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Abstract. We show the incompleteness of a usually used version of the
generalized Ambrosetti–Rabinowitz condition in superlinear problems,
also used in the paper cited in the title, and we propose a complete one.
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1. Introduction

Since the appearing of that milestone in partial differential equations given
by the paper by Ambrosetti and Rabinowitz where the Mountain Pass was
introduced (see [1]), thousands of papers have studied semilinear problems
like {−Δu = g(x, u) in Ω,

Bu = 0 on ∂Ω,
(1)

where Ω is a domain of R
N , N ≥ 3, and B is a boundary operator, for example

the Dirichlet or the Neumann one. Ω is allowed also to be unbounded, with
obvious adaptations.
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Moreover, also related quasilinear versions, for example in presence of the
p-Laplacian operator Δpu = div(|Du|p−2Du), p ∈ (1,∞),

{−Δpu = g(x, u) in Ω,
Bu = 0 on ∂Ω,

(2)

have been widely studied.
In order to study problem (1) when Ω is bounded, just to fix the ideas,

the usual assumptions, introduced in [1], are:

(i) g : Ω × R → R is (locally Hölder) continuous,
(ii) g is subcritical in the sense of Sobolev’s Embedding Theorem at infinity,
(iii) g(x, s) = o(|s|) as s → 0 uniformly in Ω,
(iv) the now–called Ambrosetti–Rabinowitz condition holds: there exist μ>2

and R ≥ 0 such that

0 < μ

∫ s

0

g(x, t) dt ≤ g(x, s)s for any |s| > R and x ∈ Ω. (3)

Since then, there have been a plenty of papers where the authors con-
sider problem (2) with g : Ω × R → R, possibly just a Carathéodory function,
satisfying (ii) and (iii) and the following generalized Ambrosetti–Rabinowitz
condition: there exist μ > p and R ≥ 0 such that

0 < μ

∫ s

0

g(x, t) dt ≤ g(x, s)s for any |s| > R and for a.e. x ∈ Ω. (4)

At a first look the two conditions look pretty much the same, and in
fact they are in the autonomous case g(x, s) = g(s), but the consequences
are extremely different, at least in view of the applications. Indeed, by direct
integration, (3) implies that there exist c1 > 0 and c2 ≥ 0 such that

G(x, s) =
∫ s

0

g(x, t) dt ≥ c1|s|µ − c2 for all s ∈ R and x ∈ Ω. (5)

In a massive number of papers it is written that integrating (3) - or (4) -,
we get that there exist c1 > 0 and c2 ≥ 0 such that

G(x, s) ≥ c1|s|µ − c2 for all s ∈ R and a.e. x ∈ Ω. (6)

Not to be unfair, we only quote our [3], were such a mistake was done assuming
(3) with R = 0 and deducing (6) with c2 = 0. Luckily such a mistake was not
done in [2], a natural development of [3].

However, this deduction is false. Indeed, consider the function g : (0, π)×
R → R defined as g(x, s) = sin x|s|µ−2s; then it obviously verifies μG(x, s) ≤
g(x, s)s in Ω for all s, but there are no c1 > 0, c2 ≥ 0 such that G(x, s) ≥
c1|s|µ − c2 in Ω.

The mistake is simply in the integration and, we suppose, it is made just
because the integral has not been really calculated. Indeed, (6) follows from
(4) only if
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ess inf
x∈Ω

G(x,±R) > 0, (7)

a condition which is not satisfied by the example above, since (4) holds only
in Ω and not in Ω.

However, it is well known that condition (6) is extremely important, for
example, in order to verify mountain pass structures.

Moreover, also reversed forms of (4), like

μ

∫ s

0

g(x, t) dt ≥ g(x, s)s > 0 for any 0 < |s| ≤ R and for a.e. x ∈ Ω,(8)

have been extensively used, for instance in order to compute critical groups of
the associated action functional, deriving too fast that in this case there exists
c1 > 0 such that

G(x, s) ≥ c1|s|µ for all |s| ≤ R and a.e. x ∈ Ω, (9)

without knowing, again, that (7) holds.
In conclusion, working with functions satisfying (4), or (3) only in Ω and

not in Ω, forces to add condition (6) to (3) or (4) and consider them as a
unique hypothesis, as well as (9) should be assumed together with (8).

Therefore, in [3], where condition (3) was assumed with R = 0, one must
ignore Remark 1, while condition (6) with c2 = 0 must be taken as part of
hypothesis (g4).
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