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tryagin principle. To derive these results we transform the constrained
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1. Introduction

Consider the following differential variational inequality:{
i) y′(t) ∈ f(y(t), u(t)) − NK(y(t)) a.e t ∈ [0, T ]
ii) y(t) ∈ K for all t ∈ [0, T ], y(0) = x

(1)

where u(·) : [0,∞) → U is a measurable function and T ≥ 0 is fixed. Here
K is a nonempty closed subset of R

N , U is a compact metric space, f is a
bounded function from R

N × U into R
N and NK(x) is the normal cone to K

at x ∈ K. We notice that NK(x) = {0} whenever x ∈ ◦
K; f is only modified on

the boundary of K, such that (1) is a problem with reflection at the boundary
(see [31]).

We denote by U the set of measurable controls on [0, T ] with values in U .
Let g : R

N → R be a continuous function and consider the Mayer’s problem
defined by:

minimize {g(yu(T )) | u(·) ∈ U and yu(·) satisfies (1)}, (P)

where yu(·) denotes the solution of (1) with the initial condition yu(0) = x.
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Note that, the set K is viable for the dynamics of the reflected control
system. When K is regular enough, the viability property, guarantees that all
the trajectories of this controlled system stay in K for ever [1,13,31]. There-
fore, the state condition y(t) ∈ K is not a severe constraint for the optimization
problem. However, the presence of the reflection on the boundary of K implies
some difficulties for getting necessary optimality conditions for the problem
(P). Indeed, the derivative of the normal cone, which is linked with the second
order normal cone is not very regular in general (see [30] for details). Conse-
quently, it is not very easy to handle the problem directly. Nevertheless, we
succeed to deal with this problem by using an approximating ”from exterior”
method or by transforming the constrained problem in an unconstrained one.
This approximation is possible if one assumes some regularity on the reflection
set. This is the case whenever the reflection set is a proximal retract (see Defi-
nition 2.1 and the comments following it). Moreover, when the set K is convex
and smooth we provide a way to calculate the adjoint state for the reflected
problem. Let us briefly present the main idea of our method. Consider the
following approximating control systems (for n ≥ 1):

y′(t) = f(y(t), u(t)) − ∇qn(y(t)) for a.e t ∈ [0, T ], (2)

where the function q : R
N → R+ is given by

q(y) := dK(y) for all y ∈ R
N

and qn : R
N → R+ is it’s Moreau Yosida regularization:

qn(y) := inf
z∈RN

{
q(z) +

n

2
‖z − y‖2

}
for all y ∈ R

N .

Using the regularity properties of the function qn we can prove that
every admissible trajectory solution of (1) can be approximated by a sequence
(yun

n (·))n, where for every n, (yun
n )(·) is solution to (2) with the initial condi-

tion (yun
n )(0) = x, so that the control problem (P) can be also approximated

by the following sequence of control problems (for n ≥ 1):

minimize {g(yu
n(T )) | u(·) ∈ U and yu

n(·) satisfies (2)}. (Pn)

Obviously, the reflected control problem (P) can be seen as a
state-constrained control problem of differential inclusion systems. The
reflected dynamics has the advantage that for every measurable control u(·)
there exists a solution in K because of the viability property. So, in this case
the set of “admissible controls” coincide with U which is very advantageous
for obtaining optimal trajectories i. e. solutions for the minimizing problem
(P). Let us recall that necessary conditions for state-constrained control prob-
lems governed by ordinary differential equations have been studied by many
authors since the early sixties (see for instance [9,11,12,16,24,25,33] and refer-
ences therein). These necessary conditions are given in the form of a maximum
principle. We refer also to [15,18,19,29] for constrained problems governed by
differential inclusions in the form of ẏ(t) ∈ F (t, y(t)), with a Lipschitz set-
valued map F . In this framework, necessary optimality conditions have been
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derived in [19]. These conditions use a linearization of F by closed convex pro-
cesses, which are Lipschitz with respect to the state. In our case we need to
suppose that the set K is convex and we use an approximation via the distance
function [see (2)] in order to obtain the main result.

Equation (1) modelize several important applications in mechanics.
Indeed it is used to the study of the concept of a standard inelastic shock
introduced in [26]. Moreover, numerical methods are developed in [10] for the
study of systems composed of interacting rigid bodies. One of the methods
uses the Moreau’s sweeping process, which is similar to a reflected problem.
Finally, let us mention that some optimal control problems governed by varia-
tional inequalities in infinite dimension spaces have been also studied in several
works. Let us refer to [7,8] and the references therein. In these works, the set
K is supposed to be a half space.

This paper is organized as follows. In Sect. 2, we present the optimal con-
trol problem and the assumptions that will be considered. Section 3 is devoted
to the main results of the paper. We continue with the study of the approx-
imating systems in Sect. 4. In the last section we complete the proof of the
results presented in Sect. 3.

Notations. In this paper, we denote by dA(x) := infy∈A ||x − y|| the dis-
tance function to a set A ⊂ R

N ; || · || and 〈·〉 are the Euclidian norm and scalar
product in R

N , respectively. We also denote by | · |∞ the infinity norm in R
N .

Moreover, B denotes the closed unit sphere of R
N . For any X ⊂ R

N we denote
by X its closure, by

◦
X its interior, and by co(X) the closed convex hull of X.

2. Setting of the problem

2.1. Assumptions

Let K be a closed subset of R
N . We recall that the normal cone to the set K

at x ∈ K is a convex set defined by:

NK(x) =
{
v ∈ R

N | 〈v, y − x〉 ≤ o (‖y − x‖) for all y ∈ K, y → x
}
.

Let f : R
N × U → R

N be a continuous function. For any measurable function
u(·) : [0,∞) → U we consider the associated trajectory satisfying:{

i) y′(t) ∈ f(y(t), u(t)) − NK(y(t)) for a.e t ∈ [0, T ]
ii) y(t) ∈ K for all t ∈ [0, T ], (3)

with y(0) = x. We consider the following assumption:
[A1] f : R

N × U → R is of class C1 and satisfies:{ ‖f(x, u) − f(y, u)‖ ≤ Lf ‖x − y‖ ,
the set f(x,U) is convex, for all x, y ∈ R

N and u ∈ U,
(4)

where Lf is a positive constant.
For the study of control systems with reflecting boundary, we suppose

that K is a proximal retract subset in R
n i. e.:
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Definition 2.1. A closed set K ⊂ R
N is called proximal retract if there exists

a neighborhood I of K such that the projection ΠK(·) is single-valued in I,
with ΠK(x) := {z ∈ K | ||x − z|| = infy∈K ‖x − y‖} for all x ∈ R.

The class of proximal retracts includes closed, convex subsets of R
N and

subsets of R
N of class C1,1. Another class of proximal retracts is the class

of weakly convex sets (see [17] for the definition and the geometrical inter-
pretation). A complete characterization of proximal retract sets can be found
in [28, Theorem 4.1, p. 5245]. In particular, such sets have the property that
there exists a ρ > 0 such that the set K has the exterior sphere property with
radius ρ:

Definition 2.2. We say that K satisfies an exterior sphere condition of radius
ρ > 0 at a point x ∈ ∂K if x belongs to some closed ball centered in z, such
that z + ρB̄ ⊂ R

N\ ◦
K. We say that K satisfies an exterior sphere condition

of radius ρ, if K satisfies an exterior sphere condition of radius ρ at every
x ∈ ∂K.

2.2. Control systems with reflecting boundary

A detailed study of the differential inequality (1) is presented in [31]. For the
reader’s convenience, we recall some properties of the set of solutions to this
controlled system.

First, consider a set-valued map F : R
N � R

N , and the following differ-
ential inclusion:{

i) z′(t) ∈ F (z(t)) − NK(z(t)) for a.e t ∈ [0, T ],
ii) z(t) ∈ K, for all t ∈ [0, T ], z(0) = x.

(5)

In the sequel, we denote by SF−NK
(x) the set of solutions to (5) starting from

x ∈ K. We consider that SF−NK
(y) = ∅ for every y ∈ Kc, because NK(y) is

not defined. By using [1, Theorem 10.1.1], we can prove the following results
(see [13,26,31,32]):

Proposition 2.3. Suppose that F is upper semicontinuous (usc, for short) with
non-empty compact convex values, has a linear growth, and K is a proximal
retract set. Then
(i) For every x ∈ K, Eq. (5) admits an absolutely continuous solution z(·).
(ii) The restriction of the map x � SF−NK

(x) to K1 is compact into K1 ×
W 1,1(0,∞;K)e−bt for every K1 compact subset of K and for all b > Lf , where
Lf is the Lipschitz constant in (A1).

From now on, we consider the set-valued map F given by the equality

F (y) = f(y, U) = {f(y, u), u ∈ U}, for all y ∈ R
N . (6)

Under assumption (4), we can check that F is usc, has a linear growth,
and has nonempty compact convex values. Moreover, let K be a proximal
retract set. Then we employ results concerning the existence of measurable
selections from (see Chapter 2 in [1]). Consequently, we obtain that, for each
solution y(·) to the differential inclusion (5), starting at x, there exists u(·) ∈ U
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such that y(·) is equal to yu(·), which is the solution of (1). A proof of this
claim can be found in [31]. Therefore, we have:

SF−NK
(x) = S(x) for all x in K,

where S(x) is the set of absolutely continuous solutions to (1). On other hand,
by straightforward computation using the fact that K is a proximal retract
and Gronwall’s inequality, we obtain the following estimation:

Lemma 2.4. Assume that (4) holds true. Let K be a proximal retract set,
yu
1 (·) ∈ §(x1), yu

2 (·) ∈ §(x2) with x1, x2 in K and fixed u(·) ∈ U . Then, for
every T > 0, there exist a constant C > 0 depending on T such that:

sup
t∈[0,T ]

‖yu
1 (t) − yu

2 (t)‖ ≤ C ‖x1 − x2‖ .

As a direct consequence of the above estimation we obtain:

Corollary 2.5. Assume that (4) holds true and K is a proximal retract set.
Then there exists an unique solution of (1) in K for every fixed u(·) ∈ U .

Let g be a function from R
N to R. We assume that:

(A2) g is of class C1 on R
N .

We consider the control problem:

minimize {g(yu(T )) | u ∈ U , yu(·) solves (1) and yu(0) = x}.

The value function associated to this control problem is defined by:

V (t, x) :=inf {g(yu(T )) | yu(·) solves (1) on [t, T ] with u(·) ∈ U , yu(t)=x}.

We have the following result (see [31]):

Proposition 2.6. Suppose that (4) holds true and K is a proximal retract set.
Then the following assertions are true:

(i) (Existence of an optimal control) If g is locally Lipschitz, then V is locally
Lipschitz. Moreover, there exist an optimal trajectory ȳū(·) ∈ SF (t, x)1

such that

V (t, x) = g(ȳū(T )).

(ii) (Dynamic programming principle) Let g : K → R be a bounded function.
We have that

V (t, x) = inf
u(·)∈U

for all (t, x) ∈ [0, T ] × K and h > 0 small enough.

The previous result says that the value function V satisfies a dynamic
principle. That is equivalent with saying that V is nondecreasing along any

1SF (t, x) denotes the set of solutions of (1) starting in x at the initial time t.
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admissible trajectory and is constant along optimal trajectories. This proper-
ties are used to prove that the value function V is the only solution (in viscosity
sense) of the following Hamilton-Jacobi inclusion (see [31]):⎧⎪⎨

⎪⎩
∇tV (t, x) + min

u∈U
〈(f(x, u),∇xV (t, x)〉 − 〈∇xV (t, x), NK(x))〉 
 0,

if (t, x) ∈ [0, T ) × K,
with the final conditionV (T, x) = g(x), if x ∈ K.

(7)

For a detailed treatment of this type of solution, see [4,5,14,21–23,31]

3. Main results

Firstly, we present a result characterizing optimal trajectories. Since the value
function V is Lipschitz continuous, we can prove that it admits some direc-
tional derivatives2 along any admissible trajectory. More precisely,

Lemma 3.1. Suppose that (4) holds true and K is a proximal retract set. Then,
for every trajectory y(·) := yu(·) solution of (1) on [0, T ] and for almost every
t ∈ [0, T ], there exists the directional derivative

∂V

∂(1, y′(t))
(t, y(t)).

This result can be obtained easily thanks to the Lipshitz property of V
and absolute continuity of the trajectory yu(·).

To characterize optimal trajectories, we introduce a feedback map G
defined on [0, T ] × R

N by

G(t, x) :=
{

v ∈ f(x,U) − NK(x),
∂V

∂(1, v)
(t, x) = 0

}
.

Lemma 3.2. Suppose that (4) holds true and K is a proximal retract set. The
following two statements are equivalent:

(i) y(·) := yu(·) is a trajectory solution of (1) on time interval [t0, T ] and,
for every t ∈ [t0, T ], V (t, yu(t)) = g(yu(T )) (which means that yu(·) is an
optimal trajectory on [t0, T ]).

(ii) y(·) is a trajectory of the differential inclusion:

y′(t) ∈ G(t, y(t)) for a.e. t ∈ [t0, T ]. (8)

Proof. Assume that (i) is satisfied, and set Φ(t) := V (t, y(t)) on [t0, T ]. Since
the value function V is Lipschitz and since y(·) is absolutely continuous, we
conclude that Φ is absolutely continuous and for almost every t ∈ [t0, T ], we
have

Φ′(t) =
∂V

∂(1, y′(t))
(t, y(t)) = 0.

2 The directional derivative of a function h : RN → R at x ∈ R
N in the direction of z ∈ R

N

(whenever it exists) is defined by

∂h

∂z
(x) = lim

τ→0+

h(x + τz) − h(x)

τ
.
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Therefore, for almost every t ∈ [t0, T ], y′(t) ∈ G(t, y(t)). Assume next that (ii)
holds true, Then Φ′(t) = 0 for almost every t ∈ [t0, T ]. Consequently, Φ is
constant and is equal to V (T, y(T )) = g(y(T )). Then y(·) is optimal. �

It is worth mentioning that G may have empty images. Nevertheless,
under assumptions (A1)–(A2), for every t0 ∈ [0, T ] and every x0 ∈ K, the
differential inclusion (8) admits at least one solution satisfying y(t0) = x0.

Secondly, we present the main result of the paper. More precisely, we
investigate some necessary optimality conditions which involve the costate
variable. Let us recall the following definitions:

Definition 3.3. Let K ⊂ R
N be closed and x ∈ K. The second order normal

cone to the set K at x is defined by:

N2
K(x) =

{
(v, Y ) ∈ R

N × SN | 〈v, y − x〉 +
1
2

(y − x) Y (y − x) ≤ o
(
‖y − x‖2

)

for all y →K x

}
.

Here, →K denotes the convergence in K and SN is the set of symmetric matri-
ces of dimension N × N .

Note that NK(x) and N2
K(x) are nonempty closed convex cones, which

means that they are convex and for all λ ≥ 0 and v ∈ NK(x) (resp. (v, Y ) ∈
N2

K(x)) we have λv ∈ NK(x) (resp. (λv, λY ) ∈ N2
K(x)).

Consider a subset X ⊂ R
N and a real function h : X → R. Assume that

h is Lipschitz continuous on X, then h is differentiable almost everywhere in
X, and when h is not differentiable at some x0 ∈ X then it is still possible to
define its superdifferential by taking limits of the gradients of h at neighbors
of x0.

Definition 3.4. Let X ⊂ R
N and h : X → R be a Lipschitz continuous function,

and let x0 ∈ X.
(i) The superdifferential of h at x0 is given by:

∂h(x0)

:= co
{
v ∈ R

N | ∃xi →X x0,with h differentiable at xi and ∇h(xi) → v
}
.

(ii) If h is of class C1,1 on X, then we can define its second order superdif-
ferential as:

∂2h(x0)

:= co
{
Y ∈SN | ∃xi →X x0, with h twice differentiable at xi and ∇2h(xi) → Y

}
.

Theorem 3.5. (i) Assume that (A1), (A2) hold and that q := dK is C1,1

and let (ȳū(·), ū(·)) be an optimal pair of the reflecting boundary con-
trol problem (P). Then, there exists an absolutely continuous function
p(·) : [0, T ] → R

N satisfying the adjoint system{
i) − p′(t) ∈ p(t) · (

fx(ȳū(t), ū(t)) − ΠSN
(N2

K(ȳū(t)))
)
, t ∈ [0, T ]

ii) p(T ) = gx (ȳū (T )) . (9a)
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Moreover, we have:

min
u∈U

〈
p(t), f(ȳū(t), u)

〉
=

〈
p(t), f(ȳū(t), ū(t))

〉
for almost all t ∈ [0, T ].

(9b)

(ii) Assume that (A1), (A2) hold and that K is convex. Let (ȳūn
n (·), ūn(·))

be an optimal pair for the value function Vn associated with (Pn) such
that ȳūn

n (0) = xn, xn ∈ K + M
n B3 and with xn → x. Then, the sequence

(ȳūn
n (·))n converges uniformly on [0, T ] to ȳū(·) an optimal solution cor-

responding to the reflected problem (P). There exist absolutely continuous
functions pn : [0, T ] → R

N solution to the adjoint system⎧⎨
⎩

i) − p′
n(t) ∈ pn(t) · (fx(ȳūn

n (t), ūn(t)) − n∂2q(ȳūn
n (t)))

for almost all t ∈ [0, T ]
ii) pn(T ) = gx (ȳūn

n (T )) .
(10a)

with

min
u∈U

〈
pn(t), f(ȳūn

n (t), u)
〉

=
〈
pn(t), f(ȳūn

n (t), ūn(t))
〉

for almost all t ∈ [0, T ]. (10b)

Moreover, there exists a subsequence still denoted pn(·), and there exist
p(·) in L2

(
[0, T ] , RN

)
such that pn(·) ⇀ p(·) weakly in L2

(
[0, T ] , RN

)
with p(·) satisfying (9b).

The proof is postponed in Sect. 5 because we need preliminary results in
order to complete it.

4. Approximation of the reflected control problem

In this section we study the approximation of the reflecting boundary Eq. (1)
by a sequence of ordinary differential equations with Lipschitz continuous
dynamics. We begin by describing proximal retract sets.

4.1. Some properties of proximal retract sets

We recall the following results from [28, Theorem 4.1, p. 5245]:

Proposition 4.1. Let K ⊂ R
N be proximal retract set. Then there exist r, c > 0

such that the set-valued map x � NK(x)∩rB+cx is monotone4 on K. If K is
convex then x � NK(x)∩ rB is monotone. Furthermore, the map x � NK(x)
has a closed graph and there exists η > 0 such that the map x → ΠK(x) is
single-valued and is Lipshitz continuous on (K + ηB) \ K.

Proposition 4.2. Assume that K ⊂ R
N is a proximal retract set. Then the

following statements hold:
(i) The functions qn are of class C1,1 on RN and have the same Lipschitz

constant as q(·).

3 M := sup(y,u)∈K×U ||f(y, u)||.
4 Recall that a set-valued map G : K → R

N is monotone if 〈y1 − y2, x1 − x2〉 ≥ 0 for all
yi ∈ G(xi), i ∈ {1, 2}.
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(ii) The set-valued map ∂2qn (·) : RN ↪→ SN has nonempty, compact, convex
images. Moreover, it is locally bounded and usc.

(iii) We have ∇qn (x) ∈ N1
K (ΠK(x)), and {∇qn (x)}×∂2qn (x) ⊂ N2

K (ΠK(x))
for every x ∈ RN .

(iv) Let X ⊂ R
N and h : X → R be convex and of class C1,1. Then ∂2h (·) is

positive semidefinite on RN u.s.c and locally bounded.

Proof. A proof of statement (i) is given in [28, Theorem 4.1] and [6]. From
Section 2.1 of [20], we can deduce (ii) and (iv). Finally, we give a short proof
of (iii). Let x ∈ I be a point where qn is twice differentiable. By definition, we
have that

qn (y′) − qn (x) = 〈y′ − x,∇qn (x)〉 +
1
2

(y′ − x) ∇2qn (x) (y′ − x)

+o
(
‖y′ − x‖2

)

for all y′ → x. Consider

y′ = y − ΠK(x) + x with y ∈ K, y → ΠK(x).

We obtain

qn (y − ΠK(x) + x) − qn (x) = 〈y − ΠK(x),∇qn (x)〉
+

1
2

(y − ΠK(x)) ∇2qn (x) (y − ΠK(x))

+o
(
‖y − ΠK(x)‖2

)

for all y ∈ K, y → ΠK(x). Consequently,

o
(
‖y − ΠK(x)‖2

)
≥ 〈y − ΠK(x),∇qn (x)〉

+
1
2

(y − ΠK(x)) ∇2qn (x) (y − ΠK(x))

+o
(
‖y − ΠK(x)‖2

)

for all y ∈ K, y → ΠK(x), because

qn (y − ΠK(x) + x) − qn (x) ≤ 0 for all y ∈ K.

So, ∇qn (x) ∈ N1
K (ΠK(x)), and ∇qn (x) × ∇2qn (x) ∈ N2

K (ΠK(x)). The con-
clusion follows by using the definition of ∂2qn (·). �

Remark 4.3. We point out that the there following assertions are equivalent
(see for instance Example 2.2 in [20]):

• h (·) is C1,1 and convex on K + αB,
• ∂h (·) is C0,1 and monotone on K + αB,
• ∂2h (·) is positive semidefinite on K + αB.
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4.2. Approximating equations for the reflected control problem

We set

M := sup
(y,u)∈K×U

||f(y, u)||.

and we consider for every x0 ∈ K,u ∈ U and for every n ≥ 1, the approximated
equation:

y′(t) = f(y(t), u(t)) − ∇qn(y(t)) for a.a. t ∈ [0, T ] (11a)
y(0) = x0. (11b)

Here, we have approximated the multi-valued function NK(·) by the func-
tion x �−→ n

2 ∇qn(x). In what follows, we shall denote by Fn (for n ≥ 1) the
set-valued map defined by

Fn(x) := f(x,U) − ∇qn(x) for every x ∈ R
N .

The following two propositions state the fact that any trajectory satisfying (1)
can be approximated by a sequence of trajectories solutions of (11).

Proposition 4.4. Suppose that K is a proximal retract set and (4) holds. For n

large enough, the set Kn := K+M
n B is invariant5 under the set-valued map Fn.

Proof. Since K is proximal retract, then for n large enough, the projection
function Πk : R

N → K is single valued. On the other hand, according to
[1, Chapter 5, Proposition 1, p. 234] (see also [2]), Kn is invariant under the
set-valued map Fn, whenever

〈x − ΠK(x), v〉 ≤ 0 ∀x ∈ ∂Kn, ∀v ∈ Fn(x). (12)

Then we have just to check that (12) is satisfied. First, let us recall that
∇qn(x) = n(x − ΠK(x)), for every x ∈ Kn and for n large enough (see [28,
Theorem 4.1, p. 5245] and [27, Theorem 4.4, p. 1824]).

Therefore for every u ∈ U and for every x ∈ ∂Kn, we have:

〈x − ΠK(x), f(x, u) − ∇qn(x)〉 = 〈x − ΠK(x), f(x, u)〉 − n‖x − ΠK(x)‖2

≤ MdK(x) − ndK(x)2 =
M

2

n
− M

2
n

n2
≤ 0.

We conclude that Kn is invariant under Fn for n large enough. �

Proposition 4.5. Suppose that K is proximal retract set and (4) holds. Let
u : [0,∞) �−→ U be a measurable control and let yu

n(·) (for every n ≥ 1)
be the trajectory solution of (11a) starting from xn, xn ∈ K + M

n B and with
xn → x ∈ K. Then the sequence yu

n(·) converges uniformly to the solution
yu(·) of (1) starting from x ∈ K.

5 invariant under a set-valued map F if for every x0 ∈ X, all solutions to ẋ(t) ∈
F (x(t)), x(0) = x0 remain in X
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Proof. Indeed, for a fixed control u(·), we have the following

d

dt

1
2

‖yu
n(t) − yu(t)‖2 = 〈f(yu

n(t), u(t)) − f(yu(t), u(t)), yu
n(t) − yu(t)〉

−〈∇q(yun
n (t)) − n(yu(t)), yu

n(t) − yu(t)〉 a.e. on [0, T ] .

We can prove that n(yu(·)) is in NK(yu(·))∩B(0, M̄) (see [31]) and moreover
we have:

d

dt

1

2
‖yu

n(t) − yu(t)‖2 = 〈f(yu
n(t), u(t)) − f(yu(t), u(t)), yu

n(t) − yu(t)〉
−〈∇q(yun

n (s)) − n(yu(t)), ΠK(yu
n(t)) − yu(t)〉

−〈∇q(yun
n (s))−n(yu(t)), yu

n(t)−ΠK(yu
n(t))〉 a.e. on [0, T ] .

Consequently,

d

dt

1
2

‖yu
n(t) − yu(t)‖2 ≤ Lf ‖yu

n(t) − yu(t)‖2

+c ‖ΠK(yu
n(t)) − yu(t)‖2 + (1 + M̄)

M̄

n

≤ Lf ‖yu
n(t) − yu(t)‖2

+2c ‖yu
n(t) − yu(t)‖2 + 2c

1
n2

+(1 + M̄)
M̄

n
a.e. on [0, T ]

where the constant c is the same as in Proposition 4.1. Using the fact that
q (yun

n (·)) ∈ NK (ΠK(yu
n(·))) , NK(·) is hypomonotone and Gronwall’s inequal-

ity, we can find a constant C1 > 0 such that

sup
t∈[0,T ]

‖yu
n(t) − yu(t)‖2 ≤ C1

(
1
n

+ ‖xn − x‖2

)
.

The previous estimation concludes the proof.

We consider the control problem:

minimize {g(yu
n(T )) | yu

n solves (11) on [0, T ] with u(·) ∈ U}. (13)

The value function associated to this control problem is defined by:

Vn(t0, x0) :=inf {g(yu
n(T )) | yu

n solves (11a) on [t0, T ] with u(·)∈U , yu
n(t0) = x0}.

We have the following convergence result for the optimal trajectories.

Lemma 4.6. Suppose that K is proximal retract set and (4) holds. Let (t0, x0)
be given in [0, T ] × K. For every n ≥ 1, we consider the optimal trajectory
ȳūn

n (·) for the value function Vn starting from (t0, xn), xn ∈ K + M
n B and with

xn → x0 ∈ K. Then, the sequence (ȳūn
n (·))n converges uniformly on [t0, T ] to

ȳū(·) an optimal solution corresponding to the problem:

V (t0, x0) :=inf {g(yu(T )) | yu(·) solves (1) on [t0, T ] with u(·) ∈ U , yu(t0)=x0}
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Proof. For n ≥ 1, we consider ūn(·) an optimal control associated to the opti-
mal trajectory ȳūn

n (·) (see for example [1,3,12,31] for results on the existence
of optimal controls). Recall that the couple (ȳūn

n (·), ūn(·)) is called an optimal
pair for Vn in (t0, xn), i. e. we have:

Vn(t0, xn) = g(ȳūn
n (T )).

Note that (ȳūn
n (·)) converges up to a subsequence to ȳū(·) uniformly on [t0, T ].

Indeed, we can apply Ascoli’s theorem for the sequence (ȳūn
n (·))n because any

trajectory solution of (11), starting in (t0, xn), stays in Kn := K + M
n B and

we have:

|f(x, u) − ∇qn(x)|∞ ≤ M + n
M

n
= 2M ∀x ∈ Kn. (14)

Moreover, we can employ the fact ūn(·) has values in a compact set. Con-
sequently, ūn(·) converges weakly to ū(·) up to a subsequence. Additionally,
(ȳū(·), ū(·)) is an optimal pair for V . Indeed on a subsequence we have

lim inf
n

Vn(t0, xn) ≥ lim
k

Vnk
(t0, xnk

) = lim
k

g(ȳ
ūnk
nk (T )) = g(ȳū(T )) ≥ V (t0, x0).

Moreover, for any fixed control u(·) we obtain the following inequalities:

lim sup
n

Vn(t0, xn) ≤ lim sup
n

g(yu
n(T )) = lim

n
g(yu

n(T )) = g(yu(T )).

�
As consequence of the previous lemmas, we get:

Proposition 4.7. Suppose that K is a compact proximal retract and (4) holds
true. Then

Vn → V pointwise on [0, T ] × K whenn → ∞.

4.3. The adjoint systems for the approximating problems

Problem (13) is governed by a differential equation and does not involve any
state-constraint. Moreover, in this approximated control problem, the dynam-
ics Fn is Lipshitz while the dynamics F of (3) is only usc. Hence, optimality
conditions for (13) can be derived in a standard way see [12]. Let us introduce
the Hamiltonian function associated to problem (13) H : R

d × R
m × R

d → R

defined by H(x, u, p) := p ·f(x, u). In the sequel, we shall adopt the convention
that p is a “row vector”.

Theorem 4.8. Let (ȳūn
n (·), ūn(·)) be an optimal pair for the control problem

(13). There exists an absolutely continuous function pn(·) : [0, T ] → R
N solu-

tion to the adjoint system{
i) − p′

n(t) ∈ pn(t) · (
fx(ȳūn

n (t), ūn(t)) − n∂2q(ȳūn
n (t))

)
for almost all t∈ [0, T ]

ii) pn(T ) = gx

(
ȳūn

n (T )
)
.

(15a)

Moreover, we have:

min
u∈U

〈
pn(t), f(ȳūn

n (t), u)
〉

=
〈
pn(t), f(ȳūn

n (t), ūn(t))
〉

for almost all t ∈ [t0, T ].

(15b)
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For the proof see for instance [12].

5. Proof of Theorem 3.5

The proof of (i) is a direct consequence of the regularity of the distance func-
tion, results from [12] and the fact that we have ∂dK(·) = NK(·)∩B (cf. [32]).
Consequently, the differential variational inequality (1):{

i) y′(t) ∈ f(y(t), u(t)) − NK(y(t)) a.e t ∈ [0, T ]
ii) y(t) ∈ K for all t ∈ [0, T ], y(0) = x

has the same set of solutions as the unconstrained system (see [32]):{
i) y′(t) ∈ f(y(t), u(t)) − M∂dK(y(t)) a.e t ∈ [0, T ]
ii) y(0) = x.

The proof of (ii) will be split in two parts. First, we consider the sequence
of adjoint state corresponding to each approximating control problem (Pn) and
prove that this sequence is bounded independently on n and that there exists
a subsequence converging to an adjoint state of the original problem (P). In
the second part, we prove the Pontryagin principle.

In the sequel, we consider for every n ≥ 1, an optimal pair (ȳūn
n (·), ūn(·))

solution of (Pn), and such that: ūn(·) ⇀ ū(·) weakly in L2(0, T ), and ȳūn
n (·) →

ȳ(·) in C([0, T ]). Note that, by Lemma 4.6, we have that (ȳū(·), ū(·)) is a
solution of (P).

Step 1. By Theorem 4.8, we know that there exists an absolutely contin-
uous solution pn(·) of (15a) which satisfies the following:

min
u∈U

〈
pn(t), f(ȳūn

n (t), u)
〉

=
〈
pn(t), f(ȳūn

n (t), ūn(t))
〉

for almost all t ∈ [0, T ].

(16)

Indeed, (15a) has absolutely continuous solutions because fx(·) is con-
tinuous and ∂2qn(·) has nonempty, compact, convex images and is locally
bounded, u.s.c. (or closed). Moreover, we know that the map ∂2qn (·) is positive
semidefinite on K + M

n B. Thus, if we multiply by pn(·) each member of the
equality (15a), we obtain the following⎧⎨
⎩

i) − 〈p′
n(t), pn(t)〉 ∈ pn(t)fx(ȳūn

n (t), ūn(t))pn(t) − npn(t)∂2qn(ȳūn
n (t))pn(t)

for almost all t ∈ [0, T ]
ii)pn(T ) = gx (yūn

n (T )).
(17)

Consequently,⎧⎨
⎩

i) d
dt

1
2 ‖pn(T − t)‖2 ∈ pn(T − t)fx(ȳūn

n (T − t), ūn(T − t))pn(T − t)
−npn(T − t)2qn(ȳūn

n (T − t))pn(T − t) for almost all t ∈ [0, T ]
ii)pn(T ) = gx (yūn

n (T )) .
(18)

We obtain that
d

dt

1
2

‖pn(T − t)‖2 ≤
(

max
Kn

‖fx‖
)

‖pn(T − t)‖2
. (19)
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Therefore, by Granwall Lemma, we conclude that:

‖pn(T − t)‖2 ≤ e(maxKn ‖fx‖)2T
∥∥gx

(
yūn

n (T )
)∥∥2

and for every t ∈ [0, T ], we have pn(t) ∈ emaxKn ‖fx‖2T maxKn
‖gx (yūn

n (·))‖ B.
We denote by c :=(maxK1‖fx‖)2T maxK1 ‖gx (·)‖ . Then, the family of

absolutely continuous functions {pn(·) : [0, T ] → cB} is compact for the weak
topology of the Hilbert space L2

(
[0, T ] , RN

)
. Consequently, there exists a

subsequence still denoted pn(·), and there exist p(·) in L2
(
[0, T ] , RN

)
such

that pn(·) ⇀ p(·) weakly in L2
(
[0, T ] , RN

)
.

Step 2. Now, by considering that:∫ T

0

〈
pn(s), f(ȳūn

n (s), ūn(s))
〉
ds −

∫ T

0

〈
p(s), f(ȳū(s), ū(s))

〉
ds

=
∫ T

0

〈
pn(s), f(ȳūn

n (s), ūn(s)) − f(ȳū(s), ū(s))
〉
ds (20)

+
∫ T

0

〈
pn(s) − p(s), f(ȳū(s), ū(s))

〉
ds (21)

for every n ≥ 1, and by using the convergence results proved in Step 1, we
obtain:

lim
n

∫ T

0

〈
pn(s), f(ȳūn

n (s), ūn(s))
〉
ds =

∫ T

0

〈
p(s), f(ȳū(s), ū(s))

〉
ds. (22)

Moreover, for every v ∈ U , we have:

lim
n

∫ T

0

〈
pn(s), f(ȳūn

n (s), v)
〉
ds ≥ lim

n

∫ t

0

〈
pn(s), f(ȳūn

n (s), ūn(s))
〉
ds. (23)

Therefore, for every v ∈ U , we have:

∫ T

0

〈
p(s), f(ȳū(s), v)

〉
ds ≥

T∫
0

〈
p(s), f(ȳū(s), ū(s))

〉
ds. (24)

Let u ∈ U and Σ(ū, u) be a subset of [0, T ] containing all the Lebesgue
points of the functions:

s �−→ 〈p(s), f(ȳū(s), u)〉, s �−→ 〈p(s), f(ȳū(s), ū(s))〉.

Taking into account the assumptions on f , the Lebesgue measure of Σ(ū, u) is
equal to T . By considering spike perturbations of ū(·) by u, around any point
s ∈ Σ(ū, u), defined by:

vk(t) :=

{
u if t ∈]s − 1

k , s + 1
k [,

ū(t) if not.

By passing to the limit when k goes to infinity, we get that〈
p(s), f(ȳū(s), u)

〉 ≥ 〈p(s), f(ȳū(s), ū(s))〉, for every s ∈ Σ(ū, u). (25)
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Let (uk)k≥1 be a countable dense subset of U . With the inequality (25), we
obtain:

〈
p(s), f(ȳū(s), uk)

〉 ≥ 〈
p(s), f(ȳū(s), ū(s))

〉
,

for every s ∈ Σ(ū, uk). Now, set Σ0 = ∩k≥1Σ(ū, uk), the Lebesgue measure of
Σ0 is still equal to T , and〈

p(s), f(ȳū(s), uk)
〉 ≥ 〈

p(s), f(ȳū(s), ū(s))
〉

for every s ∈ Σ0 and for every k ≥ 1. Since f is continuous with respect to the
control variable, we conclude that:〈

p(t), f(ȳū(t), ū(t))
〉

= min
u∈U

〈
p(t), f(ȳū(t), u)

〉
(26)

for every t ∈ Σ0.

Remark 5.1. Finally, we provide an example to motivate the fact that the limit
p(·) of the sequence of absolutely continuous functions pn(·) is nonzero. More-
over, we see that the approximated system will provide very useful hints for
choosing the optimal control of the reflected system.

Indeed, we consider K := {(y1, y2) ∈ R
2such that y2 ≤ 0}, U :=

[−1, 1] × [−1, 1], f : R
2 × U → R

2, f(y1, y2, u) = (u1, u2) and g : R
2 →

R, g(y1, y2, u) = y1 + y2. Moreover, d2
K(y1, y2) = y2

2 if (y1, y2) /∈ K and
d2

K(y1, y2) = 0 if (y1, y2) ∈ K. The Eq. (10a) implies that the first coordi-
nate of pn(·) = (pn1(·), pn2(·)), is nonzero. More precisely, pn1(·) = 1, because
p′

n1(t) = 0 a.e. [0, T ] and ∇g = (1, 1). Consequently, p1(·) = 1 a. e. [0, T ] and
p(·) �= 0.

Consider (xn1, xn2) ∈ K + M
n B such that(xn1, xn2) → (x1, x2) ∈ K. We

note that pn2(t) = en(t − T ) if the optimal trajectory (ȳū1
1 (t), ȳū2

2 )(t) start-
ing from (xn1(·), xn2) /∈ K is not in K. The limit p(·) is equal to (1, 0) a. e.
[0, T ]. Consequently, the relation of the form (9b) we obtain information on
the first coordinate of the optimal control i. e. ū1(·) = −1. Fortunately, we are
able get information on the second coordinate of the optimal control after hav-
ing a look at the relation of the type (10b) associated with the approximating
system because pn2(t) = en(t − T ) on some time subinterval of [0, T ] because
(xn1(·), xn2) /∈ K. Consequently, we obtain that is natural to have ū2(·) = −1
a. e. [0, T ].
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[12] Clarke, F.: Optimization and Nonsmooth Analysis. Wiley Interscience, New
York (1983)

[13] Cornet, B.: Existence of slow solutions for a class of differential inclusions. J.
Math. Anal. Appl. 96, 130–147 (1983)

[14] Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of sec-
ond order partial differential equations. Bull. Am. Math. Soc. New Ser. 27(1),
1–67 (1992)

[15] de Pinho, M.R., Rosenblueth, J.F.: Necessary conditions for constrained
problems under mangasarian-fromowitz conditions. SIAM J. Control
Optim. 47(1), 535–552 (2008)

[16] Dmitruk, A.V.: Maximum principle for the general optimal control problem
with phase and regular mixed constraints. Comput. Math. Model. 4(4), 364–
377. Software and models of systems analysis. Optimal control of dynamical
systems (1993)



Vol. 20 (2013) Optimality conditions for reflecting 1241

[17] Frankowska, H.: A viability approach to the Skorohod problem. Stochas-
tics 14, 227–244 (1985)

[18] Frankowska, H.: The maximum principle for an optimal solution to a differen-
tial inclusion with end points constraints. SIAM J. Control Optim. 25, 145–
157 (1987)

[19] Frankowska, H., Cernea, A.: A connection between the maximum principle
and dynamic programming for constrained control problems. SIAM J. Control
Optim. 44(2), 673–703 (2005)

[20] Hiriart-Urruty, J.B., Strodiot, J.J., Nguyen, V.H.: Generalized hessian matrix
and second-order optimality conditions for problems with c1,1 data. Appl. Math.
Optim. 11, 43–56 (1984)

[21] Lions, P.L.: Generalized Solutions of Hamilton-Jacobi Equations. Pitman
Advanced Publishing Program, Boston (1982)

[22] Lions, P.L.: Neumann type boundary conditions for Hamilton-Jacobi equa-
tions. Duke Math. J. 52, 793–820 (1985)

[23] Lions, P.L., Sznitman, A.S.: Stochastic differential equations with reflecting
boundary conditions. Commun. Pure Appl. Math. 37, 511–537 (1984)

[24] Milyutin, A.A., Osmolovskii, N.P.: Calculus of variations and optimal control.
Translations of Mathematical Monographs. American Mathematical Society, vol
180. Providence (1998). Translated from the Russian manuscript by Dimitrii
Chibisov

[25] Mordukhovich, B.S.: Variational analysis and generalized differentiation. I: Basic
theory. II: Applications. Springer, Berlin (2005)
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