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A priori estimates for a class of degenerate
elliptic equations
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Abstract. In this paper we investigate the regularity of solutions for the
following degenerate partial differential equation{

−Δpu + u = f in Ω,
∂u
∂ν

= 0 on ∂Ω,

when f ∈ Lq(Ω), p > 2 and q ≥ 2. If u is a weak solution in W 1,p(Ω),

we obtain estimates for u in the Nikolskii space N 1+2/r,r(Ω), where r =
q(p − 2) + 2, in terms of the Lq norm of f . In particular, due to embed-
ding theorems of Nikolskii spaces into Sobolev spaces, we conclude that

‖u‖r
W1+2/r−ε,r(Ω)

≤ C(‖f‖q
Lq(Ω) + ‖f‖r

Lq(Ω) + ‖f‖2r/p
Lq(Ω)) for every ε > 0

sufficiently small. Moreover, we prove that the resolvent operator is con-
tinuous and compact in W 1,r(Ω).

Mathematics Subject Classification (2010). 35B65, 35J92, 46E35.

Keywords. Degenerate equations, p-Laplacian, Regularity theory,
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1. Introduction

The aim of this paper is to discuss the regularity of solutions for the p-Laplace
equation with Neumann boundary condition, namely{−Δpu + u = f in Ω,

∂u

∂ν
= 0 on ∂Ω,

(1.1)

when Ω ⊂ R
N is an open bounded smooth domain, N ≥ 2, f ∈ Lq(Ω), p >

2, q ≥ 2. Indeed, we obtain a result concerning the Lq regularity for the p-La-
placian in spaces of fractional order of smoothness.

The main result is stated as follows:
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Theorem 1.1. Suppose that Ω ⊂ R
N , N ≥ 2, is an open bounded smooth

domain, p > 2, q ≥ 2 and f ∈ Lq(Ω). Let u ∈ W 1,p(Ω) be the weak solu-
tion of (1.1).

Then u ∈ N 1+2/r,r(Ω), where r = q(p − 2) + 2.
Moreover, there exists a constant C = C(N, p, q, Ω) > 0 such that

‖u‖r
N 1+2/r,r(Ω) ≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
. (1.2)

Mainly, we will work with the so-called Nikolskii spaces N s,r(Ω), for
1 < s < 2 and r ≥ 2. For the reader’s convenience, their definition is given
below.

N s,r(Ω) =

{
u ∈ Lr(Ω) :

N∑
i=1

sup
h�=0

(∫
Ω|h|

∣∣∂xi
u(x + h) − ∂xi

u(x)
∣∣r

|h|σr

)1/r

< +∞
}

,

with norm

‖u‖N s,r =
N∑

i=1

sup
h�=0

(∫
Ω|h|

∣∣∂xi
u(x + h) − ∂xi

u(x)
∣∣r

|h|σr

)1/r

+ ‖u‖Lr(Ω), (1.3)

where

1 + σ = s and Ω|h| = {x ∈ Ω : d(x, ∂Ω) > |h|}, for |h| > 0. (1.4)

We stress that Nikolskii spaces N s,r(Ω) are larger than Sobolev-Slob-
odeckii spaces W s,r(Ω), although with a small increase of regularity for
N s,r(Ω) the inclusion holds in the opposite direction. Indeed, there holds
the following continuous imbeddings involving N s,r(Ω) and the Sobolev-Slob-
odeckii spaces

N s+ε,r(Ω) ↪→ W s,r(Ω) ↪→ N s,r(Ω), ∀ε > 0 sufficiently small. (1.5)

A proof for this fact can be found in [11] Lemma 2.1. For further details con-
cerning Nikolskii and Sobolev-Slobodeckii spaces, see [10–12].

Theorem 1.1 can be viewed as a counterpart for problem (1.1) of the
classical Calderón-Zygmund estimate

‖u‖W 2,q(Ω) ≤ ‖f‖Lq(Ω),

for weak solutions of −Δu = f, see for instance [9] Section 9.4. Indeed, if
f ∈ Lq(Ω), by (1.5) one obtains

‖u‖r
W (1+2/r)−ε,r(Ω) ≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
,

provided that u is a weak solution of (1.1) belonging to W 1,p(Ω). We observe
that the estimate (1.2) also generalizes a previous result for f ∈ L2(Ω) investi-
gated in [5]. Despite that the techniques employed to prove Theorem 1.1 still
hold for p = 2, the present paper does not cover this classical case which fol-
lows from the Calderón-Zygmund inequality and may be found for instance in
[10], Chapter 2.
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As a consequence of Theorem 1.1, we obtain some information on the
resolvent operator of (1.1).

Corollary 1.2. Under the hypotheses of Theorem 1.1, consider

S : Lq(Ω) −→ W 1,r(Ω)

such that S(f) = u if and only if u satisfies (1.1). Then S is well defined,
continuous and compact.

Observe that Corollary 1.2 implies continuity and compactness for S in
W 1,r(Ω) ↪→ W 1,p(Ω), since r > p if q ≥ 1 and p > 2, conditions which include
the case q = p, when p > 2. This result indicates that, under appropriate
conditions, degenerate equations have compact resolvent operators which are
more regular than previous results had shown (see [4]).

It is relevant to mention other results concerning the regularity for solu-
tions of problems related to (1.1) which have been investigated during the past
years. For results addressing the C1,α regularity for solutions of degenerate
equations, we cite [2,13,16]. According to these works, the solution u belongs to
C1,α even if the data f is in C∞. Further, in [1,3] local Hölder regularity for the
solutions is established when the data f is in the Lorentz space LN,1(Ω). Besov
regularity for solutions of degenerated equations was addressed in [8,14,15].
There are also results which investigate how the regularity of the solution can
be improved when we have more differentiability of the data f , see [6,7] for
more details. Finally, we remark that a priori bounds in Lebesgue spaces for
a class of degenerate equations similar to (1.1) were investigated in [4].

The plan for the paper is the following. In Sect. 2 we state the basic
notation used in the approximation scheme and then prove some lemmata
regarding the control of nonlinear boundary data and preliminary energy esti-
mates. Section 3 is reserved for the proof of our main results.

2. Notation and preliminary results

The proof of the main result will be based on an approximation technique.
We proceed to introduce a differential operator which is “close” enough to the
p-Laplacian

Δn
pu = div

(∣∣∣∣|∇u|2 +
1
n

∣∣∣∣
(p−2)/2

∇u

)
, n ∈ N.

Formally, Δn
p → Δp when n → +∞, so that we can recover (1.1) from its

approximate version, namely

−Δn
pu + u = f in Ω.

In order to visually simplify the calculations, the subsequent notations
will be introduced. Firstly, we define

a(x) = |x|(p−2), an(x) =
(

|x|2 +
1
n

)(p−2)/2

,
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and further

Dh
e f

def=
f(x + eh) − f(x)

h
, (2.1)

Th
e f

def= f(x + eh), for |h| > 0,

where e ∈ R
N is such that |e| = 1.

Moreover, we stress that in this paper r denotes

r = q(p − 2) + 2.

We are now able to prove the basic results of this section.
As a first step, we concentrate in obtaining an estimation for certain

boundary terms which play a key role for the analysis of (1.1).

Lemma 2.1. Let Ω ⊂ R
N , N ≥ 2 be an open and bounded smooth domain.

Then given 0 < ε < 1/2r and n ∈ N, there exists a constant C > 0 such that

∣∣∣∣
N∑

j,k=1

∫
∂Ω

an(|∇u|) ∂u

∂xj

∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νk

∣∣∣∣
≤ ε

(
‖u‖r

N 1+2/r,r(Ω) +
1

n(r−2)/2
‖u‖2

N 1+2/r,r(Ω)

)

+C

(
‖u‖r

Lp(Ω) +
1

n(r−2)/2
‖u‖2

Lp(Ω)

)
, (2.2)

for every u ∈ C3(Ω) such that
∂u

∂ν
= 0, where C = C(N, p, q, Ω, ε).

Proof. We rewrite

∂u

∂xj

∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νk

in local coordinates of ∂Ω and then use this identity in order to obtain global
bounds for the boundary terms.

Indeed, let τ1,. . . , τN−1 be the associated tangent vectors for a given fam-
ily of N − 1 curves which are orthogonal at P and contained in a sufficiently
small neighborhood of P. In addition, denote by s1,. . . , sN−1 their arc length.

Clearly, s1,. . . , sN−1 is a local parametrization for ∂Ω in a sufficiently
small neighborhood of P and τ1, . . . , τN−1, ν form a system of coordinates
for R

N .
Thence, by writing in local coordinates we have that

(v · ∇)
(

an(|v|)q−1v
))

=
N−1∑
l=1

vl
∂

∂sl

(
an(|v|)q−1v

)
+ vν

∂

∂ν

(
an(|v|)q−1v

)
,
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for every v ∈
(

C2(Ω)
)N

, where vl for l = 1, . . . , N − 1 denotes the tangential

components and vν denotes the normal component. Moreover, since

∂

∂sl

(
an(|v|)q−1v

)

=
N−1∑
m=1

∂

∂sl

(
an(|v|)q−1vmτm

)
+

∂

∂sl

(
an(|v|)q−1(v · ν)ν

)

we obtain that

(v · ∇)
(

an(|v|)q−1v
))

=
∑N−1

l,m=1 vl
∂

∂sl

(
an(|v|)q−1vmτm

)

+
∑N−1

l=1 vl
∂

∂sl

(
an(|v|)q−1(v · ν)ν

)
+ vν

∂

∂ν

(
an(|v|)q−1v

)
.

Thus, if for instance v · ν = 0, from the last equation we infer that

(v · ∇)
(

an(|v|)q−1v
)) · ν =

N−1∑
l,m=1

an(|v|)q−1vlvm
∂τm

∂sl
· ν, (2.3)

the aforementioned identity in local coordinates.
However, observe that

N∑
j,k=1

an(|∇u|) ∂u

∂xj

∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νk

= an(|∇u|)(∇u · ∇)
(

an(|∇u|)q−1∇u
)) · ν.

In this way, by setting v = ∇u in (2.3), we obtain∣∣∣∣
N∑

j,k=1

an(|∇u|) ∂u

∂xj

∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νk

∣∣∣∣
≤

N−1∑
l,m=1

an(|∇T u|)q

∣∣∣∣ ∂u

∂sl

∂u

∂sm

∂τm

∂sl
· ν

∣∣∣∣
≤ C1

(
|∇T u|r +

1
n(r−2)/2

|∇T u|2
)

,

on ∂Ω, where C1 = C1(N, p, q, Ω) > 0 is going to be fixed for the rest of this
proof.

But observe that the last inequality holds globally in ∂Ω. This implies
that ∣∣∣∣

N∑
i,j=1

∫
∂Ω

N∑
j,k=1

an(|∇u|) ∂u

∂xj

∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νkdσ

∣∣∣∣
≤ C1

∫
∂Ω

|∇T u|r +
1

n(r−2)/2
|∇T u|2dσ. (2.4)
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Now we focus on controlling the tangential derivatives of u on ∂Ω.
On one hand, for 0 < ε < 1/2r, recall that there exists a continuous trace

operator

W 1+2/r−ε,r(Ω) → W 1,r(∂Ω) ↪→ W 1,2(∂Ω) (2.5)

see Theorem 1.5.1.2 [10, p. 37].
Moreover, from Theorem 1.4.3.3 [10, p. 26], there holds that

‖u‖r
W s′′,r(Ω)

≤ ε

(C1 + 1)
‖u‖r

W s′,r(Ω)
+ C‖u‖r

Lr(Ω)

and that

‖u‖2
W s′′,r(Ω)

≤ ε

(C1 + 1)
‖u‖2

W s′,r(Ω)
+ C‖u‖2

Lr(Ω),

where

C =C(N, p, q, Ω, ε)>0, s′ =1+2/r − ε

2
, s′′ = 1+2/r−ε and s′′′ =0.

Thus, from (2.4) and (2.5) there holds∣∣∣∣
N∑

i,j=1

∫
∂Ω

N∑
j,k=1

an(|∇u|) ∂u

∂xj

∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νkdσ

∣∣∣∣
≤ ε‖u‖r

W s′,r(Ω)
+ C‖u‖r

Lr(Ω) +
ε

n(r−2)/2
‖u‖2

W s′,r(Ω)
+ C‖u‖2

Lr(Ω).

(2.6)

On the other hand, recall that from (1.5) and by Theorem 1.4.3.2
[10, p. 26], there follows that

N 1+2/r,r(Ω) ↪→ W 1+2/r−ε/2,r(Ω) ↪→↪→ W 1,r(Ω), (2.7)

where ↪→ means continuous embedding and ↪→↪→ compact embedding.
Since r > p, a simple interpolation yields

‖u‖r
W s′,r(Ω)

≤ ‖u‖r
N 1+2/r,r(Ω)

+ C‖u‖r
Lp(Ω) (2.8)

and

‖u‖2
W s′,r(Ω)

≤ ‖u‖2
N 1+2/r,r(Ω)

+ C‖u‖2
Lp(Ω). (2.9)

Therefore, by combining (2.6) with (2.8) and (2.9) we obtain∣∣∣∣
N∑

i,j=1

∫
∂Ω

N∑
j,k=1

an(|∇u|) ∂u

∂xj

∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νkdσ

∣∣∣∣
≤ ε

(
‖u‖r

N 1+2/r,r(Ω) +
1

n(r−2)/2
‖u‖2

N 1+2/r,r(Ω)

)
+ C

(
‖u‖r

Lp(Ω) + ‖u‖2
Lp(Ω)

)
and the result follows. �

The next lemma gives an estimation for the N 1+2/r,r(Ω) norm in terms
of a singular integral. Its proof is a straightforward adaptation of Lemma 4 of
[5], combined with a simple interpolation.
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Lemma 2.2. Suppose that Ω ⊂ R
N , N ≥ 2, is an open bounded smooth domain,

that p > 2 and q ≥ 2. Then, there exists a constant C > 0 such that

‖u‖r
N 1+2/r,r(Ω) ≤ C

( ∫
Ω

|∇u|r−2|D2u|2 + ‖u‖r
Lp(Ω)

)
, (2.10)

for all u ∈ C2(Ω), where C = C(N, p, q, Ω).

Proof. Initially, we claim that

‖|v‖| = sup
h>0

(∫
Ω|h|

|Th∇u − ∇u|r
|h|2

)1/r

+ ‖v‖Lp(Ω)

is an equivalent norm for N 1+2/r,r(Ω).
Indeed, by using Gagliardo-Nirenberg’s inequality and the embedding

N 1+2/r,r(Ω) ↪→ W 1,r(Ω), it is straightforward to check that

‖v‖Lr(Ω) ≤ C‖v‖Lp(Ω) + ε‖v‖N1+2/r,r(Ω),

for every v ∈ N 1+2/r,r(Ω) and ε > 0 sufficiently small, where

C = C(N, p, q, Ω, ε) > 0.

Then, by the latter inequality and (1.3), there follows that

(1 − ε)‖v‖N 1+2/r,r(Ω) ≤ C

(
sup
h>0

(∫
Ω|h|

|Th∇u − ∇u|r
|h|2

)1/r

+ ‖v‖Lp(Ω)

)
,

what proves our claim.
Further, recalling (1.4) and (2.1), standard arguments allow us to show

that∫
Ω|h|

|Dh
e (|∇u|r−2∇u)|2 ≤ C

∫
Ω

|∇(|∇u|r−2∇u)|2

≤ C

∫
Ω

|∇u|r−2|D2u|2 for C = C(N, p, q, Ω) > 0,

(2.11)

since Dh
e (|∇u|r−2∇u) is a difference quotient in |∇u|r−2∇u. We point out that

by combining (2.11) and an auxiliary inequality we find a bound for (1.3). In
fact, we take advantage of the inequality

|x − y|r ≤ C
∣∣x|x|r−2 − y|y|r−2

∣∣2, ∀ x and y ∈ R
N

(see [7], inequalities (30) and (31)) to infer that∫
Ω|h|

|Th
e ∇u − ∇u|r

|h|2 ≤ C

∫
Ω|h|

∣∣Dh
e (∇u|∇u|r−2)

∣∣2.
Then ∫

Ω|h|

|Th
e ∇u − ∇u|r

|h|2 ≤ C

∫
Ω

|∇u|r−2|D2u|2,

where C = C(N, p, q, Ω) > 0.
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Thus, we conclude that

sup
h>0

(∫
Ω|h|

|Th
e ∇u − ∇u|r

|h|2
)1/r

≤ C

( ∫
Ω

|∇u|r−2|D2u|2
)1/r

. (2.12)

Therefore, from (2.12) and the previous claim, we prove (2.10). �

Our purpose now is to discuss certain a priori estimates related to (1.1)
which are part of the crucial contributions of this work. Actually, the control
of the fractional norms for solutions of (1.1) follows from the combination
between these estimates with the previous lemmata.

Lemma 2.3. Suppose that p > 2 and that Ω ⊂ R
N , N ≥ 2, is an open, bounded

smooth domain. Given 0 < ε < 1/2r there exists a constant C > 0 such that∫
Ω

Δn
pu div(an(|∇u|)q−1∇u)

≥
( ∫

Ω

an(|∇u|)q|D2u|2 − ε‖u‖r
N 1+2/r,r(Ω) − ε

n(r−2)/2
‖u‖2

N 1+2/r,r(Ω)

−C

(
‖u‖r

Lp(Ω) +
1

n(r−2)/2
‖u‖2

Lp(Ω)

))
, ∀ n ∈ N,

for all u ∈ C3(Ω) such that
∂u

∂ν
= 0 on ∂Ω, where C = C(N, p, q, Ω, ε).

Proof. The idea is to use integration by parts in order to obtain the integral
terms which control the N 1+2/r,r(Ω) norms of such functions.

In fact, by integrating by parts and interchanging the order of the deriv-
atives, we obtain∫

Ω

Δn
pu div(an(|∇u|)q−1∇u)

= −
N∑

j,k=1

∫
Ω

an(|∇u|) ∂u

∂xj

∂

∂xk

(
∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

))

+
N∑

j,k=1

∫
∂Ω

an(|∇u|) ∂u

∂xj

∂

∂xk

(
an(|∇u|)q−1 ∂u

∂xk

)
νj .

Then, by integrating by parts again∫
Ω

Δn
pu div(an(|∇u|)q−1∇u)

=
N∑

j,k=1

∫
Ω

∂

∂xk

(
an(|∇u|) ∂u

∂xj

)
× ∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)

−
N∑

j,k=1

∫
∂Ω

an(|∇u|) ∂u

∂xj
× ∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νk
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+
N∑

j,k=1

∫
∂Ω

an(|∇u|) ∂u

∂xj

∂

∂xk

(
an(|∇u|)q−1 ∂u

∂xk

)
νj .

= I − J + K, (2.13)

where

I =
N∑

j,k=1

∫
Ω

∂

∂xk

(
an(|∇u|) ∂u

∂xj

)
× ∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
,

J =
N∑

j,k=1

∫
∂Ω

an(|∇u|) ∂u

∂xj
× ∂

∂xj

(
an(|∇u|)q−1 ∂u

∂xk

)
νk

(2.14)

and

K =
N∑

j,k=1

∫
∂Ω

an(|∇u|) ∂u

∂xj

∂

∂xk

(
an(|∇u|)q−1 ∂u

∂xk

)
νj .

Notice that K = 0, since
∂u

∂ν
= 0 on ∂Ω. Then, consider Ii, for i from 1 to 4,

defined as

I1 =
∫

Ω

an(|∇u|)q|D2u|2,

I2 =
N∑

j,k=1

∫
Ω

an(|∇u|) × ∂

∂xj
an(|∇u|)q−1 ∂2u

∂xj∂xk

∂u

∂xk
,

I3 =
N∑

j,k=1

∫
Ω

∂

∂xk
an(|∇u|) × an(|∇u|)q−1 ∂2u

∂xj∂xk

∂u

∂xj
,

I4 =
N∑

j,k=1

∫
Ω

∂

∂xk
an(|∇u|) × ∂

∂xj
an(|∇u|)q−1 ∂u

∂xj

∂u

∂xk
.

Therefore

I = I1 + I2 + I3 + I4. (2.15)

Now we investigate each term of (2.15).
First, recall that by definition

an(x) = (|x|2 + 1/n)(p−2)/2.

Further, notice that

I2 =
N∑

j,k=1

∫
Ω

an(|∇u) × ∂

∂xj
an(|∇u|)q−1 ∂2u

∂xj∂xk

∂u

∂xk
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=
N∑

j,k,l=1

∫
Ω

(q − 1)(p − 2)(|∇u|2 + 1/n)(r−4)/2 ∂u

∂xl

∂2u

∂xk∂xl

∂u

∂xj

∂2u

∂xk∂xj

=
∫

Ω

(q − 1)(p − 2)(|∇u|2 + 1/n)(r−4)/2
N∑

k=1

( N∑
j=1

∂u

∂xj

∂2u

∂xk∂xj

)2

≥ 0.

Analogously, we prove that I3 ≥ 0, and consequently

I2 + I3 ≥ 0. (2.16)

Moreover, observe that by applying the chain rule

I4 =
N∑

j,k=1

∫
Ω

∂

∂xk
an(|∇u|) × ∂

∂xj
an(|∇u|)q−1 ∂u

∂xj

∂u

∂xk
.

=
N∑

i,j,k,l=1

∫
Ω

(p − 2)2(q − 1)
[ (

|∇u|2 +
1
n

)((p−2)q−4)/2

× ∂u

∂xi

∂2u

∂xi∂xj

∂u

∂xj

∂u

∂xk

∂2u

∂xkxl

∂u

∂xl

]
≥ 0. (2.17)

Then, by virtue of (2.15)–(2.17), we have

I ≥
∫

Ω

an(|∇u|)q|D2u|2. (2.18)

However, by the choice of J (see (2.14)) and by Lemma 2.1

|J | ≤ ε

(
‖u‖r

N 1+2/r,r(Ω) +
1

n(r−2)/2
‖u‖2

N 1+2/r,r(Ω)

)

+C

(
‖u‖r

Lp(Ω) +
1

n(r−2)/2
‖u‖2

Lp(Ω)

)
. (2.19)

Thus, from (2.13), (2.15), (2.18) and (2.19) we obtain that∫
Ω

Δn
pu div(an(|∇u|)q−1∇u)

≥
∫

Ω

|an(|∇u|)q|D2u|2 − ε

(
‖u‖r

N 1+2/r,r(Ω) +
1

n(r−2)/2
‖u‖2

N 1+2/r,r(Ω)

)

−C

(
‖u‖r

Lp(Ω) +
1

n(r−2)/2
‖u‖2

Lp(Ω)

)
,

and the result follows. �

The next result concerns the existence and regularity of approximate
solutions for (1.1). Its proof is a direct consequence of standard results, so
that it will be omitted here. For instance, we refer the reader to the proof
of Theorem 1 step 1 in [1] p. 119 and subsequent commentaries for further
details.
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Proposition 2.4. Suppose that Ω ⊂ R
N is an open bounded smooth domain and

that p > 2. Let g ∈ C∞(Ω). Then, there exists a unique un ∈ C3(Ω) solution of{−Δn
pun + un = g a.e. Ω,

∂un

∂ν
= 0 on ∂Ω.

(2.20)

3. Proof of the main results

We are finally able to obtain the fractional order a priori estimates for the
solution of (1.1).

Proof of Theorem 1.1.

Consider un, a solution of the following approximate version of (1.1):{−Δn
pun + un = fn a.e. Ω

∂un

∂ν
= 0 on ∂Ω,

where fn ∈ C∞(Ω) is such that fn → f in Lq(Ω). Observe that the
existence of un is guaranteed by Proposition 2.4.

Then, given C1 > 1, take n0 = n0(f, C1) ∈ N such that

‖fn‖q
Lq ≤ C1‖f‖q

Lq ,∀n ≥ n0.

From now on, let n ≥ n0.
Our main goal is to obtain energy estimates for un with respect to its

N 1+2/r,r(Ω) norm. First, we obviously focus on lower order estimates.
Clearly, there holds that

‖un‖W 1,p(Ω) ≤ C

(
‖fn‖L2(Ω) + ‖fn‖2/p

L2(Ω)

)

≤ C

(
‖f‖Lq(Ω) + ‖f‖2/p

Lq(Ω)

)
, (3.1)

where C = C(N, p, q, Ω) > 0. Next, we are going to exploit the preliminary a
priori bounds, given by Lemma 2.3, in order to obtain higher order estimates.

Indeed, by multiplying − div(an(|∇u|)q−1∇u) in (2.20) and then by inte-
grating over Ω, we find∫

Ω

Δn
pun div(an(|∇un|)q−1∇un)

≤
∫

Ω

∣∣fn div(an(|∇un|)q−1∇un)
∣∣,

≤
∫

Ω

∣∣fn div(an(|∇un|)q−1∇un)
∣∣, where C = C(N, p, q, Ω) > 0,

where for the sake of simplicity, we denoted the product CC1 by C. From
now on, any fixed constant, like C1, will be included within the standard gen-
eral constant C.
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But notice that∣∣∣∣fn div(an(|∇un|)q−1∇un)
∣∣∣∣ ≤ C|fn| an(|∇un|)q−1|D2un|,

where C = C(N, p, q) > 0.
It is clear from the above inequalities that∫
Ω

Δn
pun div(an(|∇un|)q−1∇un) ≤ C

∫
Ω

|fn| an(|∇un|)q−1|D2un|. (3.2)

At this point, we balance the right-hand and left-hand sides of (3.2) by
the use of Lemma 2.3.

For the right-hand side, observe that by Hölder’s inequality applied to
q, 2q/(q − 2) and 2, one obtains∫

Ω

|fn| an(|∇un|)q/2−1an(|∇un|)q/2|D2un|

≤ C‖f‖Lq(Ω)

∥∥an(|∇u|)∥∥(q−2)/2

Lq(Ω)

( ∫
Ω

an(|∇un|)q|D2un|2
)1/2

.

Moreover, consider η > 0 and δ > 0 such that

η <
q

(q − 2)2(p−2)q/2+1

and

δ < min
{

1/4, 1/2r,

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
, κ

}
,

where κ > 0 will be fixed later.
From Young’s inequality applied to q, 2q/(q − 2) and 2,

‖f‖Lq(Ω)

∥∥an(|∇u|)∥∥(q−2)/2

Lq(Ω)

( ∫
Ω

an(|∇un|)q|D2un|2
)1/2

≤ C‖f‖q
Lq(Ω) + ηδ

q − 2
q

‖an(|∇un|)‖q
Lq(Ω) + δ

∫
Ω

an(|∇un|)q|D2un|2

≤ C‖f‖q
Lq(Ω) + ηδ2q(p−2)/2 q − 2

q

∫
Ω

(
|∇un|q(p−2) +

1
nq(p−2)/2

)

+δ

∫
Ω

an(|∇un|)q|D2un|2

≤ C‖f‖q
Lq(Ω) + δ

∫
Ω

(
|∇un|r−2 +

1
n(r−2)/2

)
+ δ

∫
Ω

an(|∇un|)q|D2un|2,

where C = C(N, p, q, Ω, δ) > 0.
In this way,∫
Ω

|fn| an(|∇un|)q/2−1an(|∇un|)q/2|D2un|

≤ C

(
‖f‖q

Lq(Ω) +
1

n(r−2)/2

)
+ δ

( ∫
Ω

|∇un|r−2 +
∫

Ω

an(|∇un|)q|D2un|2
)

.

(3.3)
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However, since N 1+2/r,r(Ω) ↪→ W 1,r(Ω), there exists a constant

C2 = C2(N, p, q, Ω) > 0

such that ∫
Ω

|∇un|r−2 ≤ C2‖un‖r−2
N 1+2/r,r(Ω)

.

Thus, by combining (3.2) and (3.3) we obtain∫
Ω

Δn
pun div(an(|∇un|)q−1∇un)

≤ C

(
‖f‖q

Lq(Ω) +
1

n(r−2)/2

)
+ δ

(
C2‖un‖r−2

N 1+2/r,r +
∫

Ω

an(|∇un|)q|D2un|2
)

.

(3.4)

Finished the analysis of the right-hand side, we now work with left-hand
side of (3.2).

Notice that in a view of Lemma 2.1 by setting ε = δ in (2.2) and by using
(3.1), we end up with∫

Ω

Δn
pun div(an(|∇un|)q−1∇un)

≥
∫

Ω

an(|∇un|)q|D2un|2 − δ‖un‖r
N 1+2/r,r(Ω) − δ

n(r−2)/2
‖un‖2

N 1+2/r,r(Ω)

−C

(
‖un‖r

Lp(Ω) +
1

n(r−2)/2
‖un‖2

Lp(Ω)

)

≥
∫

Ω

an(|∇un|)q|D2un|2 − δ‖un‖r
N 1+2/r,r(Ω) − δ

n(r−2)/2
‖un‖2

N 1+2/r,r(Ω)

−C

(
‖f‖r

Lq(Ω) + ‖f‖2r/p
Lq(Ω) +

1
n(p−2)/2

(
‖f‖2

L2(Ω) + ‖f‖4/p
L2(Ω)

))
.

(3.5)

Then, from (3.4) and (3.5) we infer that

(1− δ)
∫

Ω

an(|∇un|)q|D2un|2−δ

(
‖un‖r

N 1+2/r,r(Ω)+
1

n(r−2)/2
‖un‖2

N p1+2/r,r(Ω)

)

−δC2‖un‖r−2
N 1+2/r,r(Ω)

≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

+
1

n(r−2)/2

(
‖f‖2

L2(Ω) + ‖f‖4/p
L2(Ω) + 1

))
,

≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
+

C3

n(r−2)/2
,

where C = C(N, p, q, Ω) and C3 = C3(‖f‖L2(Ω), N, p, q,Ω).
However, inasmuch as∫

Ω

an(|∇un|)q|D2un|2 ≥
∫

Ω

|∇un|q(p−2)|D2un|2, ∀n ∈ N,
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by combining the latter estimates and Lemma 2.2, one obtains the fol-
lowing inequality:

(1 − 2δ)‖un‖r
N 1+2/r,r(Ω) − δ

n(r−2)/2
‖un‖2

N 1+2/r,r(Ω) − δC2‖un‖r−2
N 1+2/r,r(Ω)

≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)+
1

n(r−2)/2

(
‖f‖2

L2(Ω)+‖f‖4/p
L2(Ω)+1

))
.

≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
+

C3

n(r−2)/2
. (3.6)

Since r > 2, it is clear from the last inequality that ‖un‖r
N 1+2/r,r(Ω)

is
bounded. However, it is our purpose to do some basic manipulations in order
to obtain at least a subsequence of {un}, still denoted as {un}, for which the
following improved version of (3.6) holds

‖un‖r
N 1+2/r,r(Ω) ≤ C

(
‖f‖q

Lq(Ω)+‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
+

C3

n(r−2)/2
, (3.7)

where C = C(N, p, q, Ω), what obviously implies (1.2).
In this way, since ‖un‖r

N 1+2/r,r(Ω)
is bounded,

δ

n(p−2)/2
‖un‖2

N 1+2/r,r(Ω) → 0, if n → +∞,

and this term can be considered as a part of

C3

n(r−2)/2

in (3.6).
This yields

(1 − 2δ)‖un‖r
N 1+2/r,r(Ω) − δC‖un‖r−2

N 1+2/r,r(Ω)

≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
+

C3

n(r−2)/2
. (3.8)

For the term δC2‖un‖r−2
N 1+2/r,r(Ω)

, there are two possibilities. First suppose
that there exists a subsequence of {un}, still denoted as {un}, such that

‖un‖r−2
N 1+2/r,r(Ω)

≤ 1, ∀n ∈ N.

Then, we have

(1 − 2δ)‖un‖r
N 1+2/r,r(Ω) − δC2

≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
+

C3

n(r−2)/2
. (3.9)

However, since

0 < δ <

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
,

from (3.9) we obtain (3.7).
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For the other possibility, suppose that there exists n1 ∈ N such that

‖un‖r−2
N 1+2/r,r(Ω)

> 1, if n > n1.

Now, it is time to fix κ . It is convenient to choose

κ =
1

4 + 2C2
.

Thus by the choice of δ, we have

(1 − 2δ − δC2) > 1/2.

Hence, from (3.8), there follows that

(1 − 2δ − δC2)‖un‖r
N 1+2/r,r(Ω)

≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
+

C2

n(r−2)/2
.

Well, from the analysis above we conclude that there always exists n2 =
max{n0, n1} such that if n ≥ n2

‖un‖r
N 1+2/r,r(Ω) ≤ C

(
‖f‖q

Lq(Ω) + ‖f‖r
Lq(Ω) + ‖f‖2r/p

Lq(Ω)

)
+

C3

n(r−2)/2
.

We then obtain u ∈ N 1+2/r,r(Ω) such that, up to subsequences,

un ⇀ u in N 1+2/r,r(Ω), if n → +∞. (3.10)

Notice that from (3.7) and (3.10), we obtain the estimate (1.2).
Finally, by the convergence (3.10), u is a weak solution of (1.1). Further-

more, since N 1+2/r,r(Ω) ↪→ W 1+2/r−ε,r(Ω) from (2.5) and (3.10) there holds

that
∂u

∂ν
= 0 on Ω, what completes the proof of Theorem 1.1. �

With Theorem 1.1 in hands, we are in position to prove the compactness
result for the resolvent operator.

Proof of Corollary 1.2.

Given f ∈ Lq(Ω), there exists a unique u ∈ W 1,p(Ω) weak solution of (1.1). By
Theorem 1.1, such u belongs to N 1+2/r,r(Ω). However, due to the embeddings
(2.7), u ∈ W 1,r(Ω), so that S is well defined. Further, (2.7) also implies that
S is compact.

Now we proceed to prove that S is continuous. Indeed, let {fn} ⊂ Lq(Ω)
be such that fn → f in Lq(Ω). Set un = S(fn) and u = S(f). Consider a given
subsequence {unl

}, which will be denoted as {ul}. From (1.2), there exists
C = C(f) > 0 such that

‖ul‖N 1+2/r,r(Ω) ≤ C,∀l ∈ N.

Then, due to (2.7), there exists another subsequence {ulk} for which ulk → v
strongly in W 1,r(Ω), for a certain v ∈ N 1+2/r,r(Ω). In this fashion, v is a
solution for (1.1) and then v = u.
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Consequently, for every subsequence of {un}, there exists another subse-
quence converging strongly to u in W 1,r(Ω). Therefore

un → u in W 1,r(Ω)

and the result follows. �
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