DOI 10.1007/s00030-011-0129-y

Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA. Nonlinear Differential Equations Appl. 11 (2004), no. 3, 379-391, and a comment on the generalized Ambrosetti-Rabinowitz condition

Dimitri Mugnai

Abstract. We show the incompleteness of a usually used version of the generalized Ambrosetti–Rabinowitz condition in superlinear problems, also used in the paper cited in the title, and we propose a complete one.

Mathematics subject classification (2000). 35J20, 35J61.

Keywords. Generalized Ambrosetti–Rabinowitz condition, Superlinear equations.

1. Introduction

Since the appearing of that milestone in partial differential equations given by the paper by Ambrosetti and Rabinowitz where the Mountain Pass was introduced (see [1]), thousands of papers have studied semilinear problems like

$$\begin{cases}
-\Delta u = g(x, u) & \text{in } \Omega, \\
Bu = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1)

where Ω is a domain of \mathbb{R}^N , $N \geq 3$, and B is a boundary operator, for example the Dirichlet or the Neumann one. Ω is allowed also to be unbounded, with obvious adaptations.

Moreover, also related quasilinear versions, for example in presence of the p-Laplacian operator $\Delta_p u = \operatorname{div}(|Du|^{p-2}Du), \ p \in (1, \infty),$

$$\begin{cases}
-\Delta_p u = g(x, u) & \text{in } \Omega, \\
Bu = 0 & \text{on } \partial\Omega,
\end{cases}$$
(2)

have been widely studied.

In order to study problem (1) when Ω is bounded, just to fix the ideas, the usual assumptions, introduced in [1], are:

- (i) $g: \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is (locally Hölder) continuous,
- (ii) g is subcritical in the sense of Sobolev's Embedding Theorem at infinity,
- (iii) g(x,s) = o(|s|) as $s \to 0$ uniformly in Ω ,
- (iv) the now–called Ambrosetti–Rabinowitz condition holds: there exist $\mu > 2$ and R > 0 such that

$$0 < \mu \int_0^s g(x,t) dt \le g(x,s)s \quad \text{ for any } |s| > R \text{ and } x \in \overline{\Omega}.$$
 (3)

Since then, there have been a plenty of papers where the authors consider problem (2) with $g: \Omega \times \mathbb{R} \to \mathbb{R}$, possibly just a *Carathéodory function*, satisfying (ii) and (iii) and the following generalized Ambrosetti–Rabinowitz condition: there exist $\mu > p$ and $R \ge 0$ such that

$$0 < \mu \int_0^s g(x,t) dt \le g(x,s)s$$
 for any $|s| > R$ and for a.e. $x \in \Omega$. (4)

At a first look the two conditions look pretty much the same, and in fact they are in the autonomous case g(x,s)=g(s), but the consequences are extremely different, at least in view of the applications. Indeed, by direct integration, (3) implies that there exist $c_1 > 0$ and $c_2 \ge 0$ such that

$$G(x,s) = \int_0^s g(x,t) dt \ge c_1 |s|^{\mu} - c_2 \quad \text{for all } s \in \mathbb{R} \quad \text{and} \quad x \in \overline{\Omega}. \quad (5)$$

In a massive number of papers it is written that integrating (3) - or (4) -, we get that there exist $c_1 > 0$ and $c_2 \ge 0$ such that

$$G(x,s) \ge c_1 |s|^{\mu} - c_2$$
 for all $s \in \mathbb{R}$ and a.e. $x \in \Omega$. (6)

Not to be unfair, we only quote our [3], were such a mistake was done assuming (3) with R = 0 and deducing (6) with $c_2 = 0$. Luckily such a mistake was not done in [2], a natural development of [3].

However, this deduction is false. Indeed, consider the function $g:(0,\pi)\times\mathbb{R}\to\mathbb{R}$ defined as $g(x,s)=\sin x|s|^{\mu-2}s$; then it obviously verifies $\mu G(x,s)\leq g(x,s)s$ in Ω for all s, but there are no $c_1>0,\,c_2\geq 0$ such that $G(x,s)\geq c_1|s|^{\mu}-c_2$ in Ω .

The mistake is simply in the integration and, we suppose, it is made just because the integral has not been really calculated. Indeed, (6) follows from (4) only if

$$\operatorname{ess\,inf}_{x\in\Omega}G(x,\pm R)>0,\tag{7}$$

a condition which is not satisfied by the example above, since (4) holds only in Ω and not in $\overline{\Omega}$.

However, it is well known that condition (6) is extremely important, for example, in order to verify mountain pass structures.

Moreover, also reversed forms of (4), like

$$\mu \int_0^s g(x,t) \, dt \ge g(x,s)s > 0 \quad \text{ for any } 0 < |s| \le R \quad \text{and } \quad \text{for a.e. } x \in \Omega(8)$$

have been extensively used, for instance in order to compute critical groups of the associated action functional, deriving too fast that in this case there exists $c_1 > 0$ such that

$$G(x,s) \ge c_1 |s|^{\mu}$$
 for all $|s| \le R$ and a.e. $x \in \Omega$, (9)

without knowing, again, that (7) holds.

In conclusion, working with functions satisfying (4), or (3) only in Ω and not in $\overline{\Omega}$, forces to *add* condition (6) to (3) or (4) and consider them as a unique hypothesis, as well as (9) should be assumed *together* with (8).

Therefore, in [3], where condition (3) was assumed with R = 0, one must ignore Remark 1, while condition (6) with $c_2 = 0$ must be taken as part of hypothesis (g₄).

References

- [1] Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
- [2] Mugnai, D.: Asymptotic behaviour, nodal lines and symmetry properties for solutions of superlinear elliptic equations near an eigenvalue. ESAIM Control Optim. Calc. Var. 11(4), 508–521 (2005)
- [3] Mugnai, D.: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem. NoDEA Nonlinear Differ. Equ. Appl. 11(3), 379–391 (2004)

Dimitri Mugnai Dipartimento di Matematica e Informatica Università di Perugia Via Vanvitelli 1 Perugia 06123 Italy e-mail: mugnai@dmi.unipg.it

Received: 8 October 2010. Accepted: 20 June 2011.