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Abstract. Solutions of the Hamilton–Jacobi equation H(x, −Du(x)) = 1,
where H(·, p) is Hölder continuous and the level-sets {H(x, ·) ≤ 1} are
convex and satisfy positive lower and upper curvature bounds, are shown
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1. Introduction

The importance of semiconcavity for the study of Hamilton–Jacobi equations
and optimal control problems is by now widely acknowledged. Indeed, such a
qualitative property ensures the upper semicontinuity and quasi-monotonicity
of the superdifferential of solutions. Moreover, it can be used to derive upper
bounds for the set where solutions fail to be differentiable, providing at the
same time criteria for the propagation of singularities. Finally, it leads to stron-
ger optimality conditions than the ones holding for a continuous (or Lipschitz
continuous) function, see, for instance, [3] and the references therein.

Typically, a real-valued function u is semiconcave on the convex set D ⊂
R

N if there exists a modulus (i.e., nondecreasing upper semicontinuous func-
tion, vanishing at 0) ω : [0,∞) → [0,∞) such that

u(λx + (1 − λ)y) ≥ λu(x) + (1 − λ)u(y) − Cλ(1 − λ)|x − y|ω(|x − y|)
for all x, y ∈ D and λ ∈ [0, 1].

Semiconcavity results with a linear modulus hold for viscosity solutions
of Hamilton–Jacobi equations with convex Hamiltonians which are sufficiently
smooth with respect to the space variables, as well as for value functions of
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optimal control problems with smooth dynamics and running cost (see, e.g.,
[2,6,7]; see also [3]). Known generalizations allow for Lipschitz continuous
dependance with respect to space, provided the Hamiltonian is strictly convex
and superlinear in the gradient variables (see [4,9]).

In this paper we shall study the Dirichlet problem{
H(x,−Du(x)) = 1 in Ω
u(x) = 0 on ∂Ω (1)

where Ω is an open subset of R
N ,H(x, ·) is convex and positively homogeneous

of degree 1, and H(·, p) is just Hölder continuous. Consequently, (1) fits none
of the aforementioned settings. Nevertheless, our main result—Theorem 5.1
below—guarantees that the solution u of (1) is locally semiconcave in Ω with
the power-like modulus ω(t) = Ctθ, for some θ > 0 depending on H. Our key
assumption is that the curvature of the level set {H(x, ·) ≤ 1} is bounded
above and below by positive constants uniformly with respect to the space
variable x (see assumption (5), as well as the geometric property (11)).

The method of proof relies on the representation of u(x) as the minimum
time needed to reach ∂Ω along a trajectory of the differential inclusion{

x′(t) ∈ F (x(t)) t ≥ 0 a.e.
x(0) = x,

(2)

where

F (x) = co {DpH(x, p) : p ∈ R
N\{0}} ∀x ∈ R

N .

An essential step of the analysis is the C1,α-regularity of the extremal
trajectories of (2), see Theorem 4.1. Related results hold for geodesics on man-
ifolds with Hölder continuous Riemannian or Finsler metrics, as explained in
[8]. The problem of interest to our paper, however, does not fit this framework
because we do not assume H to be symmetric with respect to p (see Exam-
ple 2.1). For time-dependent and isotropic Hamiltonians (H = a(t, x)|p|), the
above regularity property has also been observed in [10] for N = 2, and [5] for
general N. However, the unexpected connection between Theorem 4.1 and the
semiconcavity of the solution of (1) is, to our best knowledge, entirely new.

The outline is the following: Sect. 2 contains our basic notations and
assumptions. In Sect. 3, we describe the main technical tools we borrow from
convex analysis, making this paper essentially self-contained. In Sect. 4, we
prove our regularity results for extremal trajectories, which is applied, in
Sect. 5, to derive the semiconcavity estimate for the solution of (1).

2. Notation and assumptions

Let N be a positive integer. Denote by 〈·, ·〉 and | · | the Euclidean scalar
product and norm in R

N , respectively, and set

B = {x ∈ R
N : |x| ≤ 1}.

More generally, for all x ∈ R
N and ρ > 0, B(x, ρ) stands for the closed ball of

radius ρ centered at x, that is, B(x, ρ) = x + ρB.
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Let H : R
N × R

N → R be a continuous function satisfying the following
assumptions for some positive constants C0, r, R, with r < R, and α ∈ (0, 1/2).
Standing Assumptions (SA):

• For all p ∈ R
N , the function x �→ H(x, p) is 2α-Hölder continuous, and

|H(x, p) − H(y, p)| ≤ C0|x − y|2α|p| ∀x, y ∈ R
N . (3)

• For all x ∈ R
N , the function p �→ H(x, p) is convex on R

N , positively
homogeneous of degree one, and has linear growth, i.e.,

r|p| ≤ H(x, p) ≤ R|p| ∀p ∈ R
N . (4)

• For all x ∈ R
N , the function p �→ H(x, p) is continuously differentiable

on R
N\{0}, and, for all p, q ∈ R

N\{0},

− 1
2r

|DpH(x, q) − DpH(x, p)|2

≤
〈

DpH(x, q) − DpH(x, p),
p

|p|
〉

≤ − 1
2R

|DpH(x, q) − DpH(x, p)|2,

(5)

where DpH(x, p) denotes the gradient of H in the p-variables at (x, p).

Our key assumption is (5), which means, roughly speaking, that the curvature
of the level set {H(x, ·) ≤ 1} is bounded above and below by positive constants
uniformly with respect to the space variable x: see Lemma 3.1 below.

Hereafter, by a universal constant—briefly, a constant—we mean a posi-
tive real number that only depends on the parameters N,α, r,R, and C0 intro-
duced above. Generic constants appearing in computations will be denoted by
C. A subscript (C1, C2, . . .) will be added when necessary for future reference.

The following example illustrates the typical set-up of interest to this
paper.

Example 2.1. Let H(x, p) = 〈g(x), p〉 + |A(x)p|, where g : R
N → R

N and
A : R

N → R
N×N are 2α-Hölder continuous on R

N , A(x) is invertible for all
x ∈ R

N , and

|g(x)| ≤ C

2
, |A(x)| ≤ C and |A(x)−1| ≤ C ∀x ∈ R

N (6)

for some constant C. Then H satisfies (SA) for a suitable choice of constants.
Indeed (3) and (4) follow directly from the definition of H and (6). Moreover,
since DpH(p) = A∗Ap

|Ap| (hereafter we drop x-dependence), we have

|DpH(q) − DpH(p)|2 =
∣∣∣∣A

∗Aq

|Aq| − A∗Ap

|Ap|
∣∣∣∣
2

≤ ‖A∗‖2

∣∣∣∣ Aq

|Aq| − Ap

|Ap|
∣∣∣∣
2

.

Then,
∣∣∣∣ Aq

|Aq| − Ap

|Ap|
∣∣∣∣
2

= 2
[
1 −
〈

Aq

|Aq| ,
Ap

|Ap|
〉]

= 2
|p|

|Ap|
〈

Ap

|Ap| − Aq

|Aq| ,
Ap

|p|
〉

.
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Now, from our assumption on A−1, |p|
|Ap| is bounded above by some constant

M > 0. Therefore,

|DpH(q) − DpH(p)|2 ≤ 2‖A∗‖2M

〈
A∗Ap

|Ap| − A∗Aq

|Aq| ,
p

|p|
〉

= 2‖A∗‖2M

〈
DpH(p) − DpH(q),

p

|p|
〉

,

which gives the first inequality in (5). As for the second one,

|DpH(q) − DpH(p)|2 =
∣∣∣∣A

∗Aq

|Aq| − A∗Ap

|Ap|
∣∣∣∣
2

≥ 1
‖A−∗‖2

∣∣∣∣ Aq

|Aq| − Ap

|Ap|
∣∣∣∣
2

,

where A−∗ = (A−1)∗. Thus,
∣∣∣∣ Aq

|Aq| − Ap

|Ap|
∣∣∣∣
2

= 2
[
1 −
〈

Aq

|Aq| ,
Ap

|Ap|
〉]

= 2
|p|

|Ap|
〈

Ap

|Ap| − Aq

|Aq| ,
Ap

|p|
〉

.

Now, from our assumption on A−1, |p|
|Ap| is bounded below by some constant

1/M > 0. So,

|DpH(q) − DpH(p)|2 ≥ 2
‖A−∗‖2M

〈
A∗Ap

|Ap| − A∗Aq

|Aq| ,
p

|p|
〉

=
2

‖A−∗‖2M

〈
DpH(p) − DpH(q),

p

|p|
〉

.

Note that, in contrast with the conditions in [8], H is not symmetric with
respect to the p variable whenever g ≡ 0.

3. Preliminary results

Let H : R
N × R

N → R be a continuous function satisfying our Standing
Assumptions with fixed constants α, r,R, and C0.

For all p = 0, set fp(x) = DpH(x, p) and define

F (x) = co {fp(x) : p ∈ R
N\{0}} ∀x ∈ R

N , (7)

where ‘co’ stands for convex hull. Note that, for all (x, p) ∈ R
N × (RN\{0}),

H(x, p) = max
v∈F (x)

〈v, p〉 and fp(x) = argmaxv∈F (x) 〈v, p〉 . (8)

We begin by recovering properties of F (·) that follow directly from (SA).

Lemma 3.1. The set-valued map F is 2α-Hölder continuous, i.e.,

F (x) ⊂ F (y) + C0|x − y|2αB ∀x, y ∈ R
N , (9)

and satisfies, for all x ∈ R
N , the controllability condition

B(0, r) ⊂ F (x) ⊂ B(0, R) (10)
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as well as the curvature estimates

B

(
fp(x)−r

p

|p| , r
)

⊂F (x) and F (x)⊂B

(
fp(x) − R

p

|p| , R
)

∀p = 0.

(11)

Remark 3.2. The first inclusion in (11)—which can be interpreted as an upper
bound for the curvature of ∂F (x)—is equivalent to the inequality∣∣∣v − fp(x) + r

p

|p|
∣∣∣ ≥ r ∀v ∈ ∂F (x),

which in turn can be recast as follows

− 1
2r

|v − fp(x)|2 ≤
〈

v − fp(x),
p

|p|
〉

∀v ∈ ∂F (x). (12)

The second inclusion in (11)—a lower bound for the curvature—can be
rephrased as ∣∣∣v − fp(x) + R

p

|p|
∣∣∣ ≤ R ∀v ∈ F (x),

which is equivalent to〈
v − fp(x),

p

|p|
〉

≤ − 1
2R

|v − fp(x)|2 ∀v ∈ F (x),

or, since F (x) is convex,〈
v − fp(x),

p

|p|
〉

≤ − 1
2R

|v − fp(x)|2 ∀v ∈ ∂F (x). (13)

Proof of Lemma 3.1. Note that, since H(x, ·) is the support function of F (x),
inequality (3) directly implies (9) while (4) entails (10). Let us now check that
the regularity condition (5) implies (11). For this we just have to note that, for
any v ∈ ∂F (x), there is some q = 0 such that v = fq(x), so that (5) becomes

−1
r

|v − fp(x)|2 ≤
〈

v − fp(x),
p

|p|
〉

≤ − 1
R

|v − fp(x)|2 ∀v ∈ ∂F (x).

These two equalities are equivalent to (12) and (13). �

Next, we derive a regularity result for fp(·), which is actually a conse-
quence of the Hölder continuity of F in (9) combined with the lower curvature
bound in (5).

Lemma 3.3. For all p ∈ R
N\{0} we have

|fp(x) − fp(y)| ≤ (C0 +
√

2C0R) |x − y|α ∀x, y ∈ R
N .

Proof. Let x, y ∈ R
N . In view of (9) there are vy ∈ F (x) and vx ∈ F (y) such

that

|fp(y) − vy| ≤ C0|x − y|2α and |fp(x) − vx| ≤ C0|x − y|2α.
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Then, by (13),〈
vy − fp(x),

p

|p|
〉

≤ − 1
2R

|vy − fp(x)|2 and
〈

vx − fp(y),
p

|p|
〉

≤ − 1
2R

|vx − fp(y)|2.
Adding up the above two inequalities yields

|vy − fp(x)|2 + |vx − fp(y)|2 ≤ −2R

〈
vy − fp(x) + vx − fp(y),

p

|p|
〉

≤ 2C0R|x − y|2α.

So,

|fp(y) − fp(x)| ≤ |fp(y) − vy| + |vy − fp(x)| ≤ (C0 +
√

2C0R) |x − y|α,

and the proof is complete. �

The dependence of fp(x) with respect to p is the object of our next result.

Lemma 3.4. For every x ∈ R
N we have

1
R

|fp(x) − fq(x)| ≤
∣∣∣∣ p

|p| − q

|q|
∣∣∣∣ ≤ 1

r
|fp(x) − fq(x)|, ∀p, q ∈ R

N\{0}.

(14)

Proof. Let x ∈ R
N and let p, q ∈ R

N\{0}. Let us start with the first inequal-
ity. Recalling the second condition in (11) in its equivalent form (13), we have,
since fq(x) ∈ ∂F (x),〈

fq(x) − fp(x),
p

|p|
〉

≤ − 1
2R

|fq(x) − fp(x)|2.

In a symmetric way we also have〈
fp(x) − fq(x),

q

|q|
〉

≤ − 1
2R

|fp(x) − fq(x)|2.

Adding the two estimates above easily gives the first inequality of (14) by
Cauchy–Schwarz.

We now prove the second inequality, which is slightly more subtle. Recall-
ing the first inclusion in (11) and the definition of fp(x), we conclude that〈

q, fp(x) − r
p

|p| + rb

〉
≤ 〈q, fq(x)〉, ∀b ∈ B.

Hence,

−r

〈
q

|q| ,
p

|p|
〉

+ r ≤
〈

fq(x) − fp(x),
q

|q|
〉

.

Thus, exchanging p and q,

−r

〈
p

|p| ,
q

|q|
〉

+ r ≤
〈

fp(x) − fq(x),
p

|p|
〉

.



Vol. 19 (2012) Regularity results for eikonal-type equations 757

Adding the above inequalities together leads to

r
∣∣∣ p

|p| − q

|q|
∣∣∣2 = 2r

(
1 −
〈

p

|p| ,
q

|q|
〉)

≤
〈

fp(x) − fq(x),
p

|p| − q

|q|
〉

. (15)

Since fp(x) and fq(x) are boundary points, (12) yields〈
fp(x) − fq(x),

p

|p|
〉

≤ 1
2r

|fq(x) − fp(x)|2 .

and 〈
fq(x) − fp(x),

q

|q|
〉

≤ 1
2r

|fq(x) − fp(x)|2 .

Therefore, 〈
fp(x) − fq(x),

p

|p| − q

|q|
〉

≤ 1
r
|fp(x) − fq(x)|2. (16)

The conclusion follows from (15) and (16). �

Let us now consider the polar of H, namely the function H0 defined by

H0(x, q) := max {〈p, q〉 : H(x, p) ≤ 1} ∀(x, q) ∈ R
N × R

N .

It is well-known that, for all (x, q) ∈ R
N × R

N ,

H0(x, q) ≤ 1 ⇐⇒ q ∈ F (x), (17)

and

H0 (x,DpH(x, p)) = H0 (x, fp(x)) = 1 ∀(x, p) ∈ R
N × (RN\{0}). (18)

The duality between H and H0 brings similar qualitative properties for these
two functions. For instance, on account of (10), we have

|q|
R

≤ H0(x, q) ≤ |q|
r

∀(x, q) ∈ R
N × R

N . (19)

Moreover, H0 is also Hölder continuous with respect to x, with the same expo-
nent as H.

Lemma 3.5. For all q ∈ R
N ,

|H0(x, q) − H0(y, q)| ≤ C0

r2
|q||x − y|2α ∀x, y ∈ R

N . (20)

Proof. Let x, y, q ∈ R
N . Take p ∈ R

N , with H(x, p) ≤ 1, such that H0(x, q) =
〈p, q〉 . Then, by (4), |p| ≤ 1/r. Also, by (3),

H(y, p) ≤ 1 +
C0

r
|x − y|2α.

So,

H0(y, q) ≥
〈

p

1 + C0
r |x − y|2α

, q

〉
=

H0(x, q)
1 + C0

r |x − y|2α
.
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On the other hand, in view of (19),

H0(x, q) =
H0(x, q)

1 + C0
r |x − y|2α

+
C0
r |x − y|2α

1 + C0
r |x − y|2α

H0(x, q)

≤ H0(x, q)
1 + C0

r |x − y|2α
+

C0

r2
|q||x − y|2α.

Thus,

H0(y, q) ≥ H0(x, q) − C0

r2
|q||x − y|2α.

Hence, we obtain the conclusion exchanging the roles of x and y. �

We now turn to the analysis of the level set

F 0(x) =
{
p ∈ R

N : H(x, p) ≤ 1
}

x ∈ R
N .

Lemma 3.6. Let x∈R
N . Then, for every p, p′ ∈ R

N with H(x, p)=H(x, p′)=1,

|p − p′| ≤ C
∣∣∣ p′

|p′| − p

|p|
∣∣∣ (21)

for some constant C.

Proof. First of all, the reader be warned that, as x plays no role in this proof,
the x-dependence in H will be omitted. For all θ, θ′ ∈ SN−1, we have∣∣∣ θ

H(θ)
− θ′

H(θ′)

∣∣∣ ≤ |θ − θ′|
H(θ)

+
|H(θ) − H(θ′)|

H(θ)H(θ′)
.

Since H is Lipschitz continuous by (10), recalling r ≤ H(θ),H(θ′) ≤ R we
conclude that

|θ − θ′|
H(θ)

+
|H(θ) − H(θ′)|

H(θ)H(θ′)
≤ C|θ − θ′|

for some constant C. Therefore,∣∣∣ θ

H(θ)
− θ′

H(θ′)

∣∣∣ ≤ C|θ − θ′|.

Now, observe that the map θ �→ θ/H(θ) is a bijection between the unit sphere
SN−1 and ∂F 0(x). So, applying the above inequality to θ, θ′ ∈ SN−1, which we
now choose such that p = θ/H(θ) and p′ = θ′/H(θ′), the conclusion follows.

�

Lemma 3.7. (Lower curvature estimate for F 0) There is a constant R′ such
that F 0(x) satisfies the lower curvature estimate of radius R′ for all x ∈ R

N ,
i.e.,

F 0(x) ⊂ B

(
p

H(x, p)
− R′ fp(x)

|fp(x)| , R
′
)

∀x, p ∈ R
N , p = 0

or, equivalently,〈
p′ − p,

fp

|fp|
〉

≤ − 1
2R′ |p′ − p|2 ∀p, p′ ∈ ∂F 0 (22)
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Proof. Again, we shall drop x-dependence in all the formulas below since it is
of no interest for this proof. Recalling Remark 3.2 we conclude that it suffices
to prove inequality (22) for some constant R′. Let then p, p′ ∈ ∂F 0. Since H
is positively homogeneous of degree 1, we have

H(p′) − H(p) − 〈DpH(p), p′ − p〉 = 〈DpH(p′), p′〉 − 〈DpH(p), p〉
− 〈DpH(p), p′ − p〉 = 〈DpH(p′) − DpH(p), p′〉

where DpH(p) = fp and DpH(p′) = fp′ . From the lower curvature estimate
on F given in (13) it follows that〈

fp − fp′ ,
p′

|p′|
〉

≤ − 1
2R

|fp′ − fp|2 .

Thus, combining the above inequality with the previous identity, and using
the fact that H(p) = H(p′) = 1,

〈fp, p
′ − p〉 ≤ −|p′|

2R
|fp′ − fp|2 .

Now, apply Lemma 3.4 to obtain

〈fp, p
′ − p〉 ≤ −r2|p′|

2R

∣∣∣ p′

|p′| − p

|p|
∣∣∣2. (23)

Finally, let C be the constant given by Lemma 3.6. Then, (21) and (23) yield〈
fp

|fp| , p
′ − p

〉
≤ − r2|p′|

2R2

∣∣∣ p′

|p′| − p

|p|
∣∣∣2 ≤ − r2

2C2R3
|p′ − p|2 .

whence the conclusion follows with R′ = C2R3/r2. �

In particular, Lemma 3.7 ensures F 0(x) is a strictly convex set for any
x ∈ R

N . Thus, since H0(x, ·) is the support function of F 0(x),DqH
0(x, q)

exists for any x, q ∈ R
N with q = 0 (see, for instance, [3, Theorem A.1.20]).

In fact, we shall soon prove a stronger property: the map q → DqH
0(x, q) is

locally Lipschitz continuous in R
N\{0}. Before doing this, let us collect some

technical remarks on the link between H0 and H and their derivatives.

Lemma 3.8. We have, for any p, q ∈ R
N\{0},[

q ∈ ∂F (x) and p = DqH
0(x, q)

] ⇐⇒ [
p ∈ ∂F 0(x) and q = DpH(x, p)

]
(24)

In particular,

DqH
0

(
x,

fp(x)
|fp(x)|

)
= p ∀p ∈ ∂F 0(x). (25)

Proof. We just need to show the implication[
q ∈ ∂F (x) and p = DqH

0(x, q)
]

=⇒ [
p ∈ ∂F 0(x) and q = DpH(x, p)

]
because H00 = H. Let q ∈ ∂F (x) and p = DqH

0(x, q). Note that H(x, p) =
H0(x, q) = 1 and, in particular, p ∈ ∂F 0(x). By definition, we have

H0(x, q′)H(x, p′) ≥ 〈p′, q′〉 ∀p′, q′ ∈ R
N . (26)
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This inequality becomes an equality for (p′, q′) = (p, q) because

〈p, q〉 =
〈
DqH

0(x, q), q
〉

= H0(x, q) = 1 = H0(x, q)H(x, p).

Taking the derivative in (26) with respect to p then gives

H0(x, q)DpH(x, p) = DpH(x, p) = q.

Next, we turn to the proof of (25). Recall first that fp(x) = DpH(x, p)
for any p = 0. So, if p ∈ ∂F 0(x), then (24) implies that

DqH
0

(
x,

fp(x)
|fp(x)|

)
= DqH

0 (x, fp(x)) = p,

since DqH
0(x, ·) is 0-homogeneous. �

Lemma 3.9. There is a constant C such that, for every x ∈ R
N ,

∣∣DqH
0(x, q) − DqH

0(x, q′)
∣∣ ≤ C

|q| ∨ |q′| |q − q′| ∀q, q′ ∈ R
N \ {0}.

Proof. Let us fix p, p′ ∈ ∂F 0(x). Owing to Lemma 3.7 in its equivalent form
(22), we deduce that〈

p′ − p,
fp(x)
|fp(x)|

〉
≤ − 1

2R′ |p′ − p|2

and 〈
p − p′,

fp′(x)
|fp′(x)|

〉
≤ − 1

2R′ |p′ − p|2 .

Adding up the last two inequalities, we obtain

|p′ − p|2 ≤ R′
〈

p′ − p,
fp′(x)
|fp′(x)| − fp(x)

|fp(x)|
〉

≤ R′|p′ − p|
∣∣∣ fp′(x)
|fp′(x)| − fp(x)

|fp(x)|
∣∣∣.
(27)

Now, recall that the map p �→ fp(x)/|fp(x)| is a bijection from ∂F 0(x) to
SN−1 to deduce that for all q, q′ ∈ SN−1 there are p, p′ ∈ ∂F 0(x) such that
q = fp(x)/|fp(x)| and q′ = fp′(x)/|fp′(x)|. Then, combining (25) and (27),

∣∣DqH
0 (x, q′) − DqH

0 (x, q)
∣∣ =

∣∣∣DqH
0

(
x,

fp′(x)
|fp′(x)|

)
− DqH

0

(
x,

fp(x)
|fp(x)|

) ∣∣∣
= |p′ − p|
≤ R′

∣∣∣∣ fp′(x)
|fp′(x)| − fp(x)

|fp(x)|
∣∣∣∣ = R′|q′ − q|.

This is the desired estimate for q, q′ ∈ SN−1. Next, let q, q′ ∈ R
N\{0}. Then,

since DqH
0(x, ·) is homogeneous of degree 0,

∣∣DqH
0(x, q′) − DqH

0(x, q)
∣∣ ≤ R′

∣∣∣ q′

|q′| − q

|q|
∣∣∣.
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Finally, observe that∣∣∣ q′

|q′| − q

|q|
∣∣∣ ≤
∣∣∣ q′

|q′| − q

|q′|
∣∣∣+
∣∣∣ q

|q′| − q

|q|
∣∣∣ = |q′ − q|

|q′| +
|q|

|q||q′| | |q′| − |q| |

≤ 2
|q′ − q|

|q′|
to complete the proof. �

4. Regularity of extremal trajectories

In this section, we shall prove a regularity result for the extremal trajectories
of the differential inclusion

x′(t) ∈ F (x(t)) t ≥ 0, (28)

where F is the multifunction introduced in (7), and H is a given function
satisfying (SA). Alternatively, this analysis could be addressed to differential
inclusions associated with a multifunction F : R

N ⇒ R
N that satisfies (9),

(11), and (10) as standing assumptions, in which case the Hamiltonian H
should be defined as in (8).

A trajectory of the above differential inclusion is a locally absolutely con-
tinuous arc x(·) : [0,∞) → R

N that satisfies (28) for a.e. t ≥ 0. Given a closed
subset K of R

N , we denote by R(t), t ≥ 0, the reachable set (from K) in time
t, that is,

R(t) = {x(t) : x(·) is a trajectory of (28) with x(0) ∈ K}.

A trajectory x̄(·) of (28) is called extremal on the time interval [0, t] if x̄(t) ∈
∂R(t). In this case, one can show that in fact x̄(s) ∈ R(s) for every s ∈ [0, t].

Due to the special structure of F, described by the properties (9), (11),
and (10), we will be able to show that all extremal trajectories are C1,α/2-
smooth. More precisely, we have the following result.

Theorem 4.1. Assume (SA) and let x̄ be an extremal trajectory of (28) on
some time interval [0, T ].Then

|x̄′(t2) − x̄′(t1)| ≤ C(t2 − t1)α/2 ∀t1, t2 ∈ [0, T ] (29)

for some constant C.

Proof. Let x̄ be an extremal trajectory on [0, T ]. Then, by extremality, x′(t) ∈
∂F (x̄(t)) for almost all t ∈ [0, T ], so that we can set

p̄(t) = DqH
0(x̄(t), x̄′(t)) a.e. in [0, T ].

Using Lemma 3.8, we obtain the following relation between x̄ and p̄:

x̄′(t) = DpH (x̄(t), p̄(t)) for a.e. t ∈ [0, T ].

Step 1. We first claim that, for any 0 ≤ t1 < t2 ≤ T we have

t2 − t1 ≤ H0

(
x̄(t2),

∫ t2

t1

DpH (x̄(t2), p̄(t)) dt

)
+ C(t2 − t1)1+α. (30)
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Proof of (30) Let us set

q =
x̄(t2) − x̄(t1)
|x̄(t2) − x̄(t1)| .

Let λ : [t1, t2] → R be a solution of the Cauchy problem{
λ′(t) = 1

H0(x̄(t1)+λ(t)q,q) , t ∈ [t1, t2]
λ(t1) = 0.

Then x(t) := x̄(t1) + λ(t)q is a trajectory of (28) since, owing to (17),

H0 (x(t), x′(t)) = H0 (x(t), λ′(t)q) =
H0 (x̄(t1) + λ(t)q, q)
H0 (x̄(t1) + λ(t)q, q)

= 1

for all t ∈ [t1, t2]. Therefore, since x̄ is an extremal trajectory, the point x̄(t1)+
λ(t2)q belongs to the segment [x̄(t1), x̄(t2)]. So,

λ(t2) − λ(t1) ≤ |x̄(t2) − x̄(t1)|.
Note that, owing to (20), the above inequality, and the boundedness of F,∣∣∣ 1

H0(x̄(t1) + λ(t)q, q)
− 1

H0(x̄(t2), q)

∣∣∣ ≤ C|x̄(t2) − x̄(t1)|2α ≤ C(t2 − t1)2α

for all t ∈ [t1, t2] and some constant C. Hence,

λ(t2) − λ(t1) =
∫ t2

t1

dt

H0(x̄(t1) + λ(t)q, q)
≥ t2 − t1

H0(x̄(t2), q)
− C(t2 − t1)1+2α.

So, appealing to Lemma 3.3,

t2 − t1 ≤ H0(x̄(t2), q)|x̄(t2) − x̄(t1)| + C(t2 − t1)1+2α

= H0(x̄(t2), x̄(t2) − x̄(t1)) + C(t2 − t1)1+2α

= H0

(
x̄(t2),

∫ t2

t1

DpH(x̄(t), p̄(t))dt

)
+ C(t2 − t1)1+2α

≤ H0

(
x̄(t2),

∫ t2

t1

DpH(x̄(t2), p̄(t))dt

)
+ C(t2 − t1)1+α,

where constants may change from line to line. We have thus proved (30).

Step 2. Let us fix 0 ≤ t1 < t2 ≤ T and let t̄ be such that

H0(x̄(t2), x̄(t̄) − x̄(t1)) = H0(x̄(t2), x̄(t2) − x̄(t̄)). (31)

Define

a = x̄(t̄) − x̄(t1) and b = x̄(t2) − x̄(t̄). (32)

We claim that

H0(x̄(t2), a) + H0(x̄(t2), b) ≤ H0(x̄(t2), a + b) + C(t2 − t1)1+α (33)

and

|2t̄ − t1 − t2| ≤ C(t2 − t1)1+α. (34)
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Proof of (33) and (34) Again by Lemma 3.3, and then using Jensen’s inequal-
ity, we obtain

H0(x̄(t2), a) = H0

(
x̄(t2),

∫ t̄

t1

DpH(x̄(s), p̄(s))ds

)

≤ H0

(
x̄(t2),

∫ t̄

t1

DpH(x̄(t2), p̄(s))ds

)
+ C(t2 − t1)1+α

≤
∫ t̄

t1

H0 (x̄(t2),DpH(x̄(t2), p̄(s))) ds + C(t2 − t1)1+α

≤ t̄ − t1 + C(t2 − t1)1+α. (35)

Applying (30) between t1 and t̄ gives

t̄ − t1 ≤ H0

(
x̄(t̄),

∫ t̄

t1

DpH(x̄(t̄), p̄(t))dt

)
+ C(t̄ − t1)1+α. (36)

Now, in order to bound the above right-hand side observe that

∣∣DpH(x̄(t̄), p̄(t)) − DpH(x̄(t), p̄(t))
∣∣ ≤ C|x̄(t̄) − x̄(t)|α ≤ C(t̄ − t1)α

in view of Lemma 3.3, and

∣∣H0 (x̄(t̄), a) − H0 (x̄(t2), a)
∣∣ ≤ C |a| |x̄(t̄) − x̄(t2)|2α ≤ C(t̄2 − t1)1+2α

owing to Lemma 3.5. Therefore, (36) leads to

t̄ − t1 ≤ H0

⎛
⎜⎜⎜⎝x̄(t̄),

∫ t̄

t1

DpH(x̄(t), p̄(t))dt

︸ ︷︷ ︸
a

⎞
⎟⎟⎟⎠+ C(t̄ − t1)1+α

≤ H0(x̄(t2), a) + C(t2 − t1)1+α. (37)

On account of (35) and (37), we have

H0(x̄(t2), a) − C(t2 − t1)1+α ≤ t̄ − t1 ≤ H0(x̄(t2), a) + C(t2 − t1)1+α.

In the same way,

H0(x̄(t2), b) − C(t2 − t1)1+α ≤ t2 − t̄ ≤ H0(x̄(t2), b) + C(t2 − t1)1+α.

Combining the above two inequalities with the choice of t̄ made in (31) gives
(34). Moreover, adding up the above inequalities and recalling (30), we get
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H0(x̄(t2), a) + H0(x̄(t2), b) ≤ (t2 − t1) + C(t2 − t1)1+α

≤ H0(x̄(t2), a + b) + C(t2 − t1)1+α,

which yields (33).

Step 3. We now claim that, for any 0 ≤ t1 < t2 ≤ T, we have∣∣∣x̄
(

t1 + t2
2

)
− x̄(t2) + x̄(t1)

2

∣∣∣ ≤ C(t2 − t1)1+α. (38)

Proof of (38) Having fixed 0 ≤ t1 < t2 ≤ T, we will use the same notation for
t̄, a, and b as in (31) and (32). Moreover, since x(t2) is fixed in the reasoning
below, as we often did before we will omit the x(t2)-dependance of H0 and all
other maps appearing in this proof.

Let us set, for any q ∈ R
N\{0}, gq = DqH

0(q). We use below repetitively
the following remark:

for any q = 0, if p = gq, then fp = q/H0(q).

Indeed, since q/H0(q) ∈ ∂F and p = DqH
0(q/H0(q)) (DqH

0 is 0-homoge-
neous), Lemma 3.8 implies that q/H0(q) = DpH(p) = fp.

We first show that
1

2R′ |gq − gq′ |2 ≤
〈

gq − gq′ ,
q

|q|
〉

∀q, q′ ∈ R
N\{0}, (39)

where R′ is the constant appearing in Lemma 3.7. For this, let us consider the
lower curvature estimate (22) in Lemma 3.7 with p = gq and p′ = gq′ : because
of the remark above and since p, p′ ∈ ∂F 0, we have〈

gq′ − gq,
q

|q|
〉

≤ − 1
2R′ |gq′ − gq|2

which is exactly (39).
Next, we note that

|a − b| ≤ CH0(a)|ga − gb|. (40)

Indeed, let us apply the first inequality in Lemma 3.4 to p = ga and q = gb.
Since fp = a/H0(a), fq = b/H0(b), and—by (31)—H0(a) = H0(b), we have

|a − b| ≤ RH0(a)
∣∣∣∣ ga

|ga| − gb

|gb|
∣∣∣∣ ≤ CH0(a)|ga − gb|.

In order to estimate the right-hand side of inequality (40), let us observe that,
in view of (33),

0 ≤ H0(a + b) − H0(a) − H0(b) + C(t2 − t1)1+α

= 〈ga+b, a + b〉 − 〈ga, a〉 − 〈gb, b〉 + C(t2 − t1)1+α

so that

0 ≤ 〈ga+b − ga, a〉 + 〈ga+b − gb, b〉 + C(t2 − t1)1+α.

Plugging inequality (39) into this inequality leads to

|a| |ga+b − ga|2 + |b| |ga+b − gb|2 ≤ C(t2 − t1)1+α.
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Now, since |a| ≥ (t̄ − t1)/C and |b| ≥ (t2 − t̄)/C, in view of (34) we have

|ga+b − ga| ≤ C(t2 − t1)α/2, |ga+b − gb| ≤ C(t2 − t1)α/2.

Also, since H0(a) ≤ C(t̄ − t1) ≤ C(t2 − t1), from (40) we get

|a − b| ≤ CH0(a)(|ga+b − ga(x)| + |ga+b − gb(x)|) ≤ C(t2 − t1)1+α/2.

Recalling the definition of a and b, this means that

|2x̄(t̄) − x̄(t1) − x̄(t2)| ≤ C(t2 − t1)1+α/2.

Using again (34) and the Lipschitz continuity of x̄, the above inequality yields
(38).
Conclusion. In view of (38), Theorem 2.1.10 of [3] states that each compo-
nent of x̄ is semi-convex and semi-concave with a modulus m of the form
m(ρ) = Cρα/2. Then, from Theorem 3.3.7 of [3], x̄ is of class C1,α/2 and (29)
holds. �

5. The semiconcavity result

Let H : R
N × R

N → R be a continuous function satisfying our Standing
Assumptions with constants α, r,R, and C0, and let Ω ⊂ R

N be an open set.
In this section, we will apply the previous analysis to study the regularity

of the solution to the Dirichlet problem{
H(x,−Du(x)) = 1 in Ω
u(x) = 0 on ∂Ω (41)

The existence, uniqueness, and Lipschitz continuity of the viscosity solution u
of the above problem is well-known, as well as the representation formula

u(x) = inf {t ≥ 0 : ∃ x(·) trajectory of (28) with x(0) = x, x(t) ∈ ∂Ω}
(42)

(see, e.g., [1]).
We recall that a function v : Ω → R is locally θ-semiconcave, with θ ∈

(0, 1], if for every compact convex set O ⊂ Ω there is a constant CO such that

v(λx + (1 − λ)y) ≥ λv(x) + (1 − λ)v(y) − COλ(1 − λ)|x − y|1+θ

for all x, y ∈ O and λ ∈ [0, 1]. We are now ready for our main result.

Theorem 5.1. Assume (SA). Then the solution u of (41) is locally θ-semicon-
cave in Ω for every θ ∈ (0, α

4+α ).

Proof. The strategy of the proof is the following. Fix

β ∈
(

2
2 + α

,
4

4 + α

)
, (43)

and observe that
0 < θ := β

2 + α

2
− 1 <

α

4 + α
.

Let O ⊂⊂ Ω be an open convex set. We are going to show that

u(x + h) + u(x − h) − 2u(x) ≤ C|h|β(2+α)/2 (44)
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for all h ∈ R
N sufficiently small (in this proof, C denotes a generic constant

depending only on α, r,R,C0, and O). Since u is continuous, owing to [3,
Theorem 2.1.10] the above inequality implies that u is locally θ-semiconcave
in Ω.
Step 1. Let x̄ ∈ O and let x̄(·) be a solution of the minimization problem
in (42)—an optimal trajectory for short. Since x̄(·) is extremal on [0, u(x̄)],
Theorem 4.1 implies that x̄(·) is of class C1,α/2 and satisfies

|x̄′(t2) − x̄′(t1)| ≤ C|t2 − t1|α/2 ∀t1, t2 ∈ [0, u(x̄)].

Setting v̄ = x̄′(0), from the above inequality we obtain

|x̄(t) − x̄ − tv̄| ≤ Ct1+α/2 ∀t ∈ [0, u(x̄)]. (45)

Step 2. Let h ∈ R
N be small enough, and set t̄ = |h|β . We will now build a

trajectory x+(·) and a time τ+ such that⎧⎨
⎩

x+(0) = x̄ + h,
x+(t) ∈ [x̄ + h, x̄(t̄)] ∀t ∈ [0, τ+],
x+(t) = x̄(t + t̄ − τ+) ∀t ∈ [τ+, u(x̄) + τ+ − t̄].

Notice that x+(u(x̄) + τ+ − t̄) = x̄(u(x̄)) ∈ R
N\Ω, so that

u(x̄ + h) ≤ u(x̄) + τ+ − t̄. (46)

Proof of Step 2. In order to construct the line segment part, let us set q+ =
x̄(t̄) − (x̄ + h) and observe that, in view of (45),

q+ = t̄v̄ + O(t̄1+α/2) − h. (47)

Then, q+ = 0 since t̄ >> |h| and |v̄| ≥ 1/r. Let λ(·) be a solution of the Cauchy
problem ⎧⎨

⎩
λ′(t) =

1
H0(x̄ + h + λ(t)q+, q+)

, t ≥ 0

λ(0) = 0.

Since λ(·) is strictly increasing there is a unique time τ+ such that λ(τ+) = 1.
Now, set

x+(t) = x̄ + h + λ(t)q+ t ∈ [0, τ+].

Then x+(·) is a solution of the differential inclusion (28) on [0, τ+] because

H0(x+(t), x′
+(t)) = 1 ∀t ∈ [0, τ+].

Moreover x+(τ+) = x̄(t̄). Thus, defining

x+(t) = x̄(t + t̄ − τ+) ∀t ∈ [τ+, u(x̄) + τ+ − t̄]

completes the construction of x+(·).

Step 3. We will now prove the estimate

τ+ ≤ t̄ +
〈
DqH

0(x̄, t̄v̄), q+ − t̄v̄
〉

+ C
|h|2
t̄

. (48)

Proof of Step 3 To begin with, let us note that any ξ ∈ [t̄v̄, q+] satisfies |ξ| ≥
t̄/C. Indeed, if ξ = μq+ + (1 − μ)t̄v̄ for some μ ∈ [0, 1], then, by (47), ξ =
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t̄v̄ + O(t̄1+α/2) − h with |h| = t̄1/β and β ∈ (0, 1). So, for |h| small enough, we
have the desired claim: |ξ| ≥ t̄/C. Then, by Lemma 3.9 we conclude that the
map ξ �→ DqH

0(x̄, ξ) is Lipschitz continuous on [t̄v̄, q+] with constant C/t̄. So,
for all t ∈ [0, τ+],

H0(x+(t), q+) ≤ H0(x̄, q+) + C|x+(t) − x̄|2α|q+| ≤ H0(x̄, t̄v̄)
+
〈
DqH

0(x̄, t̄v̄), q+ − t̄v̄
〉

+ (C/t̄)|q+ − t̄v̄|2 + C|x+(t) − x̄|2α|q+|.
Since x+(t) ∈ [x̄ + h, x̄(t̄)], we have

|x+(t) − x̄| ≤ max{|h|, |x̄(t̄) − x̄|} ≤ Ct̄.

Also, on account of (47) and (43),

|q+| ≤ Ct̄ and |q+ − t̄v̄| = |O(t̄1+α/2) − h| ≤ C|h|.
Noting that H0(x̄, v̄) = 1 because v̄ ∈ ∂F (x̄), the above inequality yields, by
the homogeneity of H0(x̄, ·),

H0(x+(t), q+) ≤ t̄ +
〈
DqH

0(x̄, t̄v̄), q+ − t̄v̄
〉

+ C

( |h|2
t̄

+ t̄1+2α

)
,

where |h|2/t̄ > t̄1+2α because t̄ = |h|β with β > 1/(1 + α/2). So,

H0(x+(t), q+) ≤ t̄ +
〈
DqH

0(x̄, t̄v̄), q+ − t̄v̄
〉

+ C|h|2/t̄.

Then

1=
∫ τ+

0

λ′(t)dt=
∫ τ+

0

dt

H0(x+(t), q+)
≥ τ+

t̄ + 〈DqH0(x̄, t̄v̄), q+ − t̄v̄〉 + C|h|2/t̄ ,

which in turn yields (48).

Conclusion. Repeating the above reasoning with q− = x̄(t̄) − (x̄ − h), we can
build a solution x−(·) to (28) such that x−(0) = x̄ − h, x−(t) ∈ [x̄ − h, x̄(t̄)]
on the time interval [0, τ−], and x−(t) = x̄(t + t̄ − τ−) on [τ−, u(x̄) + τ− − t̄].
Therefore,

u(x̄ − h) ≤ u(x̄) + τ− − t̄, (49)

where τ− can be estimated as above:

τ− ≤ t̄ +
〈
DqH

0(x̄, t̄v̄), q− − t̄v̄
〉

+ C
|h|2
t̄

. (50)

Hence, by (46), (49), (48), (50), and (45) we obtain

u(x̄ + h) + u(x̄ − h) − 2u(x̄) ≤ τ+ − t̄ + τ− − t̄

≤ 2
〈
DH0(x̄, t̄v̄), x̄(t̄) − x̄ − t̄v̄

〉
+ C

|h|2
t̄

≤ C|h|β(2+α)/2

since β < 4/(4+α). We have thus attained (44), which completes the proof. �
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