣∣

∫
(TN \Σ)×RN

{φ,H} dμ̄#(x, p)

∣∣∣∣∣ ≤ C|φ|∞,

for any φ ∈ C1(TN × R
N ).
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Proof. For any k small enough let Σk := {x : d(x,Σ) < k}. Then ∩kΣk = Σ.
Let θ(dx) be as in (8.13). By Remark 8.9, assumption (8.14) implies μ̄#(Σ ×
R
N ) = 0. Therefore,

0 = θ(Σ) = lim
k→∞

θ(Σk).

For any k, let ϕk ∈ C1(TN ) such that ϕk ≡ 1 in Σk/2 and ϕk ≡ 0
in T

N\Σk. Then |Dϕk| ≤ C
k for some constant C > 0. Since (1 − ϕk)φ is

supported away from Σ, and μ̄ is invariant under the Euler–Lagrange flow in
(TN\Σ) × R

N , by Theorem 8.4 we have, by Remark 8.2,∫
(TN \Σ)×RN

(1 − ϕk)DpHDxφdμ̄#(x, p)

=
∫

(TN \Σ)×RN

[DpHDx((1 − ϕk)φ) − φDpHDx(1 − ϕk)] dμ̄#(x, p)

=
∫

(TN \Σ)×RN

[(1 − ϕk)DxHDpφ− φDpHDx(1 − ϕk)] dμ̄#(x, p).

Then, for any k,∫
(TN \Σ)×RN

(1−ϕk){φ,H} dμ̄#(x, p)=
∫

TN ×RN

φDpHDx(1 − ϕk) dμ̄#(x, p).

(8.20)

By taking the absolute value, and passing to the limit as k → 0 we obtain∣∣∣∣∣
∫

(TN \Σ)×RN

{φ,H} dμ̄#(x, p)

∣∣∣∣∣ ≤ lim
k→0

|φ|∞|DpH|∞
∫

TN

|Dϕk| dθ(x)

which gives the desired estimate after observing that for any k, |Dϕk| ≤ C/k
and that, by Lemma 8.11, θ(Σk) ≤ Ck, for k small enough. �

Proof of Theorem 8.8. By Proposition 8.12 the mapping from C1(TN × R
N )

to R

φ �→
∫

(TN \Σ)×RN

{φ,H} dμ̄#(x, p)

is a zero-order distribution. Furthermore, by Theorem 8.4 and Remark 8.2 this
distribution is supported on Σ × R

N . Formula 8.15 then follows by the Riesz
representation theorem.

Formula (8.16) is obtained by putting φ = ϕ(x) in (8.15) and observing
that, by holonomy,∫

(TN \Σ)×RN

{φ,H} dμ̄#(x, p) = −
∫

(TN \Σ)×RN

DpHDxϕ dμ̄#(x, p) = 0.

To show (8.17), it is enough to take φ(x, p) = ϕ(x)ψ(H(x, p)) and observe that

{φ,H} = ψ(H(x, p)){ϕ,H}



Vol. 21 (2014) The Mather problem for discontinuous Lagrangians 207

Moreover, by Remark 7.11, ψ(H(x, p)) = ψ(H̄), μ̄#-a.e. Then, by holonomy
and (8.15) we have

0 = ψ(H̄)
∫

(TN \Σ)×RN

{ϕ,H} dμ̄#(x, p) (8.21)

=
∫

Σ×RN

ϕ(x)ψ(H(x, p)) dσ+(x, p) −
∫

Σ×RN

ϕ(x)ψ(H(x, p)) dσ−(x, p).

(8.22)

We now prove (8.18). Remind that, by Proposition 5.5 μ̄ is supported on
the graph of a function v and that, by Proposition 7.9 and Remark (7.10),

p = Du(x), μ̄#-a.e., v(x) = −DpH(x,Dxu(x)), Lebesgue a.e. in T
N ;

here u is a solution to (7.6). Moreover

Du(x) = DvL(x, v), μ̄-a.e. in (TN\Σ) × R
N .

Taking into account the previous results, using (8.15) and holonomy we com-
pute:

∫
Σ×RN

p · ξ(x) dσ−(x, p) −
∫

Σ×RN

p · ξ(x) dσ+(x, p)

= −
∫

(TN \Σ)×RN

{p · ξ(x),H} dμ̄#(x, p)

= −
∫

(TN \Σ)×RN

{p · ξ(x),H} dμ̄#(x, p)

−2
∫

(TN \Σ)×RN

Dx(p · ξ(x))DpH(x, p) dμ̄#(x, p)

=
∫

(TN \Σ)×RN

[−ξ(x) ·DxH(x, p) − p ·Dξ(x)DpH(x, p)] dμ̄#(x, p)

=
∫

(TN \Σ)×RN

[ξ(x) ·DxL(x, v) + v ·DvL(x, v)Dξ(x)] dμ̄(x, v) = 0,

where in the last identity we used Proposition 5.12. �

Remark 8.13. Arguing as in the proof of formula (8.20) (see the proof of
Proposition 8.12 above) it is possible to write a representation formula for
σ±. Let ϕδ(x) be a C1(TN ) function compactly supported on a strip of size δ
around Σ. Then, for any φ(x, p) ∈ C1(TN × R

N ),
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∫
(TN \Σ)×RN

ϕδ{φ,H} dμ̄#(x, p) =
∫

×RN

φDpHDxϕ
δ dμ̄#(x, p),

Then, by taking the limit as δ → 0,∫
Σ×RN

φ(x, p) dσ+(x, p) −
∫

Σ×RN

φ(x, p) dσ−(x, p)

= lim
δ→0

∫
TN ×RN

φ(x, p)DpH(x, p)Dxϕ
δ dμ̄(x, p).

�

Appendix A

A.1. Proof of Proposition 4.3

Since Σ is smooth, a sufficiently small neighborhood of x(t0) in Σ is diffeomor-
phic to the set {x ∈ R

N : x1 = x1(t0)} ∩ N , for a certain open set N .
Let δ > 0 be as in Definition 4.2, and ϕ : R → R be C∞ and compactly

supported on (x1(t0)−δ,x1(t0)+δ), such that ϕ ≡ 1 on (x1(t0)−δ/2,x1(t0)+
δ/2). Consider, for any fixed i = 2, . . . , N , and any positive ε the following
variation of x(t):

xε(t) := x(t) + εϕ(x1(t))ei.

Since x(t) minimizes the action, taking into account (4.2), a direct com-
putation gives

0 =
d
dε

∣∣∣
ε=0

∫ T

0

L(xε(t), ẋε(t)) dt = −[[DvL(x(t), ẋ(t)) · ei]]t0
Hence, for any i = 2, . . . , N . This implies (4.3), because when flattening Σ
near x0, Tx0Σ is mapped into R

N−1 and any ξ ∈ Tx0Σ can be written as
ξ =

∑N
i=2 ξiei for appropriate ξi ∈ R.

A.2. Proof of Proposition 4.4

Let us consider for any positive ε the following variation of x(t):

xε(t) := x(t) + εϕ(t)ν(x(t)),

where ϕ is a C∞ function, positive, and compactly supported on (t1, t2). As
xε, for any ε > 0, does not decrease the action (4.1), we have:

0 ≤ d
dε

∣∣∣
ε=0

∫ t2

t1

L(xε, ẋε) dt

=
∫ t2

t1

[
ϕ(t)ν(x(t))DxL(xε, ẋε) +

d
dt

(
d
dε

xε(t)
)
DvL(xε, ẋε)

]
dt
∣∣∣
ε=0

=
∫ t2

t1

ϕ(t)
[
DxL(xε, ẋε) − d

dt
DvL(xε, ẋε)

]
· ν(x(t)) dt

∣∣∣
ε=0

.

Because ϕ is nonnegative and arbitrary, we get (4.4). We should note that
because, by (H2)-3., the action may be discontinuous for ε < 0 we cannot use
these variations together with differentiation to extract additional information.
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We now prove (4.5). Fix t0 ∈ (t1, t2). Since Σ is smooth, a sufficiently
small neighborhood of x(t0) in Σ is diffeomorphic to the set Σ′ := {x ∈ R

N :
x1 = x1(t0)}∩N , for a certain open set N . Thus Tx(t0)Σ is mapped into R

N−1

and any ξ ∈ Tx(t0)Σ can be written as ξ =
∑N
i=2 ξiei for appropriate ξi ∈ R.

Let δ > 0 and ϕ(t) a C∞ function, compactly supported (x1(t0)−δ,x1(t0)+δ),
0 ≤ ϕ ≤ 1, and ε > 0. Consider for any ε > 0 and any i = 2, . . . N the following
variation of x:

xε(t) := x(t) + εϕ(t)ei.

If ε is sufficiently small, xε belongs to the flat set Σ′, for any t ∈ (x1(t0) −
δ/2,x1(t0) + δ/2). Consequently, at ε = 0 we get:

[
DxL(x(t0), ẋ(t0)) − d

dt
DvL(x(t0), ẋ(t0))

]
· ei = 0.

A.3. Proof of Proposition 4.6

We sketch the proof, as it goes as that of Proposition 4.3. After flattening Σ
around x0, we consider for any i = 2, . . . , N any ε > 0 the variation

xε(t) := x(t) + εϕ(t)ei;

ϕ is a C∞ function, compactly supported on (t0 − δ, t0 + δ), ϕ ≡ 1 on (t0 −
δ/2, t0 + δ/2), δ > 0 being as in Definition 4.5. Then, integrating by parts and
using (4.2) we have

d
dε

∫ t0

t0−δ
L(xε(t), ẋε(t)) dt = lim

t→t−0
∂vi
L(xε(t), ẋε(t)).

Moreover, taking into account (4.5),

d
dε

∫ t0+δ

t0

L(xε(t), ẋε(t)) dt = − lim
t→t+0

∂vi
L(xε(t), ẋε(t)).

Thus, at ε = 0, since x is a minimizer, we get the conclusion.

A.4. Proof of Proposition 4.7

If x does not intersect Σ there is nothing to prove, as this is a well known fact.
Then we assume that there exist t1, t2, 0 < t1 ≤ t2 < T such that x(t) ∈ Σ for
any t ∈ [t1, t2], and x(t) 
∈ Σ if t 
∈ [t1, t2]. Because x is piecewise C2 all the
other cases can be handled similarly.

Consider for any ε > 0 the variation of x:

xε(t) := x(t+ εϕ(t)); (.23)

here ϕ is a C∞ positive function compactly supported on a certain open inter-
val I, such that Ī ⊂ (0, T ). Thus xε belongs to XT

a,b. From time to time, in
order to extract different informations, we will precise the subinterval of (0, T )
where Ī is contained. Observe preliminarily that:
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d
dε

∣∣∣
ε=0

∫ T

0

L(xε, ẋε) dt

=
∫
I

ϕ

[
ẋDxL(x, ẋ) + ẍDvL(x, ẋ) − d

dt
(xDvL(x, ẋ))

]
dt

+ϕ ẋDvL(x, ẋ)
∣∣∣
∂I
. (.24)

Since x is a minimizer the left hand side of the previous inequality is 0. Then,
by the arbitrariness of ϕ,[

ẋDxL(x, ẋ) + ẍDvL(x, ẋ) − d
dt

(xDvL(x, ẋ))
]

= 0, for a.e. t ∈ (0, T ).

(.25)

Case 1. Suppose first that t1 < t2; x(t) stays in Σ for t1 < t < t2. Consider
the variation (.23) and take I such that Ī ⊂ (0, t2), and ϕ such that ϕ ≡ 1 in
a small neighborhood of t1. Since x is a minimizer, by (.24) and (.25) we get

0 =
d
dε

∣∣∣
ε=0

∫ T

0

L(xε, ẋε) dt = [[Ex(t)]]t1 .

Arguing analogously, for Ī ⊂ (t1, T ), and ϕ such that ϕ ≡ 1 in a small neigh-
borhood of t2, we obtain [[Ex(t)]]t2 = 0. Then there is no dissipation of energy
when entering or exiting the discontinuity locus.

Integrating by parts and taking into account (4.2), we compute:

d
dh

∫ t1+h

h

L(x(t− h), ẋ(t− h)) dt = Ex(0) − lim
t→t−1

Ex(t)

and

d
dh

∫ t2+h

t1+h

L(x(t− h), ẋ(t− h)) dt = lim
t→t+1

Ex(t) − lim
t→t−2

Ex(t),

d
dh

∫ T+h

t2+h

L(x(t− h), ẋ(t− h)) dt = lim
t→t+2

Ex(t) −Ex(T ).

Observing that
∫ T+h

h
L(x(t− h), ẋ(t− h)) dt is independent by h, and taking

into account that [[Ex(t)]]t1 = [[Ex(t)]]t2 = 0 we conclude the proof in Case 1.
Case 2. We suppose now that t1 = t2 =: t0; thus x(t) crosses Σ at t = t0.
Arguing as in the first part of the proof it is easy to verify that

d
dh

[∫ t0+h

h

L(x(t− h), ẋ(t− h)) dt

]
= Ex(0) − lim

t→t0−
Ex(t),

d
dh

[∫ T+h

t0+h

L(x(t− h), ẋ(t− h)) dt

]
= lim
t→t0+

Ex(t) − Ex(T ).

Then,

0 =
d
dh

∫ T+h

h

L(x(t− h), ẋ(t− h)) dt = Ex(0) − Ex(T ).
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A.5. Proof of Proposition 5.5

By Remark 5.4, if μ̄ is supported on a graph, there exists v(x) such that
η(dv;x) = δv(x)(dv).

Assume by contradiction that μ̄ is not supported on a graph and set for
any x

v(x) :=
∫

RN

v η(dv;x).

We further define the measure η̃(dv;x) := δv(x)(v). We finally set dμ̃ :=
η̃(dv;x)θ(dx). Observe that μ̃ is readily a nonnegative probability measure,
as both η̃ and θ are so. Moreover, for any ϕ ∈ C1(TN ), by definition of η̃ and
v(x), ∫

RN

vDϕ(x)η̃(dv;x) = v(x)Dϕ(x) =
∫

RN

vDϕ(x)η(dv;x),

for any x ∈ T
N . Thus,∫

TN ×RN

vDϕ(x)dμ̃ =
∫

TN ×RN

vDϕ(x)η̃(dv;x)θ(dx)

=
∫

TN ×RN

vDϕ(x)η(dv;x)θ(dx) =
∫

TN ×RN

vDϕ(x) dμ̄ = 0,

because μ̄ is holonomic. Then μ̃ belongs to Mhol ∩ M+
1 .

Now, since L(x, v) is strictly convex in v, we have by Jensen’s inequality,∫
RN

L(x, v)η̃(dv;x) <
∫

RN

L(x, v)η(dv;x),

for any x ∈ T
N such that η(dv;x) 
= η̃(dv;x). Hence, integrating against θ, we

get ∫
L(x, v) dμ̃ <

∫
L(x, v) dμ̄,

which is a contradiction with μ̄ being a minimizer.

A.6. Proof of Lemma 5.10

Since h is convex, for any μ ∈ M we have:

ĥ(μ) = sup
ψ∈Cγ

0

(∫
ψ dμ− h(ψ)

)
= sup
ψ∈C

∫
ψ dμ.

Thus, if μ ∈ Mhol, then ĥ(μ) =
∫
ψ dμ = 0. If instead μ /∈ Mhol, there exist

ψ̄ ∈ C such that
∫
ψ̄ dμ =: δ > 0. Hence,

ĥ(μ) = sup
ψ∈C

∫
ψ dμ ≥ sup

λ>0
λ

∫
ψ̄ dμ = +∞.

The expression of ĥ is then proved.
Since g is concave, for any μ ∈ M we have:

ĝ(μ) = inf
ψ∈Cγ

0

(∫
ψ dμ− g(ψ)

)
.
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Assume that μ 
≥ 0, that is, there exists ψ̄ ≥ 0 such that
∫
ψ̄ dμ =: −δ <

0. Set, for any n, ψn := nψ̄. Since g(ψn) ≥ 0 for any n, we have

ĝ(μ) ≤ inf
n

(∫
ψn dμ− g(ψn)

)
= −∞.

Assume now that μ ≥ 0. Let Lk(x, v) be sequence in Cγ0 converging pointwise
to L(x, v) from below. Note that any function ψ ∈ Cγ0 can be written as
ψ = φ− Lk, for some φ ∈ Cγ0 . Then, for any k,

ĝ(μ) = inf
φ∈Cγ

0

(∫
(φ− Lk) dμ− g(φ− Lk)

)

= −
∫
Lk dμ+ inf

φ∈Cγ
0

(∫
φ dμ− g(φ− Lk)

)

= −
∫
Lk dμ+ inf

φ∈Cγ
0

(∫
φ dμ− min

x,v
(L− Lk + φ)

)

≤ −
∫
Lk dμ+ inf

φ∈Cγ
0

(∫
φ dμ− min

x,v
(L− Lk) − min

x,v
φ

)

≤ −
∫
Lk dμ+ inf

φ∈Cγ
0

(∫
φ dμ− min

x,v
φ

)
.

By applying the monotone convergence theorem to the right hand side of the
last inequality, we obtain

ĝ(μ) ≤ −
∫
L dμ+ inf

φ∈Cγ
0

(∫
φ dμ− min

x,v
φ

)
≤ −

∫
L dμ, (.26)

by choosing φ ≡ 0.
If μ > 0, but

∫
dμ < 1 the previous computation shows that

ĝ(μ) ≤ −
∫
L dμ+ inf

φ∈Cγ
0

(∫
φ dμ− min

x,v
φ

)

≤ −
∫
L dμ+ inf

λ>0
λ

(∫
dμ− 1

)
= −∞,

by choosing φ ≡ λ. Similarly, ĝ(μ) = −∞ if
∫

dμ > 1, by taking the infimum
over λ < 0.

Finally, if
∫
L dμ = +∞, by (.26) ĝ(μ) = −∞. If instead

∫
dμ = 1 and∫

L dμ < +∞, we have

ĝ(μ) = inf
ψ∈Cγ

0

(∫
ψ dμ− g(ψ)

)

= −
∫
L dμ+ inf

ψ∈Cγ
0

(∫
(L+ ψ) dμ− min

x,v
(L+ ψ)

)
≥ −

∫
L dμ;

(.27)

in fact, if
∫

dμ = 1,minx,v(L + ψ) ≤ ∫
(L + ψ)dμ. The inequalities (.26) and

(.27) conclude the proof.
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A.7. Proof of Lemma 8.6

This is an application of the holonomy preserving variations; see Sect. 5.3 and
Proposition 5.12. Observe first that∫ {

vk
∂φ

∂xk
(x, vε(x))

+
∂φ

∂vj
(x, vε(x))

(
∂2L

∂v2

)−1

js

(x, vε(x))
[
∂L

∂xs
(x, v)

−vk ∂2L

∂xk∂vs
(x, vε(x))

]}
dμ̄

=
∫
vk

∂

∂xk
(φ(x, vε(x))) dμ̄−

∫
vk

∂

∂xk

(
∂L

∂vs
(x, vε) ξεs

)
dμ̄

+
∫
vk

(
∂L

∂vs
(x, vε(x)) − ∂L

∂vs
(x, v)

)
∂

∂xk
ξεs dμ̄. (.28)

To confirm this notice that

∂φ

∂xk
(x, vε(x)) =

∂

∂xk
(φ(x, vε(x))) − ∂φ

∂vj
(x, vε(x))

∂vεj
∂xk

(x)

=
∂

∂xk
(φ(x, vε(x))) − ∂φ

∂vj
(x, vε(x))

(
∂2L

∂v2

)−1

js

∂2L

∂vs∂vq
(x, vε(x))

∂vεq
∂xk

(x)

=
∂

∂xk
(φ(x, vε(x))) − ξεs(x)

∂2L

∂vs∂vq
(x, vε(x))

∂vεq
∂xk

(x).

Then use the previous identity to realize that, after some cancellation, (.28) is
equivalent to the following
∫
ξεs

(
∂L

∂xs
(x, v) − vk

(
∂2L

∂xk∂vs
(x, vε(x)) +

∂2L

∂vs∂vq
(x, vε(x))

∂vεq
∂xk

(x)
))

dμ̄

= −
∫
vk

∂

∂xk

(
∂L

∂vs
(x, vε(x))ξεs

)
dμ̄

+
∫
vk

(
∂L

∂vs
(x, vε(x)) − ∂L

∂vs
(x, v)

)
∂

∂xk
(ξεs) dμ̄

that we can further rewrite by using the chain rule:∫
ξεs

(
∂L

∂xs
(x, v) − vk

∂

∂xk

(
∂L

∂vs
(x, vε(x))

))
dμ̄

= −
∫
vkξ

ε
s

∂

∂xk

(
∂L

∂vs
(x, vε(x))

)
dμ̄−

∫
vk
∂L

∂vs
(x, v)

∂

∂xk
(ξεs) dμ̄.

After the cancellation of the term
∫
vkξ

ε
s
∂
∂xk

(
∂L
∂vs

(x, vε(x))
)

dμ̄ in both sides
of the previous identity, we can finally write it as∫ [

ξεs(x)
∂L

∂xs
(x, v) + vk

∂L

∂vs
(x, v)

∂ξεs
∂xk

(x)
]

dμ̄ = 0. (.29)
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Now, since φ is compactly supported in (TN\Σ)×R
N , ∂φ

∂vj
(x, v) ≡ 0 in a certain

neighborhood of Σ × R
N . This in turn implies that the vector field ξε defined

in (8.6) is tangent to Σ. We are then in position to invoke Proposition 5.12 to
affirm that (.29) holds, and consequently (.28) is satisfied.

To conclude the proof observe that, by holonomy, the first and the second
integral in the right and side of in (.28) are actually zero. Formula (8.5) is then
established.

A.8. Proof of Lemma 8.7

To ease the notation put

Fs(x, v) :=
∂φ

∂vj
(x, v)

(
∂2L

∂v

)−1

js

(x, v) (s = 1, . . . , N);

thus, taking into account Remark 7.10, ξεs = Fs(x, ηε ∗DpH(x,Du(x))) where
u is a Lipschitz viscosity solution to the Eq. (7.6). Set

C0 := max
{|D2

xpH|L∞(TN ×B(0,|Du|∞)); |D2
ppH|L∞(TN ×B(0,|Du|∞))

}

We compute

∂

∂xk
Fs(x, ηε ∗DpH(x,Du(x))) =

∂Fs
∂xk

(x, ηε ∗DpH(x,Du(x)))

+
∂Fs
∂vk

(x, ηε ∗DpH(x,Du(x)))
(
∂ηε
∂xk

∗DpH(x,Du(x))
)
. (.30)

Observe that F (x, v) is Lipschitz continuous, then F | ≤ C for some pos-
itive constant C, thus the first term in the previous identity is bounded uni-
formly in ε:

∣∣∣∣ ∂∂xkFs(x, ηε ∗DpH(x,Du(x)))
∣∣∣∣
2

≤ C + C

∣∣∣∣ ∂ηε∂xk
∗DpH(x,Du(x))

∣∣∣∣
2

.

We now concentrate on the last term in the right hand side of (.30). Note
that |Dxηε| ≤ η̃ε

ε for some function η̃ε satisfying
∣∣∣∣
∫
η̃ε(x− y) dy

∣∣∣∣ ≤ C,uniformly in ε. (.31)

Thus,
∫

TN \Σδ

∣∣∣∣ ∂ηε

∂xk
∗ DpH(x, Du(x))

∣∣∣∣
2

dμ̄TN

=

∫
TN \Σδ

∣∣∣∣
∫

∂ηε

∂xk
(x − y)DpH(y, Du(y)) dy

∣∣∣∣
2

dμ̄TN

=

∫
TN \Σδ

∣∣∣∣
∫

∂ηε

∂xk
(x − y)[DpH(y, Du(y)) − DpH(x, Du(x))] dy

∣∣∣∣
2

dμ̄TN
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≤ C

(∫
TN \Σδ

∣∣∣∣
∫ ∣∣∣∣ ∂ηε

∂xk
(x − y)

∣∣∣∣ |DpH(y, Du(y)) − DpH(x, Du(y))| dy

∣∣∣∣
2

dμ̄TN

+

∫
TN \Σδ

∣∣∣∣
∫ ∣∣∣∣ ∂ηε

∂xk
(x − y)

∣∣∣∣ |DpH(x, Du(y)) − DpH(x, Du(x))| dy

∣∣∣∣
2

dμ̄TN

)
.

(.32)

We now prove that both terms in the right hand side of the previous
inequality are bounded uniformly in ε. In fact, observing that |x− y| ≤ ε and
taking into account (.31) we get:
∫

TN \Σδ

∣∣∣∣
∫ ∣∣∣∣ ∂ηε∂xk

(x− y)
∣∣∣∣ |DpH(y,Du(y)) −DpH(x,Du(y))| dy

∣∣∣∣
2

dμ̄TN (x)

≤ C0

∫
TN \Σδ

∣∣∣∣
∫
η̃ε(y − x)

ε
|y − x|dy

∣∣∣∣
2

dμ̄TN (x) ≤ C,

uniformly in ε. We now deal with the other term in (.32). Notice first that∫ ∣∣∣∣ ∂ηε∂xk
(x− y)

∣∣∣∣ |DpH(x,Du(y)) −DpH(x,Du(x))| dy

≤ C0

∫ ∣∣∣∣ ∂ηε∂xk
(x− y)

∣∣∣∣ |Du(y) −Du(x)| dy

and that, by (.31),
∫ | ∂ηε

∂xk
(x− y)|dy = C/ε, for some constant C independent

by ε. Let ϕ ≥ 0 be a C∞ cutoff function compactly supported in T
N\Σ2δ,

ϕ ≡ 1 in T
N\Σδ. Using Jensen inequality and observing again that |x− y| ≤ ε

we have, by Proposition 7.12, for any ε sufficiently small,
∫

TN \Σδ

∣∣∣∣
∫ ∣∣∣∣ ∂ηε∂xk

(x− y)
∣∣∣∣ |DpH(x,Du(y)) −DpH(x,Du(x))| dy

∣∣∣∣
2

dμ̄TN (x)

≤ C0

∫
TN \Σδ

∣∣∣∣
∫ ∣∣∣∣ ∂ηε∂xk

(x− y)
∣∣∣∣ |Du(y) −Du(x)| dy

∣∣∣∣
2

dμ̄TN (x)

≤ C0

∫
TN \Σδ

C

ε

∫ ∣∣∣∣ ∂ηε∂xk
(x− y)

∣∣∣∣ |Du(y) −Du(x)|2 dy dμ̄TN (x)

≤ C

ε2

∫ ∫
TN \Σδ

|η̃ε(x− y)||Du(y) −Du(x)|2 dμ̄TN (x) dy

≤ C

ε2

∫
|η̃ε(h)|

(∫
TN

ϕ2(x)|Du(x+ h) −Du(x)|2 dμ̄TN (x)
)

dh

≤ C

ε2

∫
|η̃ε(h)||h2| dh ≤ C

∫
|η̃ε(h)| dh ≤ C.
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de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2009. 27o Colóquio
Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium]
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