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Abstract. We present a research program designed by A. Bressan and
some partial results related to it. First, we construct a probability mea-
sure supported on the space of solutions to a planar differential inclusion,
where the right-hand side is a Lipschitz continuous segment. Such mea-
sure assigns probability one to solutions having derivatives a.e. equal to
one of the endpoints of the segment. Second, for a class of planar dif-
ferential inclusions with Hölder continuous right-hand side F , we prove
existence of solutions whose derivatives are exposed points of F . Finally,
we complete the research program if the right-hand side of the differential
inclusion does not depend on the state and prove a result on the Lips-
chitz continuity of an auxiliary map. The proofs rely on basic properties
of Brownian motion.
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1. Introduction

Let F be a compact convex valued map from R
N into R

N and consider the
differential inclusion

ẋ ∈ F (x). (1.1)
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In his early pioneering paper [4], Cellina noted, in a particular case, that solu-
tions whose derivatives belong to the set of extremal points of F (x) (labeled
as “extremal solutions” in this paper) are rather special, in the sense that they
form a dense Gδ set in the set of solutions of (1.1) (a detailed discussion of
the conditions under which this statement holds can be found in the survey
paper [13]). Taking some inspiration from [4], F.S. De Blasi and G. Pianigiani
designed a new method for proving existence of extremal solutions to differen-
tial inclusions based on a Baire category argument. A thorough account of their
approach is contained in [13] (see also references therein, the further survey
paper [7], and the most recent paper [8]). Here we only describe it briefly.

Trying to prove existence of solutions for differential inclusions via usual
discretization methods, one immediately encounters the problem of pointwise
convergence of derivatives of the approximations (see, e.g., [5]). Designing an
algorithm ensuring such convergence is sometimes possible, as for example in
A.F. Filippov’s original proof of existence for differential inclusions with con-
tinuous compact valued right-hand side (see [9] or Theorem 1, p. 112, in [1]),
but it is certainly useless if the right-hand side does not have closed values, as
in the case of extremal points. The Baire category method, instead, does not
require any such algorithm. Rather, the set of extremal solutions is proved to
be the intersection of a sequence of open and dense subsets of a suitable com-
plete metric space (the set of solutions of the convexified differential inclusion),
and so by Baire’s theorem it is dense. In this way, the nonemptiness of a cer-
tain set, namely the set of extremal solutions, follows from showing the much
stronger fact that it is “large” in the sense of Baire category. This method has
proved to be very effective, even in Banach spaces, in order to establish the
existence of solutions to certain classes of nonconvex and nonclosed differen-
tial inclusions. In particular, it is possible to give another proof of Filippov’s
theorem (see [3]).

The present paper tries to consider the same problem from a probability
point of view rather than from a metric one. Immediately after the Introduc-
tion, Sect. 2 contains, nearly in its original form, a research program designed
by A. Bressan and proposed to the first author several years ago. Its aim is con-
structing a somewhat canonical probability measure in the space C([0, T ]; RN ),
which is supported exactly on the solution set of (1.1) and furthermore assigns
probability one to the set of all extremal solutions. In other words, the same
viewpoint of the Baire category method is taken, with a probabilistic idea of
“large” set in place of a topological one. The proposed construction is based
on the (uniformly distributed) Brownian motion on the unit sphere SN−1 of
R

N by exploiting essentially the following considerations:

1. for any Brownian path ω(·) and any x, the unit vector ω(t) selects an
extremal face of F (x) by normality (i.e., by maximization of a scalar
product);

2. for every x, normals to extremal faces of F (x) which are not singletons
form a zero measure subset of SN−1 and furthermore, along a solution
x(·) of (1.1), such normals should evolve with respect to time “much
slower” than the a.s. Brownian path. As a result, with probability one a
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solution x(·) of (1.1) whose derivative at a.e. time t maximizes the scalar
product with ω(t) among all vectors of F (x(t)) should not be orthogonal
to a face of F (x(t)). Thus it should be for a.e. t an extremal point of
F (x(t)), and actually an exposed point, as it will be explained later.
In this paper (see Sect. 5) we carry out the research program in the very

special case where F (x) is a segment in R
2, Lipschitz continuous with respect

to x (the outline of the argument is again due to A. Bressan). Furthermore
(Sect. 6), still remaining in a two dimensional setting, we prove that with prob-
ability one the solutions constructed by the method described in Sect. 2 are
actually exposed solutions. Here the right-hand side of (1.1) is a general convex
and compact set, Hölder continuous with respect to x, with exponent α > 1

2 .
This result can therefore be seen as a new existence result for (two dimen-
sional) differential inclusions, as extremal points are not necessarily exposed.
The program outlined in Sect. 2 is not completed in this case, since (under the
Lipschitz assumption) we are not able to prove the conjectured a.s. uniqueness
of exposed solutions associated with Brownian paths. The probabilistic facts
on which the results are based are proved in Sect. 4. Finally, we present some
remarks concerning the general case. In particular, the conjectures in Sect. 2
can be fully proved in R

N if the right-hand side of (2.1) is independent of x.
As an appendix (Sect. 8) we prove regularity of the auxiliary mapping used in
Section 2.

2. Random paths of differential inclusions

Let x �→ F (x) ⊂ R
N be a Lipschitz continuous multifunction with compact

convex values. Consider the Cauchy problem

ẋ(t) ∈ F
(
x(t)
)
, t ∈ [0, T ], (2.1)

x(0) = x̄. (2.2)

We wish to put a “canonical” probability measure μ on the space of continu-
ous functions C

(
[0, T ]; R

N
)

which is supported on the set S of trajectories of
(2.1)–(2.2). Moreover, calling Sext the set of trajectories of

ẋ(t) ∈ extF (x) (2.3)

with initial data (2.2),1 the following properties should hold:

for every open set U ⊂ C
(
[0, T ]; R

N
)
,

U ∩ S �= ∅ ⇐⇒ μ(U) > 0;
(P1)

μ(Sext) = 1. (P2)

The following construction represents an attempt to achieve this goal. Let
ω denote Brownian motion on the surface of the unit sphere SN−1 ⊂ R

N ,
with initial data uniformly distributed on SN−1. Of course, by symmetry this

1extK denotes the set of extremal point of a convex set K.
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implies that the random variable ω(t) is still uniformly distributed on SN−1

for every t > 0. The space Ω of all such Brownian paths will be our basic
probability space.

For each unit vector p we define the compact, convex set

F p(x) =
{
y ∈ F (x) : y · p = max

y′∈F (x)
y′ · p

}
. (2.4)

Given a sample path t �→ ω(t), we want to construct a solution t �→ xω(t) of
the reduced differential inclusion

ẋω(t) ∈ Fω(t) (x(t)) . (2.5)

Such solution certainly exists. We conjecture that it is unique, for almost every
ω ∈ Ω. To construct xω(·), one may proceed as follows. Define β(K) as the
barycenter of the ball B(K, 1) of radius 1 around the set K and set

Fm(x, p) :=
{
y ∈ F (x) : p · y +

1
m

≥ max
y′∈F (x)

p · y′
}
. (2.6)

For m ≥ 1 and each sample path ω, define xω
m as the unique solution to the

Cauchy problem2:

ẋ(t) = β
(
Fm

(
x(t), ω(t)

))
, x(0) = x̄. (2.7)

Letting m → ∞, we guess that both

xω
m(t) → xω(t) uniformly on [0, T ], (2.8)

and

ẋω(t) ∈ extF (xω(t)) (2.9)

hold for a.e. sample path ω ∈ Ω.

3. Technical preliminaries

We will denote by |E| the Lebesgue measure of a set E ⊂ R, by Hd the d-
dimensional Hausdorff measure, and by 1E the characteristic function of E,
i.e., 1E(t) = 1 if t ∈ E, 1E(t) = 0 if t /∈ E. The Hausdorff distance between
subsets of R

N will be denoted by H(·, ·), and the interior of a set A is intA. The
distance from a set K is denoted by dK(x) = inf{‖x − y‖ : y ∈ K}. It is well
known that if K is a closed and convex subset of R

N then dK ∈ C1(RN \K).
Moreover,

∇dK(x) = (x− πK(x))/dK(x) ∀x �∈ K, (3.1)

where πK(x) is the point in K closest to x, and ∇dK(x) is normal to K at
πK(x), i.e., 〈∇dK(x), y − πK(x)〉 ≤ 0 for all y ∈ K.

2 We recall (see [1, Theorem 1, p. 77]) that the barycentric selection from a Lipschitz set-
valued map is Lipschitz. The Lipschitz continuity of Fm will be proved in Sect. 8. Hence,
the uniqueness of the solution to (2.7) follows.
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Let K ⊂ R
N be closed and convex and let x ∈ K. We say that x is an

exposed point of K if there exists a support hyperplane to K which touches K
only at x. Equivalently, x is an exposed point of K if there exists a vector ζ
such that

ζ · (y − x) < 0 ∀y ∈ K, y �= x.

We denote by expK the set of exposed points of K. It is well known that
expK is nonempty for every compact and convex K ⊂ R

N .

Remark. Let K be the convex hull of the two closed circles B
(
(−1, 0), 1

)
and

B
(
(1, 0), 1

)
in R

2. The points (−1,±1) and (1,±1) are extremal points of K
(i.e., they do not belong to the relative interior of any segment contained in
K), but are not exposed. In particular, the set of exposed points of K is not
closed.
The support function to a convex closed set K is defined as

σK (p) = max
v∈K

p · v, p ∈ R
N .

Observe that

{v ∈ K : p · v = σK (p)} = ∂σK (p) , (3.2)

where ∂σK (p) is the subdifferential in the sense of Convex Analysis.
The following fact reflects the isometry between the space of convex com-

pact subsets of R
N and a cone in the space of continuous functions. Although

it is well known, we give a short proof for the sake of completeness.

Lemma 3.1. Let A,B be compact and convex in R
N . Then

H(A,B) = sup
p∈SN−1

|σA(p) − σB(p)|.

Proof. Let x ∈ A. If x �∈ B, set p = (x − πB(x))/d(x,B). Then clearly p ·
πB(x) = σB(p), so that |σA(p) − σB(p)| ≥ p · x − p · πB(x) = d(x,B). The
converse inequality is easy. �

For further definitions and results on set-valued analysis and differential
inclusions we refer to Chapters 1 and 2 in [1], while for basic definitions and
properties on stochastic processes and the scalar Brownian motion we refer to
Chapters 1 and 2 in [11].

We will denote by (Ω, ω(t),F , P ) a standard one dimensional Brownian
motion. In what follows we will consider also a real random variable Y , uni-
formly distributed on the interval [0, 2π], independent of F . We consider the
stochastic process Θ = ([0, 2π] × Ω, θ(t),L ⊗ F , Q ⊗ P ), where L denotes the
σ-algebra of Lebesgue measurable subsets of [0, 2π], Q denotes the normalized
Lebesgue measure on [0, 2π], and for each y ∈ [0, 2π] and ω ∈ Ω, θ = θy,ω(t) is
the unique angle in [0, 2π) such that eiθ(t) = ei(y+ω(t)). The distance between
two such angles θ1 and θ2, i.e., the length of the corresponding arc in the unit
circle, will be denoted by ρ(θ1, θ2).

Proposition 3.2. For all t ≥ 0, the random variable θ(t) is uniformly distributed
in [0, 2π].
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Proof. Let Φ : R → R be 2π-periodic, continuous, and bounded. We have

∫

[0,2π]×Ω

Φ(Y + ω(t)) dQ⊗ dP =
∫ 2π

0

∫ +∞

−∞
Φ(y + x)

e− x2
2t

√
2πt

dx
dy

2π

=
∫ 2π

0

∫ +∞

−∞
Φ(u)

e− (u−y)2

2t

√
2πt

dy
du

2π

=
∫ 2π

0

Φ(u)
2π

du.

�

4. Brownian paths and continuous functions

In order to proceed with the proofs we need two results on Brownian paths,
to which this section is devoted. In this section, I = [0, T ] is an interval and
(Ω, P ) is a standard Brownian motion.
The first result is concerned with the fact that a.s. a Brownian path cannot be
Hölder with exponent α > 1/2 on a set of positive measure (dependent on ω).

We are given a function ϕ : I×Ω → R, which is assumed to be measurable
in ω for all t ∈ I, and Hölder in t for a.e. ω ∈ Ω (with the same exponent α > 1

2
and the same constant L > 0). We denote by A := {(t, ω) ∈ I × Ω : ω (t) =
ϕ (t, ω)} and by At := {ω ∈ Ω : ω (t)=ϕ (t, ω)}, Aω := {t ∈ I :ω (t)=ϕ (t, ω)}
the sections of the set A.

The following is the main result on this point.

Theorem 4.1. Under the assumptions above, P -almost surely the set Aω is
negligible w.r.t. the Lebesgue measure. More precisely, given η > 0 there exists
at most a finite set of points J ⊂ I such that P (At) ≥ η for t ∈ J .

The proof requires the following lemma:

Lemma 4.2. For each finite number of points 0 ≤ t1 < t2 < t3 < · · · < tn ≤ T
the inequality

P

[
n⋃

i=1

Ati

]

≥
n∑

i=1

P (Ati
) − L√

2π
hα− 1

2n (n− 1) , (4.1)

where h := max {|ti − tj | : 1 ≤ i, j ≤ n}, holds.

Proof. We prove this statement by induction w.r.t. n = 1, 2, . . .. For n = 1 it
is obvious. Assume now that for a given n the inequality (4.1) holds. Then for
n+ 1 points we have:

P

[
n+1⋃

i=1

Ati

]

= P

[
n⋃

i=1

Ati

]

+ P
(
Atn+1

)
− P

[(
n⋃

i=1

Ati

)

∩Atn+1

]

. (4.2)
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Applying now the induction hypothesis we obtain from (4.2)

P

[
n+1⋃

i=1

Ati

]

≥
n+1∑

i=1

P (Ati
) − L√

2π
hα− 1

2n (n− 1)

−P
[

n⋃

i=1

(
Ati

∩Atn+1

)
]

. (4.3)

Let us estimate each probability P
(
Ati

∩Atn+1

)
, i = 1, 2, . . . , n. By our defi-

nition we obviously have:

Ati
∩Atn+1 ⊂ {ω ∈ Ω : |ω (tn+1) − ω (ti)| ≤ L (tn+1 − ti)

α} .
Set hi := tn+1 − ti. We have:

P
(
Ati

∩Atn+1

)
≤ P {ω ∈ Ω : −Lhα

i ≤ ω (ti + hi) − ω (ti) ≤ Lhα
i }

=
1√

2πhi

∫ Lhα
i

−Lhα
i

exp
(

− x2

2hi

)
dx

=
1√
2π

∫ Lh
α− 1

2
i

−Lh
α− 1

2
i

exp
(

−s2

2

)
ds

≤ L

√
2
π

(h′)α− 1
2 , (4.4)

where h′ := max {|ti − tj | : 1 ≤ i, j ≤ n+ 1}. Then by semiadditivity of the
probability we conclude from (4.4):

P

[
n⋃

i=1

(
Ati

∩Atn+1

)
]

≤ L

√
2
π

(h′)α− 1
2n.

From (4.3) it follows now that

P

[
n+1⋃

i=1

Ati

]

≥
n+1∑

i=1

P (Ati
) − L√

2π
(h′)α− 1

2n (n− 1) − L
1√
2π

(h′)α− 1
2 · 2n

=
n+1∑

i=1

P (Ati
) − L√

2π
(h′)α− 1

2 (n+ 1)n,

and the lemma is proved. �

We are now ready for the proof of Theorem 4.1.

Proof. Let us assume by contradiction that there exists a sequence of different
points {t1, t2, . . . , tn, . . .} ⊂ I such that P (Ati

) ≥ η, i = 1, 2, . . .. Since I is a
compact interval, the sequence {tn} admits a cluster point τ ∈ I. Without loss
of generality (taking a subsequence if necessary) we can assume that {tn} is
strictly monotone (say, increasing) and converges to τ . Since {tn} is a Cauchy
sequence, given N = 1, 2, . . . we can choose k (N) such that

|tm − tn| ≤
(
η2π

2L2
· 1
N2

) 1
2α−1

(4.5)
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whenever m,n ≥ k (N). Let us consider the following family of sets
{
Atk(N) , Atk(N)+1 , Atk(N)+2 , . . . , Atk(N)+N

}

and apply to them Lemma 4.2. We have here N + 1 sets, and the probability
of each of them is ≥ η. Furthermore (see (4.5)),

h := max {|ti − tj | : i, j = k (N) , k (N) + 1, . . . , k (N) +N}

≤
(
η2π

2L2
· 1
N2

) 1
2α−1

.

Thus, we obtain from (4.1):

P

[
N⋃

i=0

Atk(N)+i

]

≥ (N + 1) η − L√
2π

· η
√
π√

2LN
N (N + 1) =

1
2

(N + 1) η,

and this is a contradiction because N = 1, 2, . . . can be chosen as large as we
want.

Now the first statement of Theorem 1 follows directly from the above
remark and Fubini’s theorem. �

The second result of the section is concerned with the probability of a
Brownian path to remain close to a given continuous function. Although it is
well known, we present a proof for the sake of completeness.

Proposition 4.3. Let ϕ : I → [0, 2π] be continuous. Let ε > 0 and y be such
that ρ(y, ϕ(0)) < ε/2. Then

P {ω : ρ(y + ω(t), ϕ(t)) < ε ∀t ∈ I} > 0.

Proof. Let

w(δ) = sup
s,t∈I, |t−s|≤δ

|ϕ(t) − ϕ(s)|

and set

η(δ) = max

{

w(δ), 2

√

δ log log
1
δ

}

.

Let δ̄ be such that 0 < δ < δ̄ implies η(δ) < ε/2. If 0 < δ < δ̄ is small enough,
then, by the Law of the Iterated Logarithm (see, e.g., Theorem 2.9.23 in [11])
and the distribution of ω(δ) we have

P
{
ω : ρ(y + ω(t), ϕ(t)) < ε ∀t ∈ [0, δ], ρ

(
y + ω(δ), ϕ(δ)

)
<
ε

2

}
> 0.

Since, ω(δ + t) − ω(δ) is still a Brownian motion, we can repeat the above
procedure n times, until nδ > T . �
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5. A special case

This section is devoted to the case where

F (x) = co
{
f(x), g(x)

}
⊂ R

2 (5.1)

with f, g Lipschitz vector fields with Lipschitz constant L, such that f(x) �=
g(x) for every x ∈ R

2. Without loss of generality, we assume also that ‖f(x)‖,
‖g(x)‖ ≤ M for all x ∈ R

2.
Let T > 0 be fixed. Given the process Θ defined in Sect. 3, let t �→

xθ(t)(= xy,ω(t)) be the solution to the Cauchy problem

ẋ(t) =
{
f(x(t)) if cos θy,ω(t) > 0,
g(x(t)) if cos θy,ω(t) < 0, x(0) = x̄. (5.2)

By standard properties of Brownian motion, with probability one we have

cos θy,ω(t) �= 0 for a.e. t ∈ [0, T ]. (5.3)

Therefore the solution of (5.2) is a.s. well defined. Moreover,

Proposition 5.1. With probability one the Cauchy problem (5.2) admits a
unique solution on [0, T ].

Proof. Fix θ(·) such that (5.3) holds. Then, for a.e. t ∈ [0, T ] the right-hand
side of (5.2) is Lipschitz with respect to x, and for all x it is measurable
with respect to t. Then the statement follows from the measurable version of
Picard–Lindelöf theorem (see, e.g., [16, p. 121]). �

For every x ∈ R
2 consider the angle α(x) between the vector f(x)−g(x) and the

positive x1-axis (defined up to multiples of 2π). For every (y, ω) ∈ [0, 2π) × Ω
the map

t �→ αy,ω(t) .= α(xy,ω(t)) (5.4)

is Lipschitz continuous. For each fixed y ∈ [0, 2π), we are now going to con-
struct a new probability measure P̃y on Ω such that the push-forward of P̃y

w.r.t. the map
ω(t) �→ ω(t) + αy,ω(t)

is Wiener measure (i.e., standard Brownian motion).

Proposition 5.2. For each fixed y ∈ [0, 2π] there exists a probability measure
P̃y on Ω absolutely continuous with respect to P such that

dP̃y

dP
= exp

[
−
∫ t

0

α̇y,ω(s) dω(s) − 1
2

∫ t

0

(α̇y,ω(s))2 ds
]
,

and

(Ω, ω(t) + αy,ω(t),F , P̃y) is a Brownian motion.

Proof. We wish to apply the Cameron–Martin–Girsanov formula (see [11, Sec-
tion 3.5]) to ω(t) + αy,ω(t). To this aim, we need to prove that
1. (t, ω) �→ α̇y,ω(t) is jointly measurable and Ft-adapted (we consider the

natural filtration Ft);
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2. the Novikov condition (see Corollary 5.13 in [11, Chapter 3]) holds, i.e.,

E

[
exp
(

1
2

∫ τ

0

(α̇y,ω(s))2 ds
)]

< +∞ for all τ ≥ 0.

Observe that (y, ω) �→ xy,ω(t) is jointly measurable and Ft-adapted, since
xy,ω is the solution of the differential equation (5.2). By Lipschitz continuity
of xy,ω (which is uniform with respect to ω and y), the (left) derivative ẋy,ω(t)
is P -a.s. defined for a.e. t ∈ [0, T ]. By setting ẋy,ω(t) = 0 for those (t, ω)
where ẋy,ω(t) does not exist, we obtain a process which is jointly measurable,
Ft-adapted, and bounded. Hence conditions 1) and 2) are satisfied. �

We define now a new probability measure on [0, 2π) × Ω by setting, for
all 0 ≤ a ≤ b < 2π and all F-measurable set B

P̃ ([a, b] ×B) =
∫ 2π

0

P̃y(B)Q(dy) (5.5)

and a probability measure μ on C([0, T ]; R2) by setting, for every Borel set A,

μ(A) = P̃{(y, ω) : xy,ω ∈ A}.
The definition is meaningful, since the single-valued map (y, ω) �→ xy,ω is
measurable.

In order to show that the probability measure μ satisfies all the expected
requirements, we need to prove the following:

Proposition 5.3. 1. supp(μ) = S, i.e., for every open set U ⊂ C([0, T ]; R2),

μ(U) > 0 if and only if U ∩ S �= ∅,
i.e., if and only if U contains solutions of ẋ ∈ co{f(x), g(x)}, x(0) = x̄;

2. μ
{
x ∈ S : ẋ(t) ∈ {f(x(t)), g(x(t))}for a.e.t ∈ [0, T ]

}
= 1.

Proof. Let U ⊂ C([0, T ]; R2) be open. If U ∩ S = ∅, then, obviously by con-
struction, μ(U) = 0. Conversely, assume U ∩S �= ∅, fix x ∈ U ∩S and let ε > 0
be such that

‖y − x‖∞ < ε ⇒ y ∈ U. (5.6)

We wish to prove that

μ
{
y : ẏ ∈ co {f(y), g(y)} a.e. and ‖y − x‖∞ < ε

}
> 0. (5.7)

For each n = 1, 2, . . . , i = 0, . . . , n − 1, set tin = iT
n and Ii

n = [tin, t
i+1
n ). Let

λ : [0, T ] → [0, 1] be measurable and such that, a.e. on [0, T ],

ẋ(t) = λ(t)f(x(t)) + (1 − λ(t))g(x(t)).

By a Corollary of Lyapunov’s Convexity Theorem (see [12, Theorem 2]), for
every i = 0, . . . , n− 1, there exists a measurable subset Ei

n of Ii
n such that

∫

Ei
n

f(x(t)) dt =
∫

Ii
n

λ(t)f(x(t)) dt,
∫

Ii
n\Ei

n

g(x(t)) dt =
∫

Ii
n

(1 − λ(t))g(x(t)) dt.
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Define

un(t) =
n∑

i=1

[
1Ei

n
(t)f(x(t)) + 1Ii

n\Ei
n
(t)g(x(t))

]
,

xn(t) = x̄+
∫ t

0

un(s) ds.

Observe that, by construction, xn(tin) = x(tin) for all i = 0, . . . , n − 1. There-
fore, for each t ∈ Ii

n,

‖x(t) − xn(t)‖ ≤
∫

Ii
n

|1Ei
n

− λ(t)|
(
‖f(x(s))‖ + ‖g(x(s))‖

)
ds ≤ 2TM

n
. (5.8)

Moreover, since by construction ẋn(t) ∈
{
f(x(t)), g(x(t))

}
for a.e. t ∈ [0, T ],

we have

d
(
ẋn(t),

{
f(xn(t)), g(xn(t))

})
≤ L‖xn(t) − x(t)‖ ≤ 2TLM

n
.

Therefore, by Filippov’s theorem (see Theorem 2.4.1 in [1]) there exists a solu-
tion yn : [0, T ] → R

2 of the Cauchy problem

ẋ ∈
{
f(x), g(x)

}
, x(0) = x̄

such that

‖yn − xn‖∞ ≤ 2TM
n

(
eLT − 1

)
. (5.9)

Let An ⊆ [0, T ] be such that ẏn(t) = f(yn(t)) for a.e. t ∈ An and ẏn(t) =
g(yn(t)) for a.e. t ∈ Bn := [0, T ] \ An. Let Cn (resp., Kn) be a closed subset
of An (resp., of Bn) such that |An \ Cn| < 1

n (resp., |Bn \ Kn| < 1
n ). Let

ϕn : [0, T ] → [0, 2π] be continuous and such that

ϕn(t) = 0 for all t ∈ Cn,

ϕn(t) = π for all t ∈ Kn.

For every sample path θ(·) = θy,ω such that ρ
(
θ(t), ϕn(t)

)
< 1

n for all t ∈ [0, T ]
we have

‖xy,ω(t) − yn(t)‖ ≤
∫

Cn∩[0,t]

‖f(xy,ω(s)) − f(yn(s))‖ ds

+
∫

Kn∩[0,t]

‖g(xy,ω(s)) − g(yn(s))‖ ds

+
∫

[0,t]\(Cn∪Kn)

(
‖ẋy,ω(s)‖ + ‖ẏn(s)‖

)
ds

≤ L

∫ t

0

‖xy,ω(s) − yn(s)‖ ds+
4M
n
.

Therefore, by Gronwall’s lemma

‖xy,ω − yn‖∞ ≤ 4M
L

(eLT − 1)
1
n
. (5.10)
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Thus, by putting together (5.8), (5.9), and (5.10) we obtain that for all n ∈ N

large enough if θy,ω satisfies the inequality ρ
(
θy,ω(t), ϕn(t)

)
< 1

n for all t ∈
[0, T ], then

‖x− xy,ω‖∞ < ε.

On the other hand, for all n = 1, 2, . . . we have

Q⊗ P
{
θ : ρ

(
θ(t), ϕn(t)

)
<

1
n

∀t ∈ [0, T ]
}

=
1
2π

∫ 2π

0

P
{
ρ
(
ω(t) + y, ϕn(t)

)
<

1
n

∀t ∈ [0, T ]
∣
∣
∣Y = y

}
dy.

Recalling Proposition 4.3, the integrand in the above expression is positive for
a set of y ∈ [0, 2π] with positive measure. Thus

Q⊗ P
{
θ : ρ

(
θ(t), ϕn(t)

)
<

1
n

∀t ∈ [0, T ]
}
> 0 ∀n = 1, 2 . . . (5.11)

By Proposition 5.2,

P̃
{
θ : cos θ(t) �= 0 a.e.

}
= 1.

Now set θ̃(t) = θ(t) + αy,ω(t) and observe that the condition cos θ(t) > 0
(resp., cos θ(t) < 0) means exactly that the angle between (cos θ̃(t), sin θ̃(t))
and f(xy,ω(t))− g(xy,ω(t)) belongs to the interval (−π/2, π/2) (resp., to (π/2,
3π/2)). Therefore,

P̃
{

(y, ω) :
(
cos θ̃(t), sin θ̃(t)

)
· ẋy,ω(t) = max

{(
cos θ̃(t), sin θ̃(t)

)
· v :

v ∈ {f(xy,ω(t)), g(xy,ω(t))}
}

a.e. in [0, T ]
}

= 1,

whence, in particular,

P̃
{

(y, ω) : ẋy,ω(t) ∈
{
f(xy,ω(t)), g(xy,ω(t))

}
for a.e. t ∈ [0, T ]

}
= 1.

Consequently,

μ
{
x : ẋ ∈ {f(x), g(x)}a.e. in[0, T ]

}

= P̃
{

(y, ω) : ẋy,ω(t) ∈
{
f(xy,ω(t)), g(xy,ω(t))

}
a.e.
}

= 1,

and Part 2) is proved, by recalling that (Ω, ω(t)+αy,ω(t),F , P̃y) is a Brownian
motion. In order to conclude the proof of Part 1), observe that we have

μ
{
z : ż ∈ co {f(z), g(z)}a.e. and‖z − x‖∞ < ε

}
≥ P̃

{
θ̃ : ‖θ̃ − ϕn‖∞ <

1
n

}
,

and the right-hand side of the above inequality is positive thanks to Proposi-
tion 5.2 and (5.11). The proof is concluded. �

Remarks. 1. In this case, the properties of the measure μ conjectured in Sect. 2
are fully satisfied. In fact, by construction the differential inclusion (2.5) has
μ-a.s. a unique solution. Thus the sequence constructed according to (2.7) is
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Cauchy (and actually is Cauchy in the strong topology of W 1,1([0, T ]; R2), see
the end of the proof of Theorem 6.1).

2. The argument using Girsanov’s formula can be likely extended to Lips-
chitz polyhedra in the plane, provided angles between adjacent vertices with
respect to a suitable internal point (e.g., the barycenter) remain unchanged.
An extension to general Lipschitz polyhedra should instead require as many
independent Brownian motions as couples of vertices.

6. Exposed solutions in the plane

Let F be a compact and convex valued map from R
2 into R

2. We will assume
that F is Hölder continuous with exponent α > 1

2 , i.e., there exists a constant
L such that

H
(
F (x1), F (x2)

)
≤ L‖x1 − x2‖α ∀x1, x2 ∈ R

2,

where we recall that H(·, ·) denotes the Hausdorff distance between subsets of
R

2. Assume that there exists a constant M such that

‖v‖ ≤ M ∀v ∈ F (x), ∀x ∈ R
2.

We will consider again the stochastic process Θ constructed in Sect. 3. For
each sample path θ of Θ set

νθ(t) = (cos θ(t), sin θ(t))

and observe that a.s. νθ is continuous. We note now that a.s. the differential
inclusion

ẋθ(t) ∈ F νθ(t)(xθ(t)), xθ(0) = x̄ (6.1)

(recall (2.5)) admits solutions. Indeed, it is enough to observe that for a.e. θ
and every t the map x �→ F νθ(t)(x) has closed graph and compact convex
values, and the same happens to t �→ F νθ(t)(x) for every x.

Our aim is to prove the following

Theorem 6.1. Under the above assumptions on F , for every x̄ ∈ R
2 and for

every T > 0 the Cauchy problem

ẋ ∈ expF (x), x(0) = x̄ (6.2)

admits a Carathéodory solution in [0, T ]. More precisely, with probability one,
all solutions of (6.1) are solutions of (6.2), i.e.,

P̃
{

(y, ω) : there exists a solution x of (6.1) such thatẋ(t) /∈ expF (x(t))

in a t-set of positive Lebesgue measure
}

= 0.

Moreover, with probability one the sequence constructed according to (2.7) is
relatively compact in the strong topology of W 1,1([0, T ]; R2).
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Proof. Fix T > 0. Given an arbitrary sample path θ = θy,ω ∈ Θ define Xθ

to be the set of all solutions to (6.1) and observe that Xθ is compact in
C([0, T ]; R2). Applying properties of measurable relations (see, e.g., [10]) one
can easily prove that the map θ �→ Xθ is measurable. Therefore, by the separa-
bility of the space C([0, T ]; R2), there exists a sequence of measurable selections
{xθ

n} such that Xθ equals the closure of {xθ
n} in C([0, T ]; R2) for all θ. We wish

to prove that, almost surely,

max
x∈Xθ

diam
(
F νθ(t)(x(t))

)
> 0

on a t-set of Lebesgue measure zero. Here diam (A) means the diameter of a set
A. Observe that, thanks to the upper semicontinuity of the map x �→ F νθ(t)(x),
for all t ∈ [0, T ] the maximum above is attained and equals the supremum over
the sequence {xθ

n}. Thus we need to show that, for every n ∈ N,

Q⊗ P
{
θ : ∃E = E(θ)with|E| > 0 such that

diam
(
F νθ(t)(xθ

n(t))
)
> 0 ∀t ∈ E

}
= 0. (6.3)

To this aim, fix n and consider the function (we now drop the subscript
n from xθ

n)

Ψ(θ, t) = diam
(
F νθ(t)(xθ(t))

)
,

which is jointly measurable (see [10]).
Fix η > 0 and consider the measurable sets

Eη(θ) := {t ∈ [0, T ] : Ψ(θ, t) > η} , θ ∈ Θ,

and

Θη := {θ : |Eη(θ)| > 0} .
Observe that θ ∈ Θη means that

Γ(θ, t) := F νθ(t)(xθ(t))

is a segment in R
2 of length greater than η on a set of positive measure. Our

goal now is to prove that Q ⊗ P (Θη) = 0. To this end we fix θ ∈ Θη and
choose a closed set Êη(θ) ⊂ Eη(θ) with positive measure such that the map-
pings t �→ Γ(θ, t), t �→ Ψ(θ, t) and t �→ νθ(t) restricted to Êη(θ) are continuous.
Without loss of generality we can assume that each point of Êη(θ) is of positive
density with respect to Êη(θ).

Fix t̄ ∈ Êη(θ) and given 0 < ε < η/3 choose δ = δ(θ) > 0 such that

|νθ(t) − νθ(t̄)| ≤ π
4 ,

H
(
Γ(θ, t),Γ(θ, t̄)

)
≤ ε

3 ,

and

|Ψ(θ, t) − Ψ(θ, t̄)| ≤ ε
3

whenever t ∈ Êη(θ) with |t − t̄| ≤ δ. We can represent Γ(θ, t̄) as Γ(θ, t̄) =
{λā + (1 − λ)b̄ : λ ∈ [0, 1]} for some ā, b̄ ∈ R

2 with |ā − b̄| > η, and observe
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that the set Ẽη(θ) := Êη(θ) ∩ [t̄ − δ, t̄ + δ] has positive measure as well. We
now use Lemma 3.1, which gives

sup
p∈S1

∣
∣σF (xθ(t))(p) − σF (xθ(s))(p)

∣
∣ = H

(
F (xθ(t)), F (xθ(s))

)

≤ L|xθ(t) − xθ(s)|α

≤ LMα|t− s|α (6.4)

for all s, t ∈ Ẽη(θ) (recall that F (xθ(t)) ⊂ B(0,M)). For each t ∈ Ẽη(θ) choose
an arbitrary point at ∈ Γ(θ, t). Taking into account that νθ(t) ∈ S1 and

νθ(t) · at = σF (xθ(t))(νθ(t)),

we deduce from (6.4) that

νθ(s) · (at − as) ≤ LMα|t− s|α (6.5)

and

νθ(t) · (as − at) ≤ LMα|t− s|α. (6.6)

By summing the inequalities (6.5) and (6.6) we obtain
(
νθ(t) − νθ(s)

)
·
(
as − at

)
≤ 2LMα|t− s|α. (6.7)

It follows from simple geometric considerations that for each t ∈ Ẽη(θ) the end-
points of the segment Γ(θ, t) are located in the ε-neighborhoods of the points
ā and b̄, respectively. Consequently, for every s, t ∈ Ẽη(θ) we can choose suit-
able at ∈ Γ(θ, t) ∩ B(ā, ε), as ∈ Γ(θ, s) ∩ B(b̄, ε) or at ∈ Γ(θ, t) ∩ B(b̄, ε),
as ∈ Γ(θ, s) ∩B(ā, ε) such that the scalar product in (6.7) is positive. On the
other hand, since ‖νθ(t)‖ = ‖νθ(s)‖ = 1 elementary geometric considerations
show that νθ(t)−νθ(s) is parallel to some vector with endpoints in B(ā, ε) and
B(b̄, ε). Therefore we conclude that

sin γ(t, s) ≤ 2ε
η
, (6.8)

where γ(t, s) is the angle between the vectors νθ(t) − νθ(s) and as − at. Com-
bining the inequalities (6.7) and (6.8) we obtain

‖νθ(t) − νθ(s)‖ ‖at − as‖ ≤ 2LMαη
√
η2 − 4ε2

|t− s|α. (6.9)

Since ‖at − as‖ ≥ Ψ(θ, t̄) − 2ε > η − 2ε ≥ η/3, we finally obtain from (6.9)

‖νθ(t) − νθ(s)‖ ≤ 18LMα

√
5η

|t− s|α, t, s ∈ Ẽη(θ). (6.10)

Recalling Theorem 4.1 and (6.10), we obtain

Q⊗ P
(
Θη

)
=

1
2π

∫ 2π

0

P
{
Θη

∣
∣Y = y

}
dy = 0.
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Setting η = 1
n , n = 1, 2, . . . , we see that

{
Θ1/n

}
is an increasing sequence of

measurable subsets of Θ such that

Θ0 := {θ ∈ Θ : |{t : Ψ(θ, t) > 0}| > 0} =
∞⋃

n=1

Θ1/n,

and Q⊗ P (Θ0) = 0. Thus (6.3) is proved.
The statement on the strong compactness follows from Theorem 4.1 in

[6] (see also the proof of Lemma 3.2 in the same paper) or from [15, Theorem
4.1], by taking into account that exposed points are also extremal. However,
for the sake of completeness we give here a direct proof using exposedness.

Since the sequence of solutions to (2.7) is relatively weakly compact in
W 1,1

(
[0, T ] ; R2

)
, it suffices to prove that each sequence of solutions {xn (·)}

to (2.1)–(2.2) weakly converging in W 1,1
(
[0, T ] ; R2

)
to an exposed solution

x (·) converges also strongly, i.e.,
T∫

0

‖ẋn (t) − ẋ (t)‖ dt → 0 as n → ∞. (6.11)

First off all, by the measurable selection theorem we can associate with {ẋn (·)}
a sequence of measurable functions vn (t) ∈ F (x (t)) such that

‖ẋn (t) − vn (t)‖ ≤ L ‖xn (t) − x (t)‖α → 0, (6.12)

t ∈ [0, T ]. The convergence in (6.12) follows from the weak convergence of the
derivatives ẋn (·) in L1

(
[0, T ] ; R2

)
. Hence, the sequence {vn (·)} converges to

ẋ (·) weakly as well. Since ẋ (t) ∈ expF (x (t)) for a.e. t ∈ [0, T ], there exists
a measurable function p (·), ‖p (t)‖ = 1, such that

p (t) · (ẋ (t) − y) > 0 (6.13)

for all y ∈ F (x (t)) with y �= ẋ (t). Assuming that {vn (·)} does not converge
to ẋ (·) in measure, we choose ε > 0 and δ > 0 such that, up to a subsequence,

∣
∣{t ∈ [0, T ] : ‖vn (t) − ẋ (t)‖ ≥ ε

}∣∣ ≥ δ, n ≥ 1. (6.14)

Let us consider the measurable function (modulus of rotundity)

ρε (t) := inf {p (t) · (ẋ (t) − y) : y ∈ F (x (t)) , ‖ẋ (t) − y‖ ≥ ε} , t ∈ [0, T ] ,

and find a closed set T ⊂ [0, T ] such that |[0, T ] �T | ≤ δ/2 and ρε (t) is
continuous on T . It follows from (6.13) that

m := min
t∈T

ρε (t) > 0.

Denoting by Tn the measurable set in (6.14), observe that |Tn ∩ T | ≥ δ/2. On
the other hand, for t ∈ Tn,

p (t) · (ẋ (t) − vn (t)) ≥ ρε (t) ≥ m 1Tn∩T (t) . (6.15)

Integrating the left-hand side of (6.15) and using (6.13) and (6.15), we obtain
T∫

0

p (t) · (ẋ (t) − vn (t)) dt ≥ m
∣
∣Tn ∩ T

∣
∣ ≥ mδ

2
> 0,
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which contradicts the weak convergence. Thus, recalling (6.12) and using the
convergence in measure proved above we obtain (6.11). �
Remarks. 1. It is reasonable to conjecture that the above result can be gen-
eralized to N -dimensional spaces, provided ∂F admits only extremal faces of
dimension 0 and N − 1.

2. In the above setting we are not able to define a measure μ on C([0, T ];
R

2) with the properties (P1) and (P2) stated in Sect. 2. In fact, although the
proof shows that the differential inclusion (2.5) (with θ(t) in place of ω(t) in
the present notation) is a.s. a differential equation, we are not able to prove
uniqueness of solutions, even if F is Lipschitz. This fact prevents the use of
the push-forward of Q⊗ P .

7. The x independent case

This section is devoted to the much easier case where the space variable in the
right-hand side F of (2.1) is replaced by the time variable. All results can be
proved here in full generality.

We recall first a result on convex sets.

Proposition 7.1. Let K ⊂ R
N be compact and convex. Then, for HN−1-a.e. p ∈

SN−1, the problem

max
y∈K

p · y (7.1)

admits a unique solution.

Proof. It is enough to observe that the support function σK (p) is HN−1-a.e.
differentiable on SN−1 by Rademacher’s theorem and to recall the represen-
tation (3.2). �
Let F be a measurable map from [0, T ] into the compact and convex subsets
of R

N and let (Ω, P ) denote Brownian motion on SN−1 whose sample paths
ω(t) are uniformly distributed on SN−1. For every ω ∈ Ω, we define (see (2.4))

Fω(t) = Fω(t)(t).

Then (t, ω) �→ Fω(t) is jointly measurable (see [10]) and, thanks to Proposition
7.1, P -a.s. Fω(t) is a singleton for a.e t ∈ [0, T ]. Set, for all ω ∈ Ω, t ∈ [0, T ],

xω(t) = x̄+
∫ t

0

Fω(s) ds,

where the integral is meant in the Aumann sense if Fω is not single valued,
and

S =
{
xω(·) : ω ∈ Ω

}
, Sexp =

{
xω(·) : ω ∈ Ω, Fω(·) is a.e. a singleton

}
.

Define the probability measure μ on C([0, T ]; RN ) by setting, for each Borel
set B ⊂ C([0, T ]; RN ),

μ(B) = P{ω : xω is a singleton andxω ∈ B}.
Then we have
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Theorem 7.2. Under the above assumptions on F and Ω, the following holds:

1. μ(Sexp) = 1;
2. the support of μ is S;
3. P -a.s. on Ω, the sequence {xω

m} defined according to (2.7) converges to
xω strongly in W 1,1(0, T ; RN ).

Proof. For the sake of brevity, the proof will only be sketched.
Statement 1) is obvious by construction. Statement 2) can be proved with
the same argument of part 1) in Proposition 5.3, by using Lyapunov’s Con-
vexity Theorem and Proposition 4.3. More precisely, let x(t) = x̄+

∫ t

0
ξ(s) ds,

ξ(s) ∈ Fω(s), s ∈ [0, T ], be in S. Recalling Theorem 18.7 in [14] and [10], there
exist sequences {ξj

n : n ∈ N} of measurable selections of t �→ expF (t) and of
measurable functions {λj

n}, n ∈ N, j = 1, . . . , N + 1 with values in [0, 1] such
that

∑N+1
j=1 λj

n ≡ 1 for all n and

ξ(t) = lim
n→∞

N+1∑

j=1

λj
n(t)ξj

n(t) for a.e. t ∈ [0, T ].

Partition [0, T ] into subintervals Ii
m of length T/m, m = 1, 2, . . ., i = 1, . . . ,m.

By Lyapunov’s Convexity Theorem (see [12, Theorem 2]) for each n ∈ N there
exist measurable partitions Ei,j

m,n of the intervals Ii
m such that, for all n ∈ N,

m = 1, 2, . . ., j = 1, . . . , N + 1, i = 1, . . . ,m one has
∫

Ei,j
m,n

ξj
n(t) dt =

∫

Ii
m

λj
n(t)ξj

n(t) dt.

Define, for n ∈ N, t ∈ [0, T ],

um,n(t) =
m∑

i=1

N+1∑

j=1

1Ei,j
m,n

(t)ξj
n(t), xm,n(t) = x̄+

∫ t

0

um,n(t) dt.

Now it is easy to see that the sequence {xn,n} converges to x uniformly in
[0, T ]. The remainder of the proof goes on exactly as in Proposition 5.3. State-
ment 3) follows from the fact that P -a.s. ẋω(t) ∈ expF (t) for a.e. t ∈ [0, T ] by
using Olech’s Lemma (see Lemma 1 in [12]), or the same argument presented
at the end of the proof of Theorem 6.1. �
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8. Appendix: the modulus of continuity of an auxiliary map

The section is devoted to the following result on the modulus of continuity of
the map defined by formula (2.6). Observe that the problem considered here
does not fit into the standard results for intersections of set valued maps, since
the values of F may have empty interior.

Proposition 8.1. Let F be a Hausdorff continuous map from R
N into the fam-

ily of all compact and convex subsets of R
N . Assume that F is bounded, i.e.,

there exists M such that ‖v‖ ≤ M for all v ∈ F (x), x ∈ R
N . Fix ε > 0 and

define

Gε(x, p) =
{
v ∈ F (x) : σF (x)(p) ≤ v · p+ ε

}
,

x ∈ R
N , p ∈ SN−1. Then, there exists a constant C independent of M, ε such

that, for all x′, x′′ ∈ R
N and all p ∈ SN−1,

H
(
Gε(x′, p), Gε(x′′, p)

)
≤ CM

ε
H
(
F (x′), F (x′′)

)
.

Proof. We use here the representation of the Hausdorff distance given by
Lemma 3.1.

Fix x ∈ R
N . We claim that for each p, q ∈ SN−1

σGε(x,p)(q) = inf
λ≥0

[
σF (x)(q + λp) + λ

(
ε− σF (x)(p)

)
∨ 0
]
, (8.1)

where the infimum is attained at some 0 ≤ λ̄ ≤ 2M/ε.
In order to prove the above claim, set A = F (x) and consider the closed

affine half space

Δ(A, p) = {v ∈ R
N : σA(p) ≤ ε+ v · p}.

Observe that A ∩ intΔ(A, p) �= ∅, so that 0 ∈ int(A − Δ(A, p)). Therefore we
can apply [2, (31), p. 32], obtaining that

σGε(x,p)(q) = inf
q1+q2=q

[
σA(q1) + σΔ(A,p)(q2)

]
,

where the infimum is taken among those q2 for which σΔ(A,p)(q2) < +∞.
Obviously, we have

σΔ(A,p)(q2) =

⎧
⎨

⎩

λ(ε− σA(p)) if q2 = −λp, σA(p) ≤ ε, λ ≥ 0,
0 if q2 = −λp, σA(p) > ε, λ ≥ 0,
+∞ otherwise.

Therefore,

σGε(A,p)(q) = inf
λ≥0

[
σA(q + λp) + λ

(
ε− σA(p)

)
∨ 0
]
.

Set

ψ(λ) = σA(q + λp) + λ
(
ε− σA(p)

)
∨ 0

and observe that ψ(λ) ≥ λε − σA(−q) for all λ ≥ 0 and all p, q. Thus, being
continuous and convex with respect to λ, this function admits a minimizer
λ̄ = λ̄(A, p, q) ≥ 0. Obviously, σGε(A,p)(q) = ψ(λ̄) ≤ ψ(0) = σA(q). Set λ∗ =
(σA(q) + σA(−q))/ε and observe that necessarily we have ψ(λ∗) ≥ λ∗ε −
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σA(−q) = σA(q). Moreover, λ∗ ≥ 0 and λ∗ = 0 if and only if q · y is constant
over y ∈ A, whence λ̄ = 0. Therefore

λ̄ ≤ λ∗ ≤ σA(q) + σA(−q)
ε

≤ 2M
ε

as claimed.
We are now ready to conclude the proof of the theorem. To this aim, fix

q ∈ SN−1 and let x′, x′′ ∈ R
N , p ∈ SN−1. Assume first σF (x′′)(q) ≤ ε and let

λ̄ be taken from the above claim for A = F (x′′). Then by (8.1) we have

σGε(x′,p)(q) ≥ σF (x′′)(q + λ̄p) + λ̄
(
ε− σF (x′′)(p)

)

−
∣
∣σF (x′′)(q + λ̄p) − σF (x′)(q + λ̄p)

∣
∣

− λ̄|σF (x′′)(p) − σF (x′)(p)|
≥ σGε(x′′,p)(q) −

(
‖q + λ̄p‖ + λ̄

)
H
(
F (x′), F (x′′)

)

≥ σGε(x′′,p)(q) −
(

2M
ε

+

√

1 +
4M
ε

+
4M2

ε2

)

H
(
F (x′), F (x′′)

)
.

The case σF (x′′)(q) > ε is easier and can be handled similarly. The proof is
concluded since we can interchange the role of x′ and x′′. �
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